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ABSTRACT OF THE DISSERTATION

Multivariate Continuous-Time Models: Approximate Inference Algorithms and
Medical Informatics Applications

by

Emine Busra Celikkaya

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2016

Dr. Christian R. Shelton, Chairperson

Temporal modeling of real-life systems, such as social networks, financial markets and medical

decision-support systems, is important to understand them better, and make predictions. Temporal

data of these systems have irregular time granularity; therefore continuous-time models are a natural

fit. In this thesis, we focus on one of the building blocks in this process, statistical inference.

Additionally, we apply continuous-time models to a medical informatics application.

In our inference algorithms, we focus on continuous-time Markov processes (CTMPs).

Answering queries about the components as a CTMP evolves involves inferring the probability

distributions of the state of the system at query time points. When the number of components is

large, exact inference becomes intractable since the state space is exponentially large in the number

of components. Structured representations provide a framework to apply inference methods in an

efficient way. Such representations usually also discretize time. However, choosing the right time-

width is challenging since the observations are not synchronized among components and there might

be large intervals without any observations. Therefore, our inference algorithms use the structured

representation of continuous-time Bayesian networks (CTBNs), but they can also be applied to
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other continuous-time representations. A CTBN provides a compact representation using local

dependencies. Unfortunately, exploiting the structure in the dynamics does not alleviate the need to

represent the full joint space, and exact inference in CTBNs is intractable.

Our approximate inference computations concentrate on the key calculation for a CTMP,

the matrix exponential. We use two different expansion of the matrix exponential to derive different

approximation algorithms. Our first algorithm keeps the solution in the factorized state space by

using uniformization. It is the first non-sampling method to have bounded error. Also, it has better

experimental results than the previous methods. Our second algorithm is built upon the sum of

time-ordered products. It combines the advantages of deterministic and sampling methods as it is

deterministic and anytime. It converges to the true distribution in the limit of infinite computation

time, and it is not random. Random methods such as sampling methods can lead to instability when

used inside parameter estimation algorithms. We show that it performs as well as or better than the

current best sampling approaches on benchmark problems.

Our last work is an application of a multivariate Gaussian process (MGP) to a medical

informatics problem. We estimate the blood gas values of a patient during mechanical ventilation

in a pediatric intensive care unit. Frequent blood gas values allow more responsive care which can

reduce the duration of ventilation and risk of lung injury. Estimating these values from non-invasive

measurements can reduce the number of invasive blood tests, which are challenging in children.

We estimate them by using previous values of all variables, and current values of all non-invasive

variables. We develop an MGP model because the variables are naturally continuous. Our results

show promising prediction accuracies, which could be used to automate the ventilation process.
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Chapter 1

Introduction

Everyday a great amount of temporal data is generated and stored in various areas of

life. Examples include a social network with people forming and breaking relationships in an asyn-

chronous manner; a computer network with computers receiving and sending packets; a patient in

an intensive care unit with many procedures and drugs applied and vitals read. Unfortunately, most

of this data is not used to its maximum potential. If we could utilize it to obtain meaningful infor-

mation, we could answer many questions and even increase life quality, as one of the leading areas

in temporal data generation is healthcare. However, the biggest obstacle in extracting meaningful

information is the computational difficulty, since real-life dynamic systems that generate this data

are usually complicated and involve many components.

Modeling such dynamic systems and reasoning about them is very important to under-

stand them better and make predictions that help with the many related tasks. The modeling of

dynamic systems includes selecting the model to use, learning the properties of the system and dy-

namics from the observations, and performing inference to answer queries and make predictions

given the observations. Inference methods are the key component in this setting; they are necessary
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for parameter estimation, reasoning, and prediction.

Answering queries about the components as the system evolves involves inferring the

probability distributions of the state of the system in time. When the number of components is

large, exact inference becomes intractable since the state space is exponentially large in the num-

ber of state variables. Structured representations of the system dynamics provide a framework to

apply inference methods in an efficient way. For discrete time systems, a dynamic Bayesian net-

work (DBN) [Dean and Kanazawa, 1989] is one such example. However, discretizing time when

modeling a real-life system has many disadvantages, and it introduces a level of approximation.

Choosing the right resolution to discretize the time is especially challenging since the observations

are not synchronized among components and there might be large intervals without any observa-

tions. There might be components that evolve at different rates making the computation inefficient.

For example, a patient’s respiratory rate might change more rapidly than their temperature.

By contrast, a continuous-time Bayesian network (CTBN) [Nodelman et al., 2002] pro-

vides a representation for continuous-time systems where temporal dynamics are explicit. The dy-

namics are specified by decomposing the system into components and describing each component’s

dynamics as a function of its parents in a directed graph. This representation can answer queries for

when specific events happen in the system. However, exploiting the structure in the dynamics does

not alleviate the need to represent the state distribution of the joint space, which is exponential in the

number of components. Therefore, approximate inference methods are used for such systems. In

this work we study approximate inference methods aimed for CTBNs, but they can also be applied

to other representations.

Apart from CTBNs, Petri nets also have the potential to represent a CTMP in a compact

way [Kartson et al., 1994]. A different approach is to use symbolic encodings for the rate matrix
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of CTMP and for approximate probability distribution vectors, as in matrix diagram data structures

[Ciardo and Miner, 2005]. In our work, we choose to work on CTBNs as prior work in posterior

estimation of non-steady state properties has focused on CTBNs.

In this thesis, we focus on the inference task and its applications for continuous-time

models. Especially of interest are continuous-time Markovian models and Gaussian process models

both of which have a wide applicability. We work on continuous-time Markov processes (CTMP)

with discrete state spaces for our inference algorithms in Chapters 4 and 5. For modeling the pa-

tient monitor system in our medical informatics application in Chapter 6, which have continuous

variables, we turn to a multivariate Gaussian process.

1.1 Contributions

We developed two inference methods for Markovian models. The first one is a filtering

algorithm with deterministic approximation (Chapter 4). It uses uniformization with the CTBN

factored representation to keep the state distribution in factored state space. We provide a theoretical

analysis of its error bound, and show that it does not increase asymptotically.

The second inference method we developed is both deterministic and also can be stopped

anytime to obtain a valid solution (Chapter 5). It fills the need for an anytime algorithm that con-

verges to the true result without being random. This is especially useful in parameter estimation al-

gorithms such as expectation-maximization [Dempster et al., 1977]. In this method, we use CTBN

representation with the time-ordered products, and we can calculate any expectation of the marginal

state distributions.

Lastly, in Chapter 6, we apply continuous-time models to medical informatics. The setting
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of our problem necessitates using continuous valued variables in our model. Therefore, we use a

multivariate Gaussian process instead of a discrete state Markovian model. Our method estimates

the blood gas values of pediatric patients with lung disease, during the time they are mechanically

ventilated in the PICU. The blood gas values are required for optimum ventilation management,

but they involve invasive blood tests. Frequent blood tests are challenging for patients in PICU,

therefore our algorithm’s estimates might enable better and shorter mechanical ventilation.
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Chapter 2

Continuous-Time Markov Processes

A continuous-time Markov process (CTMP) is a continuous-time stochastic process with

discrete state space. CTMPs are used as building blocks for models in many different areas. Histori-

cally, they are used for performance evaluation and dependability analysis of fault tolerant computer

and communication systems, particularly in the area of queueing networks [Reibman and Trivedi,

1988]. They are also used in model checking literature to formalize the probabilities over paths

in a system [Aziz et al., 2000]. Additionally, they are widely applied to biological systems [Sand-

mann and Wolf, 2006], phylogenetics [Mateiu and Rannala, 2006], and financial systems [Duffie

and Glynn, 2004].

In general, a dynamic system that is assumed to have the Markov property is modeled

by giving assignments to the components of the system. The joint assignment to all components is

the state of the system, and it evolves according to system dynamics. Our work in this thesis falls

under transient analysis, in which usually of interest is to predict the state of the system at a given

time. More specifically, given the state distribution at an initial time point, we want to compute

the distribution at a future point by using the rate matrix of the Markov process. The restricting
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factor for real-life problems is that the rate matrix cannot be represented explicitly, as the number of

states is exponentially large in the number of components. Apart from the state explosion problem,

characteristics of the rate matrix (such as stiffness) are also important since they affect the accuracy

and stability of the methods.

In this chapter we present an overview of unstructured homogeneous CTMP models and

numerical methods for transient analysis since some of these methods constitute the basis of our

methods in the Chapters 4 and 5.

Prior work on unstructured CTMP models include a Gibbs sampling method for queueing

networks [Sutton and Jordan, 2008], a Markov chain Monte Carlo sampler based on uniformization

[Rodrigue et al., 2008], another sampler based on uniformization [Hobolth and Stone, 2009], and a

particle-based Monte Carlo sampling approach [Hajiaghayi et al., 2014].

2.1 Representation

Let X = {X(t), t ≥ 0} be a CTMP model with finite state space S with cardinality n.

Then for all t ≥ 0, h ≥ 0, t > s ≥ 0, and i, j ∈ S,

P (X(t+ h) = j|X(t) = i,X(s)) = P (X(t+ h) = j|P (X(t) = i) .

We limit our discussion to homogeneous CTMPs in which the rate matrix does not vary with time.

In this case, the state transition rates of X are captured with an n-by-n rate matrix (or intensity

6



matrix)

Q =



−q1 q12 . . . q1n

q21 −q2 . . . q2n

...
...

. . .
...

qn1 qn2 . . . −qn


,

where qij ≥ 0, i 6= j is the rate of transitioning from state i to state j. Diagonal elements of the

rate matrix are the negative row sums, that is, qi =
∑

i 6=j qij and qi represents the rate of the system

leaving state i. Specifically,

qij = lim
h→0

P (X(t+ h) = j|X(t) = i)

h
, and

qi = lim
h→0

1− P (X(t+ h) = i|X(t) = i)

h
.

If X(0) = i, then the time until the transition to another state (or holding time) is exponentially

distributed with parameter qi. The probability density function and the cumulative probability dis-

tribution of staying in state i for an amount of time t is respectively

f(t) =qie
−qit , t ≥ 0 , and

F (t) =1− e−qit , t ≥ 0 .

Correspondingly, the expected time of transitioning from i is 1
qi

, and given there is a transition, the

probability of transitioning from i to j is qij
qi

.

The distribution of the state of the system at time t is represented with a row vector

7



p(t) = [P 1
X(t), P 2

X(t), . . . , PnX(t)], where P iX(t) = Prob(X(t) = i) denotes the probability of

being at state i at time t. Given such a CTMP model that is defined by a rate matrixQ, and an initial

distribution vector p(0), we want to compute the state distribution at t.

The transient solution of a CTMP with a finite state space satisfies the forward Chapman-

Kolmogorov systems of equations [Stewart, 1994]:

dp(t)

dt
= p(t)Q. (2.1)

Therefore, when we are given the initial state distribution of the system as a row vector p(0), we

can obtain the solution as a row vector:

p(t) = p(0)eQt . (2.2)

In this computation, eQt is the matrix exponential of matrix Q, which is the main calculation in

transient analysis. The common representation for matrix exponential is given by the Taylor series

expansion

eQt =

∞∑
k=0

(Qt)k

k!
. (2.3)

Example 1 We will use an example CTMP to illustrate calculating p(t) = p(0)eQt. The example

CTMP is a 4-state system described by the initial distribution p(0) =

[
0.4 0.1 0.2 0.3

]
, and
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the rate matrix

Q =



−3 2 1 0

4 −5 0 1

3 0 −7 4

0 3 3 −6 .



Then, marginal distribution at t = 0.5 is p(t) = p(0)eQ0.5,

p(t) = p(0)



0.52 0.26 0.11 0.10

0.49 0.30 0.10 0.11

0.41 0.24 0.17 0.18

0.38 0.27 0.16 0.2


=

[
0.45 0.26 0.14 0.15

]
.

2.2 Matrix Exponential Calculations

Exponentiation of the rate matrix is an essential computation in CTMP models, solving

ordinary differential equations, and control theory. Therefore many numerical methods have been

proposed to solve it efficiently and accurately.

From here on, we will denote the initial distribution as p and the distribution at time t as

p′ for simplicity. There are two main approaches to compute p′. The first way is to calculate eQt

explicitly by forming the full Q matrix, and then, to multiply it with the initial distribution p. We

denote methods that take this approach as explicit matrix exponential methods. These methods are

not suitable for large matrices such as the ones that occur frequently in CTMPs because of memory

requirements and accuracy concerns.
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The second approach is the direct computation of a vector times matrix exponential, peQt,

without explicitly computing eQt. This approach is more appropriate for large and sparse matrices.

The matrix exponential is usually full even when Q is sparse, therefore compact representation is

not possible. Another reason this approach is convenient is that computing peQt directly is usually

more numerically accurate. We call such methods implicit matrix exponential methods.

In the next section, we give an overview of the explicit and implicit methods, before going

into detailed descriptions of prominent implicit matrix exponential methods. Some of these implicit

methods are the bases for our works in Chapter 4 and Chapter 5.

2.2.1 Explicit Methods

Moler and Loan [2003] present a survey of these methods, and they conclude that all of

those are “dubious” because of stability and accuracy issues. These methods are not applicable to all

classes of problems without certain considerations. However, three approaches, which are scaling

and squaring, matrix decomposition, and customized ordinary differential equation (ODE) methods,

are deemed to be the best candidates. In this section we briefly describe the scaling and squaring

and matrix decomposition methods. We leave the discussion of the ODE methods to Section 2.4.

Other methods that are mentioned include polynomials and splitting based methods, but

their applicability is very limited. Polynomial based methods use characteristic polynomial of Q,

but they first have to compute the characteristic polynomial. They are prone to roundoff errors and

they are not time efficient. The splitting methods approximate eQt = e(A+B)t ≈ eAteBt. However,

this technique requires matrices A and B with special constraints. Hence, its applicability is limited

to only certain settings.
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Scaling and Squaring with Rational Function Approximations. The scaling and squaring method

is based on the property eQt = (e(Q/2)t)2. In this method, first Q is scaled by a factor of 1
m where

m = 2s and s is a positive integer, and the resulting matrix is exponentiated. Then, it is squared

repeatedly to reach to (e(Q/m)t)m. One disadvantage of this approach is the computational (O(n3))

and memory (O(n2)) requirements, whenQ is n-by-n [Stewart, 1994]. Moreover, repeatedly squar-

ing the initial matrix exponential may lead to growing roundoff errors, especially if m� 1.

For computation of the matrix exponential e(Q/m)t, different methods can be used. How-

ever the ones that are efficient and stable around the origin are favored in order to minimize roundoff

errors. Rational approximation methods such as Padé and Chebyshev approximations are preferred

in this case. Particularly, the Padé approximation is widely used for dense matrices, and a variant of

this method is implemented in MATLAB’s expm function.

Matrix Decomposition. There are various matrix decomposition methods such as eigenvector

decomposition, Jordan canonical form, Schur decomposition and block diagonal method. They

involve factorization or decomposition of the matrix into the form: Q = V DV −1. The challenge

for these methods is to find a V that is not defective to maximize accuracy, while ensuring that D is

close to diagonal. The block diagonal methods aim to find a balance between those two important

tasks. Although it is accurate, it involves very expensive operations.

Among the methods mentioned above, Schur decomposition has attracted much attention

and is very accurate. However, it is expensive and also it can cause underflow when the diagonal

elements are nearly equal [Philippe and Sidje, 1995].
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2.2.2 Implicit Methods

Explicit computation of the matrix exponential can only be applied to small matrices. Due

to memory requirements and accuracy concerns, especially when the matrix is large and sparse, it is

more convenient to compute peQt directly. In the next sections we give detailed explanations of the

main methods that take this approach. Of those, ordinary differential equations and uniformization

methods form the basis of our algorithm in Chapter 4, and time ordered product representation

forms the basis of Chapter 5.

2.3 Arnoldi Based Krylov Projection

Krylov projection methods are based on the approximation of the mth element of the

Taylor series expansion of peQt to Krylov subspace [Saad, 1992, Philippe and Sidje, 1995]. This

approach has the advantage of reducing the dimension of the problem to m, which usually takes

values between 30 and 50 while the order of Q could be thousands or more.

For a square matrix Q of size n-by-n and a vector p of size n, the Krylov subspace of

dimension m is the subspace spanned by the following vectors.

Km(p,Q) ≡ span{p, pQ, pQ2, . . . , pQm−1}.

The Krylov subspace includes all the vectors that are a product of polynomials of p and Q up to

degree m − 1. When we consider the Taylor series expansion of peQt, we see that if we truncate

this expansion at m − 1th element, we obtain a vector that is a product of p and an m − 1 degree

polynomial of Q, which is an element in Km(p,Q). Krylov subspace methods exploit to find the
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element of Km(p,Q) that is closest to peQt (in Euclidean distance) which might capture more than

the first m elements.

The basis for Krylov subspace is computed by a projection method such as the Arnoldi

algorithm (since it constructs an orthonormal basis) [Philippe and Sidje, 1995]. The Arnoldi pro-

jection constructs the basis and an upper triangular Hessenberg matrix Hm, which is the projection

of Q to the Krylov subspace. Hm is upper triangular, and also small and dense. These properties

make the computation of eHm easier and allows application of explicit matrix exponential methods.

Therefore, e(Hm)t is computed using one of these methods, and projected back using the orthonor-

mal basis. Here, the choice of the explicit matrix exponential method is an additional parameter of

the algorithm that affects the performance.

Moreover, the accuracy of the matrix exponential computation depends on the norm of the

matrix, and therefore none of the numerical methods multiply the matrix by time t directly. Instead,

an iterative method is used, where time t is broken into smaller time steps. So, e(Hm)t is computed

iteratively using a fixed stepsize which affects roundoff errors and time efficiency. For this reason,

stepsize selection is also important for the algorithm.

2.4 Ordinary Differential Equation Solvers

An equation of type y′(t) = f(t, y) is called a first order ODE. We see that forward

Chapman-Kolmogorov equations (Equation 2.1) are systems of first order ODEs; hence, given the

differential equation y′(t) = Qt and an initial condition such as y(t = 0) = p, the unique solution,

y(t) = p′ = peQt, can be found using general purpose ODE solvers. These methods discretize the

solution interval to small step sizes, denoted as h. Then, starting from an initial value, they compute
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all the points in this interval iteratively.

Let yi+1 denote y(ti+1), the value at the next step ti+1. Methods which use only the

preceding step, yi, to find yi+1 are called single-step methods. Methods that use a set of previous

solutions yj , for j = i− 1, i− 2, . . . i− k; are called multi-step methods. The accuracy and stabil-

ity of both methods can be improved using adaptive step sizes. In general, single-step methods are

numerically more stable than multi-step methods for sufficiently small h.

The most commonly used explicit single-step methods are Runge-Kutta formulas [Press

et al., 1992]. In this set of methods, yi+1 is calculated by first finding the derivatives, f(t, y), on

intermediate points between ti and ti + h. Then, the derivative at (ti, yi) is determined by a linear

combination of these derivatives. Lastly, yi+1 is obtained using the computed derivative at this

point. Previous derivatives are used to determine the next intermediate point in the same iteration to

improve accuracy.

These formulas adapt the step size to the current error, thereby allowing for quick progress

at times of slow system change. Among these, the Runge-Kutta-Fehlberg (RKF) variations are

favored as they are accurate to fifth-order.

2.5 Uniformization

Uniformization method is a mathematical transformation of the matrix exponential. It

transforms the Taylor series of peQt (Equation 2.3) so that calculation of the sum becomes more

accurate and stable. Calculating this series in the original form is prone to roundoff errors. Terms

of the Taylor series include successive powers of Q. Since the rate matrix Q has negative diago-

nal elements, successive terms have alternating signs. This causes numerical problems when the
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successive terms are added to the sum.

For this reason, the rate matrix Q of the CTMP is decomposed into a stochastic matrix

Q = α(M − I), (2.4)

where |M |1 = 1 and 0 ≤ mij ≤ 1. Here, α ≥ maxi |qi| and it is called the uniformization rate.

Ideally α should be as small as possible as it represents the rate of the process sampling the intervals.

Calculating the series using M is numerically more stable because all the terms are now positive.

Additionally, since |M |1 = 1, roundoff errors are not expected to grow.

Example 2 Uniformization on the Q matrix given in Example 1 results in α = 7 and therefore

M = Q/7 + I is

M =



−0.43 0.29 0.14 0

0.57 −0.71 0 0.14

0.43 0 −1 0.57

0 0.43 0.43 −0.86


+



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=



0.57 0.29 0.14 0

0.57 0.29 0 0.14

0.43 0 0 0.57

0 0.43 0.43 0.14


.
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The resulting approximation is truncated after a finite number of terms, at the lth term.

p̂′ =
l∑

k=0

e−αt
(αt)k

k!
pMk . (2.5)

Since the series is truncated, an error is introduced by omitting the rest of the terms. The value of l

is chosen so that the error between p̂′ and p′ is bounded according to the desired error tolerance ε.

‖p′ − p̂′‖1 ≤

∥∥∥∥∥
∞∑

k=l+1

e−αt
(αt)k

k!

∥∥∥∥∥
1

≤ 1−
l∑

k=0

e−αt
(αt)k

k!
≤ εtol . (2.6)

The computation of p̂′ might cause underflows for large t values because it involves com-

puting e−αt. Therefore in the implementation of the algorithm, p̂′ is first scaled down as

p̂′ ≈ p(eαπeπM )m, (2.7)

where m = t/dαt/θe and π = t/m. So, the value of αt is ensured to never exceed the desired

parameter, θ. The resulting algorithm will compute e−απ (απ)k

k! pMk in ml iterations according to

step size π. In each iteration, a matrix vector product,

vk = (απ)vk−1M , (2.8)

is computed to find the intermediate result of p̂′, which is the main calculation.

Uniformization can also be seen as a transformation of a continuous-time Markovian sys-

tem into a discrete-time one. However, it does not correspond to constructing either the embedded
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Markov chain of the continuous-time process, nor to time-slicing the system at regular intervals. It

is equivalent to sampling the intervals between potential state changes from an Poisson process with

a fixed rate α and then sampling a suitable Markov chain just at these time points (with stochastic

matrix M ), so that the resulting distribution over trajectories matches the original continuous-time

Markov system. Note that while the continuous-time process never has a “self-transition” explicitly,

M does have non-zero diagonal elements (corresponding to those states whose rates of leaving are

not maximal).

Specifically,M can be seen as the rate matrix of a discrete-time Markov process (DTMP),

which is equivalent to the CTMP embedded inside a Poisson process with a distribution function

[Stewart, 1994]

P{N(t) = k} = (αt)k

k! e−αt, for k ≥ 0 and t ≥ 0.

So, the probability that the DTMP process has k transitions in time interval t is distributed as a

Poisson random variable with expected value αt. The DTMP process has the same state space as

the CTMP, and it has the same probability of transitioning from state i to j (i 6= j) as the CTMP,

that is, [de Souza e Silva and Gail, 2000]

qij/α

qi/α
=
qij
qi

.

2.5.1 Sparse Uniformization

The main drawback of uniformization is that the number of iterations tend to be large.

This is problematic especially when α or t is large since l increases significantly in that case. Sparse

uniformization does not modify the number of iterations, but rather decreases the computational
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intensity of the vector-matrix product computed in each iteration. During the multiplication, states

with low probabilities in the state distribution vector are discarded. As a result, an approximate

vector-matrix product is calculated in each iteration. In step k, rather than Equation 2.8, vk(M+Ek)

is computed (απ coefficient in Equation 2.8 is omitted for convenience). Sidje et al. [2007] denote

that the local errors (Ek) provide a good means to keep track of the global error. They prove

that such an approximation introduces a global error which grows linearly with local error in each

iteration.

More formally, the multiplication at any iteration, vM = v(Q/α + I), can be computed

as

vM =
1

α

[
v1 v2 · · · vn

]


q1

q2

...

qn


+ v =

n∑
j=1

vj
α
qj , (2.9)

where qj , j = {1, . . . , n} are the row vectors of the rate matrix Q. The strategy for the approxima-

tion is to compute vj
α qj only to a sufficient accuracy, so that

vM ≈
∑

j∈Suppε(v)

vj
α
qj , (2.10)

where the ε-support of v is defined as

Suppε(v) = {1 ≤ j ≤ n|vj > ε}. (2.11)

This approximation is based on the assumption that when the number of states is very

large, the majority of the states in the state distribution vector will be very small or close to zero
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(since they sum to 1). According to Sidje et al. [2007], this is possible since a large subset of

the states in vector v might not be reachable at every point in time. Hence, states with very low

probability will be omitted in the multiplication with respect to the threshold parameter εsup.

Let p̃′ denote the state distribution vector after all the iterations computed as described

above. Sidje et al. [2007] show that ‖p̂′ − p̃′‖1 is bounded, in order to find the total error of the

sparse uniformizaton method. Since we know the error caused by p̂′ (Equation 2.6), the total error

bound is

‖p̂′ − p̃′‖1 ≤ 2ε

l∑
k=1

(n− |Suppεvk|) ≤ 2nlεsup . (2.12)

If the rate matrix is very large and the states that are dominant at an instance are compa-

rably very small, this approximation will lead to efficient computation. However, this assumption

will not hold in all classes of problems.

2.6 Time-Ordered Products

A different representation for matrix exponential comes from decomposing the rate matrix

as Q = A+B. Note that the commutative property does not hold for the matrix exponential unless

the matrices commute. Therefore, eQt = e(A+B)t is treated as a perturbation of eAt in the direction
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of Bt [Najfeld and Havel, 1995]. This representation is denoted as

e(A+B)t = eAt

+

∫ t

0
eAsBeA(t−s)ds

+

∫ t

0

(∫ s

0
eArBeA(s−r)dr

)
BeA(t−s)ds

+

∫ t

0

[∫ s

0

(∫ r

0
eAτBeA(r−τ)dτ

)
BeA(s−r)dr

]
BeA(t−s)ds

+ . . .

(2.13)

The expansion can be written in a compact form as sum of recursive functions,

e(A+B)t =
∞∑
l=0

F l(t) (2.14)

where

F 0(t) = eAt

F 1(t) =

∫ t

0
F 0(s)BeA(t−s)ds

. . .

F l(t) =

∫ t

0
F l−1(s)BeA(t−s)]ds

. . .

(2.15)

The sum of all terms in F l describes a system that evolves according to A instead of Q, except for

l time points. At these points, which can be positioned anywhere, the correction B = Q − A is

applied. If A = 0, then each level is one term in the Taylor expansion of Q.

This series was first explored in quantum field theory [Dyson, 1949], and is called a series
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of time-ordered products (TOP), or sometimes a path-ordered exponential. In stochastic processes,

Mjolsness and Yosiphon [2006] called it a time-ordered product expansion and used it to guide a

sampling algorithm. In Chapter 5, we employ this expansion to derive our deterministic method,

Tree of Time-Ordered Products (TTOP).

2.7 Summary

In this chapter, we gave background information on unstructured CTMP models and ma-

trix exponential methods to compute the transient solution. In the next chapter we will explain a

structured representation model for CTMPs, continuous-time Bayesian networks (CTBNs).
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Chapter 3

Continuous-Time Bayesian Networks

A continuous-time Bayesian network (CTBN) [Nodelman et al., 2002] is a structured rep-

resentation for a homogeneous CTMP. Most of the time, evolution of one component of a system

directly depends on only a subset of other components. A graphical representation of CTBN dy-

namics of a drug system can be seen in Figure 3.1 [Nodelman et al., 2002]. In this network, we

can see that drowsiness changes depending directly on the changes of drug concentration in blood.

However, given the change in the concentration, drowsiness do not depend directly on the changes

on the uptake of the drug. As seen in this example, a dynamic system’s joint state space of all

components can be factored into the state space of local dependencies. CTBNs adopt the graphical

structure of Bayesian networks to represent the continuous-time dynamics with local components.

This factorization leads to a compact representation of the joint system.

Dynamic Bayesian Networks (DBNs) apply this factorization to temporal systems that

are assumed to evolve in regular intervals (or time slices). DBNs enable efficient computations for

systems where a natural discretization of time is possible. Time discretization might be inefficient
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Full
stomach

Concentration

Uptake

Joint
pain

Barometer

Drowsy

Eating Hungry

Figure 3.1: Drug effect network

3.2 Generative Semantics

In order to define the semantics of a CTBN, we must show how to view the entire

system as a single process.

It is important to note that we make a fundamental assumption in the construction

of the CTBN model: two variables cannot transition at the same time. This can be

viewed as a formalization of the view that variables must represent distinct aspects of

the world. We should not, therefore, model a domain in which we have two variables

that functionally and deterministically change simultaneously. For example, in the

drug effect network, we should not add a variable describing the type of food, if any,

a person is eating. We could, however, change the value space of the Eating variable

from a binary yes/no to a more descriptive set of possibilities.

In this section, we define the semantics of CTBNs by specifying a generative

process, a procedure that takes the initial distribution and the description of each

Figure 3.1: CTBN model of drug effect network.

in the case when components evolve in different intervals, since the time slice has to be the smallest

interval. In most real-life systems, components do not evolve in regular intervals, so it is already

difficult to find a adequate time slice. Moreover, DBNs do not model time explicitly, which makes

it hard to answer queries related to the time when a specific event happens in a DBN.

In CTBNs, the structured representation of temporal dynamics is extended to continuous

time. When time is modeled explicitly, the system can be propagated from one event to the next

without having to propagate through smaller regular intervals. This leads to efficient computations.

The factored graphic representation also enables us to exploit the structure in state space in our

algorithms for continuous-time systems.

The application capabilities of CTBN models have been demonstrated in many areas.

They have been applied to computer user availability prediction [Nodelman and Horvitz, 2003],

large server network structure learning [Herbrich et al., 2007], social networks [Fan and Shelton,

2009], network intrusion detection systems [Xu and Shelton, 2010], and cardiogenic heart failure
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problems [Gatti et al., 2012].

Additionally, the standard framework of CTBNs have been extended in several approaches.

Gopalratnam et al. [2005] present an extension to model non-exponential time distributions using

Erlang-Coxian approximations. Portinale and Codetta-Raiteri [2009] propose a generalization by

adding variables with no temporal evolution (immediate variables). Another extension of CTBNs

is a partition-based parameterization [Weiss et al., 2012]. The authors use partitions over joint state

space, and have one rate per each element of the partition (instead of using one rate matrix per

parents assignment of a local variable). They use regression trees and forests with a multiplicative

assumption for the partition-based representation.

Lastly, we note that Shelton and Ciardo [2014] established a connection between CTBNs

and edge-valued decision diagrams [Wan et al., 2011], and Qin and Shelton [2015] a connection

between CTBNs and piecewise-constant conditional intensity models [Gunawardana et al., 2012].

Also, Portinale and Codetta-Raiteri [2009] established a correspondence between CTBNs and Petri

nets. Shelton and Ciardo [2014] give more information about other structured representations and

their relationships to each other.

3.1 Representation

In the representation, the initial distribution of CTMP is described by a Bayesian network.

The transition model is specified as a directed and possibly cyclic graph, in which the nodes in the

model represent variables of the Markov process, and the dynamics of each node depend on the

state of its parents in the graph. Each node Xi has a set of parents Ui, for i = 1, . . . ,m.

The local dynamics of a variable, which depends on its parents, is modeled by a condi-
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tional Markov process. The local dynamics are not homogeneous. At any time point t, they are a

function of their parent assignments at t. The rate (or intensity) matrix of the local dynamics is in

the form of a conditional intensity matrix (CIM).

Specifically, the rate matrix Q is factored into conditional intensity matrices, Qi|ui for

every assignment of ui to Ui. Each CIM gives the rates of which variable Xi transitions at instants

when ui = Ui. The CIMs for variables can be combined to produce the joint matrix Q that rep-

resents the global dynamics of the whole system. For each element of Q, the correct rate is found

from the CIMs of the transitioning variable. The CIM of the variable is chosen according to its

parents’ assignments. Then, the corresponding transition rate from that CIM is inserted into Q. The

diagonals of Q are adjusted to be the negative row sums. This operation is called amalgamation

No two variables can transition at exactly the same instant, so any element in the joint Q matrix

describing a change of multiple variables is 0.

X Y

Figure 3.2: Simple CTBN network.

Example 3 The Q matrix of Example 1 can be represented by a CTBN of two variables: X (with

values x0 and x1) and Y (with values y0 and y1). X has no parents and is the parent of Y as shown

in Figure 3.2. We can define CIMs associated with X and Y as

QX =

−1 1

3 −3

 , QY |x0
=

−2 2

4 −4

 , and QY |x1
=

−4 4

3 −3

 .

The full system can be produced by amalgamation. If the global states are ordered x0y0, x0y1, x1y0, x1y1,
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then we obtain Q matrix from Example 1,

Q =



−3 2 1 0

4 −5 0 1

3 0 −7 4

0 3 3 −6


.

If we let δ(x,x′) be the set of variable indexes for which the assignments in x and x′

differ, the complete Q matrix can also be denoted as

Q(x,x′)=



∑m
i=1Qi|ui(xi, x

′
i) if x=x′

Qj|uj (xj , x
′
j) if δ(x,x′)={j}

0 otherwise.

(3.1)

So Q is sparse (mostly zeros) with non-zero elements on the diagonal and where only one

variable changes. It has the form of a sum of factors whereas the joint transition matrix of a DBN

has the form of a product of factors.

We can also use Kronecker algebra to constructQ from the conditional intensity matrices.

If the nodes in the transition model were independent, we could represent Q as a Kronecker sum,

Q =
⊕m

i=1Qi where Qi = Qi|ui for all ui (since dynamics do not depend on parents). However,

this would not be an interesting system. In general, Q can be represented as a sum of Kronecker

26



products. Let Ri|ui =
⊗

i′ Ri|ui,i′ be a Kronecker product of one matrix for each variable where

Ri|ui,i′ =



Qi|ui if i′ = i

∆k,k if i′ ∈ Pa(Xi) & k is val. of i′ in ui

I otherwise .

(3.2)

where ∆k,k is a matrix of all zeros except a single one at location k, k. In this way, Ri|ui distributes

the rates in Qi|ui to the proper locations in Q. The full Q for the CTBN is therefore

Q =
m∑
i=1

∑
ui

(
m⊗
i′=1

Ri|ui,i′

)
. (3.3)

3.2 Evidence

Observations for a CTBN are in the form of trajectories which contain sequences of states

for each variable. If trajectories include all the assignments for the variable during the whole interval

(with transitions and transition times), then this is called complete observation. However, states of

variables in real-life dynamic systems are rarely observed completely.

Example 4 Assume we are given the following partial trajectory for our running CTBN example.

First, X is observed to be in state x0 at t = 0.1, which is point evidence. Y is observed to be in

state y1 in the interval [0.25, 0.4) which is an example of continuous evidence. Then X is observed

to be in state x1 in the interval [0.6, 0.9), which is again continuous evidence.

When the variables are observed only some of the time, then we have partial evidence.

There are two types of observations in this case. First is called point evidence which is an instan-
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Figure 3.3: Sample CTBN evidence pattern.

taneous observation of the value or the transition of a variable. Second is continuous evidence in

which variable values are observed for a time interval. Note that the beginning and ending of the

interval do not imply that a transition happened at those times.

Given a set of partial observations of the system, we can learn its parameters and struc-

ture by using the expectation-maximizaton and structural expectation-maximization algorithms for

CTBNs [Nodelman et al., 2005b] which are adopted from Bayesian networks.

If the parameters and structure of the CTBN are known, many types of queries can be

formed. For example, we can query the marginal of a variable at any time point, or the distribution

of the first transition time of a variable to a specific state.

Example 5 Conditioned on the trajectory given in Example 4 (Figure 3.3), we can query the distri-

bution of the state of X at t = 1, or the time Y first transitions to y0.

3.3 Inference in CTBNs

In order to answer queries we need to incorporate the partial observations to our model. If

we only use observations until the query time, then this is called filtering If we incorporate evidence
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from the whole observation interval, then this is called smoothing.

Example 6 Given the evidence at Example 4, we can query the filtering result for the distribution

of the state of X at t = 1. We can query the smoothing result for the distribution of the state of Y

at t = 0.5. As the given evidence includes observations after t = 0.5, when we condition on those

future observations, we obtain the smoothed distribution.

3.3.1 Exact Inference

The rate matrix for the joint state space of a CTBN can be generated as explained in

Section 3.1. We first generate the joint matrix of the whole system by amalgamation of the CIMs of

all the variables (Equation 3.1). Exact inference can be performed by running the forward-backward

algorithm using the joint rate matrix [Nodelman et al., 2002].

We divide the trajectory of the CTBN into subtrajectories according to the evidence and

perform inference in each interval by conditioning on the evidence of each interval. We condition

on point evidence by setting the states with variables having other assignments to probability zero.

We condition on continuous evidence by zeroing out the rows and columns of the joint matrix that

are inconsistent with the evidence. More details of the forward-backward algorithm for CTBNs can

be found in Fan [2009].

Example 7 We can divide the trajectory in Example 4 to intervals [0, 0.1), (0.1, 0.25), [0.25, 0.4),

[0.4, 0.6), [0.6, 0.9), and [0.9, 1). We first propagate the system until t = 0.1. Then we set X x0 at

t = 0.1, and calculate the distribution at t = 0.1. Then we propagate this distribution to t = 0.25,

and then we set elements that are inconsistent with Y staying at y1. Then we propagate until t = 0.4

with conditioned rate matrix. Then we propagate with the unconditioned rate matrix until t = 0.6.

We condition the rate matrix similarly for X staying at x1, and propagate until t = 0.9.
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As mentioned before, exact inference is intractable for large systems since the rate matrix

size is exponential [Shelton and Ciardo, 2014]. Therefore, many approximate inference methods

for CTBNs have been developed.

3.4 Approximate Inference Methods for CTBNs

We can roughly group the approximate inference algorithms for CTBNs as deterministic

approximation methods and sampling methods. In deterministic approximation methods, the model

of approximation is fixed, and the error depends on predetermined parameters. Since they are de-

terministic, they are convenient to use inside parameter learning algorithms such as EM. These

include variational methods which set inference as an optimization problem, maximize a free en-

ergy functional, and find a lower bound on the likelihood by using auxiliary variational parameters.

Sampling methods generate samples from the posterior distribution and estimate expectations ac-

cording to these samples. In contrast to deterministic approximation methods, they converge to the

true result as the number of samples increase.

Nodelman et al. [2005a] use a variational algorithm based on expectation propagation

[Minka, 2001]. This method divides the given partial trajectory into fixed segments according to

continuous or point evidence. For each segment, it uses message passing in cluster graphs, and

approximates the marginals as homogeneous Markov processes (using constant CIMs). If the seg-

ment duration is long, and the variables inside the segment change rapidly, this results in a poor

approximation. Since time segments have to be predetermined, this causes a problem. Saria et al.

[2007] improve upon this work and allow for different time segments for each cluster in the message

passing scheme. They also dynamically change the duration of time segments depending on how
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rapidly the cluster variables change. However, both of these expectation propagation methods may

not converge.

Another approach to variational approximations is the mean field method [Cohn et al.,

2009, 2010] which approximates the posterior distribution as a product of independent inhomoge-

neous Markov processes. Each inhomogeneous Markov process is for a single variable, which is

more flexible than homogeneous models. An approximate energy functional is decomposed into

local terms and solved as an optimization problem, with a set of ODEs for each variable (ODE inte-

gration mimics the forward-backward propagation). Therefore, complexity is linear in the number

of variables in the network. This approximation converges to a consistent joint distribution (but not

to the true result), and it is only good for weakly interacting variables.

Belief propagation method in El-Hay et al. [2010] combines the mean field approach in

Cohn et al. [2009] with the expectation propagation method in Saria et al. [2007]. It uses con-

tinuously inhomogeneous Markov processes for clusters of variables instead of single variables.

Therefore, it is a better approximation than mean field method for tightly coupled variables. As in

expectation propagation, the posterier distributions on these clusters are required to be consistent

in only on the expected sufficient statistics. The inhomogeneous representation results in simpler

mathematics, however the method does not have convergence guarantees.

Our method of factorized filtering in Chapter 4 [Celikkaya et al., 2011] also is a determin-

istic approximation. It is based on projecting the joint distribution to marginals of variables, using

the uniformization method. Its implementation is not extended to smoothing but it has a theoretical

error bound (even though it is loose) unlike other work in this category.

As for the sampling methods, the first approach is a continuous-time particle filtering

algorithm for an extension of a CTBN to a hybrid of continuous and discrete state systems [Ng
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et al., 2005]. However, they assume there is only sparse point evidence.

Fan and Shelton [2008] and Fan et al. [2010] propose an importance sampling algorithm

for CTBNs. In the absence of evidence, this method reduces to forward sampling. Given evidence,

it uses forward sampling for the proposal distribution and weight the samples according to posterior

likelihood. As the algorithm progresses on a trajectory time line, a previously unobserved variable

might start being observed. In this case, it uses a predictive lookahead method to match the evidence

of that variable. However, if there are unlikely observations concentrated towards the end of the

interval, this might still cause a problem. This sampler is also extended to a particle filtering and a

particle smoothing methods.

El-Hay et al. [2008] develop a Gibbs sampler for CTBNs. They sample a trajectory of

one variable given evidence on the end points of the interval, and the full trajectory of its Markov

blanket variables. This method can sample from the exact posterior, but the mixing time of the

sampler might be long.

Fan and Shelton [2009] present a Metropolis-Hasting algorithm [Hastings, 1970]. This

method starts from a random trajectory, and resamples a randomly selected variable’s trajectory

using their importance sampler, conditioned the rest of the trajectory. This is done iteratively, and

the new trajectory is accepted according to a probability based on the weight from importance

sampler. The convergence of this method might take long due to the disadvantage of importance

sampler with unlikely evidence.

An auxiliary variable Gibbs sampler is proposed by Rao and Teh [2011, 2013], which

constructs a new process by uniformization, (Section 2.5) and uses the auxiliary variables from

this process to simplify posterior computations. In this method, they first use uniformization to

convert the Markov jump process into a discrete one governed by a Poisson process, and sample
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a trajectory from the new process. They resample this trajectory by using Markov chain forward

filtering-backward sampling (FFBS) algorithm. Then, they remove self transition times from the

resampled trajectory. They continue alternatingly resampling from uniformization and resampling

from FFBS algorithm this way. The authors also extend their work to semi-Markov processes [Rao

and Teh, 2012].

Lastly, Weiss et al. [2015] propose a rejection based importance sampling method for

CTBNs. They learn models for accepting probabilities by sampling variable by variable from exist-

ing importance samplers, and accepting based on anticipated future evidence.

In contrast, our algorithm in Chapter 5 [Celikkaya and Shelton, 2014], which uses time-

ordered products, has the good properties of both variational and sampling methods. It is a deter-

ministic method that gives the same result in each run for the same problem. It is also an anytime

method that can be stopped anytime for a proper result, and converges to the true result given infinite

run time.

3.5 Summary

In this chapter we presented an overview of CTBN representation for structured CTMPs.

This representation facilitates the computations in our approximate filtering methods. In the next

chapters we explain these methods.
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Chapter 4

Factored Filtering in Continuous-Time

Markov Processes

In this chapter we explain our filtering method for continuous-time stochastic systems

where the full distribution over states is too large to be stored or calculated [Celikkaya et al., 2011].

We use a structured representation of the rate matrix of the system, and approximate the belief state

in a factored form.

In prior work, the previously described sparse uniformization method (see Section 2.5.1)

works well for problems where the distribution to be tracked is highly peaked. However, in problems

in which the variables may be more loosely coupled (and therefore an assignment to one does not

necessarily dictate a joint assignment to all), this approximation will either be poor, or it will require

a large number of states to be tracked, thereby defeating the quick runtime.

By contrast, in this work we are interested in systems with many (relatively) weakly in-

teracting components. For such systems, a factored representation is more suitable.
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The structure of the system enables us to decompose the joint belief state to states of a set

of components of the system. The factored form is the product of marginals of these components.

In order to keep a product of marginals, we manipulate the matrix exponential calculation. We use

two of the previously mentioned matrix exponential methods: ODE integration and uniformization

of the Taylor expansion. We show how they can be used to keep a factored belief state. We also

show that the KL divergence of the approximation stays bounded. Our experimental results confirm

our factored uniformization performs better than previously suggested uniformization methods and

the mean field algorithm.

4.1 Representation

We are interested in filtering a CTMP that is described by an initial distribution p0 over the

state space and a rate matrix Q. Filtering such a system consists of keeping track of the probability

distribution over the state at the current time t, given all evidence prior to t. We would like a

recursive solution in which evidence before t can be discarded once the distribution (or its estimate)

at t has been computed. We first demonstrate how to do filtering without any evidence, and then

explain how to incorporate evidence in Section 4.5.

In the case where there is no evidence, we assume we have p0 and wish to propagate

this distribution to time t by the matrix exponential of Q, p′ = p0e
Qt. As even p0 and p′ are not

representable exactly for realistic systems with large number of components (Section 2.5.1), we will

approximate them with factored representations.

As mentioned in Chapter 2, we assume a state is a set of variables (or components or

properties). We follow the same notation as in the previous chapters, and denote variables as Xi
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(i ∈ 1, . . . ,m), and assignments as xi. Therefore we can have a factored representation which

factors the state into these variables. We approximate the state distribution p0 as a product of

marginals p̂0(x) =
∏
i p̂0i(xi), and approximate p′ similarly as p̂′(x) =

∏
i p̂
′
i(xi).

We will use the ODE integrator RKF (Section 2.4), and the uniformization method (Sec-

tion 2.5) to form our approximate algorithms. In RKF, the fundamental calculation is the multiplica-

tion of a current estimate of the distribution byQ to calculate the time derivative. In uniformization,

a stochastic matrix M is constructed by using the maximum negative diagonal of Q, α ≥ maxi qi

as M = Q/α+ I . The main calculation here is the multiplication of current estimate by M .

4.2 Approximate Matrix Exponential Calculations

Both RKF and uniformization methods involve the calculation of state distributions and

their multiplication by eitherQ orM . We will use v to denote any state distribution vector generated

during the course of such a calculation. For the RKF method, v is the distribution at a particular

point and vQ is its time derivative. For uniformization, v is an element of the sum and vM is the

next element.

First, we force the RKF integrator to project v to the space of factored distributions.

Second, we force the uniformization method to project v to the space of factored distributions. We

call these factored RKF and factored uniformization.

For either factored approximate method, we need to be able to calculate the projection

of vM (or vQ) onto the space of factored distributions without explicitly generating vM as an

exponentially large vector.

While our methods are applicable to edge-valued decision diagrams [Wan et al., 2011],
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Petri nets [Petri, 1962], and other compact representation of the rate matrix, we focus on using a

continuous-time Bayesian network (CTBN) to represent Q. As we mentioned before, Shelton and

Ciardo [2014] established a connection of CTBNs to edge-valued decision diagrams, and Codetta-

Raiteri and Portinale [2010] to Petri nets.

We mainly use the factored representation of the matrix Q in CTBNs (see Section 3.1).

The complete Q matrix is represented by using the conditional intensity matrices QXi|ui as in

Equation 3.1, where Ui are variable Xi’s parents, and ui are parent assignments. Also δ(x,x′) is

the set of variable indexes for which the assignments in x and x′ differ.

We will concentrate on approximate calculations of vM (vQ is similar). We consider

one subcalculation in the form v′ = vM . Let v̂ be the current approximation of v in factored

form: v̂(x) =
∏
i v̂i(xi). Similarly, let v̂′ = v̂M , the result of multiplying v̂ by M , which is not

necessarily completely factored. Also, let ṽ be the projection of v̂′ to the set of factored distributions.

Finally, let M⊥ be the operator that both multiplies by M and projects to the space of factored

distributions. Thus ṽ = v̂M⊥ is a factored distribution while v̂′ is not.

We abuse notation and let any vector also stand for the distribution it embodies. Further,

for any vector v, we let vi be the marginal distribution of v over the variable xi (even if v is not fac-

tored), v−i be the marginal distribution over all variables except xi, vui be the marginal distribution

over all of xi’s parents, and vi|−i be the distribution over xi conditioned on all the other variables.
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4.3 Factored Rate Matrix

4.3.1 Factored Uniformization Matrix

To construct the uniformized matrix M , we would like to select α to be the maximally

negative diagonal element. In practice this could be a difficult optimization problem. So, instead we

select α =
∑n

i=1 αi where αi = −minui minxi QXi|ui(xi, xi), the maximally negative diagonal

element for Xi for any ui. We let MXi|ui = QXi|ui/αi + I be the stochastic matrix we obtain for

Xi with parent assignment ui using uniformization constant αi. The stochastic matrix M can then

be described based on Equation 3.1 as

M(x,x′)=



∑
k M̃Xk|uk(xk, x

′
k) if x=x′

M̃Xj |uj (xj , x
′
j) if δ(x,x′)={j}

0 otherwise.

where M̃Xi|ui = αi
αMXiui + α−αi

α I . The stochastic matrix M cannot be described as a dynamic

Bayesian network (DBN): it has an additive structure, not a multiplicative one, and does not allow

the transition of multiple variables. However, M can be described as a mixture of particularly

simple DBN transition models: M =
∑

i
αi
αMi where

Mi(x,x
′)=



MXi|ui(xi, x
′
i) if x=x′

MXi|ui(xi, x
′
i) if δ(x,x′)={i}

0 otherwise.
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In particular, it describes a mixture in which with probability αi
α variable i transitions according to

MXi|Ui and all other variables remain the same. The ith mixture DBN has a structure in which all

variables x′j , where j 6= i, have only xj (the same node in the previous slice) as a parent. Variable

x′i has the same parents as in the CTBN, with the addition of xi. No intra-slice arcs exist.

Example 8 By using Examples 2 and 3, we first calculate αX = 3, αY = 4 and so α = 7 (as

before). Then, we can decompose the same M as before into

MX =

0.67 0.33

1 0

 ,MY |x0
=

0.5 0.5

1 0

 ,MY |x1
=

 0 1

0.75 0.25



which can be viewed as a Markov chain in which with probability 3
7 X transitions according to

MX , otherwise Y transitions according to MY |x0 or MY |x1 , depending on the value of X .

4.3.2 Calculating Factored vM

Given the mixture-of-DBN interpretation above of M , it is not surprising that ṽ = v̂M⊥

can be calculated in one step without constructing v̂M . As Q has the same structure, the same

method works for it too.

As projection onto a particular variable, xj , is linear, if M⊥j is the composition of M

and the projection onto xj , then M⊥j =
∑

i
αi
αMi⊥j where Mi⊥j is the composition of Mi and

projection operation onto xj . Furthermore, in Mi only variable i can change:

ṽj = v̂M⊥j =
∑
i

αi
α
v̂Mi⊥j = (1− αj

α
)v̂j +

αj
α
v̂Mj⊥j .

Mj⊥j is the marginal over xj after a transition according to Mj . No other variable changes, so this
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is the expectation of MXj |Uj over v̂’s distribution over Uj :

ṽj = v̂j

[
(1− αj

α
)I +

αj
α

∑
uj
v̂uj (uj)MXj |uj

]
= v̂j

[∑
uj
v̂uj (uj)M̃Xj |uj

]
(4.1)

To calculate v̂Q and project onto xj , Equation 4.1 holds if we change M̃Xj |uj to QXj |uj .

Example 9 Let starting distribution p marginals be v̂X =

[
0.6 0.4

]
and v̂Y =

[
0.5 0.5

]
.

Multiplying this factored approximation by M and then projecting can be done by multiplying vX

by M̃X and vY by 0.6M̃Y |x0 + 0.4M̃Y |x1:

M̃X=

0.86 0.14

0.43 0.57

 , M̃Y |x0
=

0.71 0.29

0.57 0.43

 , M̃Y |x1
=

0.43 0.57

0.43 0.57

 .

4.4 Bounds for Factored Uniformization

While we have not found a suitable way of bounding the approximation error for factored

RKF, we can derive bounds similar to those of the BK algorithm [Boyen and Koller, 1998] for

discrete-time stochastic processes to bound the error in propagation and projection through a single

M matrix. However, because the process is a mixture of processes in which only a single component

changes, the BK result for compound processes does not carry over.

We then use this bound to bound the error of the entire Taylor expansion and thereby the

factored uniformization method.
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4.4.1 Divergence Bound for Single Step

We first concentrate on bounding the error of a single multiplication by M . We wish to

show that the KL-divergence between v′ = vM and v̂′ = v̂M is no greater than that between v and

v̂.

We begin with a simple property of the KL-divergence. The proof is omitted, but is a

consequence of the fact that entropy does not increase upon conditioning.

Lemma 10 If q(x) =
∏
i q(xi) is a factored distribution and p(x) is a (non-factored) distribution

over the same sample space, and x−i is the set of all variables except xi,

∑
iDKL(p(xi | x−i)‖q(xi)) ≥ DKL(p(x)‖q(x)) .

We require a mixing rate definition from Boyen and Koller [1998]:

Definition 11 The mixing rate of a stochastic matrixM is defined as γ , mini1,i2
∑

j min(Mi1,j ,Mi2,j).

We can then state that M is a contraction mapping with respect to the KL-divergence:

Theorem 12 Let γi be the minimum (over ui) mixing rate of the stochastic matrix MXi|uiand

γ = mini
αiγi
α . Then,

DKL(v
′‖v̂′) ≤ (1− γ)DKL(v‖v̂) .
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Proof. If we let v′(i) = vMi and v̂′(i) = v̂Mi, then

DKL(vM‖v̂M) = DKL(
∑

i
αi
α v
′(i)‖

∑
i
αi
α v̂
′(i))

≤
∑

i
αi
α DKL(v

′(i)‖v̂′(i))

=
∑

i
αi
α

(
DKL(v

′(i)
−i ‖v̂

′(i)
−i ) +DKL(v

′(i)
i|−i‖v̂

′(i)
i|−i)

)
≤
∑

i
αi
α

(
DKL(v−i‖v̂−i) + (1−γi)DKL(vi|−i‖v̂i|−i)

)
=
∑

i
αi
α

(
DKL(v‖v̂)− γiDKL(vi|−i‖v̂i|−i)

)
≤ DKL(v‖v̂)− γ

∑
iDKL(vi|−i‖v̂i)

≤ DKL(v‖v̂)− γDKL(v‖v̂) .

The first inequality is from the convexity of the KL-divergence [Cover and Thomas, 1991, Theorem

2.7.2]. The next inequality holds because Mi does not change any variables except xi and the

conditional KL-divergence of xi contracts by γi [Boyen and Koller, 1998, Theorem 3]. The final

inequality is due to the lemma above.

Note that unlike in BK, the global contraction rate (γ) does not depend on the in- or out-

degree of model, but it is inversely proportional to n. This appears unfortunate, but the next section

demonstrates that it is not a problem for the contraction rate of the entire Taylor expansion.

We upper-bound the increase from projection:

DKL(vM‖v̂M⊥)−DKL(vM‖v̂M) ≤ ε .

As a crude upper bound, ε ≤ −(n−1) ln η where η is the smallest marginal probability. As shown

by Boyen and Koller [1999], better bounds can be placed by more careful analysis or considering

42



the average case.

Taken together this means that after a single multiplication and projection, the KL-divergence

error of our estimate can be bounded as

DKL(vM‖v̂M⊥) ≤ (1− γ)DKL(v‖v̂) + ε . (4.2)

Example 13 We have γX = 0.67, γY |x0 = 0.5, γY |x1 = 0.25. Therefore γY = min(0.5, 0.25) =

0.25, and γ = min(0.67×αXα , 0.25×αYα ) = min(0.67×3
7 , 0.25×4

7) = 0.14. Therefore the KL-

divergence between the true answer and the factored approximation contracts by 1 − 0.14 = 0.86

for each multiplication by M .

4.4.2 Bound on Approximate Taylor Expansion

Our goal is not to bound the error on a single step, but rather the error of our entire

approximation to the matrix exponential. Equation 4.2 implies that

DKL(vM
k‖v̂Mk

⊥) ≤ (1−γ)kDKL(v‖v̂) + ε

k−1∑
i=0

(1−γ)i

= (1−γ)kDKL(v‖v̂) + ε1−(1−γ)k

γ . (4.3)

If we combine the bound from Equation 4.3 with the Taylor expansion of Equation 2.3, we can

obtain a bound on the KL-divergence between the true matrix exponential, and an approximation of

the Taylor expansion in which each vector of probabilities is approximated by a factored form and

only the first l terms are evaluated (and then renormalized):

Theorem 14 Let α, ε, and γ be as defined above. Let p be an arbitrary distribution over the
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state space of the process. Let p̂ be an arbitrary factored distribution over the same. Further, let

p′ = peQt be the distribution at time t in the future, and let p̂′ = 1
1−Rl

∑l
k=0 e

−αt (αt)k

k! p̂Mk
⊥ be

the approximation of p′ constructed by uniformization of a Taylor expansion truncated to l terms

in which each matrix multiplication is projected back to the space of factored distributions. Rl =∑∞
k=l+1 e

−αt (αt)k

k! . Then

DKL(p
′‖p̂′) ≤ e−γαtDKL(p‖p̂) +

ε

γ
(1− e−γαt) +Rl(δ +

ε

γ
)

where δ = maxx− ln p̂′x, the maximum negative log probability over any joint assignment in the

final approximate calculation.

Proof. For compactness of presentation, let βk = e−αt (αt)k

k! , γ̄ = (1−γ), and R̄l = (1−Rl). Then

DKL(p
′‖p̂′) = DKL(

∑∞
k=0βkpM

k‖ 1
R̄l

∑l
k=0βkp̂M

k
⊥)

≤ R̄lDKL(
1
R̄l

∑l
k=0βkpM

k‖ 1
R̄l

∑l
k=0βkp̂M

k
⊥)

+RlDKL(
1
Rl

∑∞
k=l+1e

−αtβkpM
k‖ 1

R̄l

∑l
k=0βkp̂M

k
⊥)

≤
∑l

k=0βkDKL(pM
k‖p̂Mk

⊥) +Rlδ

≤
∑l

k=0βk[γ̄
kDKL(p‖p̂) + ε(1− γ̄k)/γ] +Rlδ

≤ e−γαtDKL(p‖p̂) + ε
γ (1− e−γαt) +Rl(δ + εγ̄l

γ ) .

The first inequality is due to the convexity of the KL-divergence in only the first argument. The

second is due to the convexity of the KL-divergence in both arguments, and that the KL-divergence

is bounded by the negative log of smallest probability of the second argument. The third is due

to Theorem 12. The final is due to bounding a finite Taylor expansion of an exponential by the
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exponential.

Note that Rl goes to zero as l grows. In the remaining terms, γ almost always appears

multiplied by α. In the previous section, we commented on how γ is inversely proportional to n.

However, α is proportional to n and they exactly cancel out. Thus if l is large enough, we can let

γ′ = mini αiγi and conclude

DKL(p
′‖p̂′) ≤ e−γ′tDKL(p‖p̂) +

αε

γ′
(1− e−γ′t) . (4.4)

Thus the contraction rate for the full approximation is not a function of n. It is unclear how αε

scales with n.

We are then left with two error terms. The first decays with t and the second grows with t

(but is bounded). The resulting distribution p̂′ is a mixture of factored distributions. So, if filtering is

to continue past time t, p̂′ must be projected back to the space of factored distributions, introducing

another similar additive error. This may happen either because evidence arrives at t and requires

conditioning, or because we may wish to subdivide a propagation from 0 to t into m propagations

of length t/m. Equation 4.4 implies this is not helpful for accuracy (if one considers applying the

bound recursively m times over intervals of length t/m). However, our experimental results show

that some interval subdivision is helpful.

Example 15 γ′ = γα = 1. For large l, the KL-Divergence between the true distribution and the

factored approximation before (DKL) and after propagation to t = 0.5 (D′KL) is related by

D′
KL ≤ 0.61DKL + (7ε/1)(1− 0.61)

where we note that e−1×0.5 ≈ 0.61. If the smallest possible marginal probability is 0.01, then a
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crude upper-bound on ε is − ln 0.01 = 4.6.

4.5 Adding Evidence

So far, we have discussed only how to filter without evidence. In a continuous-time pro-

cess, evidence can take on two forms. First, it can be point evidence. That is, at time t we observe

the values of certain variables, but for no duration. We propagate to the time of the evidence, condi-

tion the distribution on the evidence, and then continue. In this case, conditioning on the evidence

in expectation reduces the error [Boyen and Koller, 1998, Fact 1].

The second form of evidence is interval evidence: a variable remains in a particular state

from t1 to t2. In this case, at t1 we condition on the evidence (same as for point evidence, above).

From t1 until t2, we monitor using a modified Q matrix in which all transitions where the evidence

variable changes are set to 0 (but the diagonal elements remain unchanged). The resulting p̂ sums to

the probability of the interval evidence, but it can be normalized to yield the conditional distribution

of the state. The normalization makes the analysis difficult. However, we conjecture that interval

evidence will also not increase the error in expectation.

Finally we note that the sparse uniformization method can have serious difficulties with

evidence if none of the maintained states are consistent with the evidence.

Example 16 Given the previous distribution p for t = 0, and Y = y0 on t = [0.5, 1), we propagate

p to t = 0.5 using Equation 2.5, with Equation 4.1 to calculate the projected multiplications. We

get the factored distribution p̂X =

[
0.65 0.35

]
, p̂Y =

[
0.56 0.44

]
. We condition on Y = y0 by
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setting p̂Y =

[
1 0

]
. Then we similarly propagate to t = 1, but using

QX =

−1 1

3 −3

 , QY |x0
=

−2 0

0 0

 , QY |x1
=

−4 0

0 0

 .

for which αX = 3, αY = 4, and α = 7:

MX =

0.5 0.5

1 0

 , MY |x0
=

0.6 0

0 1

 , MY |x1
=

0 0

0 1

 .

4.6 Experiments

We employed two synthetic networks and a network built from a real data set in our

evaluations. Since exact filtering is intractable for large models, we limited the number of variables

to allow for calculations of the true approximation errors.

The synthetic networks we use are the ring and toroid dynamic Ising networks of 20

binary variables from El-Hay et al. [2010]. The ring network is bidirectional, while the toroid

(Figure 4.1a) is directed. Nodes try to track their parents with a coupling parameter, β, indicating

the strength of the influence, and a rate parameter τ that is inversely proportional to the expected

time between switching. We set τ = 4 and β = 1. We set both networks to have a deterministic

starting distribution. For the toroid the first 5 variables are in state 0 and the remaining variables are

in state 1. The ring network’s initial distribution is the reverse.

The real network we used was constructed from the British Household Panel Survey

(BHPS) data set [ESRC Research Centre on Micro-social Change, 2003]. The data set records major

life changes from a set of roughly 8,000 British citizens in areas including household organization,
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employment, income, wealth and health. We use the same network model as in Fan et al. [2010] and

Nodelman et al. [2005b] which chooses 4 variables: employment (student, employed, unemployed),

children (0, 1,≥2), married (not married, married) and smoking (non-smoker, smoker) and adds a

hidden binary variable for each (Figure 4.2a). The structure and parameters of both the initial dis-

tribution and the dynamics were learned by the structural EM algorithm [Nodelman et al., 2005b]

and we used the learned network model for our experiments.

4.6.1 KL-Divergence Bound

Our first experiment tested the theoretic error bound. Figures 4.1b and 4.2b show the KL-

divergence between the true marginals and the marginals computed by factored uniformization for

the BHPS network and the toroid network. The bound on the KL-divergence of the full distribution

is also a bound on any marginal, and experimentally the errors on the marginals grow initially and

then asymptote, as per Theorem 14.

4.6.2 Approximation Comparison

We then compared our factored uniformization method (UF) to other approximations.

In particular, we compared to factored RKF (RKFF), sparse uniformization (US) as explained in

Section 2.5.1, and the mean field (MF) approach of Cohn et al. [2009] for CTBNs (Section 3.4). For

the purpose of comparison, the MF method was extended to accept evidence on subsets of variables.

We varied an error tolerance parameter for each method to map the trade-off between

error and runtime. For UF, we varied the uniformization-specific parameter θ that determines the

48



X0

X15

X10 X11

X16 X17

X12

X7

X13

X18 X19

X14

X8 X9X5

X4X3X2X1

X6

(a) Toroid network

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
K

L(e
xa

ct
 | 

ap
pr

ox
)

t

 

 

X
7

X
9

(b) Toroid results

Figure 4.1: Factored uniformization accuracy versus t (interval width) for the toroid network.
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Figure 4.2: Factored uniformization accuracy versus t (interval width) for the BHPS network.

number of intervals of propagation (see Section 2.5). We fixed the number of terms of the Taylor

series expansion (l) to a value that performed reasonably. Similarly, for sparse uniformization we

varied θ and fixed l to a well-performing value. MF and RKFF both use RKF for integration, so we

varied the error tolerance of RKF.

The evidence for the ring and toroid networks was set to be relatively unexpected: for

t ∈ [0.5, 1.0) x0 = 1 and x1 = 0. For the ring, we queried the distribution of x10 (far from

the evidence) and x19 (adjacent to the evidence) at time t = 1. For the toroid, we queried the
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Figure 4.3: Computation time versus accuracy comparisons for ring network.
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Figure 4.4: Computation time versus accuracy comparisons for toroid network.
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Figure 4.5: Computation time versus accuracy comparisons for BHPS network.
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distribution of x6 (adjacent to the evidence) and x13 (a node more the in middle) at t = 1. For

the BHPS network, we chose evidence where employment is observed to be in the student state

continuously from year 1 to year 5. We queried the marginal distribution of the variables smoking

and children at t = 5 years.

Figure 4.4 shows the KL-divergence between the true and approximated marginals of the

query variable for each of the three networks for each query. These results are typical of other query

marginals. In general, factored uniformization (UF) performs the best, especially for smaller running

times (with US occasionally being the method of choice for longer running times). However, when

the query node is close to the evidence, RKFF performs better (x10 for the ring and x13 for the toroid

network are examples). The advantage of US for longer running times is predictable as it approaches

the true value as more states are retained. Finally, note that for the BHPS query over the children

variable, US has infinite KL-divergence (and hence does not appear on the plot). This is because all

of the retained states have this variable equal to 0. While this is certainly the most common value at

t = 5, it does not have probability 1 under the true distribution and thus the KL-divergence between

the true distribution and the approximation of US is infinite.

4.7 Summary

In this chapter, we demonstrated our approximate continuous-time filtering method based

on uniformization. It is simple to implement, and we have proven bounds on the KL-divergence of

its error. The approximation can be made more accurate by lumping together variables into joint

marginals. The bounds are similar in style to those of BK and also depend on the mixing time of the

individual components (adjusted for the continuous-time nature of the system). Our experimental
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results demonstrate that the theoretic bounded error holds in practice. Furthermore, our method

gives superior time-accuracy trade-offs for most of the examples tested in this work.
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Chapter 5

Deterministic Anytime Inference for

Continuous-Time Markov Processes

In this chapter, we describe a deterministic anytime method for calculating filtered and

smoothed distributions in large variable-based continuous-time Markov processes. Prior non-random

algorithms do not converge to the true distribution in the limit of infinite computation time. Sam-

pling algorithms give different results each time run, which can lead to instability when used inside

expectation-maximization or other algorithms. Our method combines the anytime convergent prop-

erties of sampling with the non-random nature of variational approaches. It is built upon a sum of

time-ordered products, an expansion of the matrix exponential. We demonstrate that our method

performs as well as or better than the current best sampling approaches on benchmark problems.

Our method is deterministic and converges in the limit of infinite computational time. It

can be viewed as a bridge between sampling and deterministic methods. The variational approaches

such as expectation propagation [El-Hay et al., 2010] and mean field [Cohn et al., 2009] are deter-
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ministic but they do not converge to the true value as computation time increases. Generally can

only compute marginals or similar expectations. In contrast sampling approaches such as impor-

tance sampling [Fan et al., 2010] and Gibbs sampling [Rao and Teh, 2011] converge to the true

value and can estimate any expectation of the distribution. However, they are random and this can

cause problems when used inside other algorithms (like expectation-maximization).

In our method, we decompose the system into two pieces: a system (A) of completely

independent components, and a correction (B). We reason exactly about the system A and add

increasing number of correction terms derived fromB. We generate a computation tree and traverse

it using a priority queue, to select the larger correction terms earlier.

We first present our approach assuming that Q and probability vectors can be stored ex-

actly. Then, we demonstrate how the calculations can be carried out efficiently whenQ is structured.

In section 5.4, we present a simple example to ground the derivation. Finally we demonstrate results

comparing the computational efficiency of our method to other anytime convergent methods.

5.1 Calculating Matrix Exponential with Time-Ordered Products

We consider a CTMP with an initial state distribution row-vector v of size n and a rate

matrix Q of size n-by-n. As we mentioned before, the calculation of eQt is intractable for large

systems. Using the structure of Q for this calculation is not straightforward because it is not pre-

served by the matrix exponential. Additionally, the commutative property does not hold for the

matrix exponential in general: For any same-sized matrices A and B, e(A+B)t 6= eAteBt 6= eBteAt,

unless the commutator [A,B] = AB −BA vanishes. One possible decomposition comes from the

Kronecker sum property: e(A⊕B) = eA ⊗ eB . Yet, Kronecker sums alone can only describe rate
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matrices for systems in which all variables are independent.

For the general case, e(A+B)t can be represented with time-ordered products (TOP) as

given in Equation 2.13. We will employ the expansion to derive our deterministic method, Tree of

Time-Ordered Products (TTOP).

5.2 Time-Ordered Products Computation Tree

We make two assumptions: Q can be split into Q = A + B, where veAt is relatively

simple to compute, and B is broken into J manageable terms B =
∑J

j=1Bj . We will show how

to realize these assumptions in the following sections. We use the TOP expansion of Equation 2.13

and apply the distributive property of matrix multiplication to move the sum outside the integral:

ve(A+
∑J
j=1Bj)t = veAt +

J∑
j=1

∫ t

0
veAsBje

A(t−s) ds (5.1)

+
J∑
j=1

J∑
j′=1

∫ t

0

(∫ s

0
veArBje

A(s−r) dr

)
Bj′e

A(t−s) ds+ . . .

Let F l(t) represent the lth term of the expansion. Then the equation can be rewritten as

veQt =
∞∑
l=0

F l(t) (5.2)

where

F 0(t) = veAt

F l(t) =

J∑
j=1

∫ t

0
F (l−1)(s)Bje

−As ds eAt. (5.3)
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By construction, the first term, veAt, is simple to solve (as will be explained in Section 5.3).

5.2.1 Integral Expansion

We calculate each integral with the following expansion in which we treat a polynomial

portion exactly and use adaptive quadrature to estimate the non-polynomial portion. Let g(t) be

a general function of time, g0 be a constant, and q(t) be a piece-wise polynomial. Further de-

note q̄(t) =
∫ t

0 q(s) ds and q[r1,r2](t) = I[r1 ≤ t < r2]q(t) (both also piece-wise polynomials),

where I[·] is the indicator function. Then we can write an integral of the form h(t; q, g, g0) =∫ t
0 q(s)(g(s)− g0)ds as

h(t; q, g, g0) = q̄(t)(g(s0)− g0)

+

∫ t

0
q[a,s0](s) (g(s)− g(s0)) ds

+

∫ t

0
q[s0,b](s) (g(s)− g(s0)) ds

= q̄(t)(g(s0)− g0)

+h(t;q[a,s0], g, g(s0)) + h(t; q[s0,b], g, g(s0)) (5.4)

for any chosen s0, approximating g as the constant g(s0) and adding 2 correction terms (of the

same form) for subparts of the interval. Here, [a, b] is the support range of q, and s0 = a+b
2 . For

convenience, we divide this range into two: [a, a+b
2 ] and [a+b

2 , b]. We use two subdivision in the

following sections as well, but generalization to more than two sub-intervals is straightforward.

Recursive expansion Equation 5.4 will generate infinitely many terms in the form of
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q̄(t)(g(s0)− g0):

h(t; q, g, g0) =
∞∑
k=1

qk(t)uk (5.5)

where qk(t) is q̄(t) for a particular q, and uk is (g(s0)− g0) for a particular g and g0.

5.2.2 Complete Computation Tree

Assume level l of Equation 5.2 can be expressed as

F l(t) =
∞∑
k=1

qlk(t)u
l
ke
At (5.6)

(as is certainly true for l = 0: q0
0(t) = 1, u0

0 = v). We then show how to construct level l + 1

similarly:

F l+1(t) =
J∑
j=1

∫ t

0
F l(s)Bje

−As ds eAt

=
J∑
j=1

∫ t

0

∞∑
k′=1

qlk′(s)u
l
k′e

AsBje
−As ds eAt

=
∞∑
k′=1

J∑
j=1

∫ t

0
qlk′(s)u

l
k′e

AsBje
−As ds eAt

=
∞∑
k′=1

J∑
j=1

h(t; qlk′ , u
l
k′e

AtBje
−At, 0) eAt

=
∞∑
k′=1

J∑
j=1

∞∑
k=1

qlk′,k,j(t)u
l
k′,k,je

At. (5.7)

In last two lines, we have replaced the integral with the expansion of Equation 5.5. In particular, the

integration of interest is h(t; qlk′ , u
l
k′e

AtBje
−At, 0). We let the set {qk, uk}k generated for this h be

denoted as
{
qlk′,k,j , u

l
k′,k,j

}
k
.
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q(t)weAt

N(q, u, u0, j)

w = ueAs0Bje
−As0

N(q̄, w − u0, 0, j
′)

N(q[a,s0], u, w, j)

N(q[s0,B], u, w, j)

level l level l + 1

s0 = (a+ b)/2
[a, b] = q’s support

∀j′:

contribution
node’s name

calculations

Figure 5.1: General form of the expansion.

In Equation 5.7, k′ represents a node at level l in the computation tree. So, for every k′, we

generate J nodes in level l + 1, each of which are the roots of trees for expansion of corresponding

integrals. The result is an expansion for F l+1 of the same form as Equation 5.6.

We denote a term in this expansion as a compute node N(q, u, u0, j). It and its descendants

in the same level l represent h(t; q, ueAtBje
−At, u0). Its children in level l+ 1 represent new terms

in F l+1. Node N(q, u, u0, j) contributes the term

q(t)weAt, where w = ueAs0Bje
−As0 , (5.8)

to the total sum. Its two children on the same level are N(q[a,s0], u, w, j) and N(q[s0,b], u, w, j) where

s0 = a+b
2 . On the next level, it generates a node N(q̄, w − u0, 0, j

′), for all 1 ≤ j′ ≤ J . Figure 5.1

shows this expansion.

For reasons that will be clear in the next section, we cannot form w − u0 (even though

we can form each individually). Thus, node N(q̄, w − u0, 0, j
′) could be described by two nodes:

N(q̄, w, 0, j′) and N(q̄,−u0, 0, j
′). However, the second node will essentially “undo” calculations

61



Algorithm 1 TTOP Filter
Initialize priority queue PQ with N(1, v, 0, 0)
while PQ not empty and compute time left do

Let N(q, u, u0, j)← Pop(PQ)
Set (a, b) be the support range of q
Set s0 = a+b

2 , and w = ueAs0Bje
−As0

Add q(t)weAt to the running sum (see Equation 5.8)
{Next line can be generalized to more than 2 splits}
Add N(q[a,s0], u, w, j) and N(q[s0,b], u, w, j) to PQ
for j′ = 1 to J do

for i = 1 to m do
Add N(q̄, di(w, u0), 0, j′) to PQ

done elsewhere. We address this in the next section.

These recursively generated nodes represent an infinite tree whose sum is veQt. Nodes

have a single value, plus “same-level” children who represent finer approximations of the integral,

and “next-level” children who represent one component of F l for the next level l. If A = 0, then

each level is one term in the Taylor expansion of Q. The traditional 1
i! coefficients in such an

expansion are captured by our piece-wise polynomial integrations.

If we explore the tree such that every node will be visited in the limit of infinite computa-

tional time, then we can add each node’s evaluation at time t to a running sum and compute veQt.

Algorithm 1 outlines this method using a priority queue to concentrate computation on portions of

the tree with large contributions.

5.3 Structured Time-Ordered Products Calculations with CTBN

For the scenarios of interest, the vector v and matrixQ are too large to explicitly represent

because the state space consists of one state for every assignment to a set ofm variables,X1 through

Xm. We will assume that v is an independent distribution (although we can extend this work to
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dependencies in v, but this eases the exposition). In Kronecker algebra this means v =
⊗m

i=1 vi,

where each vi is a small row-vector of the marginal distribution over Xi.

We now show how to keep each quantity in the computation tree representable exactly

as a similarly factored distribution: a Kronecker product with one term for each variable. If A =⊕m
i=1Ai, then eAt =

⊗m
i=1 e

Ait. We assume that eachAi (which is only over the state space ofXi)

is small enough so that calculation of eAit can be performed efficiently. If we also require that each

Bj =
⊗m

i=1Bj,i, then all vectors and matrices to be multiplied in the computation tree are such

Kronecker products. In particular, at node N(q, u, u0, j), we need to compute w (Equation 5.8) for

its contribution to the sum. Because u, Bj , and eAs0 are all Kronecker products and (A⊗ B)(C ⊗

D) = (AC)⊗(BD), all of the matrix products can be performed efficiently by just operating on the

subspaces over each variable independently. Thus w (and by extension the node’s contribution to

the sum) is a completely factored vector represented as a Kronecker product (that is, a distribution

in which all variables are independent).

The generation of new nodes does not require any other operations, except for manipula-

tion of one-dimensional piece-wise polynomials. Thus, our answer is a weighted sum of indepen-

dent distributions (Kronecker products). It is not representable as a Kronecker product because it is

a full distribution. However, any expectation of this distribution can be computed by summing up

the contribution of each of these independent terms.

As we mentioned earlier, N(q̄, w − u0, 0, j
′) has the expression w − u0 which is not a

Kronecker product (despite that both w and u0 are). To handle this, we note that

m⊗
i=1

xi −
m⊗
i=1

yi =

m∑
i′=1

di′(x, y) (5.9)
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where

di′(x, y) =

(⊗
i<i′

yi

)
⊗ (xi′ − yi′)⊗

(⊗
i>i′

xi

)
(5.10)

Because of how we select Bj (see below), xi′ − yi′ is only non-zero for a few i′ (the family of

variable j). Furthermore, this allows us to split up the nodes by how much the deviation (w − u0)

contributes by variable, which concentrates computation on those variables whose approximations

are most difficult. Thus, we use this decomposition and divide the node N(q̄, w − u0, 0, j
′) (see

Figure 5.1) into nodes N(q̄, di′(w, u0), 0, j′) for all i′ for which wi′ 6= u0i′ .

The necessary form for Q =
⊕m

i=1Ai +
∑J

j=1

⊗m
i=1Bj,i is always possible, although

it might result in one Bj for each element of Q (which would in general be exponential in the

number of state variables). Binary decision diagrams are often used to encode Q. In stochastic

logic applications a disjunctive partitioning leads very naturally to this structure [Burch et al., 1991,

Ciardo and Yu, 2005]. However, they are encoded in a form where A = 0. Techniques similar to

those we describe next can be applied to pull intensity from the Bj matrices into A, but we will

focus on the CTBN representation (Chapter 3).

5.3.1 CTBN Parameterization

As explained in Section 3.1, the global Q matrix for a CTBN can be represented with

Kronecker algebra. Equation 3.3 corresponds to our TOP representation of Q where A is 0 and

there is one Bj for each variable and instantiation of its parents. We can pull intensity into the A
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matrix by defining

B(i|ui),i′ =



Qi|ui−Ai if i′ = i

∆k,k if i′ ∈ Pa(Xi) & k is val. of i′ in ui

I otherwise .

(5.11)

Then,

Q =
⊕
i

Ai +

m∑
i=1

∑
ui

(
m⊗
i′=1

B(i|ui),i′

)
. (5.12)

The algebra is long, but straight-forward. It holds because Ai is constant with respect

to ui and the sum over ui represents each possible instantiation exactly once. The result is that

Ai represents an independent, approximate process for Xi. A is the joint process of each of these

independent approximations. The differences between the independent process and the CTBN are

given by one Bi|ui for each variable and its parents’ instantiation. Note that B(i|ui),i′ = I if i′ is not

a parent of i. Thus, most of the components of any Bj are the identity and computing ueAsBe−As

for these components is trivial (they are the same as in u). Thus, the calculations for N(q, u, u0, j)

are local to the variable j and its parents.

5.4 CTBN Tree of Time-Ordered Products

Example 17 shows one possible decomposition of a simple 2-variable CTBN into A and

B. Here the localAi matrices are chosen to be the minimal rates. This method essentially computes

the effect of A exactly and incorporates the effects of B as a Taylor expansion, adding increasing

numbers of terms. Note that in Example 17, AX and AY are proper intensity matrices (their rows
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sum to 0). This means that BY |x0 and BY |x1 have negative diagonal elements. This results in a

computation that corresponds to a Taylor expansion with alternating signs. This can cause compu-

tational problems. One alternative is to arrange for B to have no negative elements. For instance

AY =

 −4 2

3 −4

, resulting in BY |x0 =

 2 0

1 0

 and BY |x1 =

 0 2

0 1

. The disadvantage

is that v2e
AY t sums to less than 1. The non-root nodes add probability to the answer (instead of

moving it within the answer).

Example 17 We use the 2-variable CTBN network (Figure 3.2) from Chapter 3, where variable X

is the parent of variable Y . Because X has no parents, QX is equal to AX , and there are no B

terms.

QX =

−1 1

3 −3

→ AX =

−1 1

3 −3

 .

We decompose QY |x0 and QY |x1 by transferring minimal rates to AY ,

QY |x0 =

−2 2

4 −4

 , QY |x1 =

−4 4

3 −3

→ AY =

−2 2

3 −3

 .

The remaining rates are transferred to BY |xi matrices,

B(Y |x0) =

0 0

1 −1

 , B(Y |x1) =

−2 2

0 0

 .

In this case, there are two B terms: B1 for Y and x0, B2 for Y and x1. We can calculate the joint
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Q matrix by using Equation 5.12,

A=AX
⊗

AY =



−3 2 1 0

3 −4 0 1

3 0 −5 2

0 3 3 −6


.

B1 = ∆x0,x0

⊗
B(Y |x0) =

1 0

0 0

⊗
0 0

1 −1

 =



0 0 0 0

1 −1 0 0

0 0 0 0

0 0 0 0


,

B2 = ∆x1,x1

⊗
B(Y |x1) =

0 0

0 1

⊗
−2 2

0 0

 =



0 0 0 0

0 0 0 0

0 0 −2 2

0 0 0 0


,

and Q = A+B1 +B2 =



−3 2 1 0

4 −5 0 1

3 0 −7 4

0 3 3 −6


.

For a CTBN, multiplication by a Bj is particularly simple. The j value indexes a variable

(Xi) and an instantiation to its parents (ui). To multiply a factored vector by Bj , multiply the Xi

component by Qi|ui − Ai. For each component associated with a parent, zero out all elements of
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id: node parameters

value

internal calculations

root for veQ4

vXe
AX4

⊗
vY e

AY 4

b : N(t, vX ⊗ vY , 0⊗ 0, 2)

wb,X = vXe
AX2∆x1,x1e

−AX2

wb,Y = vY e
AY 2B(Y |x1),e

−AY 2

4×
wb,Xe

AX4

⊗
wb,Y e

AY 4

d : N(t2/2, wa,X ⊗ wa,Y , 0⊗ 0, 1)

wd,X = wa,Xe
AX2∆x0,x0e

−AX2

wd,Y = wa,Y e
AY 2B(Y |x0),Y e

−AY 2

8×
wd,Xe

AX4

⊗
wd,Y e

AY 4

wa,X = vXe
AX2∆x0,x0e

−AX2

wa,Y = vY e
AY 2B(Y |x0),Y e

−AY 2

4×
wa,Xe

AX4

⊗
wa,Y e

AY 4

a : N(t, vX ⊗ vY , 0⊗ 0, 1)

8×
we,Xe

AX4

⊗
4we,Y e

AY 4

e : N(t2/2, wa,X ⊗ wa,Y , 0⊗ 0, 2)

we,X = wa,Xe
AX2∆x1,x1e

−AX2

we,Y = wa,Y e
AY 2B(Y |x1),Y e

−AY 2

wc,X = wb,Xe
AX2∆x1,x1e

−AX2

wc,Y = wb,Y e
AY 2B(Y |x1),Y e

−AY 2

2×
wc,Xe

AX4

⊗
wc,Y e

AY 4
− 2×

wb,Xe
AX4

⊗
wb,Y e

AY 4

c :
N(I[t < 2]× t, vX ⊗ vY ,
wb,X ⊗ wb,Y , 2)

Figure 5.2: Portion of computation tree for Example 17 for t = 4. Each box is one node in the
computation tree (see Figure 5.1). Nodes a and b are the children of the root. Nodes d and e are
examples of their children at the next level (l = 2). Node c is an example of a refinement (of node
b). Equation 5.10 dictates how the children of c for l = 2 are computed because u0 6= 0 for this
node.
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the vector except for the one consistent with ui. Vectors for non-parent nodes are unchanged.

Example 18 If we let v = vX ⊗ vY (that is, vX and vY are the independent marginals of X and

Y ), then Figure 5.2 shows a small portion of the computation tree.

5.5 Smoothing and Computational Considerations

Our discussion so far has focused on filtering. We also perform smoothing with evidence

at the beginning and at the end of the interval as explained in this section. We can also extend our

method so that we can incorporate it into the framework of inference with general evidence. As we

discussed in Section 3.2, this is done by dividing the trajectories to segments and conditioning on

evidence in each segment.

We will limit ourselves to the case in which the initial distribution at time 0, v, is known

and there is evidence at a later time T for which the vector vT represents the probability of the

evidence for each possible state of the system. We assume that both vectors factor as previously

discussed.

The goal is to compute (an expectation of) the distribution at time t conditioned on the

evidence at time T . This consists of computing the Hadamard (point-wise) product of veQt and

vT e
Q>(T−t) (and then normalizing the result). First, consider computing each exponential sepa-

rately. Let the result of the “forward” direction be
∑

j αj where the forward calculation’s jth node

had contribution αj =
⊗m

i=1 αj,i. Let the “backward” direction be similarly represented as
∑

k βk
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with βk =
⊗m

i=1 βk,i. It can easily be shown that

Na∑
j=1

αj �
Nb∑
k=1

βk =

Na∑
j=1

Nb∑
k=1

(
m⊗
i=1

αj,i

)
�

(
m⊗
i=1

βk,i

)

=

Na∑
j=1

Nb∑
k=1

m⊗
i=1

(αj,i � βk,i) (5.13)

Thus, we must consider every pair of nodes, one from the forward expansion and one from the

backward expansion. For each pair, the components of the factored representation are point-wise

multiplied together to obtain the pair’s contribution to the answer.

We want to include these terms judiciously to best use a finite computational budget. We

do this by keeping a frontier set of pairs of computation nodes, one from the forward tree and one

from the backward tree. If we have explored (added to the smoothing result) αj �βk, we add to our

frontier set αj paired with all of βk’s children and αj’s children paired with βk. We use a closed list

to ensure no pair is considered twice.

The question then is how to prioritize members of the frontier. We need to have an esti-

mate of the total contribution of this pair and all subsequent pairs in the graph. We select the sum

of this node’s contribution to the query value (absolute value of the change) and the product of the

maximum value in each node.

5.6 Experiments

We implemented our method, TTOP (Tree of Time-Ordered Products), as part of the

CTBN-RLE code base [Shelton et al., 2010]. We evaluated our method on a synthetic network

of Ising model dynamics. The Ising model is a well-known interaction model with applications
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in many fields including statistical mechanics, genetics, and neuroscience [Zhou and Schmidler,

2009]. The experimental results focus on inference accuracy given a known network. The Ising

model was chosen so that we could compute the true answer in a reasonable time and scale the

problem size.

(a) Network structure. (b) Evidence patterns at t = 0 and t = 1.

Figure 5.3: Toroid network with 9 nodes.

(a) Network structure. (b) Evidence patterns at t = 0 and t = 1.

Figure 5.4: Toroid network with 15 nodes.

Using this model, we generated a directed toroid network structure with cycles following

the network used by [El-Hay et al., 2010]. Nodes follow their parents’ states according to a coupling

strength parameter (β). A rate parameter (τ ) determines how fast nodes toggle between states. We
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(a) Network structure. (b) Evidence patterns at t = 0 and t = 1.

Figure 5.5: Toroid network with 21 nodes.

scale the number of nodes in the network but limit it to 21 to be able to compare the results to exact

inference. We use three networks of respectively m = 9, 15, and 21 binary variables (Figures 5.3a,

5.4a, and 5.5a). We could not include networks with more than 21 binary variables because we

cannot do exact exponentiation on a matrix of size bigger than 221 × 221 in a reasonable time. We

scale the network by adding rows of nodes. For these networks we fix the τ parameter and vary β.

Nodes can take on values −1 and +1.

We compare TTOP to two efficient anytime algorithms: auxiliary Gibbs sampling (AuxGibbs)

[Rao and Teh, 2011] and importance sampling (IS) [Fan et al., 2010]. We also compared to a mean

field variational approach (MF) [Cohn et al., 2009]; however, error for MF is above the error range

of other methods for all computation times. For this reason, we omit the MF results in the plots. We

analyze the error in marginals computed by each method relative to exact inference. We focus on

the computation time because in our experiments memory was not an issue and whole computation
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tree occupied only a few GBs.

For TTOP, we set the number of splits for the quadrature (see Equation 5.4) to 10 because

it produces a good computation time versus error performance. We vary the computation time

budget to observe the trade-off between computation time and the error.

For AuxGibbs, we vary the sample size between 50 and 5000, and set the burn-in period to

be 10% of this value. For IS, the sample size varies between 500 to 50000. We ran the experiments

100 times for each test for both sampling methods. The computation time shown in the plots is the

average of these runs for a given number of samples. The error is the sum of the KL-divergences of

all the marginals from their true values.

Our experiments focus on smoothing. The networks start from a deterministic state, for

m = 9: at t = 0 variables 1–5 are +1 and 6–9 are −1. At t = 1, variables 1–3 have switched to

−1, 4–5 remain +1, and 6–9 have switched to +1. The evidence pattern can be seen in Figure 5.3b.

For m = 15 and 21 we use a similar pattern of evidence for comparison reasons. For m = 15

(Figure 5.4b), the variables 1–5, 7–8, 10–11 start at +1 and the remaining variables start at−1. The

variables 1–3 switch to −1, while 4–5,7–8, and 10–11 stay at +1, and 6, 9 and 12–15 switch to +1.

The evidence for m = 21 also follows the same pattern scaled to 21 nodes (Figure 5.5b).

The nodes are not observed between t = 0 and t = 1. We query the marginal distributions

of nodes at t = 0.5. Figures 5.6, 5.7, and 5.8 show computation time versus sum of KL-divergence

of marginals. We focus on the first 20 seconds of computation time because usually a few seconds

are enough for our inference tasks. The lines in the plots continue their trend and cross at some point

except for Figure 5.7-a. A KL-divergence sum of 10−2 is generally accurate for these networks.

Figures 5.6-a, 5.7-a, and 5.8-a show the results for τ = 2, β = 0.5. For most of these
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experiments, TTOP performs better than sampling methods. When the coupling strength of the

network is increased to β = 1 as shown in Figures 5.6-b, 5.7-b, and 5.8-b, TTOP has more variations

in the error as the computation time increases but still has better performance overall. The occasional

peaks in the error happen because sometimes a part of the computation tree is expanded and added

to the sum, without the part that balances it since the time budget expired. This can be seen as more

computation time is given to the algorithm, the errors decrease with the addition of the balancing

part.

As the number of nodes in the network increase, our method keeps the computation time

versus error advantage. Additionally, the gap between our method and others increases with the

network size. Especially when β = 1, it performs better for the larger networks. While we cannot

perform exact inference for larger networks, we expect these trends would continue as the problem

size scales.

TTOP is also much better for short computation times, because it solves e(At) directly by

integration while the sampling methods can generate only a few samples. Although the derivatives

are smaller for the TTOP lines, this could potentially be fixed with better node prioritization. The

best node prioritization would be one that looked at the contribution of the whole subtree rooted at

a node rather than only the contribution of that node. Our heuristic is good for the first few levels of

the tree, but it does not do as well as we go deeper in the tree.

The fluctuations in the error of TTOP are expected. The error from a single run of sam-

pling would fluctuate as well. The plotted results of our method are from a single run compared to

the averaged results of sampling methods which are 100 runs.
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5.7 Summary

In this chapter, we demonstrated an anytime algorithm for structured CTMP filtering and

smoothing. Unlike prior work, it is deterministic, which can be of benefit when used inside learning

methods. In the experiments, it has better computation time versus error performance than prior

anytime convergent methods, especially for loosely coupled systems. Also as network size increases

and coupling strength stays the same, our method’s advantage increases as well.

75



10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

Computation time (sec)

K
L 

di
ve

rg
en

ce

 

 

TTOP
AuxGibbs
IS

(a) m = 9, τ = 2, β = 0.5.
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(b) m = 9, τ = 2, β = 1.

Figure 5.6: Computation time versus KL divergence for the 9 node toroid networks with different
coupling parameters.
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(a) m = 15, τ = 2, β = 0.5.
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(b) m = 15, τ = 2, β = 1.

Figure 5.7: Computation time versus KL divergence for the 15 node toroid networks with different
coupling parameters.
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(a) m = 21, τ = 2, β = 0.5.
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(b) m = 21, τ = 2, β = 1.

Figure 5.8: Computation time versus KL divergence for the 21 node toroid networks with different
coupling parameters.
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Chapter 6

Non-Invasive Blood Gas Estimation for

Pediatric Mechanical Ventilation

Applications of machine learning to electronic medical data have great potential for help-

ing medical practitioners make more supported diagnostic decisions. They can give insight into

symptoms, medications, and outcomes of specific patients by exploiting data from similar patients

[Cruz and Wishart, 2006, Davis et al., 2008, Holzinger et al., 2014]. Especially in an intensive care

unit, where patients are continuously monitored and decisions are time sensitive, the effects can be

monumental.

Medical data has many forms: vital signs, text notes, lab results, medical imaging data,

and measurements from medical monitors. Apart from many challenges associated with this data

such as privacy and complexity, the dynamic nature of it also poses a problem. In this work, we use

a dynamic system model to utilize the past information to estimate the current state of the patient.

We focus on two types of medical data: vitals and lab results recorded in irregular intervals
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in an intensive care unit. Together they form a multi-dimensional time series. Since the measure-

ments are not taken at regular intervals, we model them using continuous-time models. Specifically,

we apply a multivariate Gaussian process model (MGP), which is a continuous-time model with

continuous variables, to the problem of respiratory ventilator management for children with lung

injuries. Our aim is to estimate some of the blood test results that are necessary during ventilation

management. In this setting, the ventilator machine is used to support breathing for children with

acute lung injury (ALI) [Flori et al., 2005] or acute respiratory distress syndrome (ARDS) [Yang

et al., 2005] in a pediatric intensive care unit (PICU).

We choose an MGP model for this problem because using continuous variables is more

natural for this setting, as the measurements are continuous valued. We have applied CTBN models

(with discrete variables), and the results were similar, but not as competitive as the MGP model.

6.1 Motivation

Monitoring and managing ventilation are very important in a PICU. At Children’s Hospi-

tal Los Angeles (CHLA), 39% of the children admitted to the PICU are mechanically ventilated at

some time during their stay. This percentage is high in studies from other PICUs as well (55% in

Farias et al., 2012 and 30% in Khemani et al., 2009). Although very helpful, mechnanical ventila-

tion also comes with risks and complications, such as lung injuries. Also, it might be uncomfortable

to the patient to such a degree that they have to be sedated. The ventilator settings are chosen

mostly based on invasive blood tests, which are not done very frequently and they are especially

challenging in children. Therefore, clinicians sometimes have to make decisions without accurate

and up-to-date information on the patient’s condition. This causes longer durations of ventilation,
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whereas more frequent informed decisions on ventilator settings could lead to faster and safer wean-

ing of the patient. Our model in this chapter estimates invasive blood test results from all available

previous and present vitals and test results for this purpose. Accurate estimations of these blood

test results could also open the way to semi-automated or even automated mechanical ventilation

systems.

Machine learning techniques in general have been applied to a great variety of problems

in medicine [Meyfroidt et al., 2009]. Continuous-time models are used in developing a personalized

risk stratification score for prematurely born babies [Saria et al., 2010], in modeling cardiovascular

system [Weiss et al., 2012], and modeling heart failure [Gatti et al., 2012].

Previous work on applying machine learning to ventilation focuses on very different pre-

diction problems. A dynamic Bayesian network model is proposed by Charitos et al. [2009] to

predict if a patient has ventilator-associated pneumonia. Guiza Grandas et al. [2008] use a Gaussian

process (GP) classifier is used to predict the time frame in which a patient reaches stability, in order

to wean a patient off mechanical ventilation. Also, for mechanical ventilation of adults with lung

injury, a GP is used to model the pressure-volume curve which was used to titrate PEEP to optimal

compliance [Guttmann, 2009]. However, to our knowledge, ours is the first application of machine

learning to predict blood test results for patients with lung injury.

6.2 Mechanical Ventilation

6.2.1 Overview

Mechanical ventilation is the process of supporting or replacing breathing in patients who

cannot adequately breath on their own. Ventilation methods vary depending on the patient condition;
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Name Definition

Tidal volume (VT ) Volume of air from the lungs through the ventilator
Ventilator rate (VR) Frequency of breaths from the ventilator
Positive end-expiratory pressure (PEEP) Basal pressure support to the lungs at max. deflation
Peak inspiratory pressure (PIP) Pressure support to the lungs at max. inflation
Inspiratory flow rate (V̇i) Volume of air flow toward the lungs in one minute
Fraction of inspiratory O2 (FiO2) Concentration of O2 given to the lungs

Table 6.1: Common ventilator settings and their definitions.

however we are interested in the case where a ventilator machine is used. In this case, the patient is

connected to the ventilator with an endotracheal tube inserted through the mouth.

Ventilators have different modes according to what is being controlled, such as pressure

control or volume control. For example, in pressure control, pressure given to the lungs is kept at

a target value, and volume is varied automatically by the ventilator to maintain the pressure. In

volume control, volume of air given into the lungs is set, and pressure is varied automatically to

maintain the target volume. There are additional settings that are common in all modes, such as the

ventilator rate setting which controls the number of supported breaths in a minute, and the fraction

of inspired oxygen setting for the given breath. The common ventilator settings can be found in

Table 6.1. The mode of ventilation is chosen according to the patient disease and symptoms, and

the clinician’s familiarity with the modes.

The measurements monitored by the ventilator (Table 6.2) along with the cardiac monitor

and blood pressure values are usually recorded by the nurses at intervals recommended by the

physician. Monitoring the patient condition is critical during ventilation, since ventilator settings

should be adjusted carefully. Optimization of ventilator settings is important to reduce the risk of

lung injury, such as over inflation of lungs from excessive pressure. For example, FiO2 is set to
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Name Definition

Pulse oximetry (SpO2) Surrogate for blood O2 saturation
End-tidal CO2 (ETCO2) The concentration of CO2 exhaled from ventilator
Minute ventilation (MV) Volume of gas inhaled from lungs in a minute
Oxygen saturation index (OSI) Derived measure of oxygenation from SpO2

Dynamic compliance (Cdyn) Derived measure of the compliance of lungs

Table 6.2: Monitored and derived variables during ventilation.

Name Definition

pH Acidity level of arterial blood
Partial pressure of CO2 (PaCO2) CO2 pressure in arterial blood
Partial pressure of O2 (PaO2) O2 pressure in arterial blood plasma

Table 6.3: Arterial blood gas (ABG) measurements for ventilation.

the minimum value to maintain the blood O2 saturation (SaO2). However, since SaO2 requires an

invasive procedure, it is not done frequently. Instead, pulse oximetry (SpO2, see Table 6.2) variable

is used as an accurate surrogate for SaO2 [Louw et al., 2001].

The other settings in the ventilator generally require an initial blood test for arterial blood

gas (ABG) values. This is an invasive test where arterial blood is drawn from a catheter, in order to

obtain ABG pH and partial pressure of CO2 (PaCO2, see Table 6.3) values. These measurements

show the lung’s CO2 removal condition, and need to be measured frequently if patient is not stable.

Unfortunately no surrogate exists for pH or PaCO2 that is accurate at all times. The end-tidal CO2

(ETCO2) variable which is usually available continuously from the ventilator monitor is the closest

surrogate for PaCO2. ETCO2 is the concentration of CO2 at the end of the exhaled breath, measured

at the ventilator. However, it is not accurate in patients with lung disease as we will explain in the

next section.
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6.2.2 Lung Injury and Dead Space

During ventilation, the inhaled air travels through the mouth, trachae, bronchital tubes and

lastly to the alveoli in lungs. Also, the pulmonary arteries coming from the heart carries blood to

the lungs. Gas exchange occurs only in the alveoli between the O2 dense inhaled air and CO2 dense

blood in pulmonary artery capilllaries. Since gas exchange does not occur in airways including

mouth, trachae and bronchital tubes, the sum of their volume is called the dead space.

Gas exchange is dependent upon the partial pressures of O2 and CO2 in the alveoli and in

the blood in pulmonary capilleries. Once the partial pressures on either side are equalized, the gas

exchange stops. Therefore PaCO2 and alveolar partial pressure of CO2 are in equilibrium at the end

of inhalation.

When air starts to move out from the mouth at the beginning of exhalation, the pressure of

CO2 in exhaled air is initially zero because of dead space. As CO2 from the alveoli mixes with the

air in dead space and exhaled, the pressure increases. At the end of exhalation CO2 concentration

reaches the maximum value, which is the monitored value of ETCO2. As the alveolar pressure is

diluted with the air in dead space, ETCO2 is generally a little less than the initial alveolar pressure,

and therefore PaCO2.

In patients with lung injury, not all alveoli participate in gas exchange. Cardiac output

might get so low that blood flow to some alveoli becomes inadequate for gas exchange. On the

other end of the spectrum, alveoli might not get enough air, so the blood flows without any contact

with alveoli (pulmonary shunt). The total volume of alveoli that does not exchange gas is called

alveolar dead space (VADS). VADS further dilutes exhaled air, increasing the difference between

ETCO2 and PaCO2. The instantaneous ratio of VADS to VT can be found by using the PaCO2 and
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ETCO2 measurements of the same instant,

VADS
VT

=
PaCO2 − EtCO2

PaCO2
, (6.1)

which is called the alveolar dead-space fraction (AVDSF).

At the bedside, clinicians estimate current PaCO2 from the last known value of AVDSF. In

the weaning phase of ventilation, when the patient condition is not critical, this AVDSF estimation

is more accurate and can be used [Khemani et al., 2014]. However, if the patient is not stable, which

happens frequently in acute phase of ventilation, VADS might change rapidly. Additionally, poorly

perfused alveoli might not empty at the same rate as others [Severinghaus et al., 1957]. Therefore,

this estimate is not accurate in acute phase.

Estimates of pH at the bed side are even less accurate than PaCO2 estimates. The standard

equation for pH, the Henderson-Hasselbalch (HH) equation [Po and Senozan, 2001],

pHHH = 6.1 + log
HCO3

0.03× PACO2
(6.2)

requires AVDSF. For the AVDSF value, the estimate from last known values is used, which adds

to the error. pH also depends on the changes in the bicarbonate (HCO3) measurement. Again, the

last known estimate for HCO3 is used, making the result less accurate.

This is unfortunate, since frequent accurate estimates of PaCO2 and pH are necessary

for lung protection and optimal ventilation management. For example, in the case of permissive

hypercapnia (controlled elevation of PaCO2) when the patient has hypoxemia (life threatening levels

of insufficient oxygenation), frequent accurate estimates of PaCO2 or pH can be life saving.
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6.2.3 Pediatric Challenges

Pediatric ventilation protocol is different and less studied than adult ventilation. A PICU

accepts infants and children up to age 18. This poses problems on how to measure certain param-

eters needed for ventilation settings, such as weight, VT , and FiO2. For example, VT is calculated

based on the weight of the adult patients, but it is not clear if using weight is accurate for chil-

dren. Additionally, the hospitals or individual clinicians usually have tendencies to use only certain

modes. So, there is no standard protocol for ventilation management for PICUs [Khemani et al.,

2011b].

In the case of testing for ABG measurements, taking frequent arterial blood draws from

children is very challenging. Therefore, we can use accurate estimates of pH and PaCO2 to help

execute a standard protocol, such as the one proposed for PICUs by Khemani et al. [2011b]. The

use of estimates from a model like ours could lead to semi-automation of ventilation. Clinicians can

make more informed decisions, and also give feedback to the system, which could lead the way to

closed-loop automation of ventilation.

6.3 Datasets

In our model, we worked on two separate datasets. They are both collected from PICU

electronic medical records. The first one, DS dataset [Khemani et al., 2011a], is from a single

institution retrospective study and has 275 patients with an average of 5 observations per patient.

The second, DM dataset [Khemani et al., 2012], is constructed from a six-center prospective study

and has 84 patients with an average of 4 observations per patient. In both datasets, ventilator setting

parameters and other non-invasive measurements are recorded at the time of blood tests for ABG
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Figure 6.1: Sample PaCO2 values for three patients. Note the variation in the time between mea-
surements.

measurements. Consequently, all the variable measurements are aligned, and only available at the

time of blood tests.

When constructing the datasets, out of all ventilated patients, only the critical ones with

lung injury are selected. So the selected patients are the sicker ones. Also, only patients with more

than one blood test for ABG are chosen.

Although the measurements are aligned due to how the datasets were constructed, since

the blood tests are done more frequently when the patient is more critical, the intervals between

measurements are irregular. A sample of PaCO2 values for three different patients from the datasets

can be seen in Figure 6.3

6.4 Multivariate Gaussian Process Model

A Gaussian process (GP) is a non-parametric model that is widely used for non-linear

regression tasks [Rasmussen, 2006]. A random real-valued function f (t) is distributed as a GP,
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if for any finite subset of indices t1, . . . , tm, the random vector [f (t1), . . . , f (tm)] has a Gaussian

distribution. A GP is described by a mean function µ(t) and a covariance function K (t, t′).

In our model, Xi, i ∈ {1, . . . , N} denote the measured variables such as pH . For all Xi,

there is a set of measurement times, Si = {ti,1, . . . , ti,Ti}. Let T =
∑

i Ti. Then, for all t ∈ Si and

t′ ∈ Sj ,

X ∼ GP(µ,Kij(t, t
′)) , (6.3)

where X ∈ RT is a multivariate Gaussian process (MGP) with constant mean function µ. Here, the

covariance function Kij(t, t
′) shows the correlation between variable Xi at time t and variable Xj

at time t′.

6.4.1 Kronecker Decomposition

We assume the covariance function K is separable, and therefore can be described by the

product of a covariance matrix between the variables and a temporal covariance function [Gelfand

and Banerjee, 2010],

Kij(t, t
′) = CijR(t, t′), (6.4)

where C ∈ RN×N is the covariance matrix between variables X1, . . . , XN , and R(t, t′) is the

temporal covariance function between two time points.

As mentioned before, in each patient sample in our dataset, times of measurements for

all the variables are aligned by construction (see Figure 6.2). Therefore, we have a common set

of observation times S = Si for all i, where S = {t1, . . . , tT }. For this reason, we drop the

dependency on the variables in the observation times. Given S, we can use a temporal covariance

88



Time since intubation (days)

p
H

E
T

C
O

2
(m

m
H

g
)

P
a

C
O

2
(m

m
H

g
)

Figure 6.2: Sample measurement times for ETCO2, PaCO2, and pH variables for a patient from DS

dataset.

matrix R ∈ RT×T instead of the function R, where Rl,l′ = R(tl, tl′). Then, the covariance function

becomes a matrix as well, and if we arrange the indices of R appropriately, we can decompose the

covariance matrix K as a Kronecker product,

K = C⊗R =



C11R . . . C1NR

C21R . . . C2NR

...
. . .

...

CN1R . . . CNNR


,

using both the separability assumption and aligned measurement times.
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6.4.2 Alternating Optimization

We are given a dataset with samples from each patient, where one sample x is a set of

observations xi,l, where i indexes the variables, and l ∈ {1, . . . , T} indexes the measurement times

tl ∈ S. For one patient sample

x =
[
x1 . . . xN

]
where xi =

[
xi,1 . . . xi,T

]
,

the log-likelihood is

lnL =− 1

2
ln(|C|T |R|N )− 1

2
(x(C−1 ⊗R−1)x>)− d

2
ln(2π) (6.5)

=− T

2
ln |C| − N

2
ln |R| − 1

2

∑
i,j

(C−1)i,j(xiR
−1x>j )− d

2
ln(2π). (6.6)

Then, the maximum likelihood estimation for C is

Cij =
1

T

∑
i,j

(xiR
−1x>j ) . (6.7)

So, we can optimize C and R alternatingly because of the Kronecker product decomposition. We

choose a squared exponential kernel for R,

R(t, t′) = exp

[
− 1

σ2
‖t− t′‖2

]
, (6.8)

where σ is the width parameter. First we use an initial value of C, and do a line search on σ on

Equation 6.6 while holding C fixed. Then, we estimate C using Equation 6.7 holding R fixed. In

this way, we alternatingly optimize C and R until they converge.

90



Therefore when learning the covariance matrix K from the dataset, we avoid generating

the full K matrix explicitly and taking the inverse of a high-dimensional matrix. Instead we work

on small matrices C and R, and calculate only their inverses.

6.5 Experiments

We use the DS dataset as training, and DM dataset as testing dataset. DS has more

patients, and it is from a single PICU, which is why we chose it as a training set. DM is a smaller

dataset and it is collected from multiple PICUs, therefore we chose it as a test set to demonstrate the

transferability of our results.

We estimate the covariance matrix K of our MGP model from the DS dataset. For each

PaCO2 and pH reading in DM , we estimated the current PaCO2 and pH, using only the patients’

currently available non-invasive measures, and previously available PaCO2, pH and non-invasive

measures. Specifically, we included the following variables: ETCO2 OSI, PIP, PEEP, VR, VT , MV,

Cdyn, and previous values for pH, PaCO2, ETCO2. See Tables 6.1, 6.2, 6.3 for definitions.

When testing on the DM dataset, we assume we know the measurements for all compo-

nents except for the current values of PaCO2 and pH. We jointly model all points of interest, and

condition on the known values. Specifically, we predict the mean and covariance of the marginal

distributions of PaCO2 and pH at the current time given all known measurements for all the compo-

nents up until and including the current time.

For comparison of prediction rates, we created baseline models which are based on stan-

dard derivations clinicians use. For PaCO2, we use the AVDSF model (see Section 6.2.2) which

assumes the (PaCO2 - ETCO2) / PaCO2 ratio is constant from the last observation to the current.
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Baseline model formulations
PaCO2 Use previous (PaCO2 - ETCO2) / PaCO2 ratio on AVDSF model

PaCOAVDSF2 =
PaCOPrevious2

EtCOPrevious2
× EtCOCurrent2

pH Use previous value of HCO3 and PaCOAVDSF2 in HH equation

pHHH = 6.1 + log
HCOPrevious3

0.03×PaCOAVDSF2

Table 6.4: Baseline models for PaCO2 and pH that are used by clinicians at bedside.

Baseline Models MGP Model

80% PI 95% PI 80% PI 95% PI

PaCO2 ±7 mmHg ±13 mmHg ±6 mmHg ±11 mmHg

pH ±0.07 ±0.13 ±0.05 ±0.10

Table 6.5: The 80% and 95% prediction intervals for the baseline and MGP models to predict PaCO2

and pH.

This ratio is then used to predict the expected current value for PaCO2, based on the new value of

ETCO2. The baseline model for pH uses this prediction in the HH equation which is a standard

equation for this case. In order to evaluate the prediction rates, we generated 80% and 95% pre-

diction intervals around the estimates. We also binned the observed and predicted values of PaCO2

and pH into three bins based on the proposed ventilator protocol in Khemani et al. [2011b]. Ac-

cording to this protocol, the ventilator setting changes are the same for the values inside the same

bin. If the predicted value falls into the same bin as the observed value, then the protocol could be

followed by using the predicted value. The ranges for the bins are as follows: PaCO2 ranges are

[< 35, 35− 60, > 60] mmHg, and the pH ranges are [≤ 7.3, 7.3− 7.44,≥ 7.44].
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(a) PaCO2 estimate based on the AVDSF equation

(b) PaCO2 estimate based on the MGP model

Figure 6.3: Observed versus predicted values of PaCO2.
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(a) pH estimate based on the Henderson-Hasselbalch equation

(b) pH estimate based on the MGP model

Figure 6.4: Observed versus predicted values of pH.

94



CLIA Standard

PaCO2 max(±5mmHg,±8%)

pH ±0.04

Table 6.6: The Clinical Laboratory Improvement Amendments (CLIA) regulations require blood
test results to be in the given ranges. The MGP 80% prediction intervals are very close to these
acceptable ranges.

Our MGP model performed reasonably well, and better than the baseline models. Figures

6.3 and 6.4 show the observed versus predicted values for PaCO2 and pH respectively. In each

figure, the red line represents the 80% prediction interval, while the green line represents the 95%

prediction interval. The bins are shown by the shaded boxes, and the points that lie in the boxes are

classified into the correct bin.

For PaCO2, MGP predicted 95% of the values within ±11 mmHg of observed values,

while the baseline AVDSF model predicted them within ±13 mmHg. For 80%, the interval is ±6

mmHg for MGP and ±7 mmHg for the baseline AVDSF. As seen in Figure 6.3, a larger number of

PaCO2 values predicted by MGP fall in the correct bin than the baseline AVDSF model, especially

in the normal bin. As seen in Figure 6.4, prediction intervals for pH are narrower for MGP than the

HH model for each bin. In the MGP model 95% of the predicted pH values within ±0.10, and in

HH equation, they are within ±0.13. The range for 80% is ±0.05 in the MGP model, and ±0.07 in

the HH equation.

The Clinical Laboratory Improvement Amendments (CLIA), which are regulations for all

clinicial laboratory testing in the U.S., require the blood test results to be in the predetermined range

of the target value for each blood gas. The equipment is given 5 samples to test, and at least 80%

of the results have to be in the required range. The required ranges are: greater of ±5 mmHg or
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±8% for PaCO2, and ±0.04 for pH [Medicare, 1992]. The MGP 80% prediction intervals are very

close to these required ranges. However, our model depends on a history of previous and current

measurements, and the current blood sample is not sufficient. Therefore, a different regulation

standard is needed for models like ours. Nonetheless, CLIA standards give us a way to evaluate our

MGP model and show when our results can be trusted by clinicians.

6.6 Summary

Ventilator support, critical for children with respiratory failure, requires close monitoring

of the ventilator settings, vital signs, and blood gas lab tests, particularly pH and PaCO2. As the

blood gas measurements are invasive and therefore not so frequent, estimating them from non-

invasive measurements could help clinicians make informed decisions more frequently, or even

semi-automate ventilation support. In this work, we developed an MGP model using the available

non-invasive measurements that predicts pH and PaCO2. The results show that our MGP model

improves prediction compared to baseline models that clinicians currently use.
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Chapter 7

Conclusion

In this thesis, we explored inference methods and applications of continuous-time models.

Continuous-time models are increasing in popularity because they provide efficient computations

when modeling and reasoning about real-life temporal data. They alleviate the need to find a global

time slice width (discretization) for the whole system as in discrete-time models.

We developed two inference methods for Markovian models. The first one is a filtering

algorithm with deterministic approximation. It uses uniformization with the CTBN factored repre-

sentation to keep the state distribution in a factored state space. We provided a theoretical analysis

of its error bound, and show that it does not increase asymptotically.

The second inference method we developed is both deterministic and also can be stopped

anytime to obtain a valid solution. It fills the need for an anytime algorithm that converges to the

true result without being random. This is especially useful in parameter estimation algorithms such

as EM. In this method, we use CTBN representation with the time-ordered products, and we can

calculate any expectation of the marginal state distributions.

These inference methods can be extended to sufficient statistics algorithms, and used for
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efficient learning of model parameters and structures. This is especially useful for learning large

models as the model size can be a restricting factor in developing accurate representations of real-life

systems. Because our methods are deterministic, they will be more reliable for learning algorithms.

Additionally, our second algorithm can be used to check the accuracy of other approximate inference

algorithms. When the model is too large to run exact inference, our algorithm can give a reliable

result.

Lastly, we apply continuous-time models to medical informatics. The setting of our prob-

lem necessitates using continuous valued variables in our model. Therefore, we use a multivariate

Gaussian process instead of a discrete state Markovian model. Our method estimates the blood

gas values of pediatric patients with lung disease, during the time they are mechanically ventilated

in the PICU. The blood gas values are required for optimum ventilation management, but they in-

volve invasive blood tests. Frequent blood tests are challenging for patient in PICU, therefore our

algorithm’s estimates might enable better and shorter mechanical ventilation.

We believe our work in this thesis show that continuous-time models can be efficient and

accurate, and they can handle the temporal data streams that are generated everyday in many fields.

Especially in healthcare, these models can bring us one step closer to significantly improve patient

care and life quality.
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