# Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

**Title** Test Results on D-12A-2

Permalink https://escholarship.org/uc/item/6185p1kb

Author Hassenzahl, W.

Publication Date 1984-08-08

LBL-951 SSC-MAG Note-19 August 8, 1984

1

#### TEST RESULTS ON D-12A-2\*

#### W. Hassenzahl

The purpose of this report is to describe the recent tests of D-12A-2. The tests of D-12A-2 began on April 30 and ended on May 8. The unusually long test period was a result of an extensive series of magnetic field measurements in which we attempted to determine the shielding affects of a sextupole compensating coil and the decay of the currents induced in this coil.

This report is short, but much of the data from the tests are included or summarized. We begin with a description of the coil and conductor, continue with the training history, the results of magnetic measurements, including the use of a sextupole compensating coil and then describe the results of heater induced quenches including estimates of axial and transverse quench propagation velocities.

#### D-12A-2 Magnet Description

1

1

The D-12 Magnet is a 1-m long, two layer SSC model wound with two conductors that are similar but do not have the final superconductor pro-

<sup>\*</sup> This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, U.S. Dept. of Energy, under Contract No. DE-ACO3-76SF00098.

posed for the SSC. The major coil parameters are given in Table I and the conductor is described in Table II. The coil cross section is shown in Fig. 1. Several voltage taps were included during construction and these are shown on the wiring diagram, Fig. 2. The load line for the coil and the short sample characteristics of the two conductors are given in Fig. 3.

#### Table I

#### PARAMETERS OF THE D-12A-2 1 METER LONG SSC MODEL DIPOLE

|                                 | layer 1 | layer 2 |
|---------------------------------|---------|---------|
| Inside Diameter (mm)            | 39.88   | 59.44   |
| Outside Diameter (mm)           | 58.93   | 76.61   |
| Pole Angle (°)                  | 73.96   | 40.86   |
| End Outside Diameter (mm)       | 76.61   | 76.61   |
| Number of Wedges                | 10      | 6       |
| Wedge Angle (°)                 | 7.531   | 6.888   |
| Precompression (psi)            | 12,000  | 20,000  |
| Midplane Shim (mm)              | 0.75    | 0.80    |
| Coil Length (m)                 | 0.9954  | 0.6926  |
| Conductor Length (half layer)(m | ) 17.5  | 10.9    |

| Inductance (mH)            | ~.8   |
|----------------------------|-------|
| Maximum Current (A)        | 6430  |
| Iron Outside Diameter (mm) | 219.1 |
| Iron Inside Diameter (mm)  | 86.1  |
| Bore Diameter (mm)         |       |
| Maximum Field (T)          | 6.5   |

i.

1

2

i.

ż

#### Table II

#### CONDUCTOR FOR D 12 A2 MODEL COIL

| Conductor Type                               | <u>Cable</u> | Cable     |
|----------------------------------------------|--------------|-----------|
| Superconductor                               | NbTi         | NbTi      |
| Cable Twist Pitch (mm) <sup>-1</sup>         | 12           | 16        |
| Conductor Length (m)                         | 17.5         | 10.9      |
| Number of Strands                            | 23           | 27        |
| Cable Dimension Insulated (mm <sup>2</sup> ) | 1.52x9.42    | 1.28x8.64 |
| Compaction (percent)                         | 89.5         | 88.7      |
| Insulation Thickness (mm)                    | 2x0.025      | 2x0.025   |
| Strand Diameter (mm)                         | 0.807        | 0.635     |
| Copper to Superconductor Ratio               | 1.03         | 1.33      |
| Number of Filaments                          | 665          | 504       |
| Filament Diameter (µm)                       | 22.0         | 18.5      |
| Strand Twist Pitch (mm) <sup>-1</sup>        | 0.16         | 0.24      |

The voltage taps installed in the coils and shown in Fig. 2 were connected to isolation amplifiers to give the channels listed in Table III. This is the maximum possible number of channels and for some runs only a few of the channels were used. Four heaters were also built into the magnet. They were mounted in grooves in the islands and were in thermal contact with the first turn of each half layer.

#### Training and Precompression

ï

V

The D-12A-2 exhibited some training before reaching 6400 A, which appears to be short sample, on the 14th quench. The training sequence is shown in Fig. 4 and Table IV. The low quench currents for quenches 21 to 25 were during the fast ramp tests. In fact there is negligible reduction in

3

 $I_{max}$  for  $\dot{B}$  up to 0.3T/s. This magnet was not tested in He II so there is no cyclic loss data.

During assembly the coil was compressed to 12,000 psi in layer 1 and 20,000 psi in layer 2 by the iron rings. The compression remaining at 4 K before the coil was energized was less than 2,000 psi on each layer.

### Table III

#### CHANNELS IN DATA FILES FOR THE EARLY QUENCHES ON D-12A-2

|                            | Channel No. | <u>Signal</u>                                                                                          |
|----------------------------|-------------|--------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5      |             | Whole Magnet<br>Top Half<br>Bottom Half<br>Layer 2, Top<br>Layer 2, Top                                |
| 6<br>7<br>8<br>9<br>10     |             | Layer 2, Bottom<br>Layer 1, Bottom<br>Most of 1, Top<br>Dead, See 31<br>Most of 2, Bottom              |
| 11<br>12<br>13<br>14<br>15 |             | Most of 1, Bottom<br>Top 1, 4 to 2<br>Top 1, 2 to 1<br>Top 1, lead end<br>Top 1, side                  |
| 16<br>17<br>18<br>19<br>20 |             | Top 1, far end<br>Top 1, side to sp<br>Top 2, turn 1<br>Top 2, 1 to 3<br>Bottom 2, 3 to 1              |
| 21<br>22<br>23<br>24<br>25 |             | Bottom 2, 1 to spl<br>Bottom 1, sp to sid<br>Bottom 1, far end<br>Bottom 1, side<br>Bottom 1, lead end |
| 26<br>27<br>28<br>29       |             | Bottom 1, 1 to 2<br>Bottom 1, 2 to 4<br>Current<br>Balance, filtered                                   |
| 30<br>31                   |             | Balance, raw<br>Most of Top 2                                                                          |

i.

1

# Table IV

## QUENCH HISTORY FOR D-12A-2

| Quench Number | Current       | Section         | Ramp rate                           |
|---------------|---------------|-----------------|-------------------------------------|
| 1             | 4500          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 2             | 4870          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 3             | 5065          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 4             | 5534          | Layer 2, Bottom | 2X10 <sup>-3</sup> Hz               |
| 5             | 5734          | Layer 2, Bottom | 2X10 <sup>-3</sup> Hz               |
|               |               |                 |                                     |
| 6             | 5680          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 7             | 5924          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 8             | 5963          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 9             | 6022          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 10            | 6139          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
|               |               |                 |                                     |
| 11            | 6197          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 12            | 6315          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 13            | 6383          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 14            | 6412.         | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 15            | 6334          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
|               |               |                 |                                     |
| 16            | 6295          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 17            | 6344          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 18            | 6383          | Layer 2, Top    | 2X10 <sup>-3</sup> Hz               |
| 19            | 6422          | Layer 2, Bottom | 5X10 <sup>-3</sup> Hz               |
| 20            | 6324          | Layer 2, Bottom | 1X10 <sup>-2</sup> Hz               |
|               | (20 P) 20 (2) |                 | ntransformation anyther             |
| 21            | E621          | Laven 1 Tan     | 2X10 <sup>-2</sup> Hz               |
| 21            | 5631          | Layer 1, Top    | 5X10 <sup>-2</sup> Hz               |
| 22            | 5973<br>5052  | Layer 1, Top    | $2 \times 10^{-2} \text{Hz}$        |
| 23            | 5953          | Layer 1, Bottom | 2X10 HZ<br>5X10 <sup>-2</sup> Hz    |
| 24            | 5856          | Layer 1, Top    | 5x10 Hz<br>7.5xX10 <sup>-2</sup> Hz |
| 25            | 5309          | Layer 1, Bottom | 7.5XX10 HZ                          |

i.

•

This level of compression is not sufficient to restrict motion when the coil is energized so some training was expected. The loss of compression when cold is due to the large thermal contraction of the aluminium islands and the coils relative to the iron rings.

#### Heater Tests

Four heaters were installed in the D-12A-2, one on each pole island. The effect of these heaters on the coil are shown in Figs. 5, 6, and 7. In Fig. 5 we see the power in milliwatts required for a heater in the layer 1 island to quench the coil at different current levels. The two sets of data shown, which correspond to constant heater power and constant coil current, are in good agreement.

Figure 6 shows the heater energy required to quench the coil for a pulse duration of 25 ms. These two figures thus define the stable regime for energy and power inputs for a 10 cm length of conducter in the high field region.

Figure 7 shows the transition from a pulsed (energy) input to a continuous (power) input. This occurs at a period of 0.5 to 1.0 seconds. Shorter times have been observed in the past, for other magnets. The long response time is attributed to the poor thermal contact between the heater element and the conductor.

#### Magnetic Measurements

tin t

1

The field quality of D-12A-2 was measured for a variety of conditions: warm and cold, with and without a compensating coil, at many currents, and during different current cycles. The harmonic content of the coil at room temperature is given in Table V for the central and integral fields at a reference radius of 1 cm.

6

£

#### Table V

#### HARMONIC CONTENT OF D-12A-2 AT ROOM TEMPERATURE, 2.0 A, at a REFERENCE RADIUS OF 1 CM, % OF DIPOLE.

| Harmonic Number | Field   |          |
|-----------------|---------|----------|
|                 | Central | Integral |
| 2               | 0.042   | 0.090    |
| 3               | 0.045   | 0.593    |
| 4               | 0.020   | 0.018    |
| 5               | 0.030   | 0.012    |
| 6               | 0.013   | 0.001    |
| 7               | 0.006   | 0.004    |
| 8               | 0.004   | 0.001    |
| 9               | 0.004   | 0.003    |
|                 |         |          |

The sextupole field in the central region is quite reasonable, 0.04 percent, but when the ends are included the field quality degrades considerably. These ends, which were not designed to have a low sextupole component, are too poor at present to be acceptable, even in a 16 m long coil where their effect would be diluted.

The magnetic field in the coil in the superconducting state was measured with the sextupole compensating coil in and out of the persistent mode. The sextupole in the magnet at 3 T, without correction, was 180 G. This value was reduced to 20 G when the compensating coil was in persistent mode from zero current The affects of the compensating coil are seen in Figs. 8 and 9. The lower curve in Fig. 8 shows the characteristics of the magnet itself. Hysteresis in the superconductor (residual currents in the filaments) has a major effect at low fields. In the intermediate field region, the 0.6 percent sextupole is roughly constant and at high fields the iron begins to saturate and introduce a larger component. The upper curve

7

ï

in Fig. 8 shows the sextupole component with the compensating coil in the persistent mode. In Fig. 9 we see the sextupole field for these two cases on an absolute scale of Gauss. The correction is quite good, the residual field is only a few Gauss at low excitation.

#### Quench Propogation Velocities

During some of the quenches the development of the resistive voltage across various segments of the coil was observed in adequate detail to determine quench propagation velocities. This data, which is summarized in Table VI, was on the runs when quenches were produced by the heaters so a priori, one might expect them to be slightly high, but they are in reasonable agreement with the data from previous magnet tests.

#### Table VI

#### QUENCH PROPOGATION VELOCITY RANGES FOR WATER INDUCED QUENCHES

| Current<br>(A) | Velocity<br>(m/s) |  |
|----------------|-------------------|--|
| 3000           | 3-6               |  |
| 4000           | 8-25              |  |
| 5000           | 18-25             |  |
| 6000           | 40-60             |  |

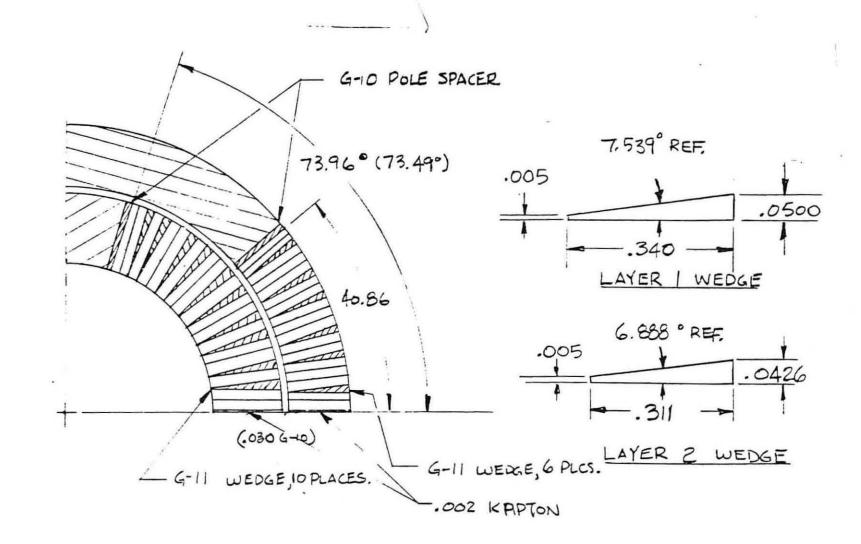
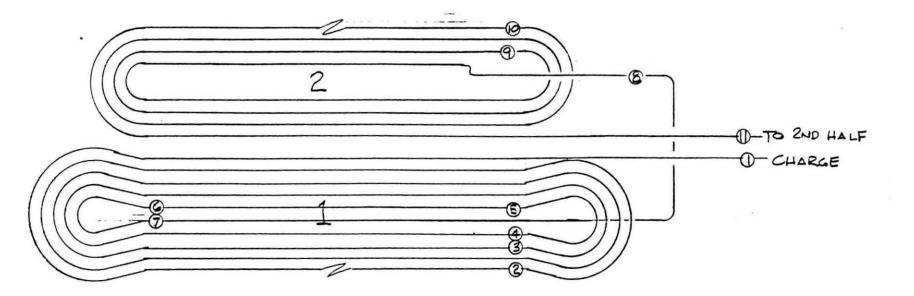
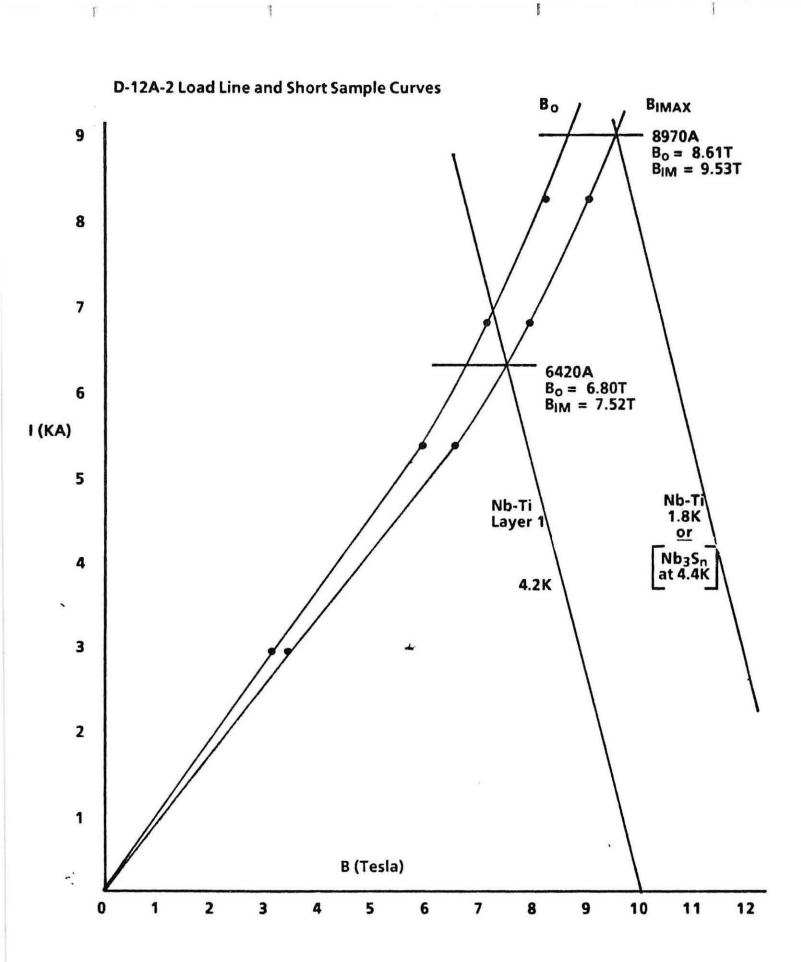
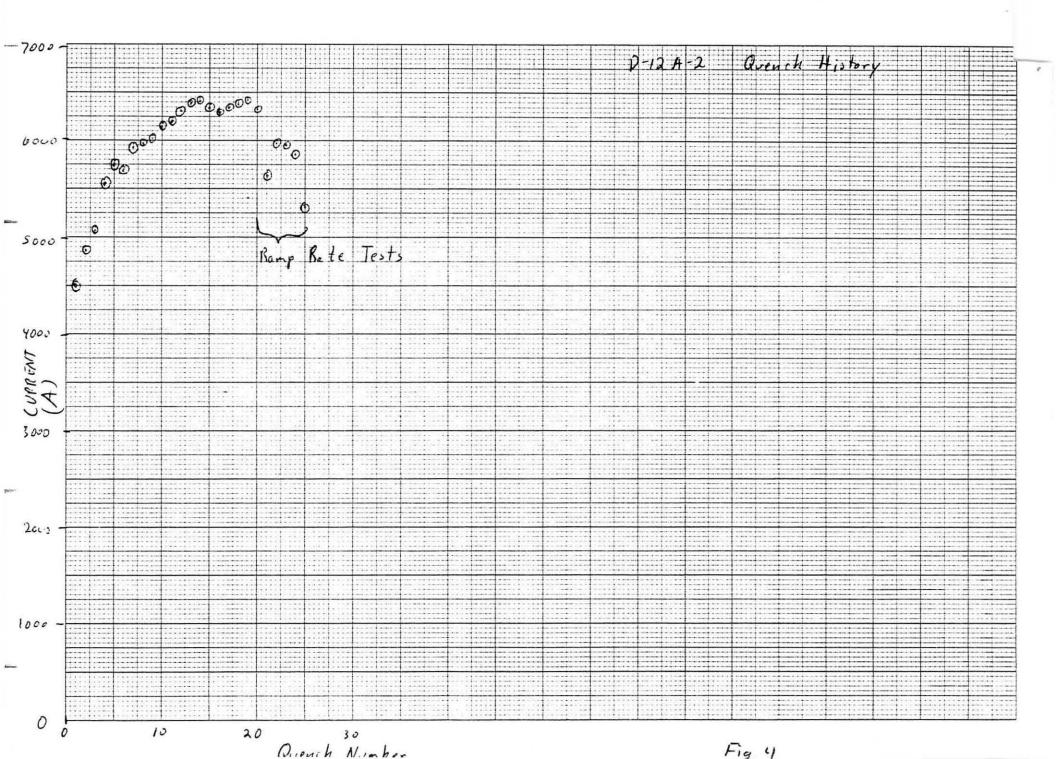
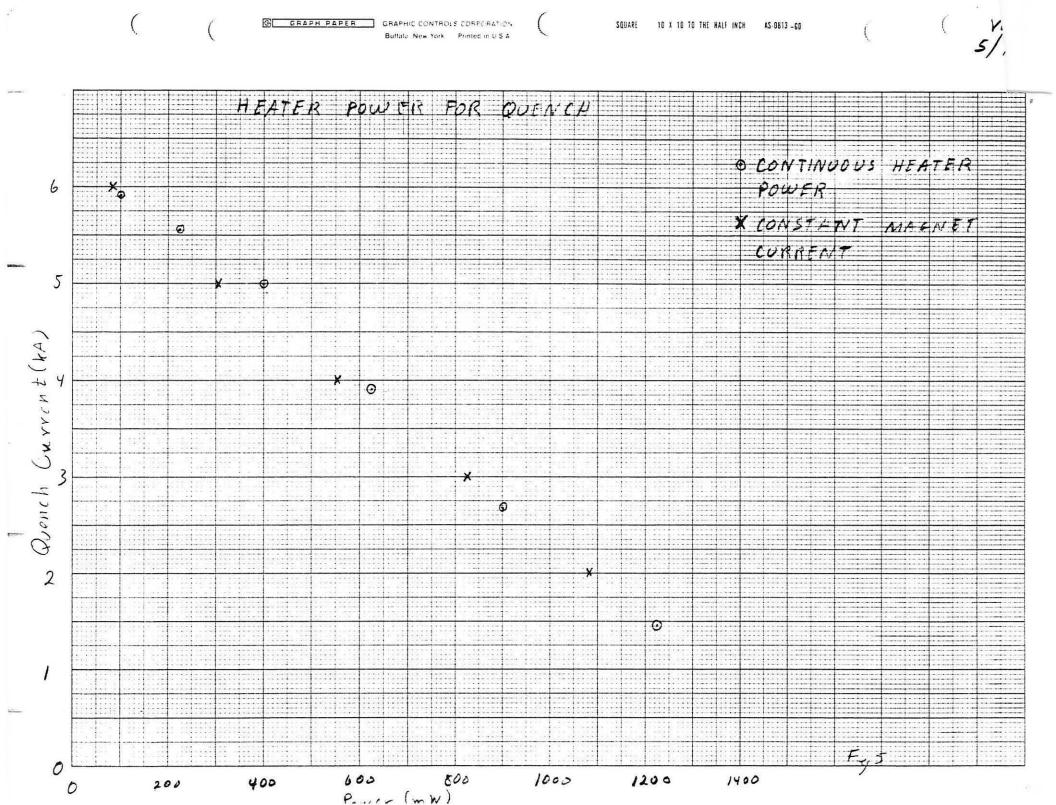
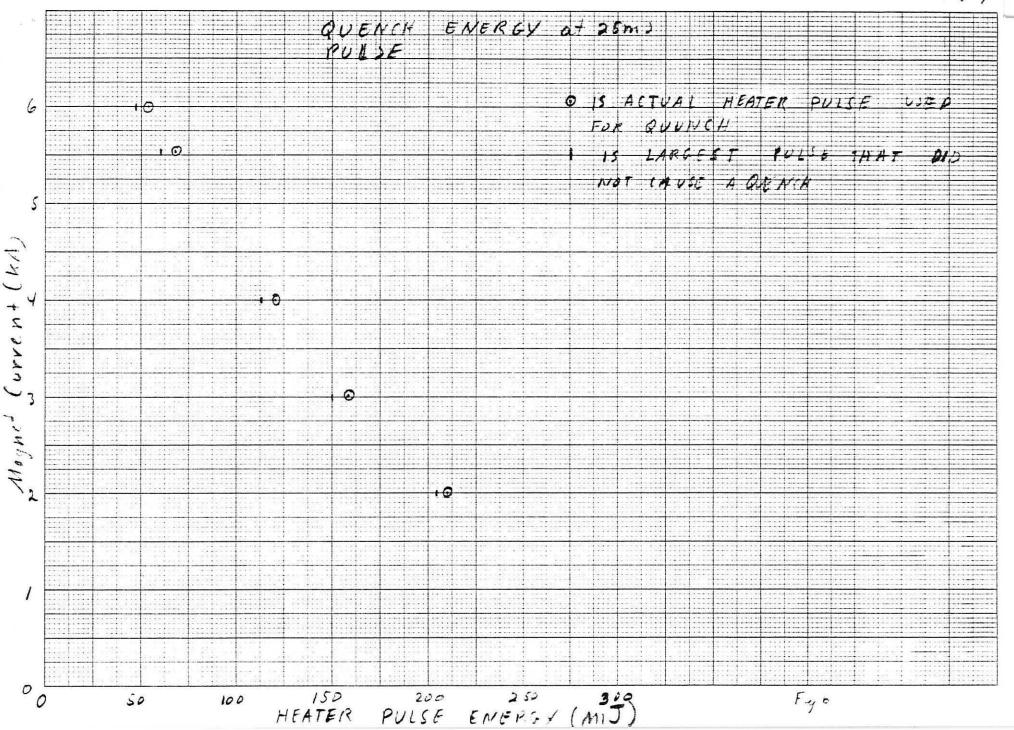




Fig. 1

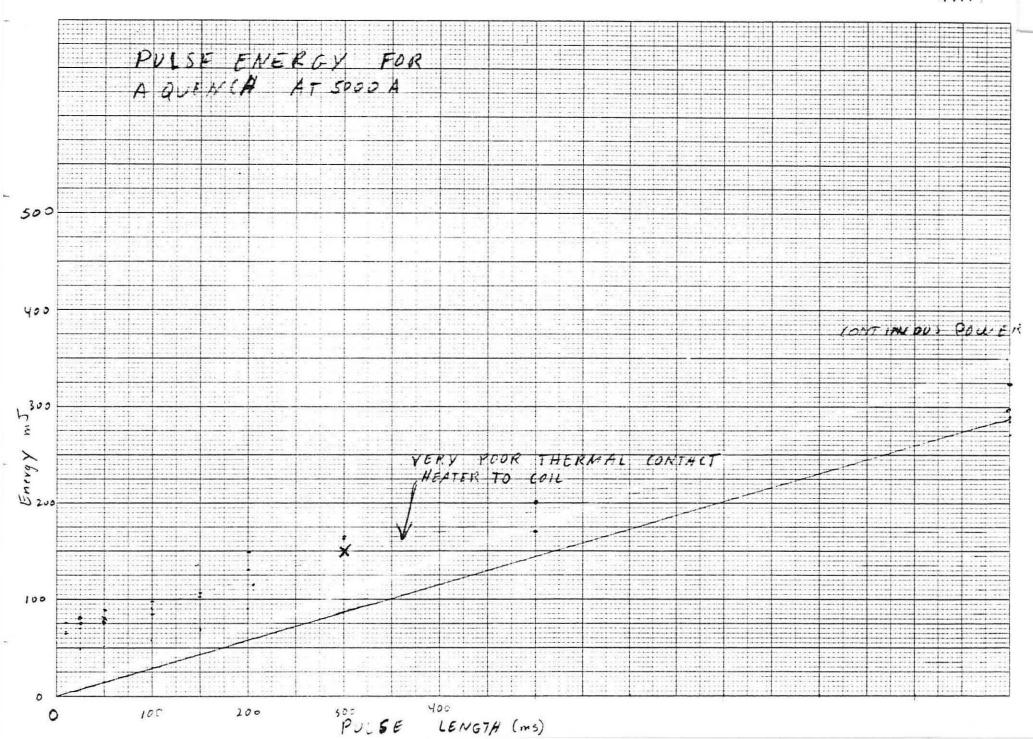




Fig. 3

AS-0813 -60






517/84



ber ;

WA



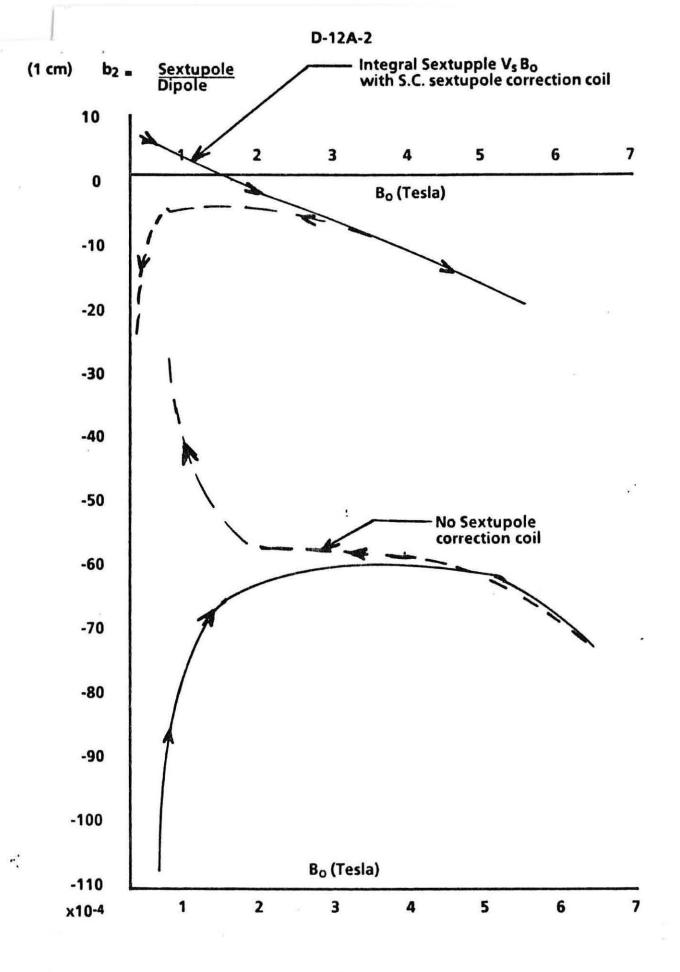
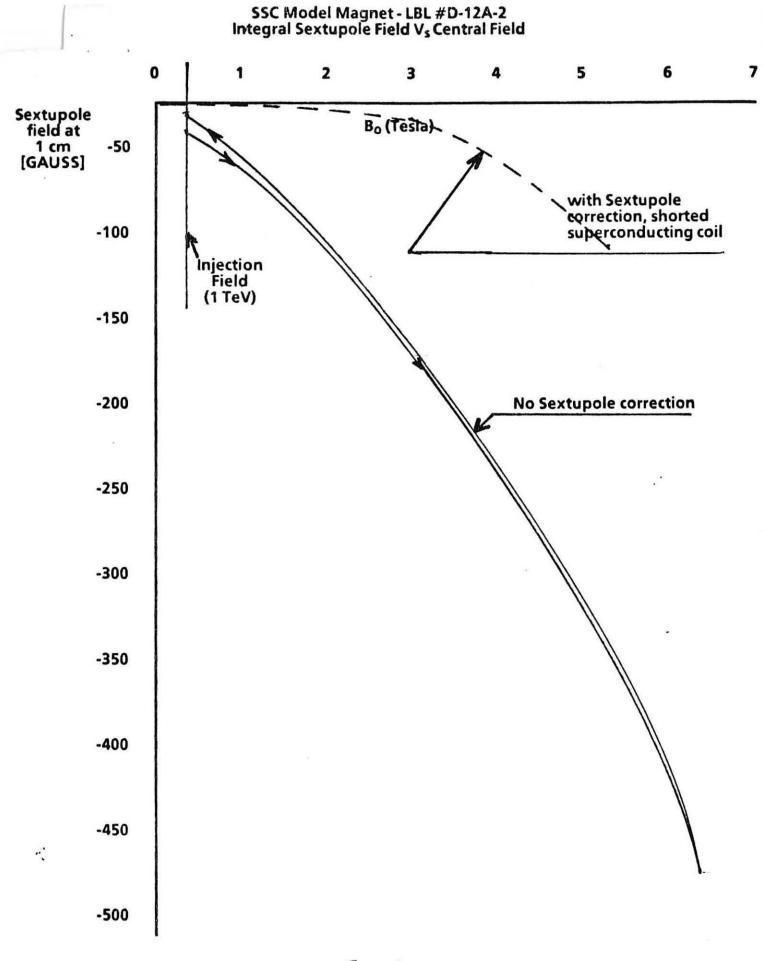




Fig 8



Figq