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ABSTRACT OF THE DISSERTATION

A Data-Driven Framework for Regional Assessment of Seismically Vulnerable Buildings

by

Peng-Yu Chen

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2021

Professor Ertugrul Taciroglu, Chair

The urban region’s seismic resilience is being actively studied in recent years as a measure

for risk mitigation, where the identification of seismically vulnerable buildings and the as-

sessment of their performance play indispensable roles. However, it is a labor-intensive and

computationally expensive task to evaluate tens of thousands of buildings in a region be-

cause the identification requires professional judgment at a site and the seismic assessment

demands comprehensive modeling depending on structure-specific data. Nevertheless, it is

feasible with the aid of advanced development of the Internet of Things (IoT) and computer

technology. In this study, a data-driven framework including two pipelines that focus on

soft-story buildings and non-ductile reinforced concrete frames is proposed.

The first pipeline focuses on identifying soft-story buildings in the city of Santa Monica

(California) through 3D point clouds and convolutional neural networks (CNNs). Although

prior studies showed promising results in detecting soft-story buildings based on well-selected

street-view images, false predictions are common when it is applied to real-world data. To

address this issue, the pipeline implements point-cloud data where spatial information is

available to segment building points and extract density features for training deep learning
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models and identifying soft-story buildings. The transfer learning (TL) technique is adopted

to avoid overfitting in deep neural networks, and the parameters within the pipeline are

investigated for optimal performance. The results illustrate the potential applicability of the

pipeline for developing pre- and post-event countermeasures.

The second pipeline focuses on another seismically vulnerable building, namely, the non-

ductile reinforced concrete building (NDRCB). Prior studies indicated around 1,500 NDRCBs

in Los Angeles that are urgently waiting for detailed assessment and mandatory retrofit or

demolition if necessary. Because the fulfillment of these ordinances will last for decades, the

potential risk of major losses will persist. To this end, an automatic method that harvests

building information from IoT and imagery data, generates archetypal models, conducts

probabilistic seismic assessment, and estimates the losses for NDRCB frames is hence devel-

oped. The accuracy of the data harvesting module using deep CNNs is validated with the

existing inventory data. The archetypal frames are developed based on the era-specific rep-

resentative code and are validated through nonlinear static and nonlinear dynamic analyses

of previously investigated NDRCBs. State-of-the-practice loss estimation methodologies in-

cluding HAZUS and FEMA P-58 are adopted in the pipeline for constructing damage fragility

functions and corresponding losses. The regional application focuses on intensity-based as-

sessment for thousands of individual buildings instead of a scenario-based assessment. The

outcomes of expected losses and repair/reconstruction time emphasize the vulnerability of

NDRCBs in Los Angeles, and the presented pipeline is believed to bridge the gaps between

property owners, engineers, and decision-makers.

This research demonstrates how advanced data mining techniques and data-driven ap-

proaches can aid to solve civil engineering problems. While the framework currently focuses

on soft-story and non-ductile frame buildings, it is expected to be extended in depth and

breadth in the future. That is, more detailed models and other seismically vulnerable in-

frastructures can be included.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Seismic hazard is among one of the natural disasters that pose significantly destructive

impacts to society, from damaging buildings, endangering lives to economic loss. From past

earthquakes around the world, buildings having deficiencies in resisting seismic loads are

identified to be the cause of loss of life and property. The vulnerability of these buildings

is mainly because of era-specific design considering economic development and population

growth, and the lacking of the concept of seismic requirements. The most ubiquitous cases are

soft-story and non-ductile reinforced concrete buildings (NDRCBs) whose risks were evident

in events including the 1971 San Fernando, 1989 Loma Prieta, 1994 Northridge, 1999 Chi-

Chi, 2008 Sichuan, and 2009 L’Aquila earthquakes [42,53,62,65,92,107,120]. The existence

of these seismically vulnerable buildings affects the losses (e.g., repair, replacement), post-

earthquake occupancy rates, economic recovery, and even the number of fatalities during an

earthquake, all of which can be used to explicitly quantify seismic resilience [18, 20] that is

gradually valued in urban planning and risk mitigation.

Given that the built environment is made up of millions of buildings, a regional (e.g.,

city-scale) assessment is hence necessary because it provides valuable information that can

be used for emergency preparedness in high seismic regions and populous modern cities. In

a regional analysis, the following components are inevitable: (i) identifying target buildings

and harvesting their fundamental information, (ii) constructing region-specific and structure-
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specific representative analyses, and (iii) estimating potential damages and losses given a

seismic hazard. While each ingredient has extensive background studies, many limitations

and technical details render the practical application at a city scale. As a result, this study

aims to propose a data-driven framework to integrate the aforementioned components for

regional seismic assessment, which is expected to bridge knowledge gaps between property

owners, engineers, and decision-makers.

Many inventories [11, 25, 26] have been done to identify the existence of seismically vul-

nerable buildings in California, which prompts ordinances for mandatory evaluation and

retrofit of them if required. Specifically being discussed herein, the City of Los Ange-

les’ Resilience by Design initiative (https://www.lamayor.org/resilience-design-

building-stronger-los-angeles) released a task force to assess pre-1980 soft-story

and NDRCBs. Many studies have also investigated and recommended retrofitting strate-

gies [8, 19, 27, 35, 129]. Until this dissertation is being written, around 90% soft-story

buildings have been assessed, 60% have been issued permits, and 40% have completed

retrofit. However, less than 20% of non-ductile buildings have been assessed (https:

//www.ladbs.org/services/core-services/plan-check-permit/plan-check-pe

rmit-special-assistance/mandatory-retrofit-programs).

Given this circumstance, the motivations of choosing these buildings are quite different in

the proposed framework where two pipelines are included as shown in Fig.1.1. For the soft-

story buildings, the pipeline only focuses on improving the identification of these buildings at

a city scale. Existing studies used 2D street-view images and recently developed deep learning

(DL) techniques, which can only provide promising results when well-controlled images are

given. To address this issue, the pipeline uses city-scale point cloud data, extracts density

features, and identifies soft-story buildings through deep CNNs.

On the other hand, NDRCBs urgently need to be evaluated, so the specific pipeline

aims to collect metadata for automated modeling and damage assessment of non-ductile

buildings. Considering the scope of inventory, image-based DL techniques are used herein
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to harvest building information. Analytical models are automatically developed following

era-specific representative codes, and state-of-the-practice seismic assessment methodologies

are implemented to estimate building responses, damage fragility functions, and losses. The

automation of the process is trying to resolve practical restrictions and difficulties for the

regional application.

The following sections will briefly introduce the backgrounds and objectives of the two

pipelines, and the data mining module shown in Fig.1.1 will be discussed later when it is

applied to the inventory of NDRCBs.

Figure 1.1. Overview of the proposed framework.

1.2 Identification of Soft-Story Buildings

A typical weakness of soft-story buildings is their open-space configuration on lower levels

[11,42,129] as shown in Fig. 1.2. The open-space feature of soft-story buildings is a major hint

for engineers to rapidly identify structural irregularities. Automating the detection of this

characteristic is feasible and reliable given the recent developments of artificial intelligence
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(AI) and DL in computer vision technology.

Convolutional neural networks (CNNs) are at the core of recent DL development. Dis-

tinguished from traditional computer vision and machine learning (ML) techniques, CNNs

have the ability to capture millions of parameters learned from imagery data (pixel ma-

trix). Many well-designed CNN architectures, such as VGGNet [112], GoogLeNet [117], and

ResNet [58] have demonstrated their dominance in image recognition tasks. Several studies

in civil engineering applications have used CNN-based models to detect and localize struc-

tural damage. For example, Zhang et al. [134,135] developed a CNN-based pixel-level crack

detection model, CrackNet, which outperforms traditional ML methods for detecting cracks

on asphalt pavement. Alipour et al. [2] proposed a CNN-based model, CrackPix, to detect

crack damage based on patch-level images, which allowed random-size input images. Cha

et al. [22] designed a CNN architecture to detect crack damage in concrete structures, and

their model was less sensitive to real-world situations (e.g., lighting, shadow changes). In

addition to the application to imagery data, Kumar et al. [80] proposed a DL-based ob-

ject detection model for automated defect classification and localization in a closed-circuit

television video of sewers. Three object detection models, SSD [88], YOLOv3 [105], and

Faster R-CNN [106] were evaluated for accuracy and speed in defect detection. The Faster

R-CNN model demonstrated the highest accuracy in sewer inspection but required the most

computational time. Although the above-mentioned studies improved the labor-intensive

efforts for the inspection of civil infrastructure, the training of such CNN-based models from

scratch is time-consuming and requires large amounts of data.
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(a)

(b)

Figure 1.2. Typical soft-story buildings.

Transfer learning (TL) was developed to improve the training process and performance

of CNN-based models [97]. In TL, knowledge learned from well-trained models with a base

data set is transferred to a new model for retraining or fine-tuning on a smaller data set.

Gao et al. [47] implemented TL for vision-based damage recognition at the pixel, component,

and structural levels. In their study, the VGGNet model was retrained and fine-tuned for

multilabel structural damage classification tasks. Kim et al. [75] established a region-based

fully convolutional network to detect construction equipment for site management, where the

ResNet model was implemented as the base model in TL. Kalfarisi et al. [72] developed two
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DL-based approaches for crack detection and segmentation. The first approach integrated

Faster R-CNN with structured random forest edge detection [38], whereas the second ap-

proach applied Mask R-CNN [57] with pre-trained CNN models. Their results showed that

Mask R-CNN with Inception-ResNet-V2 [116] network architecture obtained higher crack

detection and segmentation performance. In addition to component damage recognition and

detection, some studies have implemented DL techniques for classification and detection at

the regional scale. Kang et al. [73] trained VGGNet, GoogLeNet, and ResNet based on

street-view images to classify building land use, and Srivastava et al. [115] used CNN models

to classify land use based on aerial and street-view images.

For regional identification of soft-story buildings, Wu et al. [126,127] and Yu et al. [132]

developed TL-based models and achieved high accuracy of detection in street-view images.

The detection confidence and accuracy decrease the more the buildings are blocked by ob-

jects, as shown in Fig. 1.3 (a) to (c). To overcome this limitation of street-view image-based

methods, 3D point cloud data can be used to capture the soft-story features of buildings that

are blocked or do not face the street. Fig.1.3 (d) shows an example of point cloud data (left

panel) for a soft-story building blocked by objects (right panel); the point cloud data can be

individually segmented from other objects. The objective of this pipeline is hence to develop

a workflow that automatically segments point clouds and identifies soft-story buildings by

applying DL models at the city scale. An overview of this pipeline is shown in Fig.1.4, and

the detailed implementation will be discussed in Chapter 2
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(a) (b) (c)

(d)

Figure 1.3. Soft-story detection with (a) non-blocked, (b) partially blocked, and (c) fully

blocked images. (d) An example of soft-story point-cloud data.

Figure 1.4. Schematic of identifying soft-story buildings.
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1.3 Seismic Assessment of Non-Ductile Reinforced Concrete Build-

ings

Numerous efforts have been undertaken to identify and generate reliable databases of NDR-

CBs during the past decade to understand the risks posed by these collapse-prone buildings

and to develop countermeasures. The Concrete Coalition—a network of engineer volunteers—

identified 20,000 to 23,000 NDRCBs in California [25,26], including residential, commercial,

and public (e.g., school) buildings. The volunteer investigation took three years (2008 to

2011) to assemble a variety of data sources ranging from county assessor’s files to satellite

images. Site surveys were also conducted to corroborate data collected from multiple sources.

With the experience of Concrete Coalition, a case study of the City of Los Angeles was

then conducted and approximately 1,500 NDRCBs were identified [5–7, 27]. The inventory

has been compiled using more than 15 data sources and the attributes include: location,

structural type, year built, number of stories, total size in square footage, and building

usage. To address the seismic loss and the mitigation priority, Anagnos et al. [8] broke

down the inventory into multiple groups that represent common construction typologies and

estimated the loss for scenario events. The mandatory retrofit program of the City of Los

Angeles took effect in 2005, yet the fulfillment of the ordinance will last for decades and more

than one thousand NDRCBs are still pending assessment to determine their compliance with

this ordinance.

Considering the expensive cost of on-site investigation, the complex modeling procedure,

and the large demand for assessing thousands of buildings, this pipeline is inspired and

developed. The goal of the pipeline is to: (i) collect metadata through text and visual

information available on the IoT to reduce labor-intensive site investigation; (ii)

construct detailed and computationally efficient models to approximate as-built

structures; and (iii) perform a large number of nonlinear dynamic analyses to

construct fragility functions for seismic risk assessment. An overview of this pipeline
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is shown in Fig.1.5, and the detailed implementation will be discussed in Chapters 3 and 4.

This study is defined as pilot research, so it is expected to be extended and applied to any

type of disaster and infrastructure in the future. However, we currently focus on moment-

resisting frame buildings to narrow down the problem scale. According to prior studies [8,27],

64% of the total square footage and replacement values in Los Angeles’ inventory concentrates

on high-rise buildings (37%) where most of them have moment frames with shear-critical

columns. These structures are thought to have a higher risk for regional loss estimation.

While the pipeline is initially limited to frame structures, concrete construction with walls

or masonry infill is expected to be included in the future.

In addition to assisting regional assessment, this pipeline is also developed to fill the

knowledge gap of NDRCBs. For example, suitable intensity measures (IMs) for seismic

assessment. IM plays a key role to connect seismic hazards and structural responses as it

can provide an accurate prediction of building vulnerability with minimal uncertainty [34,78].

Although many researchers have studied optimal IM for a variety of structures, few of them

focused on NDRCBs [4,66,67]. Besides, only limited types of frames (i.e., low-rise, mid-rise)

and engineering demand parameters (i.e., maximal inter-story drift) were considered among

them. Hence, the proposed pipeline is used to identify and recommend suitable IMs for the

NDRCB frame based on efficiency, sufficiency, proficiency, and practicality [77, 89,110].
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Another motivation of the study is to address limitations in applying state-of-the-practice

risk assessment methodologies at a city scale. In particular, the multi-hazard loss estimation

methodology (HAZUS [43]), and the FEMA P-58 method [44]. Buildings are classified into

different groups based on their built year, material, lateral force resisting system, and the

number of floors in HAZUS which was developed to provide a guideline for regional risk

assessment and emergency response. The capacity spectrum method is used in HAZUS to

obtain the demand and capacity of a single-degree-of-freedom (SDOF) system subject to

a push-over load for different building groups, which is the advantage of HAZUS because

it can rapidly assess a building-level performance and corresponding losses. However, the

shortage of HAZUS is that the component-level performance is not available because the

SDOF cannot differentiate the structural response. Besides, the capacity spectrum method

cannot reflect the ground motion characteristic. On the other hand, FEMA P-58 method

was developed by following the next-generation performance-based seismic design. In the

P-58 method, the building performance is evaluated based on groups of components (e.g.,

columns at the first story, beam-column joints at the top floor), which requires comprehen-

sive structural responses at different floors. P-58 method is believed to be able to provide

much detailed seismic performance and loss estimation for a single building as long as refined

modeling and dynamic analyses are conducted. While the P-58 method is dominant for a

single building, it is challenging to apply it to a region because of the difficulty of obtain-

ing detailed seismic responses. Given the shortage of HAZUS and the demand of the P-58

method, the contributions of this study are highlighted.

1.4 Organization and Outline

This dissertation consists of five chapters and their contents are elaborated below:

Chapter 1 discusses the background, motivation, and objectives of the research.
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Chapter 2 begins with an overall description of the pipeline, followed by the segmenta-

tion of point-cloud data, and the calculation of density features for training the DL models to

identify soft-story buildings. Multiple experiments are conducted to investigate the optimal

parameters based on performance metrics. The TL techniques and state-of-the-art CNN

models are then implemented to improve the performance. The final section summarizes the

conclusions drawn for this pipeline.

Chapter 3 focuses on the automated development of NDRCB frames in the widely

used Open System for Earthquake Engineering Simulation (OpenSees [91]). A series of

reviews of prior and selected modeling techniques are discussed, followed by an elaboration of

implementing era-specific code (i.e., Uniform Building Code 1976 [64]) to design archetypal

frames. The procedure is then validated through nonlinear static and nonlinear dynamic

analyses. The probabilistic seismic demand model (PSDM, [31]) is introduced to develop

damage fragility functions and investigate suitable IMs for NDRCB frames. A sensitivity

analysis is provided to identify the variation of structural responses computed through the

proposed pipeline, which is followed by a summary of the chapter.

Chapter 4 applies the proposed pipeline of assessing NDRCB frames to Los Angeles’

inventory. Python-based web scraping tools are conducted and combined with 2D image-

based DL models to harvest the building information required in automated modeling. Hun-

dreds of thousands of nonlinear time-history analysis (NTHAs) are carried out through

high-performance cluster Hoffman2 at the University of California, Los Angeles. The chap-

ter ends with an estimation of the potential seismic losses of NDRCBs in L.A., which is

computed through HAZUS and P-58 methods.

Chapter 5 concludes the dissertation and provides a roadmap for future work.
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CHAPTER 2

Pipeline for Identifying Soft-Story Buildings Using 3D

Point-Cloud and Deep Learning

This chapter is partly based on the following publication:

Chen, P.Y., Wu, Z. Y., and Taciroglu, E. (2021). “Classification of soft-story buildings

using deep learning with density features extracted from 3D point clouds,” Journal of Com-

puting in Civil Engineering, 35(3), 04021005. (published)

2.1 Overview

As introduced in the previous chapter (shown in Fig.1.4) the proposed automated pipeline

for identifying soft-story buildings consists of four components: (1) preparation of city-scale

point clouds; (2) segmentation of building point clouds using ground-truth soft-story building

footprints; (3) computation of density-height variation plots; and (4) soft-story identification

using CNNs.

The DL classifier starts with a naïve CNN architecture which is used to investigate

the optimal hyper-parameters for the proposed pipeline. State-of-the-art CNNs are then

introduced through TL techniques to improve the performance. Fundamental components

of CNN (e.g., convolutional layer, maximum pooling, rectified linear unit, fully-connected

layer) and selected models for TL will be introduced in this chapter, which is also used in
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the next pipeline for the assessment of non-ductile concrete buildings.

2.2 Point-Cloud Data

Point clouds are a set of data points in space, where numerous points represent a 3D shape

or object and each point has its set of X, Y, and Z coordinates. Point cloud data have

been actively studied to reconstruct infrastructural models for facility management [23, 24],

and post-event damage evaluation [74, 136] in recent developments due to its scalability of

depth and dimension of objects. As shown in Fig.1.3 (d), the open-space feature of soft-

story buildings can be reliably captured by 3D point clouds, but it may not always be

visible in 2D images because it may be blocked from view by the orientation of the building

and/or by objects (e.g., trees and cars). Furthermore, the point density of an opening space

should be sparse compared with other regions, thus a point density feature is considered as

a characteristic of soft-story buildings. As a result, point cloud data is selected in this study

to improve the identification of soft-story buildings.

The city of Santa Monica conducted a virtual survey for seismically vulnerable buildings

in 2015 and enacted an ordinance for a mandatory retrofit program in 2017 (https://ww

w.smgov.net/Departments/PCD/Programs/Seismic-Retrofit/). Among the 2,000

seismically vulnerable buildings, 1,427 were identified as soft-story buildings and required to

be retrofitted by July 2026. Santa Monica is selected as the target city in this study because of

the extensive data inventory, including data on soft-story buildings. To generate point cloud

data, 3D scanners or photogrammetry software are often used, which measure many points

on the external surfaces of objects around them. The light detection and ranging (LiDAR)

sensor is a well-known 3D scanner using ultraviolet, visible, or near-infrared light to measure

the spatial relationships and shapes of objects and environments. While the application in

civil engineering ranges from micro-damage detection of structural components [1] to macro-

vulnerability estimation of an urban region [118], the expense to scan a city is too high.
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Photogrammetry is implemented herein to create a 3D point cloud model for Santa Mon-

ica due to its affordability. In photogrammetry, evenly distributed points on images (e.g.,

street-view images) that depict an object are used to estimate the camera position with

known and georeferenced 3D coordinates [123]. In this study, a well-developed photogram-

metry software (ContextCapture [15]) is used to automatically register the shared points

among images and calculates the distances in 3D space. The output is a set of point clouds

with coordinates and appearance textures (e.g., R, G, B) as shown in Fig.2.1 For Santa

Monica (as shown in Fig.2.2), 1.1 billion point cloud data points are generated, covering

18.16 km2 at a density of 60 points/m2.

Figure 2.1. Example of 3D point clouds generated from 2D images [15].
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Figure 2.2. Point cloud data of the city of Santa Monica.

2.3 Segmentation of Building Points

As shown in Fig.2.3, the original point clouds contained many redundant points (e.g., tree,

road, car). To capture the open-space features of soft-story buildings, building points need

to be segmented from the city-scale data. For this sake, building footprints are used to

outline the boundaries of soft-story and non-soft-story buildings. The city government of

Santa Monica provides an open-source geographic information system (GIS) database where

footprint polygons are stored as shapefiles (.shp). The extraction process is performed using

two Python packages, GeoPandas [69] and Shapely [48]. GeoPandas can access point clouds

through DataFrame structure in Python and perform a spatial query based on the footprint
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polygons read by Shapely. Based on the geocoordinates of point clouds, points within a

polygon are segmented and stored for each building.

A parameter is introduced here, namely, the scaling ratio of footprint polygons. Using

unscaled polygons sometimes causes flawed points on surfaces where only a few points are

generated in photogrammetry. A scaling ratio is hence applied to ensure that the complete

appearance of a building can be acquired. However, the larger polygon is used, the more

points will be segmented. The effect of the scaling ratio on point density is hence necessary

to be investigated for CNN models, which will be discussed later in this chapter.

Figure 2.3. Point-cloud data of the city of Santa Monica.
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2.4 Extraction of Density Features

As previously mentioned, a soft-story building usually has a ground level with a large opening

space, which can be easily detected in 2D imagery data if there are no obstacles in front of

it. When the opening is at the side of a building and cannot be captured by the street-view

image, the identification becomes unreliable. In contrast, the opening space can always be

described by point clouds, because a data point is only generated if there is an object. To

use this characteristic, a moving box is introduced into the pipeline to depict the variation

in the density of point clouds along with the building height.

As shown in Fig.2.4, a moving box with a fixed height is used to compute the point cloud

density along the building height, where the moving step size is set to be the same as the box

height. The relation between height and density can then be drawn and further implemented

as imagery data for training the CNN-based classifiers. A gap/pit can be observed in the

soft-story building’s density-height figure, which is suitable for training a binary classifier. To

ensure the robustness of the pipeline, the height and density data will be normalized before

converted into a 2D image. The effect of box height on soft-story building identification is

also evaluated and discussed later in this chapter.

Figure 2.4. Extraction of density features along building height.
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2.5 Naïve CNN Model

After converting the density feature into 2D imagery data, the identification of a soft-story

building becomes a binary classification task that can be tackled using CNN models. Al-

though many existing models have deep network architectures that can classify multiple

objects in an image with a complicated background, this study started with a naïve CNN

model because the density image is only composed of lines and is relatively simple compared

to practical imagery data.

The schematic architecture of the naïve CNN model used in this study is shown in Fig.2.5.

It generally contains three main types of layers: convolutional layer, pooling layer, and

fully-connected layer. In more detail:

• Input layer: the raw pixel values of the image. For example, images with width 32,

height 32, and with three color channels R,G, and B. The dimension is [32× 32× 3].

• Convolutional layer: it adopts a set of trainable filters (e.g., 3× 3, 5× 5) and bias to

slide over an image and compute their dot product. It captures the spatial information

of each pixel and can be referred to as a feature map. This may result in a volume

such as [32× 32× 12] if 12 filters are used. An example is shown in Fig.2.6

• RELU layer: a nonlinear transformation function, namely, the rectified linear unit. It

will apply an element-wise activation function, such as the max(0, x) [94] thresholding

at zero. This leaves the size of the volume unchanged ([32× 32× 12]).

• Pooling layer: it will perform a downsampling operation along the spatial dimensions

(width, height) and maintain larger patterns in the feature map. For example, each

pixel in each feature map is replaced by a maximum of the 2 × 2 patch around this

pixel, which is called max-pooling [93], resulting in volume such as [16× 16× 12].

• FC (i.e. fully connected) layer: it will compute the class scores, resulting in a volume

of size [1×1×2], where each of the 2 numbers corresponds to a class score, such as the

2 categories of buildings. As with ordinary neural networks and as the name implies,
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each neuron in this layer will be connected to all numbers in the previous volume.

• Dropout: a regularization method that approximates training a large number of neural

networks with different architectures in parallel to avoid over-fitting [114]. When ap-

plying dropout, some outputs are randomly ignored or “dropped out,” which has the

effect of making the layer look like and be treated like a layer with a different number

of nodes and connectivity to the prior layer. This can make the training process noisy,

so the model will not overfit a dataset with a few examples. A conventional dropout

ratio of 0.5 is used for the naïve CNN model in this study.

Figure 2.5. Schematic architecture of the naïve CNN model.

Figure 2.6. An example of convolutional filters.

Briefly speaking, the training process includes forward weight propagation and backward
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error propagation. In the forward process, the weights are connected to features in the

previous layer and the nonlinearity is introduced through the activation function. In the

backpropagation process, the prediction made in the top layer is used to compute the error

of the model, and the chain rule can be implemented to identify how much contribution made

by each weight in each layer. The goal is to minimize the error or the loss function through

updating weights. The network generally has a recursive structure as expressed in Eq.2.1,

where l = 1, . . . , L, denotes the layer; h0 = X is the input vector; Wl and bl are weight

matrix and bias vector respectively; and fl is activation function at l layer (e.g., ReLU).

hl = fl(sl)

sl = Wlhl−1 + bl

(2.1)

To make the prediction of the input Xi into K categories, the output layer is a K

dimensional vector hi = (hik, k = 1, . . . , K), and the probability that the input Xi belongs

to category k can be computed through softmax probability expressed in Eq. 2.2. The input

Xi is classified to category k whose hik is the maximum in hi.

pik = ehik∑K
k′=1 e

hik′
(2.2)

Suppose the training dataset is (Xi, yi), i = 1, . . . , n, where Xi is the input image, and

yi is the output category. Let p(y|X, θ) be the probability that the input image X belongs

to the category y according to the above softmax probability. θ can be estimated by

maximizing the log-likelihood function expressed in Eq. 2.3 using gradient descent based on

the back-propagation computation.

n∑
i=1

logp(yi|Xi, θ) (2.3)

The loss function in the back-propagation is the negative log-likelihood expressed in Eq. 2.4.

L = −
n∑
i=1

logp(yi|Xi, θ) (2.4)
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If yi = k, then

∂logp(yi|Xi, θ)
∂hik′

= 1(k′ = k)− ∂

∂hik′
log

K∑
k′=1

ehik′

= 1(k′ = k)− ehik′∑K
k′=1 e

hik′

= 1(k′ = k)− pik′

(2.5)

Let Yi be the one-hot vector, i.e., if yi = k, then the k − th element of Yi is 1, and 0

otherwise. Let pi = (pik, k = 1, . . . , K) be the vector of predicted probabilities of the K

category. Then Eq. 2.6 can be used to update the weights and biases using the chain rule in

the back-propagation.
∂logp(yi|Xi, θ)

∂hik′
= Yi − pi = ei (2.6)

To minimize the loss, the gradient descent for Eq. 2.4 is

θt+1 = θt − ηL′(θt) (2.7)

where η is the step size or learning rate, and L′(θ) is the gradient. This method may be time-

consuming because the loss is summed over all the examples. A stochastic gradient descent

algorithm can be used to address this problem by randomly selecting i from 1, 2, . . . , n. In

this method, θ only need to be updated through the gradient for the i− th example L′〉(θt).

The gradient descent algorithm goes downhills in the steepest direction in each step, but

the steepest direction may not be the best direction. As shown in Fig.2.7, the black arrows

are the gradient and the red arrows are the preferred direction, which is the direction of

momentum. To accelerate the minimization, the momentum [103] should be considered in

the stochastic gradient descent expressed in Eq. 2.8

vt = γvt−1 + ηtgt

θt = θt−1 − vt
(2.8)

where gt is the average gradient computed from the batch of examples, and vi is the momen-

tum or velocity. γ is usually set at 0.9 for accumulating the momentum, and θ is updated

based on the momentum.
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Figure 2.7. Direction of momentum in gradient descent algorithm.

Alternatively, the Adagrad algorithm [39] modifies the gradient descent in another direc-

tion by considering that the components of the gradient may be very uneven. The updating

of the gradient is then expressed in Eq. 2.9

Gt = Gt−1 + g2
t

θt+1 = θt − ηt
gt√
Gt + ε

(2.9)

where ε is a small number to avoid dividing by 0. g2
t and gt/

√
Gt + ε denote component-wise

squares and division.

In the Adagrad algorithm, Gt is the sum over all time steps. RMSprop [61] improves it

by only summing the recent time steps as expressed in Eq. 2.10 where β is often set to be

0.9.

Gt = βGt−1 + (1− β)g2
t

= (1− β)(βt−1g2
1 + βt−2g2

2 + · · ·+ βg2
t−1 + g2

t )
(2.10)

The state-of-the-art algorithm Adam optimizer [76] further combines RMSprop and mo-

mentum and has been widely used for training deep CNN models. The formulations are
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expressed in Eq. 2.11.

vt = γvt−1 + (1− γ)gt

Gt = βGt−1 + (1− β)g2
t

vt ←
vt

1− γ

Gt ←
Gt

1− β

θt+1 = θ − η vt√
Gt + ε

(2.11)

In this study, the above-mentioned layers and optimization algorithms are already developed

and available through Python. For the naïve CNN model, a grid search technique is imple-

mented to investigate the optimal learning rate and the algorithm for minimizing the loss.

0.01 learning rate and the stochastic gradient descent are concluded to be optimal and used

in the proposed pipeline.

2.6 Investigation of Optimal Parameters

Three experiments are conducted to investigate the optimal parameters for the proposed

pipeline: (1) moving-box height; (2) input-image size; and (3) scaling ratio of the building

footprints. The implementation of these experiments is conducted on a TensorFlow platform

using a self-assembled computer with a single GPU (CPU: Intel(R) Core i7-8700 @ 3.20 GHz,

RAN:16.0 GB, and GPU: Nvidia RTX 2080).

It is worth noting that only one set of building points should be segmented from a

footprint at a single address, which will only generate one density feature image. The

moving box height will only affect the smoothness of the density lines. However, multiple

polygons may be found in some addresses (i.e., footprints) where affiliated facilities (e.g.,

doghouses, swimming pools, storerooms) are also captured in the auto-segmenting process

and classified as buildings. These false buildings can then be removed when the point set is

shorter than the height of a typical building (i.e., 3 m).
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2,842 density feature images are considered as real buildings and are used to conduct

numerical experiments. The images are divided into a training set (2,274 ≈ 80%), a val-

idation set (285 ≈ 10%), and a testing set (283 ≈ 10%). Each set has balanced images

from two categories (i.e., soft-story and non-soft story). During the training process, the

validation accuracy is monitored to track overfitting. The model with the highest validation

accuracy is saved and used for testing. If no higher validation accuracy is observed for 10

consecutive epochs, the training process is interrupted (i.e., early stopping). For the input-

image size experiment, four size categories are designed: small (64×64); median(128×128);

VGG(224× 224) implemented in VGGNet [112]; and large(256× 256). The detailed config-

uration of the naïve CNN model is listed in Table 2.1. The number of parameters is related

to the input, filter size, and the number of neurons in the fully connected layers.

Table 2.1. Configuration of naïve CNN model

Conv architecture Input size and output shape

Block Layer Filter size 64 x 64 128 x 128 224 x 224 256 x 256

Input Input image - (N, 64, 64, 1) (N, 128, 128, 1) (N, 224, 224, 1) (N, 256, 256, 1)

Conv block 1 Convolutional 3 x 3 (32) (N, 62, 62, 32) (N, 126, 126, 32) (N, 222, 222, 32) (N, 254, 254, 32)

Convolutional 3 x 3 (32) (N, 60, 60, 32) (N, 124, 124, 32) (N, 220, 220, 32) (N, 252, 252, 32)

Max pooling - (N, 30, 30, 32) (N, 62, 62, 32) (N, 110, 110, 32) (N, 126, 126, 32)

Conv block 2 Convolutional 3 x 3 (64) (N, 28, 28, 64) (N, 60, 60, 64) (N, 108, 108, 64) (N, 124, 124, 64)

Convolutional 3 x 3 (64) (N, 26, 26, 64) (N, 58, 58, 64) (N, 106, 106, 64) (N, 122, 122, 64)

Max pooling - (N, 13, 13, 64) (N, 29, 29, 64) (N, 53, 53, 64) (N, 61, 61, 64)

Conv block 3 Convolutional 3 x 3 (128) (N, 11, 11, 128) (N, 27, 27, 128) (N, 51, 51, 128) (N, 59, 59, 128)

Convolutional 3 x 3 (128) (N, 9, 9, 128) (N, 25, 25, 128) (N, 49, 49, 128) (N, 57, 57, 128)

Max pooling - (N, 4, 4, 128) (N, 12, 12, 128) (N, 24, 24, 128) (N, 28, 28, 128)

Fully connected Flatten - (N, 2,048) (N, 18,432) (N, 73,728) (N, 100,352)

Dense - (N, 1,024) (N, 1,024) (N, 1,024) (N, 1,024)

Dense - (N, 1,024) (N, 1,024) (N, 1,024) (N, 1,024)

Dropout - (N, 1,024) (N, 1,024) (N, 1,024) (N, 1,024)

Dense - (N, 2) (N, 2) (N, 2) (N, 2)
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2.7 Experimental Results

Parameter optimization is evaluated based on three performance metrics: Recall, Precision,

and F1 score defined in Eqs. 2.12 to 2.14, respectively. Soft-story and non-soft-story build-

ings are referred to as positive and negative instances, respectively. TP , TN , FP , and FN

are referred to as true positive, true negative, false positive, and false negative, respectively.

Recall represents how many actual positives are captured by the model, whereas Precision

refers to how precise or accurate the model is out of those predicted positives. F1 score is

the harmonic mean of Recall and Precision.

Recall = TP

TP + FN
(2.12)

Precision = TP

TP + FP
(2.13)

F1 score = 2 ∗Recall ∗ Precision
Recall + Precision

(2.14)

Fig.2.8 shows the density images computed using different parameters. The performance

metrics of each experiment are shown in Fig.2.9. As shown in Fig.2.8 (a), the use of a

higher moving box makes the depiction of the opening space in a lower level more difficult to

identify. Hence, 0.1 m is the optimal moving-box height, dominating the performance metrics

in Fig.2.9 (a). The median and large image sizes both lead to optimal results. Considering

the computational cost, the median size (128 × 128) is recommended. In Fig.2.8 (b), more

point clouds that do not belong to the building are included in the lower floors when 1.5

and 2.0 scaling ratios are used for the building footprints, which makes it difficult to identify

the opening space of soft-story buildings. The unscaled building footprint is thus optimal,

as shown in Fig.2.9 (b). Another attempt related to the density image (Fig.2.8 (c)) is also

conducted, where density images depicted by either sawtooth or step shapes are used for

training DL models. However, little improvement is obtained with this experiment.
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(a) Density images computed using unscaled footprints and different moving-box heights.
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(b) Density images computed using scaled footprints and 0.1 m moving box.
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(c) Density images with different shapes.

Figure 2.8. Density images computed using different parameters.
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(a) Precsion, Recall, and F1score for different image sizes and box heights.
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(b) Precsion, Recall, and F1score for different scaling ratios and image shapes.

Figure 2.9. Performance comparison of experiments.

2.8 Transfer Learning

Although the optimal parameters are determined for the proposed pipeline, there remains

room for improvement. State-of-the-art CNN architectures are hence implemented to assess

the possibility of better performance. However, the dataset used in this study is too small to

train a large number of parameters in these deep CNN models. As a result, TL is conducted.

As mentioned previously, TL uses the experience and knowledge learned from the source

domain and its learning task to perform well in the target domain. The transferability of

TL has been verified; the initialization of transferred features can boost the performance

relative to random features, even if there is a distance between the domain task and the
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target task [131]. In this study, three deep CNN models are selected to implement TL on the

target domain, namely, VGGNNet, Inception (a.k.a. GoogLeNet), and ResNet. The source

domain of these models was trained on more than 1.2 million images and 1,000 labeled

categories, as part of the ImageNet Large Scale Visual Recognition Challenge or ImageNet

Challenge [37].

VGGNet was the winner of ImageNet in 2014. There are two versions, VGG16 and

VGG19, which consist of 16 and 19 hidden layers, respectively. The numbers of convolu-

tional blocks and fully connected layers are implemented within the hidden layers. The

VGGNet filters are all 3 × 3, and approximately 138 million parameters are trained in VG-

GNet. Inception net was named after the movie "Inception", which includes the line "we need

to go deeper." While Inception has 27 layers, it only contains 6.4 million trainable parameters

due to its extensive use of 1 × 1 filters, which limits the number of input channels. Incep-

tion dominates the classification task in ImageNet after VGGNet. ResNet was developed

to address the vanishing gradient problem in back-propagation, which is triggered when a

deep CNN architecture is used. With the introduction of residual blocks with implemented

identification functions, it is easier to find the derivative in the gradient descent method.

However, this again increases the computational cost. For example, 60.3 million parameters

are trainable in ResNet with 152 residual blocks. The architectures of these models are

shown in Fig.2.10.
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Figure 2.10. Deep CNN architectures: (a) VGG Net; (b) Inception Net; and (c) ResNet.

Feature extraction and fine-tuning are two widely used strategies when conducting TL. In

feature extraction, parameters trained from the source domain are used in the forward proce-

dure to capture features from the new domain and are not updated during back-propagation.

Only the fully connected layers prior to the output are trained for the new task, which greatly

reduces the training time and number of epochs. Fine-tuning also fixes some portions of

the convolutional blocks where low-level features are captured and retrains the remaining

convolutional blocks to adjust the mid-level and high-level features to the target domain.

Compared with the general training process, fine-tuning is still less time-consuming. Both

feature extraction and fine-tuning are conducted in this study for VGGNet, Inception net,

and ResNet to investigate the optimal CNN model for the proposed pipeline.
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Median size images computed through unscaled building footprints and moving boxes

with a height of 0.1 m are identified to be optimal in the previous section and are used

to evaluate the deep CNN models herein. The TL learning curves are shown in Fig.2.11,

including the best naïve CNN model. Significant overfitting is observed in all learning curves

except for the VGGNet result with implemented feature extraction. The performance on the

test set for these models is listed in Table 2.2. VGGNet dominates in terms of Precision,

Recall, and F1 score. Although the naïve CNN model shows similar performance to the

VGGNet, the implementation of TL reduces the overfitting due to the pre-trained knowledge

drawn from the ImageNet dataset. Table 2.3 summarizes the computational efficiency of each

model. Roughly speaking, the training time increases when more parameters (i.e., deeper

architecture) are included. However, VGGNet and Inception Net trained using fine-tuning

techniques showed shorter training times due to triggering the early stopping mechanism.

It is worth noting that the training and testing can be done in a few minutes due to the

computational power of the GPU, which enhances the capability of the proposed pipeline

for rapid identification of soft-story buildings at a city scale.
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Figure 2.11. Performance comparison of CNN models.
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Table 2.2. Performance of TL on the test set.

Performance Metrics Naive CNN VGG16 FE VGG16 FT Inception FE Inception FT ResNet FE ResNet FT

Precision 0.67 0.76 0.74 0.5 0.61 0.58 0.64

Recall 0.73 0.66 0.66 0.4 0.36 0.4 0.38

F1 score 0.7 0.71 0.7 0.44 0.45 0.47 0.47

Table 2.3. Comparison of computational efficiency for different models.

Computational Efficiency (sec) Naive CNN VGG16 FE VGG16 FT Inception FE Inception FT ResNet FE ResNet FT

Training 113.2 132.6 93.7 548.9 212.2 161.6 290.5

Testing 2.1 2.2 2.5 20.6 17 13.2 12.9

2.9 Summary

In this chapter, a pipeline for identifying soft-story buildings at a city scale was proposed.

It includes (1) automated extraction of building point clouds from raw points generated by

photogrammetry, (2) computation of the relation between point cloud density and building

height through a moving box, and (3) training of DL models to identify soft-story buildings

based on the density-height imagery data. Santa Monica was selected as the target city.

Multiple experiments were conducted to investigate the optimal parameters for the naïve

CNN model. The median size images (128 × 128) computed through unscaled building

footprints and a moving box with a height of 0.1 m yield the highest Recall, Precision,

and F1 score in the test set. Transfer learning was introduced into the proposed pipeline to

improve the soft-story identification performance, and VGGNet with the implementation of

feature extraction dominated the performance of the test set and reduced overfitting.

To apply the proposed pipeline to a different city, the building footprints are needed to

segment the building point clouds. Building footprints are generally available in the GIS
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database provided by city governments or can be downloaded via OpenStreetMap (https:

//www.openstreetmap.org), a collaborative project to create a free editable map of the

world. In this study, ground-truth labeling can be used to evaluate the performance of the

proposed pipeline, but a complete list of soft-story buildings may not be available for other

cities. Hence, the prediction made by the proposed method for different cities may still

require further validation.

As discussed earlier, the open space is a major hint for the identification of soft-story

buildings due to its ease of observability. Hence, many studies, including this one, have

focused on this characteristic of soft-story buildings. Point cloud data can accurately capture

this open-space characteristic, thus overcoming the limitations of street-view image-based

methods. However, soft-story buildings with structural irregularities may not always have

visible open spaces. In addition, buildings with open spaces retrofitted with reinforcing

structures (e.g., a garage of a single-story residential house) should not be identified as soft-

story buildings. These issues are opportunities for further improvement of the proposed

pipeline. Accordingly, CNN architectures trained on 3D point clouds can be investigated

in the future as a means of obtaining detailed information on structural components. For

example, PointNet [102] and PointCNN [82] have been proposed for the classification and

segmentation of outdoor and indoor objects (e.g., buildings, cars, chairs, and desks) based

on point-cloud data, and the features learned in those models can be transferred and used

to assist soft-story detection on a large scale.
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CHAPTER 3

Pipeline for Seismic Assessment of NDRCB Frames

This chapter is partly based on the following publication:

Chen, P.Y., Lesgidis, N. Y., Cetiner, B., Sextos, A., and Taciroglu, E. (2021). “A method

for Automated Development of Model & Fragility Inventories of Non-ductile Reinforced

Concrete Frame Buildings,” Earthquake Spectra (under 2nd-round review).

3.1 Overview

In this chapter, a pipeline for automated modeling and fragility computation for NDRCB

archetypal frames is introduced. It starts with a design procedure that uses basic building

information (i.e., number of floors, number of spans, floor area, floor height, span length) and

era-specific codes to construct analytical models. Nonlinear elements used in the archetypal

frame are discussed herein. Several well-studied NDRCB frames are utilized to validate the

design process through nonlinear static and nonlinear dynamic analyses.

To compute fragility functions for discrete damage states, a set of ground motions includ-

ing far-field and near-field is implemented in the pipeline to conduct the probabilistic seismic

demand model (PSDM [31]). An inventory of fragility curves for archetypal frames is carried

out and compared to HAZUS [43]. Suitable intensity measurements (IMs) are investigated

for archetypal frames through multiple metrics including efficiency, sufficiency, proficiency,
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and practicality. Given that the pipeline is approximating as-built buildings through mini-

mum building information, the sensitivity of the pipeline to the building information is also

identified herein through extensive nonlinear time-history analyses (NTHAs).

3.2 Modeling of NDRCB Frame

The vulnerabilities of NDRCB stocks were evident in past earthquakes. The poor perfor-

mance of this building type is primarily due to the lack of confinement of the concrete cores

of beams, columns, joints, and walls, which causes brittle—as opposed to the desirable duc-

tile—behavior in structural components and even collapse. Specifically, shear failure or lap

splice failure in columns, joint shear failure or bond failure due to discontinuous beam bot-

tom reinforcement in joints, and premature column failure owing to the design concept of the

weak column-strong beam. Fig.3.1 shows types of possible brittle failures in the non-ductile

frames.

The shortage of seismic provisions in the early times (pre-1980s) of the United States is

generally the main reason behind these deficient designs. Table 3.1 summarizes the evolution

of reinforced concrete column design in the U.S. Every revision was mainly in response to

experiences during major earthquakes in California such as the 1971 San Fernando, 1989

Loma Prieta, and 1994 Northridge earthquakes.

To reduce the (epistemic) uncertainties in seismic risk assessment, an era-representative

code should be taken into account to generate analytical models and the models should be

able to capture the above-mentioned critical behaviors. Furthermore, the models should be

scalable and hence open-source softwares should be used, for example, OpenSees [91].

35



(a) (b) (c)

Figure 3.1. Failure of NDRCB including (a) axial failure at lap splice, (b) shear failure in

a column, and (c) sideway collapse.

Table 3.1. Column dimension and detailing requirements in US building codes.

1967 UBC [64] ACI 318-71 [28] ACI 318-02 [29]

Minimum width (bc) 254 mm NA 254 mm or 0.4dc
Minimum depth (dc) 305 mm NA 305 mm

ρ (longitudinal) 0.01 ≤ ρ ≤ 0.08 0.01 ≤ ρ ≤ 0.06 0.01 ≤ ρ ≤ 0.06

Spacing in the middle smallest of 16φb,48φb−tie,

and (db, dc)min

smallest of 16φb,48φb−tie,

and (db, dc)min

smallest of 6φb, and 152

mm

Spacing in the end NA smallest of 16φb,48φb−tie,

and (db, dc)min

smallest of bc/2, and 102

mm

Hooks 90◦ 135◦ 135◦

Failure mode brittle brittle & ductile ductile

Many laboratory experiments have been conducted to understand the failure mechanism

of the NDRCB frame during earthquake events. From the component-level [16, 56, 60, 128]

to full-scale tests [40,70,125]. These data have been used to qualitatively and quantitatively

describe the behavior of non-ductile structural components/systems including shear failure

and loss of lateral and axial load carrying capacity. As an initial development, these unde-

sirable seismic behaviors are only considered in the columns of NDRCB frames in this study
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for simplification.

3.2.1 Modeling shear failure in column

The most critical behavior of the NDRCB frame is that shear-dominated columns fail in shear

and exhibit degradation of stiffness and strength until axial collapse occurs. It is important

that the analytical models can capture this behavior and are computationally efficient and

accurate. To this end, several existing shear failure models are discussed here to identify the

most appropriate one for the pipeline.

Early studies [95, 113, 133] considered shear failure through modified flexural elements

through postprocessing. While this method can detect shear failure, it cannot estimate shear

deformation and strength degrading. To address the deficiency, some studies [96, 111, 130]

developed continuum finite elements to capture the strength degrading after shear failure.

Although it can address the shear deformations, the computational cost is expensive.

An alternative technique that is easy to implement is adding a shear spring in series with

flexural elements [81, 100, 108]. These studies used the modified compression field theory

(MCFT [122]) to define the backbone curve of the shear spring which is usually simulated

through a zero-length element. While these studies can capture the strength degradation,

the MCFT can only predict the backbone up to the point of maximum shear strength. It is

not precise for the post-peak behavior.

A solution for this shortage is the shear strength model using deformations to estimate the

column shear strength [10,101,109]. However, these methods cannot predict a reliable drift

capacity at shear failure which is an important contributor for displacement-based design for

existing buildings. To overcome this, Elwood and Moehle [41] proposed an empirical model

through a database of 50 flexure-shear-critical RC columns with configurations representative

of NDRCB frames. This drift capacity model has been implemented into OpenSees [91] with

the hysteretic uniaxial material, namely, the limit state material [40, 71] which can identify
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a shear failure associated with column shear and column’s total deformation. This model

was further developed to consider the bar-slip, flexure-axial-shear interaction, and the loss

of axial capacity [12, 14]. Elwood’s model is selected in this study because of its accuracy,

computational efficiency, and accessibility. The detailed computation is described below.

Fig.3.2 shows the mechanism of the flexure-shear-critical column using Elwood’s limit

state material. Once the column’s total response exceeds a predetermined shear failure

surface, namely, the limit shear curve, its shear response follows the constitutive law of the

limit shear curve to include pinching and strength and stiffness degradation. The limit shear

curve consists of the column shear capacity Vu, the degrading slope Kdeg, and residual shear

strength Vres. After a shear failure is detected, the degrading slope of the total response

Kt
deg can be computed by Eq.3.1:

Kt
deg = Vu

∆a −∆s

(3.1)

where ∆a is the displacement calculated under the axial load at the time of shear failure, and

∆s is the displacement at the shear failure. If Kt
deg is determined, the degrading flexibility

of the shear spring 1/Kdeg can be calculated in Eq.3.2:

Kdeg = ( 1
Kt
deg

− 1
Kunload

)−1 (3.2)

where Kunload is the unloading stiffness of the beam-column element (i.e., 12EIeff/L3).

Additionally, ∆a and ∆s can be obtained from Eq.3.2 and Eq.3.3:

∆s

L
= 3

100 + 4ρsh −
v

500
√
f ′c
− P

Agf ′c
≥ 0.01 (3.3)

∆a

L
= 4

100 + 1 + tan2(θ)
tan(θ) + P (s/Avfytdcctan(θ)) (3.4)

where L is the length of the column, dcc is the depth of column core from centerline to

centerline of transverse reinforcement, s the spacing of transverse reinforcement, Av is the

area of transverse reinforcement, fyt is the yield strength of transverse reinforcement, P is

the axial load on the column, and θ the critical crack angle from horizontal (assumed to
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be 65◦). A very similar way to simulate the axial failure in Elwood [41], where the axial

degrading stiffness is suggested in Eq.3.5:

Kdeg,a = 1
100Kel,a (3.5)

where Kel,a is the elastic axial stiffness of the column. In the proposed OpenSees model,

shear and axial limit material are assigned in the shear and axial direction with the zero-

length elements at both ends of the column coupled with the bilinear material as shown in

Fig.3.3

Figure 3.2. Schematic of shear response in column.

Figure 3.3. Modeling of flexure-shear-critical column.

39



3.2.2 The concentrated plastic hinge element

In addition to the shear element, the nonlinear plastic hinge element is also important for

the collapse modeling of RC frame structures. In the archetypal model, the concentrated

plasticity element is used to simulate plastic hinges in beam-column elements, which consist

of a linear elastic portion with inelastic hinges at both ends that are typically represented as

zero-length rotational springs. The inelastic response is often simulated through the modified

Ibarra-Medina-Krawinkler model with a peak-oriented hysteretic response (IMK) [63, 87]

which has been implemented in OpenSees.

Fig.3.4 shows the monotonic response of the IMK model. Six parameters are required

to control the monotonic backbone curve, namely, the elastic stiffness Ke, yielding moment

My, capping to yielding moment ratio Mc/My, plastic rotation in the post-yielding region

θp, post-capping rotation θpc, and ultimate rotation θu. Three types of cyclic deterioration,

including basic strength, post-capping strength, and unloading stiffness, are incorporated by

defining λ and c describing the cyclic deterioration and the rate of deterioration, respectively.

A residual strength, as a function of the ultimate strength, can also be assigned for the

modified IMK. In the proposed model, 1% residual strength (i.e., Mr) is used for all beams

and columns to avoid problems with numerical convergence.

(a) (b)

Figure 3.4. Modifed IMK material model: (a) monotonic backbone curve and (b) cyclic

response.
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While the modified IMK requires a total of 24 parameters in OpenSees, Haselton et al. [55]

provided empirical equations and qualitative insights on how to determine each parameter

through the calibration of 255 RC columns. The effective stiffness can be defined through

Eq.3.6:
EIy
EIg

= −0.07 + 0.59 P

Agf ′c
+ 0.07Ls

H
(3.6)

where 0.2 ≤ EIy

EIg
≤ 0.6, v = P/Agf ′c is the axial load ration, and Ls/H is the shear-span ratio.

The yielding momentMy can be calculated through equations developed by Panagiotakos [98]

or the conventional Whitney stress block approach. The plastic rotation θp can be predicted

by Eq.3.7:

θp = 0.13(1 + 0.55asl)0.13v(0.02 + 40ρsh0.570.01f ′c) (3.7)

where asl is the bond-slip indicator variable, and ρsh is the lateral confinement ratio. The

post-capping rotation θpc is computed through Eq.3.8:

θpc = 0.76(0.031)v(0.02 + 40ρsh)1.02 ≤ 0.1 (3.8)

The capping to yield moment ratio Mc/My can be calculated using Eq.3.9:

Mc

My

= 1.25(0.89)v(0.910.01f ′c) (3.9)

The cyclic energy dissipation capacity λ is defined through Eq.3.10:

λ = 170.7(0.27)v(0.1)s/d (3.10)

where s/d is the ratio of lateral reinforcement spacing to the effective depth. The rate of

deterioration c is generally set to be 1.0.

3.2.3 Archetypal model

Ideally, a large number of building cases should be developed to systematically capture vari-

ations in key structural characteristics (e.g., number of floors, number of spans, span lengths,

and floor heights) for assessing the city-scale performance of NDRCB frames. Because the
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objective of the pipeline is to approximate as-built buildings and address labor-intensive

modeling processing, the concept of archetypal buildings is implemented to characterize

NDRCB frames. Archetypal structures are a group of structures with similar geometric

configuration and/or structural properties, which can represent the variety in design and

performance possible among structures.

Archetypal structures have been actively used in recent years to investigate the seismic

performance of building structures. For example, Applied Technology Council (ATC) used

archetypal models to assess seismic design provisions for buildings’ lateral force-resisting

systems [36]. Similarly, FEMA P695 [32] also provides a methodology for quantifying the

collapse vulnerability of different later force-resisting systems. For NDRCB frames, Liel

et al. [83–86] utilized era-representative codes to design archetypal special moment frames

and assess their collapse risk. Their investigation of the retrofitting policy as well as the

corresponding costs and benefits greatly promoted the current ordinance in major cities of

California.

Analytical archetypes proposed by Liel et al. can capture the global response of non-

ductile columns through lumped plastic elements and IMK model, but cannot account for

the shear behavior and the loss of axial force in columns. To address this, Jeon [66, 67] im-

plemented the shear spring discussed in the previous section in series with flexural elements,

which can simulate the stiffness and strength degradation of shear-dominated columns.

The archetypal model used in this pipeline is shown in Fig.3.5. Elastic beam-column

elements are preferred over fiber-based beam-column elements in the proposed archetypal

models to reduce the computational cost. For the same reason, the brittle failure mode

considered here only captures the shear and axial failure in the columns but does not capture

the joint shear failure as mentioned early. 5% Rayleigh damping in the first and the third

mode is implemented to simulate the viscous damping of the structural system.
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Figure 3.5. Proposed OpenSees model.
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3.3 Era-representative design procedure

As discussed in previous sections, the existing modeling techniques can provide reliable

predictions of the seismic response of NDRCB frames. However, many technical and imple-

mentation details render the practical application of these models difficult at a city scale.

Specifically, the detailing (i.e., dimensions of components, reinforcement ratio, rebar spac-

ing) of structural components is inevitable to decide nonlinear elements. This is a complex

task requiring not only expertise in reinforced concrete behavior but also in nonlinear anal-

ysis. Scaling up the nominally detailed and labor-intensive level of modeling to a regional

inventory is, thus, a challenging feat. This can be achieved by implementing a “design”

procedure that requires only the basic configurations of a given NDRCB frame (e.g., the

number of floors, square footage, etc.) to produce an analytical model that can approximate

the as-built structure.

In the design procedure, the building code is a primary means of governing the earthquake

response of the structure. NDRCB frames that exist in California were likely designed based

on similar requirements in the 1967 Uniform Building Code (UBC) [64] because the California

Building Code was formerly an amended version of UBC [83]. Although UBC introduced

changes in the requirement for ties and stirrups, the ductile detailing was not mandatory

until 1973. Besides, the earthquake design load was not significantly increased until 1976 [25].

The prior inventory [27] showed that more than 70% of NDRCBs were built before 1970, so

the UBC is hence thought to be representative for the target region.

Two typical frame systems are provided in the proposed method—namely, space and

perimeter frames, which are shown in Fig.3.6 [66,83,85]. As aforementioned, the archetypal

frame is assumed to be plane symmetry and the geometric irregularities are not considered.
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Figure 3.6. Plan view and ratio of gravity to lateral tributary areas of two archetypal

structures.

In UBC, the required lateral force depends on the base shear (V ) calculated as V =

CKW . In this approximation formula, W is the weight of the building and C is the base

shear coefficient determined by Eq.3.11, which, in turn, depends on the fundamental period

of the structure and should not be larger than 0.1; K is the horizontal force factor varying

from 0.67 (ductile) to 1.33 (K = 1 for non-ductile frames). In the proposed method, W is

calculated based on the floor area, floor weight including dead and live loads, and the number

of floors. The dead load is assumed to be 175 psf (8.4 KPa) and the live load is assigned based

on the occupancy specified in UBC. The tributary areas of both space and perimeter frame

configurations are illustrated in Fig.3.6, and are used to determine the weight contributing

to the lateral forces. Additionally, C is calculated based on the structural period, which is

assumed to be 0.1 times the total number of floors [9]; K is fixed to 1 for all NDRCB frames.

C = 0.05
3
√
T

(3.11)
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Once the base shear is obtained, the distributed lateral forces can be calculated using

Eqs.3.12-3.14, wherein Ft and Fi represent the lateral forces applied to the roof and i-th

floor; hx, wx, hn, and wn are the height and floor weight at the x-th floor and roof in the

respective pairs; Dn is the plane dimension of the roof.

V = Ft +
n∑
i=1

Fi (3.12)

Ft = 0.004V
(
hn
Dn

)2

(3.13)

Fx = (V − Ft)wxhx∑n
i=1 wihi

(3.14)

The load combination required by UBC is used to analyze the maximum and second-

largest internal forces and check the component capacity at the first floor and typical floors

(2nd and above). The Ultimate Strength Design method and the detailing requirements

specified in Section 2615, Section 2616, Section 2617, and Section 2619 of the UBC are

applied to the archetypal structures.

Fig.3.7 delineates the design procedure for the analytical model. To obtain the compo-

nent responses, a preliminary OpenSees model must be developed to perform static analysis.

Six archetypal frames were hence selected from Leiel et al. [83] as the initial designs for struc-

tures with different configurations (i.e., number of floors, floor height, floor area, number of

spans...etc). With the preliminary model, the observed forces can be used to check the com-

ponent capacities. If the capacity is insufficient, then, the proposed algorithm will iteratively

modify the reinforcement details (number and size of rebars) and member dimensions (depth

and width). It is worth noting that the analytical model is not the as-built model but only

its approximation. Moreover, although the algorithm is promising regarding convergence,

the design outcome cannot exactly reproduce the decisions made by the original designers.

The reason for implementing a design procedure is to generate unavailable information (e.g.,

dimensions of components, reinforcement ratio, rebar spacing) that is required to construct

nonlinear elements for simulating the critical behavior of NDRCB frames. The generated
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model can meet the minimum requirements of the code but is not an optimal design. Once

the design procedure is completed, the proposed method automatically outputs tcl/tk files

according to the element definitions summarized in Fig.3.5.

Figure 3.7. Design procedure in the proposed method.
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3.4 Validation of the proposed procedure

To ensure that the auto-modeling procedure can reproduce the critical behaviors of the

NDRCB frame, three cases were selected here for validating the analytical models generated

through the proposed method. A summary of the reference models and the proposed model

is presented in Table 3.2. The first one is the Van Nuys Hotel which was designed in 1965

according to the 1964 Los Angeles Building Code. Others are the archetypal frames inves-

tigated by prior studies. The design and modeling details of these buildings are described

in [66,79,83].

Table 3.2. Comparison of modeling assumptions.

Property Krawinkler [79] Liel [83] Jeon [66] Proposed

Geometric configuration 7-story, 8-bay 8-story, 3-bay 4-story, 3-bay as-referred

fc
′ beam/column (ksi) 4/5 4/4 4/4 4/4

fy beam/column (ksi) 50/75 40/60 40/60 40/60

Plastic hinge model fiber section concentrated

plastic hinge

fiber section concentrated

plastic hinge

Shear failure considered column joint column or joint column

Shear failure model force-distortion

model

joint shear panel joint spring or

limit state mate-

rial

limit state mate-

rial

Loss of axial load capacity not included not included included included

P-∆ effect not included included included included

Gravity loads not included included included included

With the basic building configurations in reference, the proposed method is used to

generate the numerical model for nonlinear static analysis (pushover), wherein the pushover

loading pattern is calculated based on the equivalent lateral force specified in ASCE 7-10 [9].

The pushover results are presented in Fig. 3.8. All results reveal that these frames exhibit
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shear failure after flexural yielding. The proposed model exhibits similar yielding strength

and ultimate roof drift compared with the analyses in [83] and [66]. However, the ultimate

roof drift is approximately 30% larger than the model reported by [79]. The reason for

this discrepancy is because the difference in modeling the shear failure in the column. The

shear force and shear distortion model used in [79] is independent of the loading history and

the drift demand, while the limit-state material used in the proposed model takes the axial

loading history into account to estimate the drift capacity. Although the proposed model

implements elements that require less computational effort (e.g., the concentrated plastic

hinge and limit state material model), the design and modeling results are still consistent

with the results obtained by complex models.
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Figure 3.8. Pushover analysis of (a) Van Nuys Hotel, (b) eight-story perimeter frame, and

(c) four-story perimeter frame.

In addition to static analysis, the actual data recorded at the Van Nuys Hotel are also

used to validate the dynamic response of the proposed model. The Van Nuys Hotel was in-

strumented with the accelerometers in 1980 through the California Strong Motion Instrumen-

tation Program (CESMIP). The 16-channel recording system considers both the north-south

and east-west directions. The recorded acceleration data were obtained from the website of

the Center for Engineering Strong Motion Data (https://www.strongmotioncenter.org/)

and have been analyzed by researchers to obtain the fundamental period of buildings [49,119].
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The natural period of the Van Nuys Hotel is approximately 1 s, owing to the light damage

during the 1971 San Fernando earthquake (M6.6). The 1992 Big Bear earthquake (M6.5) and

the 1994 Northridge earthquake (M6.7) were selected for calibrating the dynamic behavior

in the linear and nonlinear regions.

Fig.3.9 shows the roof acceleration in the east-west direction of the Van Nuys Hotel

subjected to the 1992 Big Bear and 1994 Northridge earthquake. Because most damage

caused by the Northridge earthquake was observed in the east-west direction (north and south

frames) [119], only the response in this direction is compared herein. The PGA measured

during the 1992 Big Bear earthquake was 0.06 g; therefore, the building still remained in

the linear region. The maximum response of the proposed model only has a difference of 3%

compared with the actual data. While subjected to the Northridge earthquake, the building

reached the nonlinear region because PGA was 0.59 g. The difference between the proposed

model and the recorded data was approximately 5%. According to [119], several damages

including diagonal/bi-diagonal cracks and flexural shear cracks along columns were observed

from the ground floor to the 5th floor, which can be detected by the proposed model as

shown in Fig.3.10. Although a mismatch is expected to exist between the proposed model

and the actual data, owing to a certain degree of simplification, the proposed model can still

capture the critical behavior of NDRCB frames, namely, shear failure.
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Figure 3.9. (a) Roof response to Big Bear and (b) Northridge earthquakes.

Figure 3.10. Detected shear failures in proposed model subjected to Northridge earthquake.
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3.5 Construction of Fragility Functions

Once the archetypal model is prepared, a set of nonlinear time-history analyses (NTHAs)

are required to compute the engineering demand parameters (EDPs) for damage assessment

via fragility functions. To develop fragility curves, two probabilistic assessment methods

are widely used. One is referred to as the probabilistic seismic demand modeling (PSDM)

approach [31]. PSDM has a great advantage of being compatible with a closed form solution

and does not require scaling of ground motions. Researchers have used PSDM to develop

fragility curves for multiple performance levels of NDRCB [21, 68, 104]. The other method

is the incremental dynamic analysis (IDA) [121] which requires intensive NTHAs with in-

crementally scaled ground motions. For instance, [14, 46, 85] developed fragility curves for

system collapse using IDA. However, the scaling of ground motions without change in fre-

quency content can produce unrealistic earthquake records that may not be representative

of the seismic hazard in a region. Hence, PSDM is implemented in this section to construct

fragility functions and quantitatively discuss the uncertainties/variability in the proposed

method.

3.5.1 The probabilistic seismic demand model

As expressed by Eq.3.15, the PSDM describes the demand (D) as a function of an IM,

wherein a and b represent the inverse logarithm of the vertical intercept and the slope that

can be obtained after rearranging in the linear regression analysis, as expressed by Eq.3.16.

The regression analysis data are obtained by subjecting a set of analytical models to a suite

of N ground motions and recording the peak demand (e.g., the maximum inter-story drift

and peak floor acceleration). The median demand is expressed by Eq.3.16, and the disper-

sion (logarithmic standard deviation) describing the record-to-record aleatoric uncertainty

is calculated using Eq.3.17.

D = a(IM)b (3.15)
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ln(D) = ln(a) + b · ln(IM) (3.16)

βD|IM ∼=
√∑ (ln(d)− ln(aIM b))2

N − 2 (3.17)

With the PSDM, a probabilistic curve describing the likelihood that the demand exceeds

the capacity (C) given an intensity level can be constructed, namely, the fragility curve,

as expressed by Eq.3.18. βC and βM denote the epistemic uncertainty in the capacity and

modeling, which are assumed to be 0.3 [66] and 0.2 [21], respectively, for the NDRCB frames.

P (D > C|IM) = 1− Φ
 ln(Ĉ)− ln(a · IM b)√

β2
D|IM + β2

C + β2
M

 (3.18)

3.5.2 Selected frames and ground motions

As a demonstration of the pipeline, archetypal frames developed by Liel et al. [83] are

re-constructed through the proposed design procedure and the auto-modeling module to

perform NTHAs and obtain EDPs. Analytical models (as shown in Fig.3.5) with the different

numbers of stories (i.e., 2, 5, 12) and structural types (i.e., perimeter, space) are discussed

herein. Following prior studies, all frames have three bays with a spacing of 25 ft (7.6 m).

The first story and the typical story are set to be 15 ft (4.6 m) and 13 ft (3.96 m) in height,

respectively.

To obtain structural responses with various intensities for regression analysis, the generic

suite of ground motions proposed by Baker [13] are used in this study. The suite consists of

four different sets including far- and near-field ground motions. In the first three sets, 120

pairs of broad-band ground motions with large magnitude and small distance are included:

Set 1A(Mw = 7, Rrup = 10 km, soil site); Set 1B (Mw = 6, Rrup = 25 km, soil site);

and Set 2 (Mw = 7, Rrup = 10 km, rock site). Set 4 contains 40 pairs of ground motions

and strong velocity pulses are expected at near-fault directivity. The response spectrum for

each set is shown in Fig.3.11. Each archetypal frame is subject to 320 ground motions (160

pairs) respectively, and all NTHAs are completed through the high-performance computing
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platform Hoffman2 at the University of California, Los Angeles. It is worth noting that the

vertical excitation is not considered in the NTHA although it may reduce the shear capacity

of sehar-critical columns in NDRCB frame [52].

(a) (b)

(c) (d)

Figure 3.11. Response spectra for (a) set 1A, (b) set 1B, (c) set 2, (d) set 4 in Baker [13].

3.5.3 Damage fragility curves

With EDPs from NTHAs, linear regression analyses are then used to obtain the intercept and

slope expressed in Eq.3.16. The peak inter-story drift ratio (θmax) and spectral displacement
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(Sd) are selected as the demand and IM to compare with HAZUS where the fragility is a

function of peak displacement response. Thresholds of multiple damage states defined in

HAZUS are used to generated fragility curves expressed in Eq.3.17.
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Figure 3.12. Fragility functions for (a) slight, (b) moderate, (c) extensive, and (d) complete

damage.
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Fig.3.12 shows four levels of damage fragility curves for each archetypal frame. The

perimeter frame is vulnerable than the space frame because the P −∆ effect is considered

in the numerical modeling, which cannot be found in HAZUS’ fragility curves constructed

through the capacity-spectrum method and SDOF systems. While the difference in modeling

(i.e., SDOF v.s. MDOF) and analytical methods (i.e., static push-over v.s. nonlinear time-

history) could be the reason behind the discrepancy between fragility curves presented here,

the proposed design procedure is conservative by only providing two sections (i.e., first floor,

typical floor) based on first and second-largest internal forces. It can be further improved

when detailed drawings are provided or a better design algorithm can be introduced in

the future. This section illustrates the fulfillment of the damage assessment module in the

proposed pipeline. The selected archetypal frames can be further modified according to

structure-specific data when applying the proposed method to the Los Angeles inventory in

the next chapter.

3.6 Investigation of Intensity Measurements

As early mentioned, limited NDRCB frames (i.e., low-rise, mid-rise) and EDP(i.e., maximal

inter-story drift) were selected to investigate the suitable IMs in prior studies. It is hence

discussed herein by including additional IMs, structure type (i.e., high-rise), and EDP (i.e.,

peak floor acceleration) to provide a more comprehensive IM evaluation.

To identify the optimal IM, regression analyses of PSDM described in the previous sec-

tions are used to evaluate metrics including efficiency, sufficiency, proficiency, and practical-

ity. Several IMs are investigated in this study, including the conventional amplitude-based

measures (i.e., SaT1, Sd, PGA, PGV ), and cumulative and duration-based measures (i.e.,

CAV , AI, Ds575, Ds595). The maximum inter-story drift (θmax) and peak floor acceler-

ation (PFA) are selected as EDPs in PSDM because they are often used to evaluate the

damage states for structural and non-structural components.

57



A lower βD|IM in the PSDM represents a smaller variation of the estimated demand

for a given IM, and thus indicates an efficient IM. The practicality is used to evaluate the

dependence of the demand and IM, which can be measured by the slope b in the regression

analysis. If the slope is close to zero, the dependence of the demand and IM can be ignored;

therefore, the IM is impractical. The proficiency is a composite measurement of efficiency

and practicality, which can be calculated using Eq.3.19. A lower value of ζ indicates a

more proficient IM and lower uncertainty in the demand model by the selection of the IM.

Additionally, the coefficient of determination R2 can validate the PSDM assumption of the

linear relationship in lognormal space. A higher R2 value indicates the goodness of the

regression fit and reduces the dispersion among the dataset, and can be used to quantify the

efficiency and proficiency.

ζ = βEDP |IM
b

(3.19)

Sufficiency is another property that can be used to measure IM variability. A sufficient

IM is independent of the ground motion characteristics such as the magnitude (Mw) and

epicentral distance (R), which can be evaluated by the statistical p-value. The p-value

is the probability of obtaining results as extreme as the results obtained by a statistical

hypothesis test, wherein the null hypothesis is the independence of the IM and ground

motion characteristics. If the p-value is greater than the significance level (e.g., 5% [59], Mw

and R are not statistically significant, and thereby the null hypothesis holds and the IM is

sufficient. The p-value can be obtained by the linear regression of the residuals from PSDM

against Mw or R.

As shown in Table 3.3, PGV dominates the efficiency, proficiency, R2, and sufficiency

for θmax. On the other hand, PGA dominates the practicality, proficiency, and sufficiency

for PFA as summarized in Table 3.4. Fig.3.13 shows the regression analyses of θmax and

PFA that are recommended by this investigation. As has been mentioned, the goodness

of the linear fit in log space demonstrates that the IM is efficient, practical, and proficient.

Moreover, if the regression line of the residual (e.g., εθmax|PGV or εPFA|PGA) against the
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ground motion characteristics (e.g., Mw or R) is flat, the IM is sufficient. It must be noted

that the damage fragility functions constructed in the previous section are using the spectral

displacement as IMs to follow the conventional risk assessment methodologies (i.e., HAZUS).

It can be easily changed because PSDMs for multiple IMs have been conducted. Complete

results of regression analyses are provided in Appendix A.
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Figure 3.13. Regression analyses for (a) θmax and (b) PFA.
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Table 3.3. Evaluation metrics of IMs for θmax.

IM
Efficiency Practicality Proficiency Sufficiency

βD|IM b ζ R2 Mw R

SaT1 (g) 0.73 0.71 1.03 0.33 0.0 0.33

Sd (inches) 0.68 0.96 0.71 0.62 0.02 0.0

PGA (g) 0.59 1.05 0.57 0.46 0.0 0.0

PGV (m/s) 0.39 1.0 0.39 0.65 0.08 0.24

Ia (m/s) 0.5 0.68 0.73 0.55 0.0 0.12

CAV (m/s) 1.08 0.34 3.17 0.02 0.0 0.0

Ds575 (sec) 1.03 0.19 5.4 0.02 0.0 0.0

Ds595 (sec) 1.02 0.35 2.9 0.04 0.0 0.0

Table 3.4. Evaluation metrics of IMs for PFA.

IM
Efficiency Practicality Proficiency Sufficiency

βD|IM b ζ R2 Mw R

SaT1 (g) 0.1 0.2 0.53 0.61 0.39 0.0

Sd (inches) 0.51 0.69 0.74 0.47 0.0 0.0

PGA (g) 0.12 0.81 0.15 0.55 0.83 0.31

PGV (m/s) 0.18 0.36 0.51 0.29 0.21 0.0

Ia (m/s) 0.15 0.34 0.43 0.43 0.06 0.13

CAV (m/s) 0.26 2.1 0.12 0.0 0.02 0.0

Ds575 (sec) 0.49 0.31 1.6 0.1 0.02 0.0

Ds595 (sec) 0.48 0.41 1.2 0.13 0.05 0.0
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3.7 Sensitivity Analysis

As mentioned before, the goal of this pipeline is to provide a single method that automates

the modeling and damage assessment for NDRCB frames. When it is available to the pub-

lic, EDPs computed through the proposed method are expected to be varying when using

structure-specific data provided by users, and the damage state fragility curves may also be

varying. Given this circumstance, the sensitivity of the proposed method is necessary to be

identified. Specifically, which variable of building configurations needs more attention during

the future application?

Considering that potential users may not precisely provide the building configurations,

a deterministic sensitivity analysis is conducted in this study to quantify the variation in-

troduced by the user-provided variables (i.e., first and typical floor height, floor area, span

length) in EDPs. Archetypal frames applied in the previous sections are first used as base-

line models, and each variable is then changed to an extreme value at a time for conducting

NTHAs. Each variable has three values: first floor height (i.e., 10 ft, 15 ft, 20 ft); typical

floor height (i.e., 8 ft, 13 ft, 18 ft); floor area (i.e., 2812 ft2, 5625 ft2, 8437 ft2); span length

(i.e., 12.5 ft, 25 ft, 37.5 ft).

The variability of the maximum inter-story drift (θmax) and peak floor acceleration (PFA)

are quantified through the quartile coefficient of dispersion (QCD) [17] which is less prone

to the outlier influence. The QCD is calculated by (Q3 − Q1)/(Q3 + Q1), where Q3 and

Q1 denote the third and first quartile of the dataset. The QCD of θmax and the PFA for

archetypal frames are summarized through the box plots shown in Fig.3.14 and 3.15. These

results indicate that PFA is relatively less sensitive to the user-defined variables than θmax.

The effect of a single variable is not significant compared to the type of structure (i.e., high-

rise perimeter frame). It must be noted that the sensitivity is investigated given the condition

that users only change basic building configurations instead of modeling assumptions in the

proposed method. The detailing decisions are not investigated because the design procedure
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only generates two types of sections (i.e., first floor, typical floor) that satisfy the minimum

requirement of the UBC of the time. Given this simplification, the archetypal models are

believed to be conservative, and the detailing will not vary too much.
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Figure 3.14. Box plots of θmax for (a) perimeter and (b) space frames.
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Figure 3.15. Box plots of PFA for (a) perimeter and (b) space frames.

3.8 Summary

In this chapter, a pipeline for automating the development of models and damage fragility

functions was proposed for NDRCB frames. Archetypal frames were constructed through

basic building configurations and a design procedure following the 1967 UBC. Nonlinear ele-

ments that are capable of simulating the stiffness degradation and brittle failure in columns

were integrated into the proposed method, and the OpenSees Tcl/Tk files were automati-

cally prepared. The method was validated through nonlinear static and nonlinear dynamic

analyses with comparison to previously investigated NDRCB frames.

A generic suite of ground motions was used to conduct nonlinear time-history analyses
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of archetypal frames for developing the probabilistic seismic demand model, which was fur-

ther used to construct the damage state fragility curves. The damage state fragility curves

were constructed using PSDM and HAZUS, which illustrated that the perimeter frame is

vulnerable than the space frame due to the consideration of the P − ∆ effect. While the

proposed method can improve the shortage of using SDOF in HAZUS and can satisfy the

demand of detailed structural response in the P-58 method, the design outcome is conser-

vative with only providing two sections (i.e., first floor, typical floor), which can be further

improved in the future with detailed drawings or a better design algorithm. The efficiency,

practicality, proficiency, and sufficiency metrics were investigated for suitable IMs, and the

PGV and PGA are suggested for the maximum inter-story drift and peak floor acceleration,

respectively. A deterministic sensitivity analysis was conducted to quantify the variability of

the proposed method with different building information. The sensitivity analysis indicated

that PFA is relatively less sensitive to the user-defined variables than θmax, and the effect of

a single variable is not significant compared to the type of structure (i.e., high-rise perimeter

frame).
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CHAPTER 4

Application to Los Angeles’ Inventory

This chapter is partly based on the following publication:

Chen, P.Y., Meng, S., and Taciroglu, E. (2021). “A data-driven framework for regional

seismic loss estimation: a case study of non-ductile reinforced concrete buildings.” Engineer-

ing Structure (ready to submit).

4.1 Overview

In this chapter, an application of the proposed pipeline to NDRCBs in the city of Los Angeles

is presented. Prior studies provide preliminary information on these vulnerable buildings,

yet more data needs to be excavated for constructing archetypal models and calculating

structural responses for loss estimation. To address it, a data mining module combining

web-scraping techniques and deep learning models to enhance the missing data is proposed.

Given the previously investigated data as ground-truth information, CNNs are used to obtain

essential building configurations such as number of floors, floor height, number of spans, span

length, and floor area. With this building information, city-scale modeling and analyses

are carried out. Engineering demand parameters obtained from the nonlinear time-history

analyses are then used to estimate the seismic loss. An open-source Python application

programming interface (API), namely, pelicun is integrated into the pipeline to implement
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HAZUS [43] and FEMA P-58 [44] methodologies.

4.2 Data Collection and Validation

4.2.1 Inventory of Los Angeles

A series of studies done by Anagnos et al. [5–8] developed an inventory including 1,452 non-

ductile reinforced concrete buildings in Los Angeles. This inventory (https://graphics.l

atimes.com/la-concrete-buildings/) compiled data set includes: structural type, use,

year built, number of stories, total square footage, and occupancy. A spatial distribution

of these NDRCBs and example data are shown in Fig.4.1. The majority (≈ 80%) of them

located in the City of Los Angeles within Los Angeles County.

Figure 4.1. Los Angeles NDRCB inventory map.
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Many data sources are the backbone of the inventory, which includes:

• LA County Assessor Map: https://maps.assessor.lacounty.gov/m/

• LA Zooming Information and Map Access System (ZIMAS): http://zimas.lacity

.org/

• Los Angeles City Department of Building and Safety (LADBS): https://www.ladbs.

org/services/check-status/online-building-records

• Google Maps: street-view and aerial images

• Sidewalk visits and building surveys

• Input from volunteer local engineers through cooperation with the Concrete Coalition

[25,26]

Assessor records are available in the assessor map where the size, number of units, year

of built, tax records, square footage, property type, and land value may be found through

an interactively searching interface. During the development of the inventory, researchers

found that many buildings have multiple entries in the assessors’ data when there are multiple

owners. ZIMAS was hence used extensively to validate and verify those data. For a particular

address or parcel number, permit information may even be available and which leads to the

data of LADBS. Examples from the assessor map and ZIMAS are shown in Fig4.2.

Building permit data supposed to provide the most direct help for modeling. For example,

plane drawings could offer interior dimensions in addition to the perimeter length and the

floor area as shown in Fig.4.3. However, obtaining all permits for these vulnerable buildings

is a challenge because plans for older buildings are sporadically available and can only be

achieved if paid for by owners.
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(a)

(b)

Figure 4.2. Available data from (a) L.A. assessor map, and (b) ZIMAS.
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Figure 4.3. Example of building permit from LADBS.

The lesson from this inventory shows that an address-by-address search is labor-intensive

and cumbersome. Not to mention that some data will still be missing even after going

through each source. While the existing inventory data can partially satisfy the need for

this study, it is a good opportunity to develop automatic data-harvesting tools through the

power of the internet of the thing (IoT). The goal is to automatically scrape the available

data sources by only giving the location of the target building. The algorithm currently

focuses on NDRCBs in Los Angeles but can be further applied to different properties in

different urban regions.
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4.2.2 Data harvesting via web-scraping

Given the previously mentioned demand for large number data mining, the automatic data-

harvesting module is proposed as shown in Fig.4.4. Two roadmaps are included and both of

them are developed through open-source APIs. The first roadmap focuses on web scraping

and is constructed through Python and relevant packages.

Figure 4.4. Schematic of data-harvesting module.

As shown in Fig.4.5, the procedure starts with a given location which can be either a

physical address or geolocation. Most of the time, a physical address will be used in the

automated web scraping, so the conversion needs to be done through Google Map API

where a user-specific activation key is required. Once the address is prepared, a Python-

based package called selenium (https://pypi.org/project/selenium/) will use a web

browser (e.g., Google Chrome) and get access to a website (e.g., LADBS, ZIMAS, Zillow).

After entering the web page, XPath on the HTML will be identified to fill in the provided

address and the search button will be executed by selenium. An example is shown in Fig.4.6

where the XPath can lead to the total parcel area of the building.
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Figure 4.5. Flowchart of web-scraping.

Similar procedures can be done for different sites. In addition to the govern-owned

website, some commercial websites such as Zillow and Redfin are also useful. For example,

the rental price and can be found and can be used to calculate non-direct loss during an

earthquake. Table 4.1 summarizes the data that may be obtained from these websites.
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Figure 4.6. Xpath of ZIMAS.
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Table 4.1. Summary of available data.

Data LADBS Assessor Map ZIMAS Zillow

Building Permit X

Address X X X X

Usage X X X X

Lot/Parcel Area X X X X

Story X

Height X

Units X X X X

Soil Type X

Year Build X X X X

Bathroom/Bedroom X X X

Fault Information X

Land Value X X

Rental Estimation X

Data sources discussed before seldom provide the building height, which is an impor-

tant variable to conduct structural modeling and performance assessment. In most of the

urban regions of the US, Open Street Map (OSM) (https://www.openstreetmap.org), a col-

laborative project to create a free editable map of the world, contains millions of building

footprints including polygons with geocoordinates, building attributes, elevation, and most

importantly, height. The height information shown in Fig.4.7 has a unit in meters and it is

the total height of the building. That is to say, if the number of floors is available, the story

height can be computed accordingly. Unlike other data sources using XPath, OSM has an

API (https://osmnx.readthedocs.io/en/stable/) available through Python and hence

can directly be accessed to get the height.
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Figure 4.7. Example of Open Street Map.

The web-scraping roadmap currently focuses on Los Angeles and data sources used in

the proposed roadmap need to be changed for application to other regions. For example, the

building permit information should be investigated to see if available in local departments.

There is no guarantee that a single methodology can collect all required information. It

highly depends on whether those data have been digitized. Besides, building footprints may

not be always available on OSM, which could be different region by region. Alternatively,

another scheme is using images that almost always available from Google Map and Google

Earth. The existing building information, as well as height obtained through OSM, will be

the ground truth for training CNN models in the image-based roadmap shown in Fig.4.4.
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4.2.3 Data harvesting via deep learning

For modeling archetypal buildings using the proposed pipeline, some building information

is already available from the existing inventory but some are not. For example, the number

of spans and the span length. Given the recently well-developed deep learning techniques in

computer vision, data-harvesting via street-view and aerial images is potentially promising

and hence implemented. Tasks including detection of objects (i.e., floor, span) and regression

of variables (i.e., height, length, area) are carried out through CNN models. Although some

data are available in the inventory, specific agents for detection and regression are still trained

for future application to different regions.

In Chapter 2, CNN models were developed for a classification task. The last layer used

the sigmoid function to compute the probability of each category. For the regression case

developed in the image-based roadmap, a linear function is used to compute a continuous

variable (i.e., building height, floor, span length). For example, the top layer of an input

image can be 1× 256 after several convolutional layers and fully connected layers. A linear

function aX + b where X = [x1, x2, . . . , x256]T then converts it into 1 × 1 output. Another

difference for the regression task is the loss function. Compared to Eq.2.4, the mean squared

error shown in Eq.4.1 is generally used as the loss function to update the weights for the

regression task. The back-propagation is similar to the classification task described earlier.

MSE(y, ŷ) = 1
n

n∑
i=0

(yi − ŷi)2 (4.1)

For the regression tasks, three geometric variables are carried out, including building

height, span length, and floor area. While these tasks seem to be promising for state-of-the-

art CNN models, it highly depends on the training data set and the ground-truth labeling

which is unavoidably time-consuming. Because obtaining and labeling a large number of

images is not feasible, the TL technique introduced in Chapter 2 is implemented again to

train models on a small group of images to avoid overfitting.

With the known addresses of NDRCBs, Google Map API is used to collect street-view
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and aerial images as shown in Fig.4.8. These images are used to train CNN models for

predicting floor height and floor area which are given in the inventory. It is worth noting

that fully automated collection is not able to get a clear observation of target buildings.

1,452 street-view and aerial images are selected manually, and around 80% of them are the

training set and the rest (≈ 20%) are the validation set.

Not like the building height and floor area, the ground truth of span length is not available

in the inventory. Fortunately, a database of instrumented buildings is available for California.

The California Strong Motion Instrumentation Program (CSMIP, https://www.strongmo

tioncenter.org/) installed accelerometers on tens of thousands of infrastructures including

bridges and buildings to record strong-motion time histories. For buildings, different types of

stations can be selected. For example, 703 records are available from 77 reinforced concrete

buildings whose configurations are also provided. As shown in Fig.4.9, the plan dimension

can be obtained from CSMIP and can be used as ground truth to train CNN models.
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(a)

(b)

Figure 4.8. Collected (a) street-view, and (b) aerial images of NDRCBs.
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Figure 4.9. Side and plan view of CSMIP station.

However, using only 77 images (i.e., stations) as the training data set is not enough

and will easily cause overfitting. As a result, some image augmentation techniques are

implemented herein to enhance the training data. For instance, multiple images for the

same site can be created by mirroring, rotating, and brightening the original image as shown

in Fig.4.10 This can be easily fulfilled through the Python Imaging Library (PIL, https:

//pillow.readthedocs.io/en/stable/), and eventually, 770 images were used for training

regression models of span length.

The training was done through the same machine with Nvidia GPU mentioned in Chapter

2. The performances are summarized in Table 4.2. The evaluation was done through 10-fold

cross-validation and only the best model for each task is presented. The pre-trained CNNs

implemented in TL have been introduced in Chapter 2 including VGG Net, Inception Net,

and Res Net. The MSE may not be an intuitive performance metric, so the coefficient of

determination (R2) is also included here to illustrate how well the observed outcomes are

replicated by the model. The R2 can be computed in Eq.4.2.

R2 = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2 (4.2)
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Figure 4.10. Image augmentation including rotation, mirror, and brightness.

Table 4.2. Performance of CNN models for regression tasks.

Task Building height (ft) Span length (ft) Floor area (ft2)

Image street-view street-view aerial

Ground-truth L.A. inventory CSMIP L.A. inventory

Training 1307 693 1307

Validation 72 38 72

Test 73 39 73

TL baseline VGG VGG ResNet

µMSE | CVMSE 1.38 | 0.62 6.79 | 0.59 21.5 | 0.6

µR2 | CVR2 0.94 | 0.1 0.94 | 0.06 0.89 | 0.06
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The rest task for harvesting building information is to detect the number of floors and

spans through CNN models, which is a mature application in the field of object detection.

The main procedure of the object detection task is to first locate the potential object through

a bounding box and then classify the type of it. The region-based convolutional neural net-

work (R-CNN) [51] family has dominated these image detection and segmentation tasks for

several years. The first version of R-CNN is straightforward yet computationally expensive.

It starts with proposing potential regions of objects and uses CNN to extract features. A

linear classifier is then applied to these features and identifies the target class. The disad-

vantage is the computational cost of features from each proposed region. To address this, a

fast version of RCNN (Fast R-CNN [50]) was hence proposed. In Fast R-CNN, all proposed

regions are treated as input and their features are extracted by a single CNN where a pre-

trained model can be used (e.g., VGG) to speed up the computation. The output of feature

extraction is a custom layer called a region of interest pooling layer (i.e., RoI pooling). RoI

pooling layer is followed by fully connected layers, an object classifier, and a bounding box

regressor. While the model is significantly faster to train and to make predictions, it still

requires a set of candidate regions to be proposed along with each input image.

A faster version is further proposed to improve the burden of region proposals, namely,

the Faster R-CNN [106]. The Faster R-CNN introduces a region proposal network (RPN)

into the Fast R-CNN as part of the training process. In this case, only one feature map

extracted through CNN is established for each input image, and both RPN and the classifier

or regressor operate on the same feature map, which greatly improves the efficiency. A

summary of the R-CNN family is shown in Fig.4.11, and the Faster R-CNN was used in this

research for floor and span detection.

1,452 street-view images were manually labeled through a Python-based labeling tool

(https://github.com/tzutalin/labelImg). Floor-detection and span-detection models

were trained separately, as well as their labeling. An image was labeled with multiple

bounding boxes identified as floor or span. Examples of prediction are shown in Fig.4.12.
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Figure 4.11. Architectures of (a)R-CNN, (b)Fast R-CNN, and (c)Faster R-CNN.

(a)

(b)

Figure 4.12. Example of predictions: (a)floor, and (b)span.
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The performances of the detection tasks are summarized in Table 4.3. The same metrics

for the classification task described in Eqs. 2.12 to 2.14 are implemented, and the ground

truth used in these equations is the number of floors or spans. The mean value and the

coefficient of variation of the performance metrics for each model are computed through

the 10-folder cross-validation technique. It must be noted that the ground-truth number

of spans was defined by the author, so there is a certain degree of bias that cannot be

eliminated. The judgement of a span depends on the location of the columns, which should

be apparent for moment-resisting systems (e.g., parking lot). However, if the lateral force-

resisting system is a shear wall or contains dual systems, the current ground truth may

not be applicable. While the proposed roadmap still has room to be improved, the whole

pipeline allows users to provide exact geometric information for automated modeling, which

can reduce the uncertainty made by the false prediction from image-based data harvesting.

Table 4.3. Performance of Faster R-CNN for detection tasks.

Task Floor Span

Image street-view street-view

Ground-truth L.A. inventory self judgement

Training 1307 1307

Validation 72 72

Test 73 73

TL baseline ResNet VGG

µrecall | CVrecall 0.86 | 0.09 0.68 | 0.12

µprecision | CVprecision 0.81 | 0.15 0.81 | 0.1

µf1−score | CVf1−score 0.83 | 0.12 0.74 | 0.11
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4.2.4 Summary of the data set

With the prior inventory and the proposed data-harvesting roadmaps, the building infor-

mation required by the proposed pipeline for assessing NDRCBs is ready. As described in

Chapter 3, the input for the automated modeling includes the number of floors, floor height,

number of spans, span length, floor area, and occupancy. Histograms of these data are shown

in Fig.4.13. It can be noted that the ranges of these variables (i.e., number of stories, floor

height, floor area, and span length) are contained in the sensitivity analysis conducted in

Chapter 3 for constructing potential archetypal models. In the discovery of the sensitivity

analysis, much variance in EDP can be observed for perimeter frames. Hence, the following

sections will use the collected data and the proposed perimeter frames to evaluate the seismic

losses of intensity associated with the Design Basis Earthquake (DBE) and the Maximum

Considered Earthquake (MCE).

83



0 5 10 15 20
����
���������
�

0

50

100

150

200

250

300

350

400

�
��

�

���

���
�
�	
�
��

�
�������

�
	�������

���������

�������

(a)

10 12 14 16 18 20 22 24
����������������

0

20

40

60

80

100

120

140

	
��

�
���

���
��
��
��
��

�
������

���
������

�
������

��������

(b)

0 1 2 3 4 5 6 7
����	���
������

0

100

200

300

400

500

�
��

�	
���


��
��
�
��
��

�	�������
�	���������
��������
��������

(c)

10 15 20 25 30 35 40
	�
������������

0

20

40

60

80

100

120

140

�
��

�
���

���
��
��
��
��

�
������
���
������
�
������
��������

(d)

0 20000 40000 60000 80000100000120000140000160000
�� ���������������� 2�

0

50

100

150

200

250

�
!�

��
���

���
!�

��
��

��

��������	�	�

����������
���	

��"����		���


��������	

(e)

Industr
ial
CommercialOffice SchoolReside

ntialWholesal
e
Hospita

l Hotel Storag
e

��������

0

50

100

150

200

250

�
��

��
���

���
�

��


	�
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Figure 4.13. Histograms of (a) number of stories, (b) floor height, (c) number of spans (d)

span length, (e) total floor area, and (f) occupancy.
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4.3 Regional Application

With the data described before, the proposed pipeline carries out the automated model-

ing and prepares all Tcl/Tk files for running nonlinear time-history analyses. A flowchart

shown in Fig.4.14 summaries the data exchange between different files during the regional

application.

Figure 4.14. Data flowchart for regional application.

The data first goes to the main Python script shakeready.py to generate an initial model

which will then be constantly updated to satisfy the minimum requirements of the design

code (i.e., UBC 1967). With the detailing information from the finalized building, Tcl/Tk

files containing elastic elements, nonlinear elements, and recorders will be generated. At the

same time, the address or geocoordinates will be used to obtain the site-specific information.

For example, the shear-wave velocity at the depth of 30 m Vs30, DBE, and MCE spectrums.

Vs30 is available from the USGS database (https://earthquake.usgs.gov/data/v

s30/us/) where the spatial distribution of hundreds of data can be used to compute the

value for a specific site. For these 1,452 sites, most of their Vs30 fall in the range of 180-

360 m/s and are be defined as class D soil based on NEHRP [33]. In order to estimate

site-specific and hazard-consistent loss, uniform-hazard spectrums at the specific site are

necessary for scaling ground motions. Multiple websites provide a user interface that can

calculate spectral parameters for DBE and MCE levels. Through selenium, the automation
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of obtaining site-specific data can then be achieved. For example, on the ATC hazards by

location tool (https://hazards.atcouncil.org/#/), the address, site class, risk category

can be automatically filled in, and the spectral parameters including the MCE spectral

acceleration at short period Ss, MCE spectral acceleration at a period of 1 S1, MCE spectral

acceleration at short period adjusted for site class effects SMS, MCE spectral acceleration at

a period of 1 adjusted for site class effects SM1, DBE spectral acceleration at short period

SDS, and DBE spectral acceleration at a period of 1 SD1 can be obtained. Examples of

harvesting Vs30 and spectra parameters are shown in Fig.4.15.

With the spectral parameters, a set of ground motions can be selected and scaled for a

specific site to obtain unbiased estimates of median structural response at a given intensity.

The selection of ground motion is not the main focus of this study and hence is not introduced

into the proposed pipeline. Besides, because most of the NDRCB stocks in the inventory

locate close to each other and concentrate in the downtown Los Angeles region, selected

ground motions for different sites are not expected to be very different. As a result, the set

of 44 (22 pairs) far-field ground motion records specified in FEMA P695 [32] are used. In

Chapter 3, four sets provided by Baker et al. [13] were adopted to construct PSDM with

scaling. The focus of the previous chapter was to investigate the capability of the proposed

pipeline and hence needs to include diverse ground motions. However, this chapter focuses

on application. Consequently, those sets are not reused herein considering the practicality

and following the conventional assessment method.

In FEMA’s set, the magnitude varies from M6.5 to M7.6 with an average of M7.0. Thirty-

two (16 pairs) of the ground motions were recorded at sites classified as site class D and the

remaining records are from site class C locations, which covers the Los Angeles inventory.

The peak ground acceleration for the recordset varies from 0.21 g to 0.82 g with an average

of 0.43 g. To estimate the corresponding loss for a given intensity level, scaling of ground

motions is performed. For each site, two scaling factors are computed and adopted so that

the median spectral acceleration of the record set matches the specified intensity levels (i.e.,
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DBE, MCE).

(a)

(b)

Figure 4.15. Examples of (a) USGS Vs30 map, and (b) ATC hazard tool.

To efficiently conduct NTHAs, parallel computation is realized through the high-performance
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cluster platform at UCLA, namely, Hoffman2. As shown in Fig.4.14, three indices are intro-

duced to communicate with Hoffman2. The core controller connects ground motion records

to computing cores in the cluster. In our case, two scaling factors are applied to each record,

so 88 records need to be performed for each building, which means 88 computing cores.

Considering the limitation of available memory for each user, the original recorded set is

accessed by each core and the scaling factor will be assigned based on the index of the core.

For example, core 1 corresponds to a building’s DBE scaling factor for the first ground mo-

tion, and core 2 corresponds to the same building’s MCE scaling factor for the first ground

motion. For each core, at most 30 buildings’ NTHAs are carried out due to the limitation

of memory. In summary, 30 buildings’ 88 NTHAs (i.e., 44 records, 2 scaling factors) can be

conducted during each running, which approximately costs 1 hour.

Once all NTHAs are finished, postprocessing is performed to extract EDPs for loss esti-

mation. The peak inter-story drift at each floor is used to evaluate the damage of structural

components and drift-sensitive nonstructural components. The peak floor acceleration is

used for acceleration-sensitive nonstructural components, and the residual inter-story drift

is used to decide whether a building can be repaired or need to be demolished. An example

output of the post-processing is shown in Fig.4.16, which will be the input for loss estimation.

Figure 4.16. An example output of the post-processing.
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4.4 Seismic Loss Estimation

The seismic loss of infrastructure can be explicitly used as a measurement for seismic risk.

It is also a meaningful decision value to stakeholders compared to the engineering demand

parameter (EDP) which is meaningful to engineers only. Hence, the last part of the study is

to conduct the loss estimation for NDRCBs based on their EDPs associated with DBE and

MCE intensities.

Two state-of-the-practice loss assessment methodologies, namely, HAZUS [43] and FEMA

P-58 [44] are both implemented herein. For both methods, the loss is accumulated from dis-

crete damage states associated with structural components and nonstructural components.

To decide the triggering of damages, fragility curves are used to describe the probability

of exceeding damage states given EDPs, which is the main difference between these meth-

ods. While HAZUS provides building-level fragility curves, P-58 focuses on component-level

fragility functions.

In HAZUS, fragility curves are developed for different damage states of a building’s com-

ponents including structural, non-structural drift-sensitive, and nonstructural acceleration-

sensitive components. Four types of damage states including slight, moderate, extensive,

and complete are defined based on building types associated with the height (i.e., low-rise,

mid-rise, high-rise), design category (i.e., pre-code, low-code, moderate-code, high-code),

material types (i.e., concrete, steel, wood), and model types (e.g., pure moment frame, mo-

ment frame with shear walls, moment frame with unreinforced masonry infilled walls). For

example, fragility curves shown in Fig.3.12 describe the probability of four different damage

states for a pre-code concrete moment frame (C1).

The building loss in HAZUS is directly transformed from building damage. HAZUS pro-

vides default repair/replacement costs per square foot for buildings based on their occupancy

(e.g., single-family dwelling, hospital, parking, education-school), which can be used to es-

timate the total cost with total area. With the total cost, the relationship between damage
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states and repair/replacement cost for different component types can be defined. Examples

are shown in Tables 4.4 and 4.5, and complete tables can be found in Tables 11.1 to 11.4

in HAZUS [43]. In view of the rapid evaluation of regional seismic, HAZUS’ methodology

is feasible because the damage is associated with building-level responses and the regional

loss is only the accumulation of all buildings. However, the calculation is too conservative

because it does not consider the difference of fragility curves for different components (i.e.,

beam, column, joint, wall) even their performance is governed by story drift. The computa-

tion of cost based on only four damage states may underestimate or overestimate the total

cost. For instance, [30] shows that HAZUS predicts a lower loss at lower intensities and a

higher loss at higher intensities.

Table 4.4. Example of replacement cost per square foot.

Occupancy code Descriptions Means cost 2002

RES1 Single Family Dwelling $62

COM1 Retail Trade $59

IND1 Heavy $68

EDU1 Schools/Libraries $86

Table 4.5. Example loss rates for single-family residences of light-frame wood construction.

Damage Structural Nonstructural Nonstructural Total
Contents

Buildings with

state components drift-sensitive accel.-sensitive building contents

Slight 0.38 0.8 0.43 1.6 0.4 2.0

Moderate 1.88 2.0 2.13 8 2.0 10

Extensive 9.38 20 10.63 40 10 50

Complete 18.75 40 21.25 80 20 100

The other loss estimation method that has been widely used in recent years is the FEMA

P-58, which was developed by the Applied Technology Council (ATC) for the next-generation
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performance-based seismic design methodology [3]. The essential difference between the

FEMA P-58 and HAZUS is its probabilistic nature. Instead of binning a structure into

a loss group, FEMA P-58 simulates ground motions and compiles building losses using

Monte-Carlo simulations. FEMA P-58 uses probabilistic seismic hazard analysis at the site

of interest to obtain the mean annual frequency of exceedance of specific ground motion

intensity levels (or hazard curves). Nonlinear structural responses (i.e., EDPs) to hazard-

specific excitations are then estimated through NTHAs. Component-level fragility curves

are provided in P-58 to connect the EDPs to physical damage, and statistical loss functions

are used to describe the relationship between physical damage and repair or replacement

costs. An intensity-based loss estimation procedure is shown in Fig.4.17.

For a given intensity level (e.g., DBE, MCE), NTHAs are conducted to obtain build-

ing responses and generate the multivariate log-normal distribution of EDPs (e.g., peak

inter-story drift, residual inter-story drift, peak floor acceleration). Through Monte-Carlo

simulations, random realizations of EDPs are used to first check if the drift limit of collapse

is reached. If the building collapses or the residual drift is too large and the building cannot

be repaired, the replacement cost of this realization is counted. Otherwise, EDPs are used

to sample damage states of components based on the provided fragility curves. The costs of

repairing or replacing components are then conditioned on the damage states. The cost of

non-collapse building is taken as the sum of costs for repairing individual components in all

directions and stories, and the loss conditioned on a single intensity is taken as the mean of

all Monte Carlo realizations.

FEMA P-58 provides detailed damage and loss models calibrated using data from labora-

tory tests of components, historical data on repairs, and estimates from contractors. Fragility

parameters (i.e., median, dispersion) of damage states, repair cost, and repair time parame-

ters (i.e., min, average, max) of each damage state are available in the supporting materials

of P-58 [44]. An example of component damageability and cost data is shown in Table 4.6.
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Figure 4.17. FEMA P-58 intensity-based loss estimation procedure.

Table 4.6. An example of component damageability and cost data.

Component Description DS: Median Unit Repair Cost Range

ACI 318 OMF with weak

joints and column flexural

response, Conc Col & Bm

=24” x 24”, Bean one side

DS1 (IDR): 0.015 $23, 131− $34, 697

B1041.041a DS2 (IDR): 0.0175 $35, 077− $52, 615

DS3 (IDR): 0.02 $43, 176− $64, 764

ACI 318 OMF with weak

joints and column flexural

response, Conc Col & Bm

=24” x 24”, Beam both sides

DS1 (IDR): 0.015 $23, 131− $34, 679

B1041.041b DS2 (IDR): 0.0175 $35, 077− $52, 615

DS3 (IDR): 0.02 $43, 176− $64, 764

Reinforced concrete flat slabs-

columns without shear reinforcing

0<Vg/Vo<.2, no continuity reinf

DS1 (IDR): 0.025 $41, 570− $61, 132

B1049.001a DS2 (IDR): 0.04 $56, 841− $83, 590
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4.4.1 NHERI-SimCenter Pelicun

Both HAZUS and P-58 has been implemented in software tools, such as PACT (Performance

Assessment Calculation Tool [45]) and SP3 (Seismic Performance Prediction Program [54]),

which provide engineers the ability to evaluate the seismic performance of design solutions for

new buildings and retrofit of existing structures. Although these software have comprehensive

functions, they are not open-source tools, which makes it difficult to be integrated into a

single framework or platform for a specific research purpose.

To address this problem, the Computational Modeling and Simulation Center (SimCen-

ter, https://simcenter.designsafe-ci.org/) under the Natural Hazards Engineering

Research Infrastructure (NHERI) program funded by the National Science Foundation (NSF)

recently developed an open-source Python-based tool for probabilistic estimation of losses,

injury and community resilience under natural disasters, namely, pelicun [137].

Pelicun provides multiple modules for users and allows them to modify them for cus-

tomized data. As shown in Fig.4.18, users can define specific event files for the interest of

sites. BIM files including building information (i.e., number of floors, floor area, built year,

occupancy) are also provided by users, which can be used to estimate building responses and

define the performance group (e.g., RC columns on the first floor in the first direction). For

the response estimation, users can choose their preference and desired accuracy to prepare

the EDP files. Examples shown in Fig.4.16 are the EDPs of the Los Angeles’ inventory and

they already followed the format requirements of pelicun. Based on the raw EDP files, peli-

cun can compute the parameters for multivariate log-normal distribution and the collapse

probability, which will then be used for Monte-Carlo realizations. Currently, the damage

and loss data shown before for both methods are provided with pelicun, and users only need

to define a configuration file that includes component lists to associate with the database for

loss estimation. An example configuration following Table 4.6 is shown in Table 4.7.
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Figure 4.18. The workflow of pelicun.

Table 4.7. Configuration of components for pelicun.

Component Direction Levels Total Units Qty. Per Unit Total Qty. in Building

B1041.041a
1 1-2 8

1 Each
8 Each

2 1-2 8 8 Each

B1041.041b
1 1-2 12

1 Each
12 Each

2 1-2 12 12 Each

B1049.001a ND 1-2 18 1 Each 18 Each

With the configuration file, pelicun disaggregates a building into three hierarchies to

estimate the loss of each realization. The highest level of the hierarchy is the Fragility

Groups (FGs), where each FG collects components with similar fragility and are controlled by

a specific type of EDP. This FG can then be broken down into the second hierarchy, namely,

Performance Groups (PGs). In each PG, all components are governed by the same EDP in

the same direction and same location. The last hierarchy is the Component Groups (CGs),

where each CG has components with the same damage states during a realization. The

number of components in each CG is then used to compute the corresponding consequences

such as repair time and cost.
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4.4.2 Regional estimation

With EDPs computed from NTHAs and pelicun, the rest work of this study is to investigate

the potential losses of these NDRCBs under the DBE-level and MCE-level intensities, their

spatial distribution, and the compositions of losses. In pelicun, the loss is computed based on

the expected replacement value of the building. To estimate the losses that can reflect current

construction prices for the target region, SP3 [54] software is utilized because it considers

the latest RSMeans cost data. Examples of expected replacement values are shown in Table

4.8, which is estimated with consideration of original building cost and an additional 25%

cost of debris removal.

For the configuration file required by pelicun, the level of detail depends on the loss

methodology used. For example, if HAZUS is implemented, the configuration only needs to

provide the location (i.e., floor), the direction (i.e., 1, 2), the unit (i.e., each, ft, ft2), the com-

ponent type (i.e., structural component, non-structural component sensitive to acceleration,

non-structural component sensitive to drift). and the number of components. On the other

hand, the detailed ID of components is required when using the P-58 method, as shown in

Table 4.7. SP3 is also used to assist in listing components for all buildings including different

heights and occupancy. The Complete configuration lists used for pelicun can be found in

Appendix B.

Through pelicun, losses of thousands of buildings can be computed within an acceptable

time (e.g., 1 hour). The spatial distribution of losses is shown in FIg.4.19. The loss ra-

tio is the expected loss of 2,000 random realizations divided by the expected replacement

cost. Detailed summaries of the losses are shown in Table.4.9 and Table.4.10, where HAZUS

estimates the losses more conservatively. This can be expected because HAZUS only consid-

ers building-level responses and does not take component-level fragility curves into account.

However, P-58 does consider it story by story, and the components in each story may have

different damage states.
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Similarly, the distribution of expected time for repair or reconstruction is shown in

Fig.4.20, where HAZUS also has a conservative estimation. The repair or reconstruction

for each building is assumed to be conducted simultaneously, which is not realistic when a

huge event occurs and multiple buildings are damaged in a region. The repair time can be

used to assess the building closure time and corresponding indirect losses, yet it is not the

focus of this study and hence is not discussed herein.

Table 4.8. Expected replacement value of different types.

million Low-rise (2-story) Mid-rise (5-story) High-rise (12-story)

Industrial $3 $7 $15

Commercial-office $5 $13 $41

School $6 $14 $36

Table 4.9. Mean values of losses obtained through P-58.

Low-rise Mid-rise High-rise

DBE MCE DBE MCE DBE MCE

cost ratio (%) 27 40 28 39 29 43

repair time (days) 186 214 199 217 203 223

Table 4.10. Mean values of losses obtained through HAZUS.

Low-rise Mid-rise High-rise

DBE MCE DBE MCE DBE MCE

cost ratio(%) 70 74 70 78 76 83

repair time (days) 317 337 318 340 322 344
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(a) DBE-level via P-58 (b) DBE-level via HAZUS

(c) MCE-level via P-58 (d) MCE-level via HAZUS

Figure 4.19. Spatial distribution of losses estimated through different methods at different

intensities.
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(a) DBE-level via P-58 (b) DBE-level via HAZUS

(c) MCE-level via P-58 (d) MCE-level via HAZUS

Figure 4.20. Spatial distribution of repair/reconstruction time estimated through different

methods at different intensities.

To better understand the compositions of losses, Fig.4.21 shows the disassemble of losses

for buildings with a different height (i.e., L: low-rise, M: mid-rise, H: high-rise), different types

(i.e., D: ductile, ND: non-ductile), and different occupancy (i.e., industrial, commercial).
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Only industrial and commercial buildings are discussed here because they account for more

than 50% in the original inventory. The compositions show that HAZUS estimates the losses

of non-structural components on average 4 times than the P-58 method. In terms of the

total loss, HAZUS is about 1.5 times of P-58. For comparison purposes, the losses of several

ductile reinforced concrete moment frames are also listed here. The models are similar to non-

ductile buildings but without consideration of shear-limit elements. The losses of structural

components of ductile buildings are around 1.5 times less than non-ductile buildings, which

results in less total loss ratio.

The regional losses estimated in this study is a summation of all expected losses of

individual buildings given DBE and MCE intensities. However, it is not realistic because

not all the buildings will reach DBE or MCE intensity at a given event. That is to say,

is a conservative estimation for a region. In fact, the intensity differs by the site during a

scenario event. Many studies have shown that uncertainties in ground motion associated

with different sites and different earthquake events could effect the distribution of aggregate

regional losses [90, 99, 124]. The spatial correlation exhibited in ground motions is hence

necessary to be considered as a potential future study.
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(a) DBE-level via P-58 (b) MCE-level via P-58

(c) DBE-level via HAZUS (d) MCE-level via HAZUS

Figure 4.21. Disassemble of losses.

4.5 Summary

In this chapter, a data-harvesting module was proposed based on existing inventory data

and collected street-view/aerial images of NDRCBs, which was introduced to assist the
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numerical modeling. The auto-modeling module discussed in Chapter 3 was applied to 1,452

NDRCB stocks in the City of Los Angeles to conduct NTHAs and compute responses of

these buildings subjected to earthquake ground motions. EDPs at DBE-level and MCE-

level intensities were obtained and used to estimate the seismic losses through pelicun, a

recently developed open-source tool implementing HAZUS and FEMA P-58.

Web scraping was adopted to harvest site- and structural- specific information through

IoT, and deep CNNs were trained to identify geometric information that is missing in the

current inventory but is vital for numerical modeling. The web scraping only focused on

known data sources (e.g., LADBS, ZIMAS, Zillow) and specific information (i.e., built year,

floor area, building height), yet it can be further applied to any web sources. Deep CNNs for

detecting the number of floors/spans and estimating span-length/floor-height were trained

through the TL technique mentioned in Chapter 2. The cross-validation technique was

implemented to identify the goodness of hyper-parameters and the uncertainty of prediction.

Although the harvested images focus on the region of interest and the CNNs are only for

specific tasks (i.e., detection, regression), the idea of using artificial intelligence to reduce

labor-intensive work for collecting data and helping risk mitigation is feasible.

The estimation of regional losses for NDRCBs was practiced as a demonstration of the

outcomes of this study. With a high-performance computational cluster, hundreds of thou-

sands NTHAs were carried out and the time reduced from weeks to days. State-of-the-

practice loss assessment methodologies help to depict the spatial distribution of losses at

a city scale and identify the composition of them for different types of buildings, which

highlights the vulnerability of NDRCB stocks.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions of Chapters

This dissertation proposed a data-driven framework for regional assessment of seismically

vulnerable buildings. Two pipelines using data-driven artificial intelligence methods are

included in the framework for soft-story buildings and non-ductile reinforced concrete frames,

respectively. While detailed summaries can be found in each chapter, brief conclusions are

described below.

The first pipeline focuses on identifying soft-story buildings at a city scale and is intro-

duced in Chapter 2. The goal is to improve the accuracy of existing studies using street-view

image-based deep-learning models which highly rely on well-controlled images with clear tar-

get objects. The pipeline used photogrammetry to construct city-scale point clouds and used

building footprints to segment building points. A heuristic algorithm was developed to col-

lect density features of point clouds along with the building height, which can conquer the

issue that open-space characteristics of soft-story buildings are often being blocked in 2D

images. The density feature can depict the opening first floor or parking garage and hence

improve the accuracy of DL models. The transfer learning technique was introduced to

overcome the over-fitting and sets of hyper-parameters were investigated for optimizing con-

volutional neural networks. The work did not carry out the soft-story modeling and seismic

analysis because many studies have already done that and many of these buildings have been

retrofitted or are being retrofitted.

102



The second pipeline discussed in Chapter 3 aims to fulfill an automated assessment

for NDRCB frames, which includes automated modeling and damage assessment. Because

generating a large number of models is time-consuming and requires many implementation

details, the pipeline developed an automated design procedure using minimal building in-

formation (i.e., number of floors, floor height, number of spans, span length, floor area) to

construct archetypal models satisfying era-specific building codes as an approximation of

as-built buildings. The archetypal frames were validated with existing NDRCBs through

nonlinear static and nonlinear dynamic analyses, which showed that the proposed OpenSees

model can capture the stiffness degradation and shear failure in columns that are often

observed in NDRCBs.

The probabilistic seismic demand model (PSDM) was adopted in the pipeline to develop

damage fragility curves because it has a closed-form formulation and does not require any

scaling of earthquake ground motions. Based on PSDM, regression analyses were carried out

for log-normal coefficients used to describe the probability of exceedance of a damage state

given an intensity measurement (IM). Suitable IMs were also investigated for the maximum

inter-story drift and peak floor acceleration based on efficiency, sufficiency, proficiency, and

practicality. PGV and PGA are the most suitable IMs for maximum inter-story drift and

peak floor acceleration respectively. A sensitivity analysis was conducted to identify the

variation of engineering demand parameters (EDPs) given different structural information,

and the result revealed that the structural type had more effect on the EDPs than user-

defined building information. For example, the high-rise building with a perimeter frame as

the lateral force-resistant system had a larger variance in the maximum inter-story drift.

Chapter 4 introduced a data-harvesting module to assist a real-world application of the

proposed pipeline to regional assessment and loss estimation for NDRCBs. Web-scraping

techniques and deep CNNs were adopted to collect site- and structural-specific information

for the auto-modeling. For existing inventory data, the module automated the data-mining

procedure in each data source and can be further adapted to other web sources for studies of
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interest. On the other hand, deep CNNs were trained for investigating missing information

that is vital for modeling such as number of floors, number of spans, and span length. TL

technique and image augmentation were used to enhance the performance of CNN models

on detection and regression tasks. The detection task was trained for identifying the number

of objects (i.e., floor, span), while the regression task was trained for predicting values (i.e.,

height, length, area). Optimal CNNs and the uncertainties in their predictions for both tasks

were obtained through cross-validation.

With the harvested metadata, 1,452 NDRCBs in the city of Los Angeles were assessed

through the proposed pipeline. Hundreds of thousands NTHAs were conducted to obtain the

responses of archetypal frames subjected to earthquake ground motions. The EDPs were used

to compute log-normal distributions for random realizations in the Monte-Carlo simulation,

which were then used to evaluate the damage state and the corresponding repair time and

cost. Regional losses and their composition highlighted the vulnerability of NDRCBs.

5.2 Research Impacts and Limitations

This research has some potential impacts and also some limitations for using it.

Potential impacts include:

• The data-driven framework is applicable to reduce the burden of labor-intensive large-

scale inventories for natural hazard mitigation in urban regions.

• The framework integrates existing tools from multidisciplinary fields, which allows

users with different backgrounds to adopt it based on their level of interest.

• The spatial distribution of seismically vulnerable buildings is informative for developing

pre-event planning and post-event countermeasures. For example, the arrangement of

emergency rescue routes.

• While image-based methods have been widely used for a city-scale risk assessment, 3D

data such as point clouds have not. The geocoordinates, texture, and depth information
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of points can be used to enhance the level of detailing in modeling digital cities.

• The auto-modeling and design procedures are currently applicable to pre-1980 rein-

forced concrete buildings but can be extended to any era and any type of structure.

Limitations of the proposed framework are:

• The pipeline for identifying soft-story buildings relies on the quality of point cloud data

which are not as common as street-view images. That is, to get promising results, an

advanced tool may be required to obtain refined point clouds, which may increase the

computational cost.

• The data-harvesting module focuses on non-ductile reinforced concrete buildings in

Los Angeles. For other regions, the available data sources will be different and it may

still need some labor work to find suitable sources. Similarly, images used to train

deep CNNs may also need to be re-collected and labeled for other regions because the

appearance of buildings may be different even if they are all considered as non-ductile

buildings.

• Current archetypal models only have moment-resistant frames, but shear-wall buildings

and moment frames with masonry infilled walls also have a high percentage in the

inventory. These types of buildings must be introduced into the proposed pipeline to

accurately estimate the regional risk.

• Similarly, only 2D archetypal frames are considered in this study. 3D models with

consideration of irregularity are also necessary to be included because some undesired

behavior of NDRCBs may be worse when the irregularity exists.

• The selection of site-specific ground motions is not the focus of this study, so the

current pipeline isn’t a fully end-to-end (i.e., site-specific hazard to loss) method yet.

This module is inevitable for a more precise assessment.
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5.3 Recommendation of Future Work

With the aforementioned limitations, the potential future work of this study includes:

• The point cloud data has been well labeled and can be applied to recently developed 3D

CNN models such as PointNet [102] and PointCNN [82]. These models can directly

train neural networks on raw point clouds without any transformation, which can

further improve the efficiency of the proposed pipeline.

• Current models are simplified. More types of NDRCBs and extra complexity need

to be considered. In addition to the aforementioned 3D analysis and irregularity,

detailed elements such as fiber elements can be introduced to simulate the bidirectional

interaction of axial loads and bending moments.

• The effect of vertical seismic excitation on the shear capacity of shear-critical columns

should be considered. Soil nonlinearity and interaction with superstructures can also

be included in the pipeline.

• The spatial cross-correlation in ground motions should be considered and scenario-

based loss assessment should be discussed in order to truly respond the distribution of

aggregate regional losses.

• The image-harvesting still needs some manual filtering to obtain clear side-view im-

ages for training deep CNNs, which should be improved with the help of automated

positioning and selection of imaging parameters.

• A user-friendly interface should be developed to incorporate all the scripts and modules

developed in this study so that the benefits of the framework can be maximized.
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Appendix A
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Regression Analyses of PSDM

(a)

(b)

(c)

Figure A.1. Regression analyses of perimeter frames for θmax v.s. (a) SaT1, (b) PGA, and

(c) PGV .
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(a)

(b)

Figure A.2. Regression analyses of perimeter frames for θmax v.s. (a) Ia, and (b) CAV .
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(a)

(b)

Figure A.3. Regression analyses of perimeter frames for θmax v.s. (a) Ds575, and (b) Ds595.
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(a)

(b)

(c)

Figure A.4. Regression analyses of space frames for θmax v.s. (a) SaT1, (b) PGA, and (c)

PGV .
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(a)

(b)

Figure A.5. Regression analyses of space frames for θmax v.s. (a) Ia, and (b) CAV .
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(a)

(b)

Figure A.6. Regression analyses of space frames for θmax v.s. (a) Ds575, and (b) Ds595.
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(a)

(b)

(c)

Figure A.7. Regression analyses of perimeter frames for PFA v.s. (a) SaT1, (b) PGA, and

(c) PGV .
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(a)

(b)

Figure A.8. Regression analyses of perimeter frames for PFA v.s. (a) Ia, and (b) CAV .
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(a)

(b)

Figure A.9. Regression analyses of perimeter frames for PFA v.s. (a) Ds575, and (b) Ds595.
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(a)

(b)

(c)

Figure A.10. Regression analyses of space frames for PFA v.s. (a) SaT1, (b) PGA, and

(c) PGV .
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(a)

(b)

Figure A.11. Regression analyses of space frames for PFA v.s. (a) Ia, and (b) CAV .
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(a)

(b)

Figure A.12. Regression analyses of space frames for PFA v.s. (a) Ds575, and (b) Ds595.
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Appendix B

Component Details for Loss Estimation

Table B.1. Structural component list.

Component Description DS: Median Unit Repair Cost Range

ACI 318 OMF with weak

joints and column flexural

response, Conc Col & Bm

=24” x 24”, Bean one side

DS1 (IDR): 0.015 $23, 131− $34, 697

B1041.041a DS2 (IDR): 0.0175 $35, 077− $52, 615

DS3 (IDR): 0.02 $43, 176− $64, 764

ACI 318 OMF with weak

joints and column flexural

response, Conc Col & Bm

=24” x 24”, Beam both sides

DS1 (IDR): 0.015 $23, 131− $34, 679

B1041.041b DS2 (IDR): 0.0175 $35, 077− $52, 615

DS3 (IDR): 0.02 $43, 176− $64, 764

Reinforced concrete flat slabs-

columns without shear reinforcing

0<Vg/Vo<.2, no continuity reinf

DS1 (IDR): 0.025 $41, 570− $61, 132

B1049.001a DS2 (IDR): 0.04 $56, 841− $83, 590
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Table B.2. Exterior finishes component list.

Component Description DS: Median Unit Repair Cost Range

B2011.201a Precast concrete panels 4.5 inches

thick - in plane deformation

DS1a (IDR): 0.0182 $9, 122− $14, 824

DS1b (IDR): 0.0182 $45, 611− $74, 118

Precast concrete panels 4.5 inches

thick - out of plane deformation

Curtain Walls - Generic Midrise

Stick-Built Curtain wall, Confg: Insulating

DS1 (PFA): 6.01 $68, 416− $111, 176

B2011.201b

Glass Units (dual pane), Lamination:

Unknown, Glass Type: Unknown,

Details: Aspect ratio = 6:5,

Other details Unknown

DS1 (IDR): 0.021 $2, 127− $3, 989

B2022.002 DS2 (IDR): 0.024 $2, 127− $3, 989

Table B.3. Partition walls component list.

Component Description DS: Median Unit Repair Cost Range

Wall Partition, Type: Gypsum

with meta studs, Full Height,

Fixed Below, Fixed Above

DS1 (IDR): 0.005 $2, 457− $4, 606

C1011.001a DS2 (IDR): 0.01 $4, 913− $9, 213

DS3 (IDR): 0.021 $10, 040− $14, 174

Table B.4. Lighting component list.

Component Description DS: Median Unit Repair Cost Range

C3034.001 Independent Pendant

Lighting - non seismic

DS1 (PFA): 0.6 $1− $3
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Table B.5. Other nonstructural component list.

Component Description DS: Median Unit Repair Cost Range

Non-monolithic precast concrete stair

assembly with concrete stringers and

treads with no seismic joint

DS1 (IDR): 0.005 $567− $1, 890

C2011.011b DS2 (IDR): 0.017 $2, 997− $9, 989

DS3 (IDR): 0.028 $18, 588− $61, 9, 589

C3011.011a Wall Partition, Type: Gypsum + Wallpaper,

Full Height, Fixed Below, Fixed Above

DS1 (IDR): 0.0021 $2, 916− $4, 374

C3027.002 Raised Access Floor, seismically rated DS1 (PFA): 1.5 $124− $186

Fire Sprinkler Water Piping - Horizontal

Mains and Branches - Old Style Victaulic -

Thin Wall Steel - No bracing, SDC C,

PIPING FRAGILITY

DS1 (PFA): 1.1 $425− $520

D4011.022a DS2 (PFA): 2.4 $3, 219− $3, 935

Fire Sprinkler Drop Standard Threaded

Steel - Dropping into unbraced lay-in til

SOFT ceiling - 6 ft. long drop maximum,

SDC C

DS1 (PFA): 0.75 $607− $742

D4011.032a DS2 (PFA): 0.95 $607− $742

Motor Control Center - Capacity: all -

Unanchored equipment that is not vibration

isolated - Equipment fragility only

DS1 (PFA): 0.73 $5, 042− $6, 162

D5012.013a

Low Voltage Switchgear - Capacity: 1200

to 2000 Amp - Unanchored equipment that

is not vibration isolated - Equipment

fragility only

DS1 (PFA): 1.28 $62, 444− $76, 321

D5012.021d

122



Table B.6. Ceiling component list.

Component Description DS: Median Unit Repair Cost Range

Suspended Ceiling, SDC A,B,C, Area (A):

A < 250, Vert support only

DS1 (PFA): 1.17 $391− $587

C3032.001a DS2 (PFA): 1.58 $3, 064− $4, 596

DS3 (PFA): 1.82 $6, 304− $9, 456

Suspended Ceiling, SDC A,B,C, Area (A):

250 < A < 1000, Vert support only

DS1 (PFA): 1.01 $940− $1, 409

C3032.001b DS2 (PFA): 1.45 $7, 354− $11, 031

DS3 (PFA): 1.69 $15, 129− $22, 694

Suspended Ceiling, SDC A,B,C, Area (A):

1000 < A < 2500, Vert support only

DS1 (PFA): 0.7 $2, 819− $4, 228

C3032.001c DS2 (PFA): 1.2 $22, 062− $33, 093

DS3 (PFA): 1.43 $45, 388− $68, 081

Suspended Ceiling, SDC A,B,C, Area (A):

A > 2500, Vert support only

DS1 (PFA): 0.56 $3, 915− $5, 872

C3032.001d DS2 (PFA): 1.08 $30, 642− $45, 963

DS3 (PFA): 1.31 $63, 038− $94, 558

Table B.7. Elevator component list.

Component Description DS: Median Unit Repair Cost Range

D1014.012 Traction Elevator - Applies to most

California Installations prior to 1976, most

western states installations prior to 1982

and most other U.S installations prior to

1998.

DS1a (PFA): 0.31 $3, 564− $11, 879

DS1b (PFA): 0.31 $15, 145− $50, 485

DS1c (PFA): 0.31 $12, 959− $43, 195

DS1d (PFA): 0.31 $2, 025− $6, 749
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Table B.8. Piping component list.

Component Description DS: Median Unit Repair Cost Range

Cold or Hot Potable - Small Diameter

Threaded Steel - (2.5 inches in diameter or

less), SDC C, PIPING FRAGILITY

DS1 (PFA): 1.5 $352− $431

D2021.012a DS2 (PFA): 2.6 $3, 219− $3, 935

D2021.022a Cold or Hot Potable Water Piping (dia >

2.5 inches), SDC C, PIPING FRAGILITY

DS1 (PFA): 1.5 $283− $945

DS2 (PFA): 1.1 $2, 713− $9, 044

Heating hot Water Piping - Small Diameter

Threaded Steel - (2.5 inches in diameter or

less), SDC C, PIPING FRAGILITY

DS1 (PFA): 0.55 $352− $431

D2022.012a DS2 (PFA): 2.6 $3, 219− $3, 935

Heating hot Water Piping - Small Diameter

Threaded Steel - (2.5 inches in diameter or

less), SDC C, BRACING FRAGILITY

DS1 (PFA): 1.2 $462− $564

D2022.012b DS2 (PFA): 2.4 $4, 617− $5, 642

Heating hot Water Piping - Large Diameter

Welded Steel - (greater than 2.5 inches in

diameter), SDC C, PIPING FRAGILITY

DS1 (PFA): 1.5 $283− $945

D2022.022a DS2 (PFA): 2.6 $2, 713− $9, 044

Sanitary Waste Piping - Cast Iron w/bell

and spigot couplings, SDC C, PIPING

FRAGILITY

DS1 (PFA): 2.25 $2, 713− $9, 044

D2031.022a

Sanitary Waste Piping - Cast Iron w/bell

and spigot couplings, SDC C, BRACING

FRAGILITY

DS1 (PFA): 1.2 $324− $1, 080

D2031.022b DS2 (PFA): 2.4 $3, 523− $11, 744
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Table B.9. Hvac component list.

Component Description DS: Median Unit Repair Cost Range

Chiller - Capacity: 100 to <350 Ton -

Unanchored equipment that is not vibration

isolated - Equipment fragility only

DS1 (PFA): 0.2 $185, 876− $227, 181

D3031.011b

Chiller - Capacity: 100 to <350 Ton -

Unanchored equipment that is not vibration

isolated - Equipment fragility only

DS1 (PFA): 0.5 $94, 760− $115, 818

D3031.021b

HVAC Galvanized Sheet Metal Ducting

less than 6 sq. ft in cross sectional area,

SDC D, E, or F

DS1 (PFA): 1.5 $790− $965

D3041.011c DS2 (PFA): 2.25 $7, 714− $9, 429

HVAC Galvanized Sheet Metal Ducting - 6

sq. ft cross sectional area or greater, SDC

D, E, or F

DS1 (PFA): 3.75 1, 154− $1, 411

D3041.012c DS2 (PFA): 4.5 $9, 658− $11, 805

Sanitary Waste Piping - Cast Iron w/bell

and spigot couplings, SDC C, BRACING

FRAGILITY

DS1 (PFA): 1.2 $2, 430− $2, 970

D3052.011d DS2 (PFA): 2.4 $225, 966− $276, 181
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