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Abstract The need to develop feasible computational musculoskeletal models of the

spine has led to the development of several multibody models. Central features in these

works are models for the ligaments, muscles, and intervertebral joint. The purpose of

the present paper is to show how experimental measurements of joint stiffnesses can be

properly incorporated using a bushing element. The required refinements to existing

bushing force functions in musculoskeletal software platforms are discussed and further

implemented using a SpineBushing element specific to the intervertebral joint. Four

simple lumbar spine models are then used to illustrate the accompanying improvements.

Electronic supplemental material for this article includes a complementary review of

formulations of stiffness matrices for the intervertebral joint.
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1 Introduction

Recent medical and technological improvements have led to an increased demand for

user-friendly, computationally inexpensive numerical models of the human body free

of the ethical and logistical constraints imposed by experimental analyses. The exis-

tence of these models is anticipated to help pave the way for easy, cost effective, and

comprehensive studies on the efficacies of different physical therapy options and the

evaluation of prosthetic devices.

Unfortunately, the complexities surrounding the anatomy and function of the in-

tervertebral joint present obstacles in simply, yet accurately, mimicking its properties

in spinal models. Following the lead set by White and Panjabi [41], some researchers

have assumed that the motion of each spinal vertebra can be written as a function

of the net motion of the lumbar spine [3,17,40,44]. The suitability of this approach

to studying true spinal motion however is questionable as there is a large amount of

wide inter-subject variability [12]. The numerical cost of constraint functions is also a

prohibitive factor especially for larger degree-of-freedom models. The stiffness matrix

parameterization of the intervertebral joint presents a viable alternative.

Interestingly, Panjabi pioneered the use of a 6x6 stiffness matrix model for the

intervertebral joint. Extrapolating upon theory initially developed as part of his thesis

[26], he presented an elegant elucidation of its application to the joints of the spine

in [25]. Three years later, [27] proposed a stiffness matrix KP to model the joint (cf.

Fig. 1). Assuming sagittal plane symmetry of the intervertebral joint and restricting

attention to infinitesimal rotations, the number of stiffnesses in the matrix KP were

reduced from 36 to 12.1

Subsequent works by Gardner-Morse, Stokes and their coworkers [11,33,34,35] have

measured the 12 parameters of KP . However, over twenty years elapsed since Panjabi’s

initial work before detailed spinal models featuring a complete stiffness matrix were

introduced. The first of these, presented in [30], used stiffness matrices obtained in [8].

Further refinements on this model have focused on improving muscle architecture and

optimization routines for predicting muscle activation patterns [9,31,32,33]. Aside from

the elegant study by [10] demonstrating the increase in intervertebral joint stiffness with

increasing axial load, little mention has been made with regards to using newer data

that capture the effects of preload and various experimental loading schemes on the

ensuing stiffness matrix [15,24,28,36].

Concurrent with the aforementioned development of a stiffness matrix, advances in

computational modeling have led to the development of software capable of creating

and analyzing musculoskeletal models of the human body. Of these, software platforms

such as the LifeMOD Biomechanics Modeler (MSC Software, Santa Ana, CA), visu-

alNastran 4D (MSC Software, Santa Ana, CA), APOLLO [29], SIMM, and OpenSim

[6], have adopted the bushing elements used in vehicle dynamics software [1,2,18] to

model the properties of the intervertebral joint. These elements generate forces and

moments between a pair of body segments equivalent to those that would be exerted

by diagonal stiffness and damping matrices with zero resting length.

1 An example of a stiffness matrix with the aforementioned symmetries can be seen in Eqn.
(24) below.
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Fig. 1: Schematic of the intervertebral joint as a symmetric 6 × 6 stiffness matrix,

KP as first proposed by [25]. The elements of KP are initially determined from load-

displacement experiments performed on vertebral pairs.

The approximate similarity between the bushing element and the intervertebral

joint has led to its increased use in musculoskeletal models of the spine (see [7,14,16,19,

20,21,23]). Here, we describe in further detail the application of the bushing element to

model the intervertebral joint and clarify some common misconceptions. We elaborate

on the subtleties of the bushing element, some of which can lead to erroneous bushing

forces and moments if not applied correctly. For instance, if the bushing frames are

not initially coincident with each other, large forces and moments ensue. Placing the

frames coincident eliminates this, but introduces an artificial moment unless certain,

non-trivial modifications are made. In addition, the diagonal nature of the typical

bushing element used in musculoskeletal models of the spine fails to replicate the

coupled motion that is a defining feature of the intervertebral joint. Consequently,

possibly erroneous kinematics, reaction forces, and computed muscle forces can be

produced by the bushing element.

To overcome these complications, we created a SpineBushing element in OpenSim,

an open-source musculoskeletal software platform [6]. This element has two key features

that makes it suitable for modeling the intervertebral joints of the spine. First, the

change in relative motion between the bushing frames is used to compute the resulting

forces and moments. This is analogous to modifying the bushing element from a stiffness

matrix with zero resting length, to a stiffness matrix with resting length equal to the

distance between the centers of mass of the adjacent vertebral bodies in the neutral

posture. In addition, our SpineBushing element incorporates arbitrary 6 × 6 stiffness

matrices and thus permits the analysis of coupling between the different degrees of

freedom and this is illustrated in the present paper through a series of models for the

lumbar spine.

We presume a familiarity with rigid body dynamics and Euler angle parameteri-

zations of rotations in the main text. For readers unfamiliar with this background or

our notation, a supplementary online resource is provided. Section 1 of this resource

discusses parameterizations of rigid body motions, followed by background on the 1-2-3

set of Euler angles and the relative motion of a pair of rigid bodies in Sections 2 and

3 respectively. Section 6 of this resource contains additional discussion on the stiffness
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matrix KP and its relationship to other stiffness matrices that have appeared in the

recent literature.

In the present paper, arrays of real numbers are denoted by san-serif Roman letters,

such as T, p, while vectors and tensors are denoted by bold-faced Roman letters, e.g.,

x̄ and R. Additionally, we reserve capital letter sub- and super-scripts to indicate

specific bodies (e.g., bodies VK , basis vectors eKi ) while uncapitalized indices are used

to specify components of vectors, tensors, arrays of real numbers and matrices, such

as ωi, Kij , qi, T̃ij .

There is a considerable diversity in the choices of coordinate axes and Euler angles

used in the spinal mechanics literature. In this paper, will use a 1-2-3 set of Euler to

parameterize the relative rotation tensor R between a pair of vertebra, and let the

basis vectors
{

eK1 , eK3 , eK3

}

point anterior, superior, and to the right, respectively (cf.

Fig 2). As a result, we have the following correspondences for the three Euler angles

β1, β2, and β3:

β1 ≡ lateral bending,

β2 ≡ axial rotation,

β3 ≡ flexion-extension with β3 > 0 corresponding to extension.

We emphasize that these angles of rotation pertain to the rotation of a body V2 relative

to a body V1. Further details on Euler angle representations can be found in Section 3

of the Online Resource.

A number of different stiffness matrices associated with the intervertebral joint

are examined. The first is the stiffness matrix KE determined experimentally from

infinitesimal uniaxial motion. We will assume that KE is symmetric. Further details on

this approximation are given in Sections 4, 5, and 6 of the Online Resource. The second

stiffness matrix, KB , is used to denote the stiffness matrix of the bushing element

detailed in Section 3 while KS , the third stiffness matrix, is used for the stiffness

matrix employed in the SpineBushing element. We note that KS will be prescribed

using experimental data: KS = KE .

2 The experimental stiffness matrix K
E

The stiffness matrix and bushing element are both used to relate the relative motion

between two rigid bodies to the resulting forces and moments acting at specified points

on each of the individual bodies. However, there are a number of distinct differences

between the standard stiffness matrix KE obtained experimentally and the stiffness

matrix KB featured in typical bushing elements. The two main differences relates to

the zero resting length of the bushing element and the points about which the forces

and moments are applied. Prior to elaborating upon this however, it is appropriate

to first describe how the intervertebral joint stiffness matrix elements are determined

experimentally.

Most commonly, the lower vertebra is fixed, the upper vertebra subjected to an

infinitesimal motion, and the forces and moments due to the ensuing deformation

measured [10,11,34,35]. Alternatively, a force or moment is applied and the resulting

deformations measured [4,27] (Fig. 3). Variations of these protocols have also been

tested using larger deformations [24].
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A
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Fig. 2: An example of a vertebral motion segment consisting of the sacrum S, the fifth

lumbar vertebra L5 and the intervertebral disc I. The basis vectors
{

e11, e
1
3, e

1
3

}

and
{

e21, e
2
3, e

2
3

}

are attached to the bodies S and L5, respectively. The position vectors of

the centers of mass X̄1 and X̄2 are denoted by x̄1 and x̄2 respectively. The location of

potential landmarks X1
A on S and X2

A on L5 are also shown.

To elaborate, we define the relative translation between the landmark points X1
A

and X2
A using a displacement vector yA,

yA = x
2
A − x

1
A =

3
∑

i=1

YiEi =

3
∑

k=1

= y1ke
1
k, (1)

and use the rotation tensor R,

R = R (β1, β2, β3, g̃1, g̃2, g̃3) , (2)

to characterize the relative rotation between the bodies. Here, βk denote the Euler

angles used to parameterize R and {g̃1, g̃2, g̃3} are the set of Euler basis vectors. Note

that the Euler basis vectors are not necessarily the same as the body-fixed basis vectors
{

eK1 , eK2 , eK3

}

. As mentioned in Section 3 of the Online Resource, the Euler basis is

orthogonal to the dual Euler basis
{

g̃1, g̃2, g̃3
}

:

g̃i · g̃
j = δji . (3)
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Displacement Gauges
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Fig. 3: Schematic of the stiffness matrix testing apparatus used in Panjabi et al.’s

seminal paper [27]. The lower vertebra, V1 was fixed by bolting it to a polyester cast.

Load vector components, one at a time, were then applied to the upper vertebra V2 via

a threaded pin and the displacements measured using three displacement gauges. The

elements of the experimental stiffness matrix KE used to model the intervertebral joint

J were computed from the resulting load-displacement curves.

We can now define the generalized displacement and force arrays:

∆yA =

















∆yA · e11
∆yA · e12
∆yA · e13
∆β · g̃1

∆β · g̃2

∆β · g̃3

















, ∆F
A
K =









































(

(

FA
K

)

′

− FA
K

)

· e11
(

(

FA
K

)

′

− FA
K

)

· e12
(

(

FA
K

)

′

− FA
K

)

· e13
(

(

MA
K

)

′

−MA
K

)

· g̃1
(

(

MA
K

)

′

−MA
K

)

· g̃2
(

(

MA
K

)

′

−MA
K

)

· g̃3









































. (4)

Here, ∆FAK corresponds to the change in generalized force acting on the landmark

point X2
A on the upper body and ∆yA denotes the increments to the generalized

relative displacement between a landmark point X2
A on the upper vertebra relative

to a landmark point X1
A on the lower vertebra. That is, ∆yA is composed of the

components of the increment in displacement vector yA and increments in the Euler
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angles:2

∆y1k = ∆yA · e1k, ∆βk = ∆β · g̃k, (k = 1, 2, 3). (5)

The elements of the experimental stiffness matrix KE can then be determined by

comparing the changes in the forces and moments to the relative motion between the

upper and lower vertebra.

∆F
A
2 = −∆F

A
1 = −K

E∆yA. (6)

The equal and opposite nature of the generalized forces should be noted.

One of the more common choices of the landmark points XK
A are the vertebral

centers of geometry but one can also opt to use other landmarks such as points on

the upper and lower vertebral surfaces [4,11,27,34,35]. Note that, if these, or other,

experimental data are used to populate bushing stiffness matrices it is crucial to identify

the landmark material points X1
A and X2

A associated with the relative displacement

yA and to accommodate any possible differences in the choices of Euler angles and

basis vectors.

Further details with regards to the derivation of the stiffness matrix parameteriza-

tion of the intervertebral joint can be found in Sections 4-6 of the Online Resource.

3 The bushing element for the OpenSim musculoskeletal software platform

The bushing element commonly used in musculoskeletal software platforms computes

the forces and moments proportional to the relative motions of two frames. This element

is identical in function to applying a diagonal stiffness and damping matrix between

the frames. Here, we elaborate on the algorithm behind the bushing element, and show

how it can be used to accommodate a stiffness matrix. We base our analysis on the

bushing force function available in OpenSim as it is an open-source software platform

with readily accessible documentation.

3.1 Kinematical preliminaries

Following the development of bushing elements in the literature [1,2,18], it is necessary

to introduce several sets of frames. The first of these sets are the two body frames F1

and F2 situated at the centers of mass of the vertebral bodies V1 and V2:

F1 =
{

x̄
1,
{

e
1
1, e

1
2, e

1
3

}}

, F2 =
{

x̄
2,
{

e
2
1, e

2
2, e

2
3

}}

. (7)

The second set of frames correspond to the joint frames:

J1 =
{

x
1
J ,

{

j
1
1, j

1
2, j

1
3

}}

, J2 =
{

x
2
J ,

{

j
2
1, j

2
2, j

2
3

}}

. (8)

As the joint frames J1 and J2 are used to characterize the motion of V2 relative to V1,

they are coincident in the neutral position:

x
1
J = x

2
J , j

1
i = j

2
i , (k = 1, 2, 3) . (9)

2 The reader is also referred to Section 5.1 of the Online Resource for further details on the
specifications of ∆yA and ∆β.
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(a) (b)

V1

V1

V2

V2

B1

B2

B1

B2

F2

F2

F1

F1

J1 = J2
J1

J2

Fig. 4: The frames associated with the bushing element. (a) The frames in the neu-

tral position, and (b) the frames in a displaced position. Once specified, the relative

orientation between the frames FK , JK , and BK remain fixed.

but deviate from each other as the bodies move. The third set of frames are known as

the bushing frames and are associated with the lower and upper vertebra V1 and V2,

respectively:

B1 =
{

x
1
B ,

{

b
1
1,b

1
2,b

1
3

}}

, B2 =
{

x
2
B,

{

b
2
1,b

2
2,b

2
3

}}

. (10)

The six frames are depicted in Fig. 4. It is important to note that j1i and b1
i corotate

with the first vertebral body V1 and j2i and b2
i corotate with the second vertebral body

V2.

In addition to the rotation tensors Q1 and Q2 associated with the respective frames

F1 and F2, several additional rotation tensors must be defined. For example, the rota-

tion tensor QB
1 associated with the frame B1 has the representation

Q
B
1 = b

1
1 ⊗E1 + b

1
2 ⊗E2 + b

1
3 ⊗E3. (11)

Because the basis vectors
{

b1
1,b

1
2,b

1
3

}

corotate with V1, it can be shown that Q1 and

QB
1 are related:

Q1 = T
B
1 Q

B
1 (12)

where TB
1 is a rotation tensor: e1i = TB

1 b1
i . Hence,

R = Q2Q
T
1 = T

B
2 Q

B
2

(

T
B
1 Q

B
1

)T

, R
B = Q

B
2

(

Q
B
1

)T

. (13)



9

When the three frames FK , JK and BK are aligned, QB
K = QK and R = RB .

Following (1) and (2), we define the relative position between the bushing frames

using the relative position vector

yB = x
2
B − x

1
B , (14)

and use the set of Euler angles
{

βB,1, βB,2, βB,3

}

to parameterize RB :

R
B = R

B (

βB,1, βB,2, βB,3, g̃B,1, g̃B,2, g̃B,3

)

. (15)

In the sequel, we employ the vector βB =
∑3

k=1 βB,kg̃B,k. This vector is analogous

to the infinitesimal rotation vector ∆β.

Unlike the joint frames J1 and J2, the bushing frames B1 and B2 need not be

coincident in the neutral position:

yB 6= 0, R
B 6= I. (16)

It will shortly become apparent that, due to the manner with which the bushing force

is computed, non-zero bushing forces will be exerted on the pair of bodies if (16) holds.

3.2 The bushing forces and moments

(F2,M2)B

(F1,M1)B

K
B

(βB ,yB)

B1

B2

F1

F2

V1

V2

Fig. 5: Schematic of the bushing element computations for a V1-V2 motion segment.

The forces and moments due to the bushing element - exerted at the frames B1 and

B2 shown on the right - are related to the relative motion (yB,βB) between the two

bushing frames using the bushing stiffness matrix KB by (18).

It is convenient to first define the following arrays:

yB =

















yB · b1
1

yB · b1
2

yB · b1
3

βB,1 = βB · g̃1B
βB,2 = βB · g̃2B
βB,3 = βB · g̃3B

















, F
B
K =

















FB
K · b1

1

FB
K · b1

2

FB
K · b1

3

MB
K · g̃B,1

MB
K · g̃B,2

MB
K · g̃B,3

















, (17)
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where FB
K and MB

K indicate the force and moment vectors exerted by the bushing

element on the respective bushing frames BK . The generalized relative displacement

array yB is then used in combination with the stiffness matrix KB to determine the

bushing forces and moments acting on the two bushing frames:3

F
B
2 = −K

B
yB , F

B
1 = −F

B
2 . (18)

This is illustrated in Fig. 5. The generalized forces FB1 and FB2 in (18) have force

components expressed in the frame
{

b1
1,b

1
2,b

1
3

}

fixed to V1 and moments expressed

in the dual Euler basis associated with the relative rotation tensor RB (cf. (17) and

(18)).

Notice that the relative displacement and orientation between the bushing frames

is used as opposed to the change in relative position and orientation. Conceptually, this

is similar to a spring with a zero resting length. Consequently, FB2 and FB1 are non-zero

in the neutral position if the bushing frames are not initially coincident (Fig. 6).

FB
2,O

,MB
2,O

FB
1,O

,MB
1,O

K
B

(β,y)B

B1 = F1

B2 = F2

L5

L4

Fig. 6: Schematic showing the case where bushing frames BK are placed coincident with

the body frames FK resulting in non-zero forces and moments in the neutral posture,

denoted using the subscript O (cf. (18) and (19)).

3.3 Comments on experimental data

A number of notable differences exist between the forces and moments exerted by the

bushing element and the experimental stiffness matrix associated with the interver-

tebral disc. If a set of stiffness data for KE , such as those found in [11] or [27], are

3 In OpenSim, the generalized force due to the bushing element FB
1

= −F
B
2

is exerted on the
bushing frame B2 and an additional transformation applied to account for the shift from B2

to B1. Consequently, the generalized force acting on the frame B1 is not equal and opposite to
that exerted on the frame B2 by the bushing element. Rather, the force and moment vectors
exerted on B1 by the bushing element are given by

FB
1 = −FB

2 , MB
1 = −MB

2 +
(

x2

B − x1

B

)

× F1

B .

We will refrain from using this convention.
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x̄1

x̄2

kB = kE

ℓo = 0

kE ≈ k

ℓo = ‖x̄2

O − x̄1

O‖
‖x̄2 − x̄1‖

x1

B
− x̄1

x2

B − x̄2

F1
F1

M∗
1
=

(

x1

B
− x̄1

)

×F1

F2
F2

M∗
2
=

(

x2

B − x̄2
)

×F2V2V2

V1V1

B1

B2

(a) (b)

Fig. 7: A simple two-dimensional example illustrating the importance of using the cor-

rect parameters in computing the bushing force. In (a), a spring with stiffness k and

resting length ℓo is used to connect the two blocks V1 and V2. The forces exerted by

the spring on the geometric centers of the two bodies are measured and the relation-

ship between these forces and motion of the geometric centers are used to determine

the spring constant kE ≈ k. The constant kE is then (incorrectly) used in a model

consisting of the two bodies connected by a bushing element with resting length ℓo = 0

(b). This results in the spurious moments M∗

1 and M∗

2 about the geometric centers of

the two bodies as detailed in the text.

being used to prescribe the components of KB , then the bushing frames B1 and B2

need to be placed coincident with the landmark points X1
A and X2

A used to determine

the elements of KE .4 This ensures that the bushing forces exerted are consistent with

the experimental forces used to measure KE . Unfortunately, this introduces a non-zero

force in the neutral posture equal to

F
B
2,O = −F

B
1,O = −K

B
yB,O , (19)

where FB2,O and FB1,O are the generalized bushing forces acting at the centers of mass of

the upper and lower vertebra respectively, yB,O is the generalized displacement array

between the bushing frames, and the subscript O is used to denote the neutral posture

(cf. Fig. 6).

To eliminate the erroneous generalized forces (19), one could place the bushing

frames initially coincident with each other since this guarantees yB = ∆yB . However,

this can introduce spurious moments at the vertebral centers once the frames begin to

deviate. To elaborate consider the simple planar example shown in Fig. 7. Here, the

bodies are connected by a spring whose line of action passes through the geometric

centers. The spring has a stiffness, k and a resting length ℓo:

ℓo = ‖x̄2
O − x̄

1
O‖. (20)

4 Recall that in both of these studies, the motion and loads at the vertebral centers of
geometry (≈ vertebral center of mass) were used to determine the elements of KE .
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The relationship between the spring force and the motion of the two bodies from

the neutral posture are used to compute the experimental stiffness kE ≈ k. The same

system is now connected by a bushing element with stiffness kB = kE , and zero resting

length. As ℓo = 0, placing the bushing frames B1 and B2 at x̄1 and x̄2 respectively

result in a residual force in the neutral posture. To overcome this, the bushing frames

are typically placed coincident with each other initially. However, this results in the

additional spurious moments M∗

1 and M∗

2 about the centers of geometry of both bodies

when the bushing frames are no longer coincident:

M
∗

1 =
(

x
1
B − x̄

1
)

× F1, M
∗

2 =
(

x
2
B − x̄

2
)

× F2. (21)

4 A SpineBushingElement function for the OpenSim Platform

As can be inferred from the discussion in the previous section, the simplest method

of ensuring compatibility with experimental measurements is to amend the existing

bushing function such that the change in relative motion (from the neutral posture)

is used to compute the ensuing bushing forces. One is then free to place the bushing

frames at the landmark points x1
A and x2

A used to determine the elements of KE . In

this section, we discuss the development of a SpineBushing element that features this

adjustment. Specifically, the SpineBushing forces and moments are computed using

the change in relative motion between the SpineBushing frames. One of the integral

arguments for utilizing the stiffness matrix parameterization lies in the straightforward

manner with which the off-diagonal terms can be used to relate the coupling between

the motion and loads along all six degrees-of-freedom of a spinal motion segment. And

so, this simple, yet significant, modification is further supplemented with the ability to

incorporate stiffness matrices with off-diagonal components.

With the aforementioned changes in place, we write the generalized force exerted

at the SpineBushing frame S2 on the upper vertebra as

F
S
2 = −K

S∆yS (22)

where the super and subscript S has been used to associate the variables with the

SpineBushing function. In (22), KS = KE , ∆yS is the change in the relative motion

between the SpineBushing frames, and FS2 is the generalized SpineBushing force exerted

on the upper vertebra. The expressions for the components of FS2 and ∆yS can be

inferred from (17). With the help of Newton’s third law, it is easy to see that an equal

and opposite force and moment is exerted at the SpineBushing frame S1 of the lower

vertebra:

F
S
1 = −F

S
2 . (23)

We emphasize that using ∆yS as opposed to yS in (22) ensures that no forces and

moments are exerted in the neutral posture.

Implicit in (22) and (23) is the assumption that the elements of KE are determined

using the components of the forces and displacements measured in the frame of ref-

erence of the lower body, the relative rotations and increments in moments measured

in the Euler and dual Euler basis respectively, and that the SpineBushing frames S1

and S2 have the same orientation as the body-fixed frames, and are situated at the

landmark points used to determine the elements of KE . If a different set of basis vectors
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are used, then appropriate modifications need to be made to the expressions for FSK ,

and ∆yS to ensure compatibility with KE .

In the interest of notational simplicity, and without any loss of generality, we will

henceforth assume that these landmark points coincide with the geometric centers of

the adjacent vertebrae, and this corresponds to the location of the frames FK . We also

refer the interested reader to https://simtk.org/home/spinebushing for the software

implementation of the SpineBushing element in OpenSim.

5 Application

5.1 Model details

To illustrate the issues raised in the preceding discussion, four simple models of the

lumbar spine were constructed in OpenSim. All four models consisted of the vertebrae

L1 through L5, with adjacent bodies connected using bushing elements (Fig. 8 and

Table 1) and vertebral centers of mass situated at the vertebral geometric centers. The

first, Model 1, features a bushing element with a diagonal stiffness matrix and bushing

frames coincident with the joint frames while in Model 2, the bushing frames are placed

at the vertebral geometric centers. Models 3 and 4 both utilize SpineBushing elements

but Model 3 utilizes a diagonal experimental stiffness matrix KE
D while Model 4 uses

the full experimental stiffness matrix: KE = KE
F .

We estimated the elements of the stiffness matrix KE
F based on the experimentally

computed stiffness matrix values reported in [11] for the L4/L5 motion segment un-

der 500N of preload. The components were then rearranged and scaled to align with

OpenSim’s coordinate system and set of units.5 That is,

K
E
F =

















500000 0 0 0 0 11000

0 2500000 0 0 0 −5000

0 0 500000 −12000 13500 0

0 0 −12000 400 −300 0

0 0 13500 −300 850 0

11000 −5000 0 0 0 600

















(24)

with units given in N, m and rad. Notice that this matrix has the same number of

independent components and, after relabeling axes, symmetries as the stiffness matrix

K in [27]. Further details on the models used, such as the geometry of the vertebral

bodies are identical to those used in our earlier work [3] and we refer the interested

reader to this resource for further details.

5 The coefficients associated with their reported stiffness matrices were determined by per-
forming highly controlled motion in one direction, measuring the ensuing forces and moments
exerted at the geometric centers of the vertebrae, and then using a least-squares fit to the
experimental data by the method specified in [34].

https://simtk.org/home/spinebushing
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Model 1 Model 2 Model 3 Model 4

Uses typical bushing elements Uses SpineBushing elements

Uses diagonal KEs Uses full KEs

e1
1

e1
2

e1
3

Fig. 8: Schematic of the four models used to illustrate the application of the SpineBush-

ing element. Model 1 and Model 2 both feature typical bushing elements and diagonal

stiffness matrices but differ in the point of application of the forces and moments (red

dots). Models 3 and 4 on the other hand employ SpineBushing elements and hence,

exert their forces and moments at the centers of mass of the adjacent bodies but only

Model 4’s stiffness matrix has off-diagonal elements (circular and square points). Also

shown is the set of body fixed basis vectors attached to the L5 vertebra. Implicit in these

models is the assumption that the vertebral geometric centers are coincident with the

centers of mass.

For the case where only diagonal stiffness matrices were permitted, only the diag-

onal elements of the full stiffness matrix featured in (24) were used:

K
E
D =

















500000 0 0 0 0 0

0 2500000 0 0 0 0

0 0 500000 0 0 0

0 0 0 400 0 0

0 0 0 0 850 0

0 0 0 0 0 600

















. (25)

For simplicity, the same stiffness matrix was used to model the joint at each level.

All four models also featured the erector spinae and rectus abdominis muscle

groups. These were modeled using the Hill-type model of musculo-tendons available

in the OpenSim software package [13,37,43]. The muscle parameters used are detailed

in Table 2. The optimal fiber length ℓMo , pennation angle at optimal fiber length α,

and tendon slack length ℓTS , were computed using the data and techniques detailed in



15

Model Connection to Bushing Matrix Applied At

1 K
B = K

E
D Joint Frames

2 K
B = K

E
D Centers of Mass

3 K
S = K

E
D Centers of Mass

4 K
S = K

E
F Centers of Mass

Table 1: Summary of the four models used to illustrate the differences caused by (1)

applying the stiffness matrix at the joint connecting the bodies instead of at the vertebral

centers of mass, and (2) the incorporation of off-diagonal elements.

[5]’s anatomical study, scaled to our model’s geometry while the maximum isometric

muscle force FM
o were estimated from the values reported in [3].

Muscle

Maximum isometric Pennation Optimal Tendon
muscle force, angle, fiber length, slack length,

FM
o (N) α (◦) ℓMo (cm) ℓTS (cm)

Rectus abdominis 700 0 21.21 1.21

Erector spinae 2500 13.9 20.00∗ 6.22

Table 2: Model muscle parameters. The physiological value of ℓMo for the erector spinae

was actually computed to equal 7.97 cm. However, we used 20 cm instead as we found

that the passive muscle forces would otherwise dominate.

5.2 Motions

A number of different motions were examined. Pure sinusoidal translations in the

anterior-posterior (E1) and axial (E2) directions were applied to Models 1 and 2 to

reveal the importance of applying the bushing forces at the correct point. We also

examined two separate flexion-extension motions: one involving pure flexion-extension

and one coupled with axial and anterior-posterior translation. In both cases, the mag-

nitude of the rotation of each lumbar segment was prescribed as a linear function of

the total rotation which, in turn, was limited to 10◦ [41]. The coefficients of this linear

function were determined from Wong et al.’s videofluoroscopic imaging study (cf. Figs.

10 and 11 of [42]). Table 3 summarizes the motions studied.

5.3 Muscle forces

The computed muscle control algorithm available in OpenSim was used to determine

the muscle forces exerted by the rectus abdominis and erector spinae muscles in the
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L5/S1 L4/L5 L3/L4 L2/L3 L1/L2

Pure Translation along E1

Amplitude (mm) 0.6 0.6 0.6 0.6 0.6

Pure Translation along E2

Amplitude (mm) 0.25 0.25 0.25 0.25 0.25

Pure Flexion-Extension

Amplitude (◦) 1.25 1.85 2.04 2.31 2.55

Coupled Flexion-Extension

Flexion (◦) 1.25 1.85 2.04 2.31 2.55

eK
1

Translation (mm) 0.6 0.6 0.6 0.6 0.6

eK
2

Translation (mm) 0.25 0.25 0.25 0.25 0.25

Table 3: The four sinusoidal motions used to illustrate the differences caused by (1) ap-

plying the stiffness matrix at the joint connecting the bodies instead of at the vertebral

centers of mass, and (2) the incorporation of off-diagonal elements. Only small am-

plitude motions were tested to agree with the values used by [11] in their experimental

determination of the stiffness matrices elements.

four models specified in Section 5.1.6 This algorithm is described in detail in [39].

Briefly, computed muscle control uses static optimization along with feedforward and

feedback controls to drive the kinematic trajectory of a musculoskeletal model toward

a set of desired kinematics. Since its introduction in 2003, this algorithm has been

used extensively in the biomechanics community to determine, for example, the muscle

forces needed to produce normal and pathological gait patterns [38], as well as to

analyze muscle forces in cycling [39]. Here, we use it to quantify the effects of the

bushing frame placements as well as the incorporation of off-diagonal elements on the

lumbar muscle forces.

6 Results

The additional moment experienced by the vertebrae due to erroneously applying the

stiffness matrix at the joint was studied by subjecting Models 1 and 3 to pure sinusoidal

translations in the anterior-posterior and axial directions. The joint forces and moments

exerted at the centers of mass of the upper vertebra due to the respective bushing

elements below it are shown in Fig. 9. As expected, both Models 1 and 3 experienced

similar forces in the axial and anterior-posterior directions but an additional moment

was exerted on the vertebral bodies of Model 1. This was a consequence of applying

the forces at the joint frames rather than at the centers of mass. We stress that this

moment is not due to the coupling between the different degrees of freedom present

in the intervertebral joint, but rather a consequence of an erroneous application of

the bushing element. The implications of this are significant as the joint forces and

moments directly affect the computation of muscle forces necessary to produce a given

motion. Fig. 10 illustrates this for the axial translation motion: the forces exerted by

6 It is important to note that the computed muscle forces depend on the optimization routine
employed.
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Anterior-Posterior Translation

Axial Translation

ML3
·E3(Nm)

ML1
·E3(Nm)

ML4
·E3(Nm)

ML2
·E3(Nm)

L1

L2

L3

L4

0

0

0

0

0

0

0

0

10

10

-10

-10

5

5

-5

-5

-0.6

-0.6

0.6

0.6

-0.25

-0.25

0.25

0.25
Motion(mm)

Motion(mm)

Model 1

Model 3

Fig. 9: Spurious flexion-extension moment at the center of mass of the upper vertebra

in Model 1 caused by the pure translations in the anterior-posterior (left) and axial

(right) directions. The additional moment is due to the cross product term specified

in (21). Note that the horizontal axes on the figures above are not linearly spaced due

to the sinusoidal nature of the motion: the tick marks on the left (anterior-posterior

translation) signify increments of 0.01mm while the tick marks for the axial-translation

figures on the right signify increments of .005mm.

the rectus abdominis are approximately similar in both models, but there is a distinct

difference in the erector spinae muscle forces.

To avoid this spurious moment, one can opt to place the bushing frames at the

vertebral centers of mass. Unfortunately, this introduces non-zero forces and moments

in the neutral posture as detailed in Section 3 (cf. Fig. 6 and identity (19)). The

magnitude of this force depends on the elements of KB and yB,O. As the magnitude of

the translational stiffnesses are typically on the order of 100,000 N/m, even an initial

∆yB,O of 3 cm - the typical distance between vertebral centers of mass - results in

residual forces exceeding 1kN in the neutral posture! This is depicted in Fig. 11 which

illustrates the additional joint forces and moments necessary to produce the anterior-

posterior and axial translation kinematics described in Table 3. It is apparent that

placing the bushing frames at the centers of mass instead of coincident with each other

introduces additional complications due to the presence of large residual bushing forces

and moments. Finally, we studied the effect of incorporating a full stiffness matrix by

comparing Models 3 and 4. The off-diagonal elements of the stiffness matrix used in

Model 4 exert forces and moments not present in Model 3. This results in dramatically

different muscle forces as shown in Fig. 12.
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0
0
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.025

-.025
-.025
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60
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100Erector Spinae
Rectus Abdominis

Force (N)
Force (N)

Motion(mm)
Motion(mm)

Model 3

Model 1Sinusoidal Axial Translation

Fig. 10: Comparison of Model 1 and Model 3 muscle forces output by the computed

muscle control algorithm for the axial translation motion. Shown are the force curves

for the left fascicles only as both the right and left muscle force curves were similar.

Note that the horizontal axes on the figures above are not linearly spaced due to the

sinusoidal nature of the motion: the tick marks shown signify increments of .005mm.

7 Discussion and concluding remarks

Despite the simplicity of the examples used, it is apparent that adapting existing bush-

ing elements to model the intervertebral joint can lead to numerous difficulties. Placing

the bushing frames initially coincident with each other (at the joint frames) as opposed

to the centers of mass appreciably altered the ensuing moments on the bodies (Figs. 9

and 10), while situating the bushing frames at the vertebral centers of mass resulted in

the vertebrae experiencing tremendously large neutral forces and moments (Fig. 11).

To address these two difficulties, a SpineBushing element was introduced. In contrast

to typical bushing forces, the SpineBushing forces are computed using the change in

relative motion between the SpineBushing frames. This allows the user to position the

SpineBushing frames coincident with the centers of mass while simultaneously ensur-

ing that the element exerts no forces and moments when the bodies are in the neutral

posture. In addition, the SpineBushing also permits the use of the full 6 × 6 stiffness

matrix measured experimentally, leading to a more physiologically accurate model of

the load-coupling behavior of the intervertebral joint. Allowing for off-diagonal terms

results in greater load sharing between the degrees of freedom, and directly affects

the muscle forces necessary to generate a given motion as well as the ensuing motion

patterns.

We note that the bushing element itself is an extremely useful function when imple-

mented correctly. For example, in the gait model featured in [38] it is used to connect

the model feet to the ground in a manner that would permit variations in ground re-

action forces in a forward simulation. Others have also used the bushing element to

connect musculoskeletal models feet to bicycle pedals and to connect markers to model

appendages (LifeMOD, LifeModeler, Inc., San Clemente, CA). Hence, we emphasize

that the issues mentioned in the present paper lie not in the bushing element itself,

but in the complications that arise in using it to model the intervertebral joints of the

spine.
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Anterior-Posterior Translation
Axial Translation

FL1
· E1(N)
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Fig. 11: The forces and moments necessary to produce pure translations in the anterior-

posterior (left) and axial (right) directions in Model 2 and Model 3 were computed using

the inverse dynamics tool in OpenSim. When the bushing frames are placed at the

centers of mass of the adjacent bodies, much larger forces and moments are needed in

Model 2 to generate the motion patterns studied due to the residual force exerted by the

traditional bushing elements when the bodies are in the neutral posture (cf. (19)). Note

that the horizontal axes on the figures above are not linearly spaced due to the sinusoidal

nature of the motion: the tick marks on the left (anterior-posterior translation) signify

increments of 0.01mm while the tick marks for the axial-translation figures on the right

signify increments of 0.005mm.

There are a number of issues associated with the SpineBushing element that we

have not explicitly addressed. Asymmetric stiffness matrices were not studied due to

a lack of experimental data. Damping terms were ignored in our exposition as the

applied motions were infinitesimal. Dynamically, the damping terms ensure that small

perturbations to the spine are not catastrophic to the structure’s stability and play an

important role in protecting the joint structures from damage. Our decision to omit a

discussion of damping in this work was motivated by a desire to keep the exposition

as tractable as possible. However, the software implementation of the SpineBushing

element does feature a 6 × 6 damping matrix. We also refer the interested reader to

Appendix of [24] for a discussion of modeling viscous effects in models of the interver-

tebral disk.

Only the erector spinae and rectus abdominis muscle groups, each modeled as two

fascicles with straight lines of action, were studied. Admittedly, our muscle analysis



20

0◦
0◦

10◦
10◦

−10◦
−10◦

100
100

200
200

300
300

Erector Spinae
Rectus Abdominis

Force (N)
Force (N)

Model 3

Model 4

Pure Sinusoidal

Flexion Extension Motion

Fig. 12: Comparison of muscle forces exerted by the erector spinae and rectus abdominis

muscles of Model 3 and Model 4 for the pure flexion-extension motion. Only the forces

in the left fascicle are shown as both the left and right muscle fibers produced similar

force curves.Note that the horizontal axes on the figures above are not linearly spaced

due to the sinusoidal nature of the motion: the tick marks shown signify increments of

2◦.

was vastly simplified. This satisfied our primary aim which was to display the changes

in muscle forces due to an erroneous application of the bushing element while avoiding

the high numerical load of existing models with a larger number of muscles such as the

238 fascicle model detailed in [3].

Finally, we emphasize that the purpose of this paper was to introduce the SpineB-

ushing element and describe its proper implementation in models of the spine. The

SpineBushing element proposed here is not meant to be a comprehensive model of the

intervertebral joint. Rather our intention is to provide a solid and well-documented

basis for future, more detailed models. Particularly useful additions include the abil-

ity for the stiffness matrix elements to be written as functions of the preload as in

[22], incorporation of a damping matrix, as well as the addition of contact forces upon

articulation of the vertebral facet faces.
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