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Current Review
In Basic Science

Does Epileptogenesis in the Developing Brain Require Cell 
Loss? 
Loss of specific neuronal populations in hippocampal areas 
CA1 and CA3/4, and the hilus of the dentate gyrus, is a com-
mon feature in hippocampi resected from patients with TLE 
(1–9). TLE often follows early-life prolonged febrile and other 
seizures, and it is currently unclear if the neuronal loss found in 
epileptic tissue precedes or is a result of the TLE itself (7, 8, 16). 
In adult models of TLE in which status epilepticus (SE) is the 
inciting insult, cells loss is common and is plausibly required 
for the epileptogenic process. Because of these associations, 
cell loss was extensively investigated in several developmental 
epilepsy models. These include immature rodent models of 
neonatal seizures (17, 18), prolonged febrile seizures (19, 20) 
and febrile status epilepticus (21), and pediatric nonfebrile 
status epilepticus (22–24).

In the model of prolonged febrile seizures or febrile status 
epilepticus (FS/FSE), initial studies found no increase in acute 
apoptotic cell death anywhere in the hippocampal formation 
at 4 to 24 hours after the seizures. However, injury to pyramidal 
cells in hippocampal CA1 and CA3 was observed in a pattern 
reminiscent of human mesial temporal sclerosis (MTS). This 
injury, manifest as augmented Golgi-staining (19), was also 
apparent in the hilus, yet resolved within weeks without pro-
gressing to cell loss. Delayed cell loss was also systematically 
explored in vulnerable hippocampal regions in four additional 
animal cohorts (21, 25–27). Methods employed included Cresyl 

Violet augmented by neurochemical markers for interneurons 
and pyramidal cells as well as for glia (25). The possibility that 
the failure to find an appreciable reduction of cell numbers 
might be a result of neurogenesis was also considered using 
BrdU cell-birth dating (25). In all cases, blinded analyses using 
stereologic principles failed to show significant neuronal loss 
in vulnerable hippocampal regions in rats that sustained the 
seizures, including those that developed limbic epilepsy (21, 
26). Notably, even hippocampi of rats that developed sponta-
neous motor seizures lasting over 100 seconds were devoid 
of appreciable neuronal dropout (21). Looking at potentially 
vulnerable regions elsewhere in the brain (e.g., dorsomedial 
thalamus [28]), apparent cell loss was absent, whereas injury 
was found also in limbic cortices (19). These data suggest that 
significant acute or delayed cell death was not required for 
the onset of TLE after experimental prolonged febrile seizures. 
Whether the resulting TLE, that is, the spontaneous seizures 
in a subgroup of FS/FSE rats, could eventually lead to cell loss 
in a distribution similar to the loss in MTS and to the injury 
observed by Toth et al. (19) remains to be determined. 

Because neonatal seizures may be followed by the onset 
of epilepsy, several models have been developed to examine 
these seizures. These include seizure induction by hypoxia as 
well as by chemoconvulsants including kainate and repeated 
flurothyl exposure (17, 18, 29, 30). Among these paradigms 
that employed postnatal day-7 to day-10 rats, the hypoxia-in-
duced seizure model generated later-life spontaneous seizures 
assessed by behavioral and EEG parameters (31). Recently, 
Rakhade et al. (31) have reported that over 90% of rat pups 
experiencing early-life hypoxic seizures develop recurrent 
spontaneous seizures by P100, as assessed by video-EEG long-
term monitoring with intracranial depth electrodes. Moreover, 
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serial EEG recordings during the juvenile period following neo-
natal seizures demonstrated that seizures were first detected 
around 12 to 15 days following the initial hypoxia-induced 
seizures.

Despite the development of spontaneous seizures, a num-
ber of investigations, including the use of Fluoro-Jade B staining 
in the acute and subacute period up to a week after the initial 
seizures, have failed to show the presence of increased neuronal 
death compared with control littermate rats (17, 31). Still, syn-
aptic reorganization in the form of sprouting was observed in 
several studies (31–34). Taken together, these findings indicate 
that epileptogenesis, defined as the occurrence of spontaneous 
seizures, occurs after several types of neonatal seizures in the 
absence of appreciable acute and subacute cell death. 

To probe epileptogenesis during the period of life that is 
comparable to infancy/early childhood (35), kainic acid (18) 
or pilocarpine was employed to provoke status epilepticus 
at postnatal day 20 (P20). Following pilocarpine-induced 
status epilepticus, approximately two thirds of animals 
developed later recurrent spontaneous seizures (epilepsy), 
as determined by long-term (>3 months) video-intracranial 
EEG monitoring (22). In the report by Raol et al., it was found 
that in the subset of animals that developed epilepsy, hip-
pocampal cell loss was detectable and quantifiable in two of 
the nine animals using standard cell staining and counting 
methods (22). This finding indicates that the methods used 
were capable of detecting and quantifying cell loss. There 
was no correlation between the degree of cell loss and the 
severity of epilepsy (assessed by the frequency of recur-
rent seizures) (22). In other words, although 2 animals had 
very severe cell loss, their epilepsy was no more severe than 
animals that showed no evidence of cell loss. Thus, whereas 
modest cell loss could have been missed using Cresyl Violet 
or other standard histopathological staining techniques and 
traditional neuronal-counting methods, the absence of any 
difference in epilepsy severity between those animals with a 
substantial amount of cell loss in the hippocampus and those 
with no (or possibly minimal) cell loss suggests that hippo-
campal cell loss alone is unlikely to be a major determinant 
of epilepsy development in this model. 

Collectively, these studies demonstrate that some acquired 
epilepsy can arise without appreciable cell loss in the develop-
ing brain. Consistent with recent opinions (35), the studies 
do not imply that cell loss is not an important factor in some 
cases of pediatric epilepsy. Stroke, ischemia, trauma, or severe 
infection may lead to cell death during development, and to 
associated epilepsy. In addition, not all seizures cause epi-
leptogenesis, and, in most children, seizures result in neither 
apparent structural changes nor later epilepsy. Further, clinical 
observations suggest that more severe brain insults, associ-
ated with severe brain injury, might be more likely to provoke 
epilepsy in children, and probably also in immature animals. 
Indeed, diverse etiologies can produce epilepsy after early-life 
insults, and in both humans and animals, there is no reason 
to assume that the mechanisms leading to epilepsy would be 
the same in each etiology. Thus, it is quite conceivable that cell 
loss occurs in some models of developmental epilepsy, such as 
in hypoxia-ischemia or neonatal stroke, and plays an intrinsic 
role in epileptogenesis. In other clinical situations and animal 

models, cell loss may not occur, or, if it is observed, this cell loss 
may be neither causal nor necessary for epilepsy development. 
In summary, epileptogenesis early in life may be associated with 
cell loss in vulnerable hippocampal regions and in other brain 
areas. However, epileptogenesis may arise also in the absence of 
appreciable cell loss: it is not required for acquired epileptogen-
esis, at least in the developing brain (and potentially in some 
instances of epileptogenesis taking place in the mature brain). 

The Important Questions About Epileptogenesis in 
the Immature Brain: Why Are Neurons Resilient to 
Excitotoxicity, and What Are the Key Mechanisms of 
Epileptogenesis?
Lack of an absolute requirement for cell loss in early-life 
acquired epileptogenesis is an important conceptual point, 
because it brings up two important gaps in our current under-
standing of epileptogenesis in general. These gaps hamper the 
development of interventional and therapeutic approaches.

The first question relates to the mechanism of the re-
silience of neurons in the immature hippocampus, limbic 
cortices, and thalamus to status epilepticus-induced cell death 
(36–38). Why don’t neurons die, when the inciting seizures 
are prolonged and severe? Can we exploit the underlying 
mechanisms to protect neurons in adults from similar insults? 
The mechanisms that contribute to the resilience are not fully 
understood; two candidates include mitochondrial uncou-
pling and the relative paucity of inflammation. During adult 
SE, metabolic demand in neurons results in the overwhelm-
ing of mitochondrial function and, hence, accumulation of 
reactive oxygen species (ROS), with eventual mitochondrial 
decompensation and runaway cell death (39). In immature 
brain, a fat-rich diet promotes augmented expression of the 
mitochondrial uncoupling protein 2 (UCP2). This protein 
reduces mitochondrial membrane gradient, prevents ROS ac-
cumulation and protects from SE-induced neuronal death (40, 
41). A second, perhaps complementary protective element is 
the attenuated inflammatory response to SE during devel-
opment (42). This is in contrast to the adult hippocampus, 
where cytokines and related mediators are both released from 
injured cells and contribute to neuronal death (42). Obviously, 
numerous other factors, potentially including augmented 
levels of growth factors such as brain-derived neurotrophic 
factor (BDNF), might protect neurons in the immature brain 
from excitotoxic and oxidative injury.

The second question is the logical extension of refuting the 
hypothesis that cell death is the sine qua non of epileptogen-
esis during development. Namely, if cell death is not the prin-
cipal mechanism for epileptogenesis, then what is required for 
the epileptogenic process during infancy and childhood? If 
obvious structural defects are not required, then how does the 
developing brain become epileptic after insults? The mechanisms 
that truly govern the changes in neuronal phenotype and 
network properties that, in turn, result in epilepsy, must then 
be sought. Indeed, the study of these mechanisms is at the 
forefront of our efforts to understand epileptogenesis in the 
developing brain.

Results that have already been obtained in the models 
described above as well as by other groups are beginning 
to answer these questions. For example, neonatal seizures 
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induced by hypoxia led to dramatic changes in subunit expres-
sion of the AMPA subtype of the glutamate receptors, as well 
as kinase and phosphatase activation and subsequent post-
translational modification of glutamate and GABA receptors 
(34, 43, 44). Long-lasting changes in the expression patterns of 
GABAA receptor subunits have been described after pilocar-
pine-provoked status epilepticus (45, 46). Similarly, a number 
of gene-expression changes, including early and enduring 
reduction of the expression of the hyperpolarization-activation 
cyclic nucleotide gated (HCN) channel type 1 and augmented 
endocannabinoid receptors were found after prolonged 
experimental FS (47–49). These molecular changes have been 
shown to be associated with changes in ionic currents that 
promote hyperexcitability and vulnerability to subsequent 
seizures (43, 44, 49–52). The fundamental basic transcriptional 
and posttranslational regulatory mechanisms governing the 
major and persistent changes in gene expression that promote 
epileptogenesis during development are under intense inves-
tigation (53–56).

Does Temporal Lobe–Like Epilepsy Actually Result From 
Experimental Developmental Seizures?
If cell loss is minimal or absent after some developmental sei-
zures, and if cell loss is considered crucial for epileptogenesis, 
then it is reasonable to question whether acquired epilepto-
genesis actually takes place after experimental FSE, chemical 
SE, or neonatal hypoxia-related seizures. The clinical diagno-
sis of epilepsy requires the documentation of two or more 
seizures. Notably, in the clinical situation, prolonged monitor-
ing using video-EEG to capture and document seizures is not 
required for a diagnosis of epilepsy and is rarely used for this 
purpose. Using the same criteria (i.e., documentation of two 
seizures), epilepsy was documented after developmental 
seizures in the models described here. In addition, prolonged 
video-EEG monitoring was carried out in all to address addi-
tional questions. When does epilepsy arise? How frequent are 
the seizures? Does the frequency vary? When does abnormal 
(interictal) brain activity commence? Unlike the confirmation 
of the presence of epilepsy and the phenotype of seizures, 
these types of questions may require continuous long-term 
monitoring in both patients and animal models.

A second point is the definition of a seizure. This is a 
complex and controversial issue, and conservative approaches 
consisting of the employment of both EEG and behavioral 
measures of seizures are preferred in both patients and ani-
mals. Galvan et al. (57) and Nissinen et al. (58) defined seizures 
as EEG abnormalities consisting of rhythmic discharges involv-
ing doubling of voltage and lasting over 6 seconds, associated 
with behavioral phenomena. D’Ambrosio et al. (59) suggested 
that a minimal time limit might not be needed. Both of these 
definitions exclude events found on EEG alone. In addition to 
the video-EEG criteria, seizures can be defined on behavioral 
criteria alone; for example, when overt motor phenomena 
consisting of the classic Racine progression (60) are observed. 
Because behavioral phenomena of limbic seizures in both 
humans and animal models are often subtle, behavioral 
approaches alone, as well as the requirement for behavioral 
change in association with EEG criteria may underestimate the 
prevalence of seizures. 

After experimental long FS (lasting ~20 minutes), sponta-
neous short seizures consisting of Racine stage 0 to II behav-
iors and EEG discharges longer than 6 seconds were observed 
(26). These FS are induced in postnatal day-10 to day-12 rats, 
where the stage of hippocampal development is roughly 
equivalent to that of human infants (a comparative table can 
be found in Avishai-Eliner et al. [36]). Similarly, in the hypoxia-
induced seizure model in postnatal day-10 rats, electrographic 
seizures were always associated with abnormal behavioral 
activity or motor phenomena. In both cases, these relatively 
subtle seizures were distinguishable from theta bursts seen in 
control animals, which were generally shorter and associated 
with exploratory behavior (26, 31). 

In the model of prolonged FS, when the duration of the in-
citing FS was increased, generating experimental febrile status 
epilepticus, long-term video-EEG monitoring using hippo-
campal and cortical electrodes documented the appearance 
of longer spontaneous seizures (mean duration 137 seconds; 
median, 91 seconds) on EEG. Notably, these epileptic events 
were associated with motor phenomena (Racine stages III–V; 
60), including unilateral clonus, bilateral clonus, and rearing 
and falling (21). These are the classical behavioral sequences 
observed in limbic seizures that generalize. 

In a developmental model of pilocarpine-induced status 
epilepticus in weanling postnatal day-20 rats, EEG and intra-
cranial video recording demonstrated spontaneous seizures 
defined as discrete alterations in behavior accompanied by 
rhythmic electrographic discharges that evolved over time 
and lasted for 8 or more seconds (22). Sixty-seven percent of 
the rats (12/18) subjected to lithium-pilocarpine–induced SE 
at P20 went on to develop spontaneous seizures in adult-
hood with a latency to spontaneous seizure onset of 45.2 
± 9.0 days. The behavioral seizure phenotypes included 
wild running, facial clonus, staring, head bobbing, and tail 
stiffening lasting from 8 to 20 seconds (stages II–III) as well as 
generalized tonic-clonic activity with falling (Racine stage V 
seizures) lasting up to 43 seconds. All behavioral seizures had 
EEG correlates. 

Together, these findings show a spectrum of the behavioral 
and electrographic seizures incited by early-life insults and 
enable speculation about the basis of the often more subtle 
nature of the spontaneous seizures that are provoked by 
these early-life insults. The duration or severity of the inciting 
event might be an important factor (21). In addition, unlike 
the consequences of status epilepticus that provokes TLE in 
adult models, catastrophic injury to regions that are known 
to gate seizure propagation, such as the dentate gyrus, is not 
observed after developmental seizures and status epilepticus. 
Hence, it is possible that seizures that result from more subtle 
injury in the context of a relatively preserved hippocampal 
circuitry may not readily generalize. The limbic phenomenol-
ogy of freezing, staring, and facial automatisms, as well as focal 
motor activity, may thus be more typical of TLE that follows 
developmental inciting events. 

In summary, epilepsy, defined as more than two spontane-
ous seizures (using a conservative definition of seizures), was 
documented in several models of pediatric epileptogenesis. 
More work is required to define precisely the temporal evolu-
tion of this epileptogenesis.
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Are We Using Appropriate Developmental Models to Study 
Acquired Epileptogenesis in the Immature Brain?
It is an a priori assumption that no single animal model can 
capture the full breadth of the clinical condition (35). Suitable 
models focus on salient elements of the condition that is be-
ing modeled, and on the questions that are being studied. In 
addition, because acquired epilepsy in infancy and childhood 
is heterogeneous and can result from numerous etiologies, 
varied animal models of developmental epilepsies induced by 
different methods will undoubtedly be needed to fully under-
stand the breadth of mechanisms that may underlie develop-
mental epileptogenesis.

Because prolonged FS and FSE may be a risk factor de-
scribed in a significant proportion of individuals with TLE (61, 
62), it is important to study if and how these developmental 
seizures might cause epilepsy. However, unlike in young 
children, fever cannot be induced in immature rats. Therefore, 
as stated by Reid et al., “the reason that all models employed 
to date rely on more than just a true fever is that, at least at the 
ages tested, even in immature common laboratory rat strains, 
FSs are difficult to evoke....” This has led to a number of models 
of FS, using hyperthermia (19, 21, 25, 27, 49, 51, 52, 63–68), 
or lipopolysaccharide combined with kainic acid at ambient 
temperature of 30°C (20, 69). Whereas the mechanisms for the 
elevation of brain temperature might differ in these mod-
els, hyperthermia per se induces the release of endogenous 
fever mediators and specifically interleukin 1 beta (IL1-β) 
in the brain. Indeed, binding of IL1-β to its receptor may be 
required for “febrile” seizure generation, as found by studying 
IL1-β-receptor null mice (70, 71). To exclude the possibility 
that hyperthermia itself may provoke epilepsy, hyperthermic 
controls have been used (26, 51). In addition, core and brain 
temperatures during these seizures have been monitored 
throughout their duration (21, 71, 72), and refinement of the 
model has lowered these temperatures to ~39 to 40°C. Thus, 
temperatures employed in these models do not exceed those 
in children with high fever. In addition, dehydration, a marker 
of heat stroke or shock does not take place (weight loss is ~2%, 
whereas a clinically relevant change is >5%). 

Neonatal seizures may precede epilepsy in children and 
are most commonly caused by hypoxic/ischemic encepha-
lopathy (17). Similar to the human, the immature rat responds 
to hypoxia and hypoxia/ischemia with seizures that can be 
refractory to conventional anticonvulsants (73, 74) and may 
thus prove useful for preclinical investigative and therapeutic 
studies (75).

Whereas neonatal and febrile seizure models are intrin-
sically age specific, chemical convulsant-induced status 
epilepticus has been extensively used in the study of adult 
epileptogenesis. The most common chemoconvulsants in-
clude pilocarpine (with or without lithium) (76–79), and kainic 
acid. Developmental models have relied on these chemocon-
vulsants as well (22, 28, 80, 81), and it is reasonable to propose 
that, in this case, the validity of these models does not vary 
with age. 

Conclusions
In summary, epilepsy affects primarily children and young 
adults, so that studying how it arises is of paramount clinical 

importance. Models have been established and validated for 
several of the many and varied insults to the developing brain 
that can lead to epilepsy, including neonatal hypoxia, hypoxia-
ischemia, fever/hyperthermia, and status epilepticus. The 
resulting data indicate that epileptogenesis in the developing 
brain has features that are distinct from those in the adult. 
Therefore, extrapolating principles established from the study 
of adult epileptogenesis (including cell loss) to developmental 
epileptogenesis may not be justified. In addition, careful con-
sideration of the state of maturation of specific brain regions 
across ages and across species might be warranted (a com-
parative table can be found in Avishai-Eliner [36]). The emerg-
ing consensus further suggests that epileptogenic insults early 
in life might act by changing the gene expression repertoire 
and functional phenotype of neurons, rather than by killing 
them. These data are exciting because if we understand these 
mechanisms and identify the “master switches” that govern 
them, we will have made a major advance in preventing devel-
opmental epileptogenesis.
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