Title
UV Absorption by Gerrid Cuticles

Permalink
https://escholarship.org/uc/item/6187p020

Journal
Limnology and Oceanography, 23(3)

Authors
Cheng, Lanna
Douek, Maurice
Goring, David A.I.

Publication Date
1978

Data Availability
The data associated with this publication are within the manuscript.

Peer reviewed
UV absorption by gerrid cuticles

Abstract—Halobates is exposed to continuous insolation at the sea surface throughout its life. Although the UV absorbance spectrum of its dorsal cuticle (260-450 nm) is similar to those of related species from inshore and freshwater habitats where shelter from sunlight is available, the UV absorbance of the cuticle in a direction perpendicular to its outer surface is much higher in Halobates than in a mangrove-dwelling Rheumatobates or a stream-dwelling Gerris.

The ocean-skater Halobates—a genus of wingless insects akin to the more familiar pond-striders—lives on the open sea surface between latitudes 50°N to 40°S, often thousands of kilometers from the nearest shade, and is subjected to continuous insolation every day of its life (Cheng 1973a). How does it avoid damaging effects of sunlight, particularly those in the ultraviolet range?

Underlying the long body hairs of Halobates is a layer of microtrichia with bent and swollen ends, which probably functions as a plastron (Cheng 1973b; Andersen and Polhemus 1976). This undercoating may also serve to scatter much of the incident light, making the insects look silvery in sunlight or by artificial light at night. Light, including UV, which penetrates beyond this barrier and reaches the surface of the insect is then either reflected or absorbed.

In certain insects some of the energy of the incident UV light may be re-emitted as fluorescence; this has not been observed in Halobates. Although UV reflectance may contribute to the interference colors of some butterfly wings (Ghiradella et al. 1972; Ghiradella 1974), it has not been considered as a means of avoiding potentially damaging effects of these wavelengths. The biological role in insect cuticles of certain amino acids such as tryptophan and tyrosine, which can absorb light in the UV range, or of melanins, which absorb in the visible range as well, has apparently not been investigated either (Neville 1975).

We report here on the absorbency of Halobates cuticle and that of comparable gerrids from brackish and freshwater habitats and discuss the potential role of the cuticle as a biological shield against UV damage. Since light of wavelengths <260 nm is absorbed by even very thin layers (0.1 mm) of colorless chitin (Merker 1929), we concentrated attention on light in the near-ultraviolet and violet-blue ranges. We thank R. F. Reichle for cutting the thin sections of the cuticles; S. Caveney, O. Holm-Hansen, R. A. Lewin, A. C. Neville, and J. E. Tyler for helpful comments and discussions; W. Heiligenberg for help with the translation of Merker's paper; and the Mid-Pacific Marine Laboratory for providing transport, accommodation, and research facilities at Enewetak Atoll.

Specimens of Halobates sericeus Eschscholtz were collected from the central north Pacific Ocean gyre (31°N, 155°W) in February 1973. Rheumatobates aetustarius Polhemus was collected from mangrove lagoons in the Baja California region (24°N, 110°W) in April 1973, and Gerris remigis Say from Sunfish Creek near Waterloo, Ontario (43°N, 80°W), in May 1969. Intensities of solar radiation in these areas at midday during the months when the specimens were collected were roughly comparable.

We cut 1-μm sections of the dorsal thoracic cuticles perpendicular to the outer surface of each of the gerrids and examined them with a Leitz UV microscope, under monochromatic UV light attained by using a linear mirror monochromator and quartz reflection optics. The thin sections were mounted on quartz slides with quartz cover slips and examined with an immersion objective in a glycerine/water mixture \(n_D = 1.440\). Absorbance at a

1 This work was partly supported by National Science Foundation grant OCE76-19786 to L.C.
given wavelength was measured with a photomultiplier tube directly above the objective, the output signal being detected on a Leeds and Northrup DC amplifier. The absorbance, A_s, was calculated as follows:

$$A_s = -\log_{10} \frac{I}{I_0},$$ \hspace{1cm} (1)

where I and I_0 were the intensities of light of a given wavelength transmitted by the cuticle and by a blank area. The absorbance was measured at selected wavelengths between 260 and 450 nm. Photomicrographs were taken at 280 nm with a Leica MD camera and Kodak high-contrast copy film. Details on the preparation of sample, microscopy, photography, and analyses of photographic negatives were essentially the same as those given by Scott et al. (1969).

Since insects of the same species collected at different localities or at different times of the year were remarkably similar in color patterning, and we did not detect any morphological differences in their cuticles under the light microscope, we considered it sufficient to examine sections of only one or two specimens of each species.

The UV-absorbing layer appears as a dark band in the photomicrographs (Fig. 1). This layer is about 4 μm thick in Halobates, about 3 μm thick in Rheumatobates, and only about 1 μm thick in Gerris. The UV absorption spectra measured through the dark layer of each cuticle are shown in Fig. 2. The absorbance in Halobates is much higher than in the two other gerrids. At 280 nm it is about twice that of Rheumatobates and five times that of Gerris (Table 1). The shape of the spectrum is similar for all three insects, suggesting that the absorbing material is similar in chemical composition but differs only in concentration.

The absorbance, A_r, of the UV-absorbing layer in a direction perpendicular to the outer surface of the cuticle can be calculated from the Beer-Lambert law in the form

$$A_r = A_s \times \frac{\text{thickness of absorbing layer}}{\text{in cuticle}} \times \frac{\text{thickness of section}}{\text{(2)}}$$

The percent transmittance, T_r, of incident light by the cuticle is then given by

$$T_r = \frac{100}{\text{antilog } A_r}. \hspace{1cm} (3)$$

The values thus obtained for T_r (Table 1) indicate that at a wavelength of 280 nm only 0.0002% of the radiation is transmit-
were shielded under aluminum foil. The *Drosophila* died within 30 min, but under similar UV irradiation *Halobates* remained active for at least 24 h (when the experiments were terminated). The UV tolerance of *Halobates*, attributable to the demonstrated high absorption of UV light by the cuticle, is probably an important adaptation for its life at the sea surface.

Scripps Institution of Oceanography
La Jolla, California 92039

Maurice Douek

David A. I. Goring

Department of Chemistry
McGill University
Montreal, Quebec H3C 3G1

References

Submitted: 18 February 1977
Accepted: 8 September 1977