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Abstract
Objective—CD4 and CD8 T-cell activation are independent predictors of AIDS. The complete
activation profile of both T-cell subtypes and their predictive value for AIDS risk is largely
unknown.

Design—A total of 564 AIDS-free women in the Women's Interagency HIV Study were
followed over 6.1 years (median) after T-cell activation assessment. A cluster analysis approach
was used to evaluate the concurrent activation patterns of CD4 and CD8 T cells at the beginning
of follow-up in relation to AIDS progression.

Methods—Percentages of CD4 and CD8 T cells with HLA-DR± and CD38± were assessed by
flowcytometry. Eight immunologic variables (four on each CD4+ and CD8+: DR± and CD38±)
were assessed to yield a 4-cluster solution on samples obtained before clinical endpoints.
Proportional hazards survival regression estimated relative risks for AIDS progression by cluster
membership.
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Results—Compared with the other three clusters, outstanding activation features of each distinct
cluster of women were: Cluster 1: higher CD8+CD38– DR– (average = 41% of total CD8 T-cell
pool), CD4+CD38– DR– (average = 53% of total CD4 T-cell pool), and CD8+CD38– DR+ (28%);
Cluster 2: higher CD8+CD38+DR– (44%) and CD4+CD38+DR– (58%); Cluster 3: higher
CD8+CD38+DR+ (49%) and CD4+ CD38+DR– (48%); Cluster 4: higher CD8+CD38+DR+ (49%),
CD4+CD38+DR+ (36%) and CD4+CD38– DR+ (19%). Compared with cluster 1, women in cluster
4 had two-fold increased risk of AIDS progression (Hazard ratio = 2.13; 95% confidence interval
= 1.30–3.50) adjusted for CD4 cell count, HIV RNA, and other confounders.

Conclusion—A profile including CD4 and CD8 T-cell activation provided insight into HIV
pathogenesis indicating concurrent hyperactivation of CD4 and CD8 T cells is associated with
AIDS progression.

Keywords
AIDS; cluster analysis; immune activation

Introduction
T-lymphocyte activation is a hallmark of HIV infection that can lead to accelerated T-cell
apoptosis [1,2]. Immune activation contributes more to CD4 decline than does the direct
effect of HIV [1,3,4]. Immune activation may also reach a set point or threshold early in
HIV infection, which can predict CD4 decline independent of HIV viral load [5]. In addition
to well established documentation that low CD4 and CD8 T-cell counts predict AIDS among
HIV-infected individuals, a growing body of evidence suggests that CD4 and CD8
activation also predicts HIV disease progression [3,6,7]. We have shown that HIV-infected
women coinfected with hepatitis C virus (HCV) have higher levels of immune activation
and greater risk of disease progression compared with women infected with HIV only [8,9].
A better understanding of the markers of immune activation is needed to maximize the
utilization of T-cell activation as a predictor of HIV disease progression.

CD38 expression is a well documented marker of early T-cell activation and is also
associated with cytokine production and rapid T-cell differentiation [10–12]. In the
Multicenter AIDS Cohort Study, CD38 expression was a better predictor of HIV disease
progression than other markers of immune activation [7]. Although most studies assessed
immune activation by measuring percentages of T cells expressing CD38, the prognostic
value of T-cell activation increased when immune activation was assessed by co-expression
of CD38 with HLA-DR [13] or CD45R0 [14], suggesting expression of multiple markers on
T cells could be indicative of a hyperactivation status. T cells dually activated with CD38
and HLA-DR significantly predicted progression to AIDS among HIV-infected men, and the
same cohort of women in the Women's Interagency HIV Study (WIHS) as the current study
[9]. Although numerous studies have evaluated the impact of CD4 or CD8 T-cell activation
on risk of progression to AIDS, none evaluated the concurrent activation status of CD4 and
CD8 T cells. It is possible that a global activation, characterized by hyperactivation of both
CD4 and CD8 T cells, is indicative of a more general immune dysregulation leading to high
T-cell turnover, severe immunodeficiency, and progression to AIDS. We undertook this
study to identify clusters of women with a similar pattern of CD4 and CD8 T-cell activation
based on CD38 and/or HLA-DR expression, which will reflect the concomitant CD4 and
CD8 T-cell activation profile in HIV-infected individuals. We further examined the risk of
AIDS for women in each cluster to identify whether there is a high-risk immune activation
profile. We hypothesized that different immune profiles would demonstrate differential
associations with progression to AIDS.
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Methods
Study population

WIHS enrolled HIV-infected (n = 2059) and uninfected (n = 569) women from October
1994 to November 1995 at six sites in the United States [15]. An additional 739 HIV-
infected and 406 uninfected women were enrolled between 2001 and 2002. Participants are
assessed at baseline and every 6 months with an extensive battery of questionnaires and
laboratory tests. The current study includes 564 HIV-infected women who were AIDS-free
at baseline and had immune activation markers assessed before a diagnosis of AIDS.
Written informed consent was obtained from all study participants of the WIHS. The study
was approved by the institutional review boards and ethics committees of all six
participating sites.

Laboratory evaluations
CD4 and CD8 T-cell counts were measured by flow cytometry in laboratories participating
in the National Institutes of Health, National Institute of Allergy and Infectious Diseases,
Division of AIDS Flow Cytometry quality assurance program [15]. The fluorochrome-
conjugated antibodies for three-color cytometry were anti-CD3, CD4, CD8, HLA-DR, and
CD38 (Becton Dickinson, San Jose, California and Pharmigen, San Diego, California, USA)
[8,16,17]. HIV-1 RNA quantification was performed every 6 months using real-time
isothermal nucleic acid sequence-based amplification (Organon Teknika Corp., Durham,
North Carolina, USA) [18]. HCV antibody testing was done at baseline using Abbott EIA
2.0 or 3.0 assays. HCV RNA was measured by polymerase chain reaction using COBAS
Amplicor Monitor 2.0 assay (Roche Diagnostics, Branchburg, New Jersey, USA) [19].

Demographic, lifestyle, and clinical variables
Structured interviews every 6 months included questions on sociodemographics, medical
and health history, obstetric, gynecologic, and contraceptive history, tobacco, alcohol, and
drug use, sexual behavior, healthcare access utilization, and psychosocial measures [15].
Using the 1993 Centers for Disease Control classification system, the self-reported
occurrence of an AIDS-defining clinical condition (ADC) in the previous 6 months was also
recorded. This event was confirmed by review of medical records and matching to AIDS
registries. HCV status was determined at baseline and categorized as: antibody negative
(HCV–), antibody positive nonviremic (HCV+RNA–), or viremic, which was further
categorized using the median HCV RNA cutoff as HCV RNA less than 2 400 000 IU/ml.
Self-reported ethnicity/race was: white, African–American, Hispanic, or other. Age was
categorized based on tertiles of distribution (<35, 35–40, ≥41 years). We followed our prior
publication [9] for categorizing the following variables: IDU (yes, no), smoking (never,
former, current), alcohol consumption (0, 1–3, 4–10, ≥11 drinks/week), HIV RNA (≤4000;
4001–20 000; 20 001–55 000; 55 001–100 000; >100 000 copies/ml), CD4 cell count (≤200,
201–350, 351–500, >500 cells/μl), and antiretroviral therapy (ART) (none, mono,
combination, HAART).

Statistical methods
Pearson correlations were used to evaluate the correlation among the eight immunologic
variables. Principal components analysis on these variables was performed to determine the
number of clusters. Modeling the percentages of CD4 and CD8 cells that were DR± and
CD38± as continuous variables, a four-factor solution accounted for at least 90% of the
variance in these immune activation markers. To evaluate the sensitivity of our results to the
initial number of clusters, we performed the cluster and survival analyses with one less and
one more cluster than was determined by the principal components method. The four
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clusters identified by the analysis were then numbered 1 to 4 based on their immunologic
(CD4 cell count) and virologic (HIV viral load) status and the associated AIDS risk (1 =
lowest; 4 = highest risk group) for convenience of interpretation of the prediction model
results.

To determine the clusters, we used a nonhierarchical k-means clustering algorithm that
allows women to move from one cluster to another. The centroids from average linkage
clustering were used as the seeds for clustering. The algorithm used each woman's first visit
with immune activation data, which ranged from the first to 14th study visit. For 54% of
women, these data were available for the first visit.

The clusters were compared on baseline demographic factors, substance use behavior and
clinical factors using analysis of variance (ANOVA) or χ2 tests. The mean value of each
immune activation variable was compared among the clusters using ANOVA.

Incident AIDS was defined as the first self-reported ADC. Time to AIDS was defined as the
time from the visit with immune marker assessment to the midpoint between the last AIDS-
free and first ADC visits. Women not reporting an ADC were censored at their last follow-
up visit and Cox regression analytic approaches were used to test differences in AIDS risk
among the clusters. In Cox regression models, cluster 1 was the reference group as women
in this cluster had the best clinical profile with the highest CD4 cell count and lower HIV
viral load. Variables, other than the immunologic factors, differing across clusters were
included as covariates: HCV status (baseline), ART (time-dependent), and HIV viral load
(time-dependent). Age and ethnicity/race (both at baseline), and IDU, current smoking, and
alcohol drinking (all time-dependent) were included as covariates based on their known
association with AIDS progression. As CD4 cell count correlated with most of the immune
activation markers (correlation coefficients, 0.2–0.5), multivariate models with and without
CD4 cell count were evaluated.

Results
Baseline demographic and clinical characteristics: the median (range) age at baseline (time
of immune activation assessment) was 38 years (18–68); 57% of the women were African–
American, 25% were Hispanic, and 17% were white; 14% reported IDU; 59% were current
smokers; half reported no alcohol use (Table 1).

Immune activation profile of the clusters: complete activation profiles including all eight
immunologic variables for the four clusters are displayed in Table 2. Compared with the
other clusters, women in cluster 1 (n = 117) had the highest percentages of CD8+CD38–

DR– and CD4+CD38– DR– T cells, whereas women in cluster 4 (n = 60) had the highest
percentages CD4+CD38+DR+ and relatively higher percentages of CD8+CD38+DR+ T cells.
Cluster 2 (n = 165) included women with the highest percentages of CD8+CD38+DR– and
CD4+CD38+DR– T cells. Women in cluster 3 (n = 222) had the highest percentage of
CD8+CD38+DR+ and relatively higher percentage of CD4+CD38+DR– T cells. Women in
cluster 1 had the highest percentages of CD8+CD38–DR+, whereas women in cluster 4 had
the highest percentages CD4+CD38–DR+ T cells.

Correlation among the eight components of T-cell activation: the proportion of
CD4+CD38–DR– T cells was highly positively correlated with proportions of
CD8+CD38–DR– (r = 0.62) and CD8+CD38–DR+ + T cells (r = 0.41), which is the
outstanding feature of cluster 1 (Tables 2 and 3). The proportion of CD4+CD38+DR+ T cells
was highly positively correlated with CD8+CD38+DR+ T cells (r = 0.49), which is the
outstanding feature of cluster 4. A high positive correlation was also observed between
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CD8+CD38+DR– and CD4+CD38+DR– T cells (r = 0.55), which is consistent with the
cluster 2 profile.

Baseline demographic and clinical factors by cluster: age, ethnicity, IDU, smoking, and
alcohol use did not differ across the clusters (Table 1), but CD4 cell count and HIV RNA
level did differ significantly. Compared with cluster 1, women in clusters 3 and 4 had
significantly lower median CD4 cell counts and higher HIV RNA levels. In addition,
compared with cluster 1, women in cluster 3 and 4 were less likely to be ART naive, and
more likely to have very high HCV RNA (≥2.4 million IU/ml) if coinfected with HCV.
Women in clusters 1 and 2 were similar with respect to CD4 cell count, HIV RNA level, and
ART.

Relation of immune activation clusters to AIDS development: among the 564 women, 228
developed AIDS over a median of 6.1 years (range 0.2–12.3 years) after activation marker
assessment. Figure 1 shows the cumulative AIDS-free survival of the four clusters. Clusters
1 and 2 had relatively lower and nearly identical risk of AIDS. Cluster 3 had an intermediate
risk, whereas cluster 4 had the highest risk (Log rank P < 0.0001).

Three multivariate proportional hazard models were tested to determine whether clusters
based on immune activation profile were significant predictors of AIDS risk (Table 4). The
first model included age, race, smoking, alcohol use, IDU, ART, and HCV status as
covariates. The second included CD4 cell count in addition to model 1 covariates. The third
included HIV RNA in addition to model 1 covariates. In the first model, the adjusted risk of
AIDS was significantly higher in clusters 3 and 4 than cluster 1 [hazard ratio (HR) (95% CI)
= 1.58 (1.05–2.37), 2.70 (1.65–4.40), respectively]. When CD4 cell count was added, the
relative risk for AIDS was attenuated but remained significantly elevated for cluster 4 [HR
(95% CI) = 1.76 (1.05–2.96)]. When adjusted for HIV RNA, the relative risk of AIDS also
remained significantly elevated only for women in cluster 4 [HR (95% CI) = 2.13 (1.30–
3.50)]. When both CD4 cell count and HIV RNA were included in the model, the relative
risk of AIDS remained elevated for women in cluster 4 with a borderline significance [HR
(95% CI) = 1.68 (0.99–2.85)]. An additional multivariate model including CD4/CD8 ratio
also showed a significant increased risk of AIDS progression associated with cluster 4 (HR
= 1.73; 95% CI = 1.05–2.91). As cluster 4 included relatively less white women (8%)
compared with the other clusters (range: 14– 22%), we analyzed models excluding the white
women to rule out any possible bias. The results were almost identical to the ones reported
in Table 4 adjusted for the confounders and HIV RNA levels.

The sensitivity analyses for all models using 3 or 5 cluster solutions revealed similar results.

Discussion
Our results show that immune activation patterns among HIV-infected women, assessed by
CD38 and HLA-DR expression, correlate well between CD8 and CD4 T cells. Using cluster
analysis, four groups of women were identified, who had distinct immune activation
profiles. We show that women with high percentages of CD8+CD38+DR+ and
CD4+CD38+DR+ T cells are at significant risk of AIDS compared with women with high
levels of CD8+CD38–DR– and CD4+CD38–DR– cells. Women in cluster 4 demonstrated a
state of hyper-activation of both CD4 and CD8 T cells and also had lower CD4 cell counts
compared with the other clusters. This is the first study to identify an extended immune
activation profile incorporating activation patterns of both CD4 and CD8 T cells and to
examine the value of such profiles in predicting the risk of AIDS progression, shedding
insight to the immunopathogenesis of HIV disease.

Karim et al. Page 5

AIDS. Author manuscript; available in PMC 2014 March 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Binding of HIV to CCR5 or CXCR4 coreceptors on CD4 T cells induces env-mediated
signals and activates CD4 cells by inducing expression of immune markers such as CD25,
CD38, CD57, CD69, CD70, and HLA-DR. Activated CD4 cells release soluble factors
including cytokines which in turn activate CD8 cells [20]. HIV-induced T-cell activation is
essential for viral replication, and activated T cells that are not productively infected
eventually die [21]. A decline in CD4 cell count, which is the most important phenotypic
characteristic of HIV disease progression, is due to a combination of factors including
apoptosis of infected CD4 cells, bystander activation of uninfected T cells by HIV virions in
tissue reservoirs, and cytokines that may cause global activation of the immune system
[4,20,22]. Activation of T cells is followed by expansion of the T-cell pool and death of a
large number of T cells through apoptosis. Notably, the dynamics of activation, expansion,
and apoptosis differ between CD8 and CD4 cells [23–25]. The expanded CD8 cell pool
survives longer upon activation and forms a stable resting pool of memory cells, whereas
activated CD4 cells die fairly quickly [25–27]. This difference could explain the differential
predictive value of CD4 and CD8 activation for HIV disease progression. CD8 activation
has been associated with HIV seroconversion [28] as well as disease severity [29]. CD8
activation predicted CD4 decline [14] and progression to AIDS in several reports
[1,3,6,9,30]. CD8 activation is also a marker of residual viral replication in treated HIV-
infected patients [13] and has prognostic value even in patients with undetectable plasma
viral load [31]. Activation of CD8 cells occurs at a lower viral threshold because of their
cytotoxic potential, but hyperactivation leads to CD8 cell exhaustion and anergy.

In contrast, only a few studies documented the role of CD4 activation in HIV disease and
progression to AIDS. Giorgi et al. [3] reported that CD4 activation was associated with
shorter survival among advanced HIV-infected patients but did not correlate with HIV viral
load. Another report showed that preconversion levels of elevated CD4 activation were
associated with increased risk of AIDS after seroconversion [6]. We evaluated the predictive
value of both CD8 and CD4 activation status for progression to AIDS. Our findings suggest
global activation of T cells may explain the more general immunologic dysregulation noted
with HIV infection leading to high T-cell turnover, immune senescence, anergy, and finally
cell death [32–35].

Most studies have assessed immune activation by measuring percentages of T cells
expressing CD38, the most well characterized of the activation markers identified. However,
the prognostic value of both CD8 and CD4 activation increased when immune activation is
assessed by coexpression of CD38 with HLA-DR [13] or CD45R0 [14]. T cells dually
activated with CD38 and HLA-DR significantly predicted progression to AIDS among HIV-
infected men, and in the same cohort of women in the WIHS as the current study [9]. We
took the analysis one step further in the current study to identify AIDS risk based on
simultaneous activation status of both CD4 and CD8 T cells. We hypothesized that patterns
of CD4 activation are associated with those of CD8 activation. Despite the difference in
activation, expansion, and apoptosis dynamics between CD8 and CD4 T cells, the
percentages of nonactivated (CD38– and DR–), partially activated (CD38+ or DR+), or
dually activated (CD38+and DR+) CD8 T cells correlated strongly with corresponding
activation patterns of CD4 cells (correlation coefficients, 0.41–0.62; P < 0.0001), most
likely due to global activation of the immune system by expanded cytokine production [36].

Proportions of the eight immune activation components within the profiles of each cluster
reflected the highly correlated components of CD8 and CD4 activation. Although the
proportions of nonactivated and dually activated T cells are expected to be strongly
inversely correlated, as we found in clusters 1 and 4, the presence of relatively higher
proportions of CD8 cells expressing HLA-DR only in cluster 1 and CD4 cells expressing
HLA-DR only in cluster 4 is intriguing. Multiple reports have identified the presence of
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HLA-DR on CD8 cells without CD38 expression as a marker of long-term nonprogression,
stable CD4 cell count, and survival among HIV-infected patients [37–41]. We reported this
in the setting of HIV/HCV co-infection [9]. In this report, we show that the combination of
high proportions of nonactivated CD8 and CD4 T cells and HLA-DR-expressing CD8 cells
confers the best clinical conditions and lowest AIDS risk in HIV-infected women. This
suggests that CD8 T cells that express HLA-DR only may have enhanced cytotoxic capacity
and ability to expand rapidly to control HIV infection and destroy HIV-infected cells in
tissue reservoirs. Conversely, CD4 T cells expressing HLA-DR only were present in
association with high proportions of dually activated T cells among women who had a
detrimental clinical profile and significant AIDS risk. The underlying mechanism for the
differential implications of HLA-DR expression on CD8 vs. CD4 T cells demands further
attention.

The significance of CD38 upregulation on T cells in HIV disease is not well understood.
Some proportion of CD38+DR– cells can essentially indicate naive T cells, that are not
activated [12]. It is possible that cluster 2 is describing a group of individuals with a high
proportion of such cells, which partially explains the apparent good prognosis of this group
of women. In our analysis, women in cluster 3 also had high levels of dually activated CD8
T cells, yet their AIDS risk was not significantly elevated after adjustment for CD4 cell
count or HIV RNA level. A possible explanation is inadequate elevation of other immune
activation components compared with cluster 4 such as CD4+CD38+DR+ (18 vs. 36%) and
CD4+CD38–DR+ (8 vs. 19%). The increased AIDS risk was partially explained by CD4 cell
count or HIV viral load. Of note, women in cluster 3 had high HIV viral load, low CD4 cell
count, and high prevalence of HCV coinfection. In contrast to cluster 3, the increased risk of
AIDS in cluster 4 women was independent of HIV viral load and CD4 cell count, indicating
some underlying mechanisms, perhaps global activation of the immune system that were not
explained by these factors. More research is warranted to explore the mechanisms of
accelerated progression to AIDS among women with aggressive immune activation defined
as expression of CD38 and HLA-DR on CD4 and CD8 T cells. Further, an increased
understanding of the mechanism of T-cell activation, including the sequence of upregulation
of markers on T cells or subsets of T cells that may be predominant during different phases
of HIV infection, would be important.

Our results have important clinical implications. Although CD4 cell count is the most
widely used predictor of AIDS in clinical practice, a growing body of evidence suggests a
significant predictive value of immune activation markers. We have shown that, at a given
time, expression of CD38 and HLA-DR on CD4 and CD8 T cells results in distinct
activation profiles, which provided insight into HIV pathogenesis. Our results indicate that
concurrent hyperactivation of both CD4 and CD8 T cells is associated with AIDS
progression. It is important to note that almost all (93%) of our study population was
HAART naive when activation markers were measured. Levels of T-cell activation decrease
after treatment with HAART but usually do not completely reverse to the levels of HIV-
uninfected persons, whereas immune activation remains abnormally elevated in some
individuals despite HAARTuse [42–45]. Therefore, correlations between the activation
markers need to be evaluated among HAART-experienced patients, and the predictive value
of post-HAART T-cell activation profiles for AIDS risk needs to be investigated in future
studies. Such studies will be more useful given most HIV-infected patients initiate HAART
at an early stage of the disease. It will also be clinically useful to evaluate the predictive
value of similar immunologic profiles before and after initiating HAART on immune
recovery, cytokines, markers of inflammation, and HIV-associated non-AIDS outcomes.
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Fig. 1.
Cumulative probability of remaining AIDS-free by the immune activation marker clusters.
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Table 1

Baseline demographic and clinical characteristics across the four clusters of 564 HIV-infected women.

Cluster 1 (n = 117) Cluster 2 (n = 165) Cluster 3 (n = 222) Cluster 4 (n = 60) P

Age, years 38 (18–57) 38 (21–68) 38 (24–60) 39 (29–67) 0.69

Ethnicity 0.42

    White 17 (14%) 36 (22%) 36 (16%) 5 (8%)

    African–American 63 (54%) 92 (56%) 129 (58%) 39 (65%)

    Hispanic 36 (31%) 36 (22%) 55 (25%) 15 (25%)

    Other 1 (1%) 2 (1%) 2 (1%) 1 (2%)

IDU (current) 0.56

    Yes 15 (13%) 18 (11%) 35 (16%) 8 (16%)

    No 102 (87%) 147 (89%) 185 (84%) 52 (86%)

    Missing 0 0 2 1

Smoking status 0.38

    Never smoker 27 (23%) 43 (26%) 48 (22%) 14 (27%)

    Former smoker 20 (17%) 36 (22%) 38 (17%) 6 (10%)

    Current smoker 70 (60%) 85 (52%) 134 (61%) 39 (66%)

    Missing 0 1 2 1

Alcohol use (current) 0.37

    0 drinks/week 48 (41%) 91 (56%) 101 (47%) 33 (56%)

    1–3 drinks/week 33 (28%) 43 (26%) 63 (29%) 13 (22%)

    4–10 drinks/week 12 (10%) 12 (7%) 17 (8%) 5 (8%)

    11+ drinks/week 23 (20%) 17 (10%) 34 (16%) 8 (14%)

    Missing 1 2 7 1

CD4 cell count (cells/μl) 529 (6–1972) 471 (9–1331) 316 (2–1096) 206 (5–1322) <0.0001

    Pairwise comparison with cluster
1

ref P = .06 P < 0.0001 P < 0.0001

HIV RNA (copies/ml) 4000 (80–1 400
000)

5600 (80–1 300
000)

20 000 (80–1 700
000)

14 500 (80–670
000)

<0.0001

    Pairwise comparison with cluster
1

ref P = 0.15 P < 0.0001 P = 0.003

Antiretroviral therapy 0.003

    None 55 (47%) 69 (42%) 77 (35%) 15 (25%)

    Mono 20 (17%) 23 (14%) 66 (30%) 15 (25%)

    Combo 38 (33%) 61 (36%) 62 (28%) 25 (42%)

    HAART 4 (3%) 13 (8%) 16 (7%) 5 (8%)

    Missing 0 0 1 0

    Pairwise comparison with cluster
1

ref P = 0.38 P = 0.02 P = 0.03

HCV status at WIHS baseline visit <0.0001

    HCV− 51 (45%) 69 (42%) 71 (33%) 27 (46%)

    HCV+, Nonviremic 26 (23%) 11 (7%) 20 (9%) 6 (10%)

    HCV+, RNA<2 400 000 IU/ml 27 (24%) 49 (30%) 52 (24%) 12 (20%)

    HCV+, RNA ≥2 400 000 IU/ml 9 (8%) 35 (21%) 74 (34%) 15 (25%)
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Cluster 1 (n = 117) Cluster 2 (n = 165) Cluster 3 (n = 222) Cluster 4 (n = 60) P

    Missing 4 1 5 0

    Pairwise comparison with cluster
1

ref P < 0.0001 P < 0.0001 0.007

Median (range) reported for continuous variables, P-values from Kruskal-Wallis test; n (%) reported for categorical variables, P-values from χ2

test.
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Table 2

Mean (SD) percentages of immune activation markers by the four clusters of 564 HIV-infected women.

Activation markers on T-cell subtypes Cluster 1 (n = 117) Cluster 2 (n = 165) Cluster 3 (n = 222) Cluster 4 (n = 60)

CD8+CD38−DR− 40.8 (18.9) 23.9 (11.4) 13.2 (7.3) 15.0 (11.7)

CD8+CD38+DR− 12.7 (10.8) 44.0 (11.7) 29.2 (9.7) 19.9 (11.8)

CD8+CD38−DR+ 27.8 (18.6) 5.9 (4.0) 8.4 (6.1) 16.9 (15.1)

CD8+CD38+DR+ 18.8 (12.5) 26.1 (9.5) 49.1 (11.5) 48.8 (15.7)

CD4+CD38−DR− 53.3 (11.1) 28.4 (12.2) 26.1 (11.4) 22.4 (11.4)

CD4+CD38+DR− 29.4 (9.2) 58.4 (13.2) 48.2 (12.2) 22.9 (8.4)

CD4+CD38−DR+ 9.5 (5.0) 4.4 (2.4) 7.7 (3.4) 18.7 (7.4)

CD4+CD38+DR+ 7.8 (4.9) 8.8 (5.3) 18.0 (8.6) 35.9 (16.6)
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Table 3

Correlation between activation markers on CD8 and CD4 T cells.

Activation markers subtypes CD4+CD38−DR− CD4+CD38+DR− CD4+CD38−DR+ CD4+CD38+DR+

CD8+CD38−DR−
0.62 (<0.0001)

a –0.27 (<0.0001) –0.08 (0.05) –0.39 (<0.0001)

CD8+CD38+DR− –0.43 (<0.0001) 0.55 (<0.0001) –0.44 (<0.0001) –0.005 (0.90)

CD8+CD38−DR+ 0.41 (<0.0001) –0.41 (<0.0001) 0.41 (<0.0001) –0.16 (0.0001)

CD8+CD38+DR+ –0.50 (<0.0001) 0.07 (0.10) 0.15 (0.004) 0.49 (<0.0001)

a
correlation coefficient r (P-value).
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