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Abstract
To what extent can experience from language contribute to our
conceptual knowledge? Computational explorations of this
question have shed light on the ability of powerful neural lan-
guage models (LMs)—informed solely through text input—
to encode and elicit information about concepts and proper-
ties. To extend this line of research, we present a framework
that uses neural-network language models (LMs) to perform
property induction—a task in which humans generalize novel
property knowledge (has sesamoid bones) from one or more
concepts (robins) to others (sparrows, canaries). Patterns of
property induction observed in humans have shed consider-
able light on the nature and organization of human conceptual
knowledge. Inspired by this insight, we use our framework
to explore the property inductions of LMs, and find that they
show an inductive preference to generalize novel properties on
the basis of category membership, suggesting the presence of
a taxonomic bias in their representations.
Keywords: property induction; language models; semantic
cognition; generalization; conceptual knowledge

Introduction
There has recently been a growing interest in exploring the
limits and potential of language as an environment for learn-
ing conceptual knowledge (Elman, 2004; Lupyan & Lewis,
2019)—knowledge that encompasses mental representations
of everyday objects/events, and their properties and relations,
that together inform our intuitive understanding of the world
(Murphy, 2002; Machery, 2009). Computational explorations
of this claim often study the extent to which models that learn
semantic representations through text alone can capture con-
ceptual knowledge (Lucy & Gauthier, 2017; Forbes et al.,
2019; Da & Kasai, 2019; Bhatia & Richie, 2021).

A hallmark feature of the conceptual knowledge acquired
by humans is its capacity to facilitate inductive generaliza-
tions: inferences that go beyond available data to project
novel information about concepts and properties (Osherson et
al., 1990; Chater et al., 2011; Hayes & Heit, 2018). For exam-
ple, our knowledge of taxonomic specificity is reflected when
we generalize a novel property of a concept (e.g., robins have
T9 hormones) more strongly to taxonomically close concepts
(sparrows have T9 hormones) than to more taxonomically
distant concepts (tigers have T9 hormones). Inductive gener-
alizations about novel properties (also called property induc-
tion) therefore provide a context within which we can explore
the nature of agents’ understanding of conceptual knowledge.
In this paper, we develop an analysis framework that uses
neural network-based language models (LMs, henceforth) to
perform property induction and use this framework to study

concept representation in these models. Our framework con-
sists of two stages. In the first stage, we train LMs to evaluate
the truth of sentences expressing property knowledge (e.g., a
cat has fur → True, a table has fur → False). In the second
stage, we use these property-judgment models to test how the
representations from the underlying LMs drive inductive gen-
eralization of novel properties—e.g., has feps, can dax, etc.

Each stage of our framework sheds light on different as-
pects of the conceptual knowledge captured by LMs. Using
the first stage, we test the extent to which LMs support judge-
ment of whether a property applies to a concept, even when
that property has not been seen in task-specific fine-tuning.
We find that LMs perform substantially above chance, consis-
tent with the conclusion that they are able to rely on general-
izable property knowledge to assess truth of concept-property
associations. In the second stage, we use this property judg-
ment framework to study how knowledge representation in
the base LMs drives inductive generalization with respect to
entirely novel properties. We focus specifically on whether
models’ inductive preferences indicate reliance on taxonomic
information, by testing whether models prefer to generalize
within rather than outside of taxonomic categories. To do this,
we teach our property-judgment models novel property infor-
mation such as robins can dax via standard backpropagation
methods and then test the extent to which they prefer gener-
alizing this novel property to other birds (e.g. sparrows can
dax) more strongly than to non-birds (e.g. zebras can dax).
We find that models indeed show a preference for projecting
new property knowledge on the basis of taxonomic category
membership, suggesting that the models have acquired and
represented taxonomic features on which they rely to project
novel information.

Our LM-based account of property induction contributes
to the field in four primary ways. On the basis of the goals of
the task, our framework focuses on reasoning where conclu-
sions do not deductively follow from the premise, unlike the
goals of the more commonly-used task of natural language
inference (Bowman et al., 2015), and it therefore allows for
testing of human-like inferences that are seldom studied in
LMs (cf. Bhagavatula et al., 2020). Next, as we show be-
low, our framework opens a new window into exploring how
large neural network models of language generalize beyond
their training experience, complementing inquiries of mod-
els’ inductive bias with respect to syntactic structure (Mc-
Coy, Frank, & Linzen, 2020) and “universal linguistic con-
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straints” (McCoy, Grant, et al., 2020). Additionally, this work
advances research aiming to diagnose the nature and extent of
conceptual knowledge in LMs (Da & Kasai, 2019; Forbes et
al., 2019; Weir et al., 2020; Bhatia & Richie, 2021) by ad-
ditionally focusing on how knowledge present in LM repre-
sentations drives the generalizations they make. Finally, at a
high level, our framework contributes to a range of works that
have applied connectionist models to the problem of property
induction (see Sloman, 1993; Rogers & McClelland, 2004;
Saxe et al., 2019).

Testing Property Induction with Arguments
Property induction is often studied in humans through the
use of arguments, represented in the following premise-
conclusion format, as popularized by Osherson et al. (1990):

Robins have sesamoid bones.

All birds have sesamoid bones.
(i)

Argument (i) is read as “Robins have sesamoid bones. There-
fore, all birds have sesamoid bones.” The subject of the
premise sentence (robin) is referred to as the premise con-
cept (similarly, if there are multiple premises, we have a set
of premise concepts), while that of the conclusion is called
the conclusion concept. Representing induction stimuli as ar-
guments allows one to use the notion of “argument strength,”
which quantifies the degree to which a human subject’s belief
in the premise statements strengthens their belief in the con-
clusion (Osherson et al., 1990). In many cases, researchers
control the type of novel properties provided to participants
by using blank properties—properties that are synthetically
created and are therefore unknown to participants, maximiz-
ing the chances that they will use their knowledge of the rela-
tions between the premise and conclusion concepts to make
generalizations (Rips, 1975; Osherson et al., 1990; Murphy,
2002). In our property induction experiments, we simulate
blank properties by using nonce words to synthetically con-
struct novel properties—e.g., can dax, is vorpal, etc and use
them to explore knowledge of conceptual relations in LMs.

The Framework
Computationally, property induction can be viewed as mak-
ing conditional probability estimates about the conclusion (c),
given some premise (π): p(c | π). We interpret this mea-
sure in our framework as a probability that a novel property
is applied to a conclusion concept, by a model whose repre-
sentations reflect the premise information. This interpretation
leads to two desiderata that our framework aims to satisfy: (1)
the ability to make judgments about the association of prop-
erties to concepts, and (2) the ability to accept new property
knowledge and then be queried to assess generalization of this
new property knowledge to additional concepts. To satisfy
(1), we fine-tune existing pre-trained LMs to classify as true
or false sentences that associate properties to concepts—i.e.,
make property judgments. Doing so enables the LMs to es-
timate the probability that a property applies to a concept, as

p(True | “concept has property”, ϕ), where ϕ stands for the
parameters of a given LM. We use this approach rather than
estimating sequence probabilities—which are relatively more
straightforward to compute using LMs—in order to avoid
surface-level confounds as observed in similar work by Misra
et al. (2021). Next, to satisfy (2), we operationalize induc-
tion as the behavior of these LMs (now fine-tuned to make
property-judgments) after further adaptation to new proper-
ties using standard backpropagation (Rumelhart et al., 1986).
The motivation to use backpropagation to perform property
induction is simple—it allows the integration of new infor-
mation in the model by directly updating its representations,
which encode knowledge used to inform how the model gen-
eralizes. Under this operationalization, we first adapt our LM
to reflect the premise information (e.g. π = a robin can dax)
and then use the updated parameters of the model (ϕ′) to esti-
mate the probability of a conclusion (c = a sparrow can dax)
as: p(True | c, ϕ′). A similar operationalization of induc-
tion was used by Rogers & McClelland (2004), who reported
inductive inferences made by their PDP model of semantic
cognition by updating its weights to reflect novel informa-
tion, which was provided after several steps of training on
general conceptual knowledge derived from a toy dataset of
concepts and properties. Similar methods have also been used
by van Schijndel & Linzen (2018) and Kim & Smolensky
(2021) to characterize the adaptation of grammatical knowl-
edge in LMs. We now explain the two stages of our property
induction framework in greater detail:

Stage 1: Eliciting Property Judgments using LMs
In the first stage, we constrain LMs to explicitly rely on prop-
erty knowledge by distinguishing correct (cat has whiskers)
and incorrect associations (sparrow has whiskers) between
properties and concepts. We do this by fine-tuning LMs to
classify sentences that express concept-property associations
to be true or false. Importantly, we fine-tune models in a way
that keeps the evaluation sets disjoint in terms of properties—
i.e., the model is trained to assess the properties has feath-
ers, has a tail and then tested on a distinct set of proper-
ties: can fly, has a beak. Therefore, in order to succeed on
this task (i.e., minimize loss on a disjoint evaluation set), a
model must rely on property knowledge encoded in its rep-
resentations, to enable judgments about properties never seen
during fine-tuning. In experiments that follow, we verify the
extent to which the models are indeed able to draw on gen-
eralized property knowledge in order to succeed in this task.
Importantly, this stage assumes the presence of a repository
of concepts (C) and associated properties (P) as data for train-
ing and testing the model. We create sentences that express
property knowledge by pairing properties from P to concepts
from C. We then fine-tune the LM to classify these sentences
as true or false. At the end of this stage, we have a trained
model (with parameters ϕ) that takes as input a sentence s and
produces a probability score p(True | s, ϕ) corresponding to
the degree of truth of s as internalized by the LM. Figure 1A
illustrates the property judgment stage.
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Figure 1: (A) Property Judgment Stage describing the training of the property judgment model (with parameters ϕ) to make
judgments of truth on sentences expressing concept-property assertions. Sentences created using the concept (C) and property
(P) data collected by Devereux et al. (2014); (B) Depiction of the Induction Stage, in this case, for testing the generalization of
the novel property can dax from robin to all birds. Here, A = {ROBIN}, G = {ALBATROSS, ..., OSTRICH}.

Stage 2: Induction as Adaptation to New Knowledge
In this stage (see Figure 1B), we use the fine-tuned model
from the previous stage to perform property induction, which
we operationalize as the behavior of the model after adapta-
tion to new property knowledge via backpropagation.

A property induction trial involves (1) a set of premise con-
cepts (which we denote as the adaptation set A ⊂ C); (2) a
set of conclusion concepts (denoted as the generalization set
G ⊂ C); and (3) a novel property being generalized from the
premise to the conclusion. We construct sentences that asso-
ciate the novel property to the concepts in A and G, yield-
ing the premise and conclusion stimuli, respectively (see Fig-
ure 1B). To perform property induction, we first adapt the
model’s parameters ϕ to the premise sentences by using stan-
dard backpropagation, yielding an updated state of the model,
ϕ′, that correctly attributes the concepts in A with the novel
property. We then freeze ϕ′ and query the model with the
conclusion sentences to obtain the (log) probability of gen-
eralizing (or “projecting”) the novel property to the concepts
in G. We refer to this measure as the “generalization score”
(G)—i.e., the strength of projecting the novel property to a
set of one or more concepts in the generalization set:

G =
1

n

∑
ci∈G

log p(True | “ci has property X”, ϕ′) (1)

The model parameters are reset to their original state (ϕ) after
this step in order to perform subsequent trials.

We now use components of this framework in two
experiments—one for each stage in the framework.

Investigating LMs on Property Judgments
Our first experiment focuses on the first stage of the pro-
posed induction framework. Here, we fine-tune pre-trained
LMs to evaluate the truth of sentences attributing properties
to concepts—i.e., we want our models to map the sentence a
cat has fur to True and a cat can fly to False. We use an exist-
ing semantic property norm dataset to construct our sentences

and split them into disjoint evaluation sets, where the prop-
erties we test the model on are strictly different from those
the model sees during fine-tuning. Therefore, a model must
learn to rely on its ‘prior’ (pre-trained) property knowledge in
combination with task specific information it picks up during
fine-tuning in order to succeed on this task.

Ground-truth Property Knowledge Data To construct
sentences that express property knowledge, we rely on a
property-norm dataset collected by the Cambridge Centre for
Speech, Language, and the Brain (CSLB; Devereux et al.,
2014). The CSLB dataset was collected by asking 123 hu-
man participants to elicit properties for a set of 638 concepts,
and this dataset has been used in several studies focused on
investigating conceptual knowledge in word representations
learned by computational models of text (e.g., Lucy & Gau-
thier, 2017; Da & Kasai, 2019; Bhatia & Richie, 2021). Im-
portantly, property-norm datasets such as CSLB only consist
of properties that are applicable for a given concept and do
not contain negative property-concept associations. As a re-
sult, the works that have used these datasets sample concepts
for which a particular property was not elicited and take them
as negative instances for that property (e.g., TABLE, CHAIR,
SHIRT are negative instances for the property can breathe),
which can then be used in a standard machine-learning set-
ting to evaluate a given representation-learning model.

Upon careful inspection of the CSLB dataset, we found
that the above practice may unintentionally introduce incor-
rect or inconsistent data. Datasets such as CSLB are col-
lected through human elicitation of properties for a given
concept, so it is possible for inconsistencies to arise. One
way that this may happen is if some participants choose
not to include properties that are obvious for the presented
concept (e.g., breathing in case of living organisms), while
other participants do, resulting in an imbalance that can be
left unaccounted for. We found that this was indeed the
case: e.g., the property has a mouth was only elicited for
6 animal concepts (out of 152), so all other animals in the
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dataset would have been added to the negative search space
for this property during sampling, thereby propagating incor-
rect and incomplete data. This indicates a potential pitfall of
directly using property-norm datasets to investigate seman-
tic representations—and suggests that prior evaluations and
analyses (Lucy & Gauthier, 2017; Da & Kasai, 2019; Bha-
tia & Richie, 2021) may have falsely rewarded or penalized
models in such cases. Owing to space constraints, we pro-
vide our detailed method and protocol to mitigate this prob-
lem in the supplemental materials. The revised dataset that
we produce consists of a set of 521 concepts, corresponding
to 23 different taxonomic categories (as annotated by the orig-
inal authors of the CSLB dataset) and 3,735 properties, with
23,107 ground-truth property-concept pairs which we used in
our experiment.

For each of our 3,735 properties—associated with k differ-
ent concepts—we sample k additional concepts that are max-
imally similar to the k concepts associated with that property,
and take these to be negative samples. For instance, for the
concept ZEBRA, we want to use HORSE for a negative sample
rather than a more distant concept such as TABLE. By do-
ing this, we make the property judgment tasks more difficult,
increasing the chances that the models we obtain from this
stage focus on finer-grained conceptual/property knowledge
as opposed to coarser-grained lexical similarity. For select-
ing similar concepts we take the Wu-Palmer similarity as our
similarity function (Wu & Palmer, 1994), which we compute
over the subset of the WordNet taxonomy (Miller, 1995) that
contains the senses of the 521 concepts considered in our ex-
periments. We then follow the method outlined by Bhatia &
Richie (2021) to convert our 46,214 property-concept pairs
(23,107 × 2) into natural language sentences, which we then
use as inputs to our models. We split these sentences (paired
with their respective labels) into training, validation, and test-
ing sets (80/10/10 split), such that the testing and validation
sets are only composed of properties that have never been en-
countered during training (note that properties between train-
ing and validation sets are also disjoint). We do this to avoid
data leaks, and to ensure that we evaluate models on their
capacity to learn property judgment as opposed to memoriza-
tion of the particular words and properties in the training set.
We make our negative sample generation algorithm and the
resulting dataset of property-knowledge sentences available
in our supplementary materials.

Tested LMs While our framework can be applied to any
neural language model, we present results from fine-tuning
three pre-trained LM families, based on the precedent of
using these models in standard sentence classification tasks
(Wang et al., 2018): BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and ALBERT (Lan et al., 2020). All
three models use the transformer architecture (Vaswani et al.,
2017), and are trained to perform masked language modeling:
the task of predicting masked words in context in a cloze-
task setup, where models have access to context words to the
left and right of the masked word. We report results using

Table 1: Performance (F1 score) of the fine-tuned LMs on the
test set of the property judgment task. Chance F1 is 0.66.

Model Params Test F1
ALBERT-xxl 206M 0.79
BERT-large 345M 0.78
RoBERTa-large 355M 0.79

the largest models in each of the three families—BERT-large,
RoBERTa-large, and ALBERT-xxl—since these variants had
the best performance in our preliminary experiments (on a
separate validation set). We fine-tune each of the three mod-
els on the property knowledge data by minimizing their bi-
nary cross-entropy loss on the training set using the AdamW
optimizer (Loshchilov & Hutter, 2018). We tune the hyper-
parameters of the LMs on the validation set, and evaluate the
three adapted models on the test set using F1 scores.

Results Table 1 shows the performance of the three models
in our property judgment experiments. We find that all three
models show similarly high performance on the test set (0.78-
0.79), suggesting strong capacities of all three models to as-
sess the application of properties to concepts. Notably, the
ALBERT-xxl model shows the same performance as BERT-
large and RoBERTa-large despite having ≈130M fewer pa-
rameters, suggesting that this property knowledge can be en-
coded in smaller models with more efficient use of param-
eters. Furthermore, all three models perform significantly
above chance (p < .001, FDR corrected).

Investigating Taxonomic Generalizations in
LMs using Property Induction

Taxonomic relations between concepts have an important role
in studies of human inductive reasoning. Early evidence from
Gelman & Markman (1986) indicated a strong preference of
children and adults, when making generalizations about new
and unfamiliar properties, to do so based on the structure of
biological taxonomies and category membership. Building
on this, Osherson et al. (1990) documented 13 separate tax-
onomic phenomena that influenced inductions made by hu-
mans. Inspired by these works, we demonstrate how our
property induction framework can be used to test whether a
similar taxonomic bias is reflected in the LMs used to train the
above property judgment models. For instance, if a model is
provided with a new property—e.g., can fep—that is associ-
ated with the concept CAT, to what extent do its representa-
tional biases cause it to prefer generalizing or projecting this
property to other mammals rather than to fish?

Data We restrict our analysis to the animal-kingdom sub-
set of the concepts in our modified property-norm data, cor-
responding to a total of 152 animal concepts. We first se-
lect the top six categories within this subset: MAMMAL (52),
BIRD (36), INSECT (18), FISH (14), MOLLUSK (8), and REP-
TILE (7). Each instance in this experiment involves one of
the six aforementioned categories (of size m) from which we
sample n concepts to create the adaptation set, and use the

1980



remaining m − n to create the “Within-category” general-
ization set. We then create two separate “Outside-category”
generalization sets. First, we sample the top m − n ani-
mal concepts, on the basis of their average cosine similar-
ity with the concepts in the adaptation set (using the repre-
sentations of the embedding layer of the given model), and
take this to be the “Outsidesimilar” generalization set. We use
this similarity-based sampling technique in order to increase
our confidence that observed differences can be attributed to
category differences and not to general co-occurrence prop-
erties as learned by the models. This choice makes the
Outsidesimilar set model-dependent. We then complement this
with an equal sized “Outsiderandom” generalization set which
is model-independent and is composed of concepts randomly
selected from the set of animal concepts (excluding those that
belong to the main category used for adaptation). We repeat
this sampling process 10 times for each of n = 1, . . . , 5 adap-
tation concepts, and 8 novel properties: verb phrases created
using nonce words (can dax, can fep, has blickets, has feps,
is a tove, is a wug, is mimsy, is vorpal). In total, we have
2,400 adaptation trials per model, each involving 3 general-
ization sets: Within, Outsidesimilar, and Outsiderandom to test
the property induction behavior of our models.

Method In each trial, we pass the adaptation set to the mod-
els and let them minimize their loss (starting from the same
optimizer state obtained at the end of the property judgment
training phase) until they reach perfect accuracy. Then we
compute G for each of our three generalization sets as shown
in eq. (1), for each model. Figure 2 shows the average G (over
all properties) as a function of the size of the adaptation set.

Results and Analysis We expect models with a preference
for category-based generalization to have greater average G
value for the “Within” set than for either of the “Outside”
sets. From Figure 2, we see that all three models consistently
show this pattern—for all models, the average G was sig-
nificantly greater for “Within” generalization as compared to
both “Outside” generalization sets (p < .001, according to a
Games-Howell test conducted following a Welch’s ANOVA).
This suggests that these models show a preference for gener-
alizing newly-learned properties of a concept to other mem-
bers of that concept’s superordinate category. We also ob-
serve that the average generalization score in both categories
increases with an increase in the number of adaptation con-
cepts. Notably, this is also robustly observed in humans (char-
acterized as the premise monotonicity effect by Osherson et
al.)—however, we do not focus on this effect, as it is rela-
tively expected that machine learning models will be more
confident in their predictions as the number of samples pro-
vided to them increases.

Although the properties provided to the models in our in-
duction experiment are ones that they have never seen dur-
ing property-judgment training, one may wonder to what ex-
tent the models’ inductive behavior can be explained based
on taxonomically similar concepts simply being more likely
to share properties within the property-judgment training

ALBERT-xxl BERT-large RoBERTa-large

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
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Figure 2: Results from the taxonomic generalization experi-
ment showing generalization scores (G) of the three property-
judgment models for ‘Within’ and both the ‘Outside’ gener-
alization sets across different number of adaptation concepts.

stage—this could call into question how much these general-
ization patterns tell us about the underlying concept knowl-
edge in the LMs. Under the connectionist perspective of
property induction (Sloman, 1993; Rogers & McClelland,
2004), the strength of generalization (of a novel property) to
a concept is proportional to the overlap in properties between
the premise (adaptation set) and the conclusion (generaliza-
tion set). We can reasonably expect this to translate to the
models that we use here, especially since they are trained to
predict the presence and absence of properties. To test the
connection between LMs’ generalization behavior and the
overlap in training data properties, we first calculate prop-
erty overlaps between each adaptation/generalization set pair
as the ratio of the intersection and union of the ground-truth
properties associated with the concepts within the sets (i.e.,
the jaccard similarity). We then fit a linear mixed-effects
model to predict G using the lme4 (Bates et al., 2015) and
lmerTest (Kuznetsova et al., 2017) packages in R, for each
LM. Our final model included the number of adaptation con-
cepts (n), as well as the property overlap (overlap) and
cosine similarity (sim) between the adaptation and general-
ization sets along with their interaction as fixed effects; and
also included random intercepts for the novel property and the
trial. Model Specification: G ∼ n + overlap * sim
+ (1|property) + (1|trial). For all three LMs,
we find a positive main effect of the property overlap,1 sug-
gesting that G was significantly greater for generalization sets
whose concepts had greater training data property overlap
with those in the adaptation set.

While we have established that the models make gener-
alizations that are consistent with the training set statistics,
there exist cases where property overlap is in direct conflict
with taxonomic category membership. For instance, dolphins
share many salient properties with fish and yet are classified
as mammals. Motivated by this observation, we ran another

1along with that of number of concepts (n) as well as the model’s
cosine similarity (sim), p < .001 in all cases, approximated using
Satterthwaite’s method; see Suppl. Materials for full results.
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Figure 3: Generalization scores of the models in cases where
the Outside category had greater property overlap than the
Within category. N = 48 trials for each model.

experiment involving only the cases where generalizations
based on category membership conflicted with those based
on property-overlap. We identified 6 concepts that had greater
property overlap with concepts belonging to a different cate-
gory relative to their own superordinate category: (DOLPHIN,
WHALE, TURTLE, SLUG, SNAIL, HIPPO). For each of these 6
concepts, we compare generalization of our previously used 8
novel properties to concepts in the same taxonomic category
(Within) vs. concepts in the category with which the concept
had greater property overlap (Outside), thereby teasing apart
the effect of property-overlap from that of true taxonomic
membership. Figure 3 shows results of this experiment. We
observe for each model that the inductive preference for the
“Within” generalization set was significantly greater than that
for the “Outside” generalization set (p < .001 in all cases us-
ing a paired t-test, FDR corrected). This indicates that while
the overall generalization behavior of the models is predicted
by training data statistics, the models are robust in showing a
taxonomic bias even when this relationship does not hold.

General Discussion and Conclusion
The empirical success of neural network-powered language
models (LMs)—especially on high-level semantic tasks—has
lent further support to the study of language as a source of
semantic knowledge (Elman, 2004; Lupyan & Lewis, 2019).
The goal of this paper was to contribute to this line of inquiry
by understanding the ways in which LMs generalize novel
information about concepts and properties (a lion can fep)
beyond their training experience. To this end, we developed
a framework that used LMs to perform property induction—
a paradigm through which cognitive scientists have studied
how humans use their conceptual repertoire to project novel
information about concepts and properties in systematic ways
(Rips, 1975; Osherson et al., 1990; Hayes & Heit, 2018). By
simulating a similar process in LMs, our framework can yield
insights about the inductive preferences that are guided by
the LMs’ representations and shed light on the nature of the
models’ conceptual knowledge.

As a motivating case study, we used our property induction
framework to study the extent to which LM representations
show a preference to project novel properties on the basis of
category membership. To this end, we adapted three LMs—

fine-tuned to predict the truth of sentences expressing prop-
erty knowledge—to inputs associating a novel property with
one or more concepts. We then compared the models’ projec-
tion of the novel property between (1) a set of concepts with
the same superordinate category as the concept(s) associated
with the property, and (2) a pair of concept-sets that were
outside of that superordinate category. In a majority of cases,
the LMs preferred to project the new property to concepts
of the same category, suggesting the influence of taxonomic
bias. We hypothesized that some of models’ taxonomic cat-
egory preference could be due to high property overlap be-
tween concepts of the same category in property-judgment
training—but while these property overlaps were statistically
predictive of how models projected novel properties, the pref-
erence to generalize to concepts within the taxonomic cat-
egory persisted even when effects of property-overlap and
category-membership were teased apart.

Our results indicate that when LMs—fine-tuned to assess
property knowledge—deploy knowledge about novel proper-
ties, they are guided in part by representational taxonomic
biases beyond simple property-overlap relevant during fine-
tuning. While we cannot say precisely what the source of
this taxonomic bias is within these models, a simple expla-
nation would be that this bias reflects the nature of the con-
ceptual knowledge that these LMs learn and encode during
pre-training. That is, in learning semantic representations
of words by predicting them in context, models may have
picked up on latent taxonomic knowledge, to which they then
show sensitivity when projecting novel property information.
This is consistent with existing works that diagnose concep-
tual knowledge in LMs, finding them to display strong per-
formance in predicting taxonomic category membership (Da
& Kasai, 2019; Bhatia & Richie, 2021). Through our results,
we learn that this knowledge can additionally be implicitly
activated, and in fact guides how new property information is
generalized by LMs.

What other phenomena guide the inductive generalizations
that LMs make about concepts and properties? Our frame-
work provides a flexible mechanism to simulate and test a
broad range of phenomena observed in the human property-
induction literature (see Kemp & Jern, 2014; Hayes & Heit,
2018), and to shed light on the extent to which LMs’ inductive
preferences are consistent with those observed in humans. A
potential direction includes testing for a more general class
of inductive phenomena that are guided by “intuitive theo-
ries” (Murphy, 1993) that provide the context on the basis of
which different types of novel properties are projected dif-
ferently (Carey, 1985; Kemp & Tenenbaum, 2009). For in-
stance, biological information may be projected across a tax-
onomy (ROBIN and SWAN), whereas behavioral information
may be projected on the basis of specific shared properties
(HAWK and TIGER). Applying our framework on these phe-
nomena can provide insight into the context-specific flexibil-
ity of LM representations, and at a high-level, the kinds of do-
main knowledge that can be acquired through text-exposure.
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