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Sample Size Considerations for Micro-Randomized Trials with 
Binary Proximal Outcomes

Eric R. Cohn,
Department of Biostatistics, Harvard University.

Tianchen Qian*,
Department of Statistics, University of California, Irvine.

Susan A. Murphy
Department of Statistics, Harvard University.

Abstract

Micro-randomized Trials (MRTs) are a novel experimental design for developing mobile health 

interventions. Participants are repeatedly randomized in an MRT, resulting in longitudinal data 

with time-varying treatments. Causal excursion effects are the main quantities of interest in MRT 

primary and secondary analyses. We consider MRTs where the proximal outcome is binary and 

the randomization probability is constant or time-varying but not data-dependent. We develop 

a sample size formula for detecting a nonzero marginal excursion effect. We prove that the 

formula guarantees power under a set of working assumptions. We demonstrate via simulation 

that violations of certain working assumptions do not affect the power, and for those that do, 

we point out the direction in which the power changes. We then propose practical guidelines 

for using the sample size formula. As an illustration, the formula is used to size an MRT on 

interventions for excessive drinking. The sample size calculator is implemented in R package 

MRTSampleSizeBinary and an interactive R Shiny app. This work can be used in trial planning 

for a wide range of MRTs with binary proximal outcomes.

Keywords

Causal excursion effect; Causal inference; Longitudinal data analysis; Mobile health; Sample size 
calculation

1 Introduction

Mobile health interventions target healthy behavior change and are delivered through mobile 

devices such as smartphones and wearable trackers. They are usually delivered in the form 

of push notifications, text messages, or audible pings. They have the potential to be delivered 
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to each individual at the time and in the context they are most likely to benefit. To realize 

this potential, it is important to gather empirical evidence to inform when and under what 

context the interventions are the most beneficial in order to improve and optimize them.

The micro-randomized trial (MRT) is an optimization trial design that provides data to 

answer such questions1–4. In an MRT, each participant is repeatedly randomized among 

multiple options of an intervention, usually hundreds or thousands of times throughout the 

trial. Each of such times is referred to as a decision point. After each decision point, a near-

term, proximal outcome is measured, which is typically an outcome that the intervention is 

directly targeting. Data from MRTs allow researchers to investigate whether the intervention 

is effective on average and whether/how the intervention effect is moderated by contextual 

information5,6. This can lead to further optimization of the intervention through techniques 

such as reinforcement learning7.

We consider MRTs where the proximal outcome following each decision point is binary. 

This is common because a natural proximal outcome for many mobile health interventions 

measures whether the participant adheres to the notification or message. For example, in the 

Substance Abuse Research Assistant (SARA) MRT for developing non-monetary incentives 

to improve self-report completion rate8, one intervention is an inspirational quote whose 

delivery is micro-randomized every day at 4pm, and the proximal outcome is whether 

the participant completes the self-report that evening. In the BariFit MRT for developing 

smartphone-based support for weight maintenance post-bariatric surgery9, one intervention 

is a message reminder for completing the daily food log, and the proximal outcome is 

whether the participant completes the food log on that day.

An MRT is typically sized to ensure adequate power for detecting a clinically meaningful 

average effect of the intervention (i.e., a marginal causal effect). Due to the lack of readily-

available methodology and software to determine the sample size for MRTs with binary 

proximal outcomes, researchers currently rely on simulation-based sample size calculation 

or the sample size formula for MRTs with continuous outcomes1. The former can be 

time-consuming and the latter is inappropriate for binary outcomes.

We develop a sample size formula for MRTs with binary proximal outcomes where the 

randomization probability is constant or time-varying but not data-dependent. We prove that 

under a set of working assumptions, the sample size formula guarantees desired power to 

detect a pre-specified marginal causal effect with type I error control. We demonstrate via 

simulation that violations of certain working assumptions do not affect the power, and for 

those that do, we point out the direction in which the power changes. We provide practical 

guidelines for using the sample size formula. A sample size calculator is implemented in R 

package MRTSampleSizeBinary10 and an interactive web app (https://tqian.shinyapps.io/

mrt_ss_binary/). This work can be used in trial planning for a wide range of MRTs with 

binary proximal outcomes.

The rest of the paper is organized as follows. In Section 2 we present notation and review 

the marginal excursion effect, a key quantity in MRT primary analysis. In Section 3 we list 

the working assumptions and derive the sample size formula. In Section 4 we provide a 
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summary of the simulation findings and a list of practical guidelines for using the sample 

size formula. In Section 5 we illustrate the use of the sample size formula by applying it 

to sizing a real trial. Section 6 presents details of the simulation study. Section 7 concludes 

with a discussion.

2 Preliminaries

2.1 Notation

We focus on settings where (i) each participant is in the MRT for the same number of 

decision points, (ii) the treatment option at each decision point is binary (e.g., delivering 

or not delivering a message), (iii) the timing of decision points are pre-determined (e.g., at 

fixed calendar times determined before the study), and (iv) the randomization probability 

at each decision point is constant, or dependent on the decision point index solely and not 

dependent on other time-varying information such as the outcomes at previous decision 

points.

Let n denote the number of participants in an MRT and m the total number of decision 

points for each participant. For the i-th participant, denote by Ait ∈ 0, 1  their randomized 

treatment assignment at decision point t. For example, Ait = 1 if a treatment is delivered to 

participant i at decision point t, and 0 if not. Let pt denote the randomization probability at t. 
Let Y i, t + 1 ∈ 0, 1  denote the binary proximal outcome measured following decision point t. 
Without loss of generality, suppose Y i, t + 1 = 1 is the desired outcome. For example, Y i, t + 1 = 1
if participant i adheres to the push notification at decision point t, and 0 if not.

In an MRT, there may be decision points when it is inappropriate or unethical to deliver 

a treatment. For example, for safety reasons a mobile health app is usually designed so 

that a treatment is never delivered when the participant is detected to be driving. At such 

decision points, a participant is considered “unavailable” or “ineligible for randomization,” 

randomization does not occur, and the only possible treatment option is “no treatment.” Let 

Iit denote the availability indicator: Iit = 1 if participant i is available at decision point t, and 

Iit = 0 if not. Ait is always 0 if Iit = 0. Taking availability into account, the randomization 

probability is defined as pt = P Ait = 1 ∣ Iit = 1 .

MRT data usually also include participants’ baseline and time-varying covariates. 

Appropriately adjusting for them can increase estimation precision in the primary and 

secondary analyses4. We do not consider covariates in the sample size calculation to avoid 

the need to specify the covariate-outcome relationship during trial planning; this often makes 

the sample size formula conservative. We consider the following longitudinal observations 

for participant i:Oi = Ii1, Ai1, Y i2, …, Iim, Aim, Y i, m + 1 . We assume that Oi: i = 1, …, n  are 

independent and identically distributed (i.i.d.) draws from an unknown distribution P*. We 

use letters without subscript i to denote variables from a generic participant. We use ℝp to 

denote the p-dimensional Euclidean space.
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2.2 Marginal Excursion Effect

The marginal excursion effect (MEE)6 is the main quantity of interest in MRT primary 

analysis and one of the parameters in the sample size formula. We use potential outcomes 

notation11,12 to define the effect. Let A‾ t = A1, A2, …, At  denote the vector of treatment 

assignments up to t and a‾t = a1, a2, …, at  a realization of A‾ t. Let Y t + 1 a‾t  denote the potential 

proximal outcome that would have been observed if the participant were assigned a‾t, a 

treatment sequence up to and including decision point t. Similarly, It a‾t − 1  denotes the 

potential availability at time t under treatment sequence a‾t − 1. MEE for binary proximal 

outcomes is defined as6

MEE t = log P Y t + 1 A‾ t − 1, 1 = 1 ∣ It A‾ t − 1 = 1
P Y t + 1 A‾ t − 1, 0 = 1 ∣ It A‾ t − 1 = 1 , for t = 1, …, m . (1)

An MEE t  value greater than 0 indicates that the treatment is effective at decision point 

t. The two probabilities in (1) are conditional on the decision point being available 

It A‾ t − 1 = 1 , because scientifically the treatment effect is of interest only at available 

decision points, and statistically the treatment effect at unavailable decision points cannot be 

identified without further assumptions.

Each treatment At 1 ≤ t ≤ m  is randomly assigned according to the randomization 

probability pt. We refer to this assignment mechanism as the treatment protocol. MEE t
is called an excursion effect because it is a contrast between what would happen to 

the proximal outcome under two excursions from the treatment protocol: following the 

treatment protocol until t − 1 then always assigning treatment at t (the corresponding 

potential outcome being Y t + 1 A‾ t − 1, 1 ), and following the treatment protocol until t − 1 then 

always assigning no treatment at t (the corresponding potential outcome being Y t + 1 A‾ t − 1, 0 ).

MEE t  is a marginal effect because it is not conditional on any history information (such 

as past treatment assignments and covariate values). It is possible that treatments assigned 

at earlier decision points, such as At − 1 and At − 2, have an impact on the current proximal 

outcome, Y t + 1. Such delayed effects may be attributed to habit formation (a positive delayed 

effect) or user-burden/habituation (a negative delayed effect). It is also likely that the effect 

of the treatment would vary according to certain baseline or time-varying covariate values 

(i.e., the existence of effect modification). We are not ruling out such possibilities by 

focusing on MEE t . Rather, as a marginal quantity MEE t  averages over any such delayed 

effects or effect modification. The focus on marginal quantities in the primary analysis is 

consistent with other optimization trials such as the factorial design13. Delayed effects and 

effect modification may be further explored in secondary and exploratory analyses.

Because the randomization probability pt may only depend on the decision point index but 

not other history information, MEE t  can be expressed in terms of observed data distribution 

under standard causal assumptions (consistency, positivity, ignorability):
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MEE(t) = log P Y t + 1 = 1 ∣ At = 1, It = 1
P Y t + 1 = 1 ∣ At = 0, It = 1 . (2)

The exact formulation of the causal assumptions and the justification of this result is in 

Section 3 of Qian et al.6.

3 Methods

3.1 A Test Statistic That Guarantees Type I Error Control

We develop the sample size formula based on a test statistic for testing the null hypothesis

H0:MEE(t) = 0 for 1 ≤ t ≤ m

against the alternative hypothesis

H1:MEE t ≠ 0 for some t ∈ 1,2, …, m .

An omnibus test that aims to detect every possible MEE t  under H1 will have low power to 

detect nonzero MEE t  in specific trends in t14. Instead, we propose a test statistic that will 

have high power against some target alternative MEE t  t = 1, …, m  with a small number 

of degrees of freedom. The rationale is to trade off bias and variance in order to achieve 

high power to detect alternatives close to the target alternative. Here variance is roughly 

characterized by the degrees of freedom in a t-statistic, and bias is how different the true 

MEE t  function is from the target alternative.

We consider the setting where MEE t  in the target alternative is a linear function of a vector 

parameter β0 ≠ 0:

MEE(t) = f(t)Tβ0 for 1 ≤ t ≤ m .

Here f(t) is a pre-specified p-dimensional vector-valued function of t and β0 ∈ ℝp. The 

choice of the target alternative is usually determined in conversation with the scientific 

team. For example, if the scientific team does not expect the effect of the intervention to 

vary greatly over time, a constant-in-time MEE(t) with f(t) = 1 would be a good choice 

for the target alternative. If, however, the scientific team conjectures that the effect of the 

intervention might be close to zero and gradually increase with time early in the study and 

possibly decrease later in the study, a quadratic target alternative with f(t) = 1, t, t2 T
 might 

be a good choice.

We construct the test statistic as follows. Let g(t)Tα be a working model for 

log E Y t + 1 ∣ At = 0, It = 1 , where g(t) is a q-dimensional feature vector and α ∈ ℝq. We require 

that ptf(t) is a subset of g(t)1. Let (α̂, β̂) denote the solution to the following estimating 

equation:
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1
n ∑

i = 1

n
∑
t = 1

m
Iit e− Ait − pt f(t)TβY i, t + 1 − eg(t)Tα g(t)

Ait − pt f(t) = 0. (3)

Equation (3) is a modified version of equation (10) in Qian et al.6, in that we replaced 

their exp{−Aitf(t)Tβ} by exp{− Ait − pt f(t)Tβ}; this modification is to enable the derivation 

of an analytic sample size formula in Section 3.2. Suppose the data generating distribution 

P* satisfies MEE(t) = f(t)Tβ(t = 1, …, m) for some β ∈ ℝp. We show in Section A of the 

Supplementary Materials that with large n, β̂ approximately follows a normal distribution:

β̂ ≈ N β, 1
nM̂−1Σ̂M̂−1, T , (4)

where

M = 1
n ∑

i = 1

n
∑
t = 1

m
Iite− Ait − pt f(t)TβY i, t + 1 Ait − pt

2f(t)f(t)T ,

Σ = 1
n ∑

i = 1

n
∑
t = 1

m
∑

s = 1

m
IitIisrit(α, β)ris(α, β) Ait − pt Ais − ps f(t)f(s)T ,

rit(α, β) = e− Ait − pt f(t)TβY i, t + 1 − eg(t)Tα .

(5)

We consider the Wald-type test statistic

T = nβ̂T(M̂−1Σ̂M̂−1, T)
−1

β̂ . (6)

Setting β = 0 in (4) implies that under H0 the large sample distribution of T  is χp
2, a chi-

squared distribution with p degrees of freedom. Thus, a hypothesis test that uses the critical 

value of the chi-squared distribution will have nominal type I error control asymptotically. 

To correct the downward bias of the sandwich estimator M̂−1Σ̂M̂−1, T  when the sample 

size n is small, we use the critical value from a scaled F-distribution because n − q − p
p n − q − 1 T

approximately follows F p, n − q − p, an F-distribution with degrees of freedom p, n − q − p 1,15. 

In particular, the rejection region of a test with significance level η is

T : n − q − p
p n − q − 1 T > F p, n − q − p

−1 (1 − η) , (7)

where F p, n − q − p
−1  is the quantile function of F p, n − q − p. We further incorporated the small sample 

correction in Mancl and DeRouen16 by replacing Σ̂ in (6) with an adjusted version using the 

“hat” matrix, which improves type I error control for small sample sizes.

1In other words, we require that for each t, the linear span of g(t) contains ptf(t). For instance, if f(t) = 1, t  so that 

f(t)Tβ0 = β00 + β01t, and pt is a constant (say pt = 0.6 for all t), then g(t) must also contain at least 1, t . If f(t) = 1, t  and pt is a 

linear function in t, then g(t) must contain at least 1, t, t2 .
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3.2 A Sample Size Formula That Guarantees Power Under Working Assumptions

Equation (4) implies that when the data generating distribution P* satisfies the target 

alternative MEE(t) = f(t)Tβ0 for all t, the test statistic T  approximately follows χp
2 λ(n)), a 

non-central chi-squared distribution with p degrees of freedom and non-centrality parameter 

λ(n) = nβ0
T M−1ΣM−1, T −1β0, where M and Σ are the probability limits of M̂ and Σ̂ as 

n ∞, respectively. To improve small sample performance, we use the F-distribution 

approximation instead. In particular, the scaled test statistic n − q − p
p n − q − 1 T  approximately 

follows F p, n − q − p; λ n , a non-central F-distribution with degrees of freedom p, n − q − p  and 

non-centrality parameter λ n 1,15. In order to have at least 1 − b power to detect the target 

alternative, the sample size n must satisfy

P n − q − p
p n − q − 1 T > Fp, n − q − p

−1 (1 − η) ≥ 1 − b, where n − q − p
p n − q − 1 T Fp, n − q − p; λ n .

Therefore, the required sample size is the smallest integer n such that

1 − F p, n − q − p; λ n F p, n − q − p
−1 1 − η ≥ 1 − b . (8)

The sample size formula (8) relies on λ n , which depends on the data generating distribution 

P* that is typically unknown during trial planning. To make it feasible to compute n from 

(8), we make the following working assumptions about P*.

(WA-a) (Known MEE.) Suppose MEE(t) = f t Tβ0 for 1 ≤ t ≤ m, where both f(t) and β0 ∈ ℝp

are known.

(WA-b) (Known success probability under no treatment.) Suppose 

E Y t + 1 ∣ At = 0, It = 1 = eg t Tα0 for 1 ≤ t ≤ m, where both g(t) and α0 ∈ ℝq are known.

(WA-c) (Known availability probability.) Suppose E It = τ(t) for 1 ≤ t ≤ m, where τ(t) is 

known.

(WA-d) (No serial correlation in the outcome.) Suppose that, for every pair t, s  with 

1 ≤ s < t ≤ m E Y t + 1 ∣ It = 1, Is = 1, At, As, Y s + 1  does not depend on Y s + 1.

(WA-e) (Exogenous availability process.) Suppose It is independent of prior treatments or 

prior outcomes; i.e., It ⊥ As, Y s + 1:1 ≤ s < t  for 1 ≤ t ≤ m.

Under the working assumptions, the sample size formula is summarized in the following 

theorem, and all the inputs to the formula are listed in Table 1.

Theorem 1.
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(Sample size formula under working assumptions.) Suppose the data generating distribution 

P* satisfies (WA-a)-(WA-e), and β0 ≠ 0. Suppose ptf(t) is a subset of g(t). Then the 

probability limits of M̂ and Σ̂ as n ∞ are

M = ∑
t = 1

m
τ(t)eptf(t)Tβ0 + g(t)Tα0 1 − pt ptf(t)f(t)T ,

Σ = ∑
t = 1

m
τ(t)e2ptf(t)Tβ0 + g(t)Tα0 1 − pt pt 1 − pt e−f(t)Tβ0 + pt − eg(t)Tα0 f(t)f(t)T .

(9)

Furthermore, let λ(n) = nβ0
T M−1ΣM−1, T −1β0, and let n0 be the smallest integer n that 

satisfies the sample size formula (8). Then for n0 i.i.d. samples from P*, the testing 

procedure (7) has at least 1 − b power.

We prove Theorem 1 under a set of weaker but less interpretable working assumptions in 

Section B of the Supplementary Materials.

(WA-a)-(WA-c) assume the knowledge of certain parameter values about P*, and (WA-d)-

(WA-e) assume specific independence properties about P*. In particular, (WA-a) specifies 

MEE(t), 1 ≤ t ≤ m, for the target alternative. We treat it as a working assumption to assess the 

performance of the sample size formula when it is violated, i.e., when the true MEE(t) under 

P* is different than the target alternative.

(WA-b) states that the researcher knows E Y t + 1 ∣ At = 0, It = 1 , the success probability of the 

binary outcome under no treatment at t, and how it changes over time. We use “success 

probability null curve” to refer to

SPNC t : = E Y t + 1 ∣ At = 0, It = 1 . (10)

One caveat is that E Y t + 1 ∣ At = 0, It = 1  averages over the past treatments A1, A2, …, At − 1  and 

past outcomes Y 2, Y 3, …, Y t , and thus SPNC(t) depends on the magnitude of potential delayed 

effect and serial correlation.

(WA-c) states that for each decision point, the researcher knows the probability of a 

participant being available. Note that if (WA-e) is violated, τ(t) would incorporate how It

depends on previous As and Y s + 1 1 ≤ s < t .

(WA-d) states that the outcome does not depend on previous outcomes given previous 

treatments. This assumption is made to facilitate an analytic sample size formula. This 

assumption is implausible in most mobile health applications because for the same 

participant, outcomes measured closer in time are likely correlated. In the simulation studies 

we will see that the sample size formula still performs well when (WA-d) is violated.

(WA-e) states that the availability indicator, It, does not depend on prior treatments and prior 

outcomes. This assumption may or may not be plausible depending on the particular study. 

For example, (WA-e) is plausible if a decision point is unavailable due to a technical glitch 

Cohn et al. Page 8

Stat Med. Author manuscript; available in PMC 2023 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unrelated to the participant’s behavior or treatment. (WA-e) will be violated if availability 

reflects burden considerations in that a decision point is unavailable when treatment is 

delivered at a recent decision point. Note that (WA-e) holds for MRTs with no availability 

considerations because It will always be 1.

4 Performance of the Sample Size Formula under Working Assumption 

Violations and Practical Guidelines

We conducted extensive simulation studies to evaluate the performance of the sample 

size formula when all working assumptions hold and when certain working assumptions 

are violated. Here we summarize the performance of the formula and provide practical 

guidelines. Detailed simulation results are in Section 6.

We start with definitions necessary for summarizing the simulation findings. Define the 

average treatment effect (ATE) as

ATE = t = 1
m E Y t + 1 ∣ At = 1, It = 1 E It

t = 1
m E Y t + 1 ∣ At = 0, It = 1 E It

, (11)

the average success probability under the null (ASPN) as

ASPN = t = 1
m E Y t + 1 ∣ At = 0, It = 1 E It

t = 1
m E It

, (12)

and the average availability (AA) as

AA = 1
m ∑

t = 1

m
E It . (13)

ATE is the multiplicative causal excursion effect averaged over time and weighted by 

availability (Remark 5 of Qian et al.6). ASPN is SPNC(t): = E Y t + 1 ∣ At = 0, It = 1  averaged 

over time and weighted by availability. AA is τ(t) : = E It  averaged over time. ATE, ASPN, 

and AA summarize the magnitude of MEE(t), SPNC(t), and τ(t), respectively. In addition, we 

will use “pattern” to refer to how MEE(t), SPNC(t), and τ(t) vary over time independently of 
their magnitude. As we will see, the magnitude and the pattern of MEE(t), SPNC(t), and τ(t)
impact the performance of the sample size formula in different ways.

We distinguish two versions of each of the quantities: one corresponding to the true data 

generating distribution (denoted by superscript ∗) and the other corresponding to the 

input to the sample size formula (denoted by superscript “w”, meaning “working”). For 

example, ATE* is (11) with the expectations calculated according to the true data generating 

distribution P* (which is unknown unless in simulations), and ATE w is (11) with the 

expectations calculated using the input to the sample size formula assuming all working 

assumptions hold. Using this notation, (WA-a) is equivalent to MEEw(t) = MEE*(t), (WA-b) 

is equivalent to SPNCw(t) = SPNC*(t), and (WA-c) is equivalent to τw(t) = τ*(t).
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The simulation findings are as follows. Regardless of whether the working assumptions 

hold, the type I error rate is always controlled at the desired 0.05 level. So we will focus 

on power next. When all the working assumptions hold, the MRT is adequately powered. 

When certain working assumptions are violated, the performance of the sample size formula 

depends on the discrepancy between the ∗-quantities and the w-quantities (Table 2). In 

general, correctly specifying the magnitudes of MEE(t), SPNC(t), and τ(t) is critical for 

adequate power. The performance is robust to the patterns of MEE(t), SPNC(t), and τ(t)
in that as long as one uses constant MEEw(t) and SPNCw(t) the power will be adequate. 

When there is a delayed effect or when the outcome is serially correlated, the MRT is 

adequately powered if ASPNw accounts for the delayed effect / serial correlation so that 

ASPNw = ASPN*; otherwise, the power will depend on the sign of the delayed effect / serial 

correlation. When availability depends on past treatments and outcomes, the MRT can be 

slightly under-powered for some generative models.

The practical guidelines for specifying the inputs to the sample size formula are listed in 

Table 3.

5 Application

We illustrate the use of the sample size formula by determining the sample size of the Drink 

Less MRT. The Drink Less MRT was conducted in 2021, aimed at optimizing the Drink 

Less smartphone app to help people reduce harmful alcohol consumption17. Participants 

were randomized every day at 8 pm for 30 days, each time with probability 0.6 to receive 

an engagement push notification and with probability 0.4 to receive nothing. The protocol 

of the study can be found in Bell et al.18. The considerations presented here are simplified 

for the purpose of illustrating the use of the sample size formula. Participants were always 

considered available during the Drink Less MRT, but we will later consider a hypothetical 

situation where participants can sometimes be unavailable to illustrate this aspect of the 

sample size formula.

According to the MRT design we set m = 30, pt = 0.6 and τ(t) = 1, 1 ≤ t ≤ m, and we set the 

desired power at 0.8 and the type I error level at 0.05. Following the recommendations 

in Section 4, for the remaining inputs to the sample size formula (Table 1) we set both 

MEE(t) = f t Tβ0 and SPNC(t) = exp{g t Tα0} as constant. Thus, f(t) = g(t) = 1, and β0 and α0

are completely determined by ATE and ASPN, respectively. Figure 1 shows how n varies 

with ATE and ASPN under this set of inputs. The sample size of the MRT should then be 

determined based on the conjectured values of ATE and ASPN through conversations with 

domain experts. For this illustration, suppose we choose ATE = 1.15 and ASPN = 0.3. Then 

the resulting sample size is n = 123.

Based on the performance of the sample size formula when working assumptions are 

violated (Section 4), as long as one is conservative in specifying ATE and ASPN for 

constant MEE(t) and SPNC(t), the output sample size n = 123  should guarantee the desired 

power even if the true MEE(t) and SPNC(t) are not constant. Nonetheless, it is always helpful 

to explore how sensitive n is to the inputs. Suppose we keep ATE = 1.15 and ASPN = 0.3, and 
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consider as inputs a variety of linear or quadratic MEE(t) and SPNC(t) parameterized by θf

and θg (see Figure 4 and Section 6.1 for the parameterization). Figure 2 shows how n depends 

the pattern of the input MEE(t) and SPNC(t). When the input MEE(t) is linear or quadratic, 

n is mostly larger than when MEE(t) is constant (Figure 2a). It is true even when θf = 0 so 

that the linear or quadratic MEE(t) becomes a flat line. This is because the extra degrees of 

freedom used by β0 when MEE(t) is linear or quadratic lead to a larger n (see (8)). When 

the input SPNC(t) is linear or quadratic, n is smaller than when SPNC(t) is constant (Figure 

2b). This implies that one may choose a nonlinear SPNC(t) to achieve a smaller n if they 

are confident in the prior knowledge about how the success probability of the outcome may 

change over time.

Last, we consider the hypothetical situation where participants can be unavailable so that 

τ(t) < 1 at least for some t, and examine how n should be adjusted accordingly. According to 

the simulation results, one should consider a constant τ(t) as input to the sample size formula 

if the true τ(t) is not known, and the average availability (AA) determines the input τ(t). In 

this case, the required n increases as AA decreases, and n approximately doubles when AA 

decreases from 1 to 0.5 (Figure 3a). Now suppose we fix AA = 0.7 but vary the pattern of 

the input τ(t) (parameterized by θτ; see Figure 4 and Section 6.1 for the parameterization). 

Figure 3b shows that different patterns of τ(t) have minimal impact on n. Therefore, it is safe 

to set a constant τ(t) and choose n based on a conjectured AA value.

6 Detailed Simulation Results

6.1 Generative Models

Throughout, we set the desired type I error to be η = 0.05 and the desired power to be 

1 − b = 0.8. We set the total number of decision points per individual as m = 30. We used 

2000 repetitions for each simulation. We consider a simple generative model (GM-0) and 

three generative models with more complicated features: one where the treatments have a 

delayed effect on the outcomes (GM-DE), one where the outcomes are serially correlated 

(GM-SC), and one with an endogenous availability process where It depends on previous 

outcomes and previous treatments (GM-EA). We first describe GM-0, then describe how the 

other three GMs differ from GM-0. Details about the generative models are in Section C of 

the Supplementary Materials.

Recall we use superscript * to denote quantities about the true data generating 

distribution and use superscript “w” to denote inputs to the sample size formula. 

GM-0 is characterized by the following parameters: pt, α*, β*, and g*(t), f*(t), τ*(t) for 

1 ≤ t ≤ m . pt is the randomization probability, α* and g*(t) dictate the success probability 

null curve, β* and f*(t) dictate the marginal excursion effect, and τ*(t) is the probability 

of being available. Each individual’s data is generated independently as follows: for 

individual i, for 1 ≤ t ≤ m, Iit Bernoulli(τ*(t)), Ait Bernoulli(pt) if Iit = 1 and Ait = 0 if Iit = 0, 

and Y i, t + 1 Bernoulli(exp{g*(t)Tα* + Aitf*(t)Tβ*}). This implies that MEE*(t) = f*(t)Tβ* and 

SPNC*(t) ≡ E Y t + 1 ∣ At = 0, It = 1 = exp{g*(t)Tα*}
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For GM-DE, the generation of Iit and Ait is the same as GM-0, and the success probability 

for Y i, t + 1 is exp{g*(t)Tα* + Aitf*(t)Tβ* + γ1
*Ai, t − 1}. We generated Ai0 from Bernoulli p0  with 

p0: = p1 to make the above display well-defined for t = 1. Under GM-DE, we have 

MEE*(t) = f*(t)Tβ* and SPNC*(t) = exp γ1
* pt − 1 + 1 − pt − 1 exp{g*(t)Tα*}.

For GM-SC, the generation of Iit and Ait is the same as GM-0, and the success probability 

for Y i, t + 1 is exp{g(t)Tα + Aitf(t)Tβ + γ2Y it}. We only consider the case where individuals are 

always available τ*(t) = 1 for all t  and the causal effect MEE*(t) is a constant. Under 

GM-SC, we have MEE*(t) = β0, and the analytic form of SPNC*(t) is in Section C.4.1 of the 

Supplementary Materials.

For GM-EA, the generation of Ait and Y it is the same as GM-0, and the success probability 

for Iit is 0.5 + γ3Ai, t − 1 + γ4Y itIi, t − 1. We only consider the case where both SPNC*(t) and MEE*(t)
are constant. Under GM-EA, we have MEE*(t) = β0, and the analytic form of τ*(t) is in 

Section C.5.1 of the Supplementary Materials.

To clearly present the simulation results especially when certain working assumptions are 

violated, we parameterized MEE*(t), SPNC*(t) and τ*(t) (as well as MEEw(t), SPNCw(t) and 

τw(t)) as follows. MEE(t) (either MEE*(t) or MEEw(t)) can be constant, linear, or quadratic 

in t. If linear or quadratic, MEE(t) is parameterized in a way that it is determined by ATE 

and a θf ∈ − 1, 1 . For example, if linear, θf = − 1/0/1 correspond to an increasing/constant/

decreasing MEE(t), respectively (Figure 4b). If quadratic, different θf values correspond to 

different quadratic patterns (Figure 4c). If constant, ATE alone determines MEE(t) and no 

θf is needed (Figure 4a). For SPNC(t), we used a similar parameterization with parameter θg

to characterize various patterns of its log-transformation, g(t)Tα (Figure 4d–4f). The range 

of θg is narrower than [−1, 1] to ensure that the success probability is always within [0, 1]. 

For τ(t), we considered a linear and a periodic pattern, both parameterized by θτ, along with 

a constant pattern (Figure 4g). Details about the parameterization are presented in Sections 

C.2.1–C.2.3 of the Supplementary Materials.

6.2 Simulation Results When All Working Assumptions Hold

Using GM-0, we conducted simulations under a variety of settings with various patterns 

and magnitudes of MEE*(t), SPNC*(t), and τ*(t) when all working assumptions hold, that 

is, when MEEw(t) = MEE*(t), SPNCw(t) = SPNC*(t), and τw(t) = τ*(t). ((WA-d) and (WA-e) 

automatically hold under GM-0.) We considered 1,372 simulation settings consisting of a 

combination of constant/linear pt, constant/linear/quadratic MEE(t) with various θf values, 

constant/log-linear/log-quadratic SPNC(t) with various θg values (subject to the constraint 

that ptf(t) is a subset of g(t)), constant/linear/periodic τ(t) with various θτ values, and a variety 

of values for ATE, ASPN, and AA. Details for the simulation settings are listed in Section E 

of the Supplementary Materials. In all settings, the power is always about the desired level 

(Figure 5). The power is slightly lower than the desired 0.8 (around 0.78) for settings where 

the output sample size n is small (close to 20), likely due to the hat-matrix-based small 

sample correction16 employed in the estimator.
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6.3 Simulation Results When (WA-a) Is Violated

Suppose that (WA-a) is violated and the remaining working assumptions are satisfied.

Under GM-0, we considered two ways (WA-a) can be violated: the magnitude of MEE(t) is 

misspecified (ATEw ≠ ATE*), or the pattern of MEE(t) is incorrect. The pattern of MEE(t)
being incorrect means that either the polynomial degree of MEE*(t) is different from 

MEEw(t) (for example, one is constant and the other is non-constant linear), or that the 

two are of the same polynomial degree but θf
* ≠ θf

w.

When the pattern of MEE(t) is correct but its magnitude is misspecified, if ATEw > ATE*
then the MRT is under-powered; if ATEw < ATE* then the MRT is over-powered (Figure 

6). This is expected because, with a fixed power, a larger effect size would correspond to 

a smaller sample size. In addition, the power curves against ATE*/ATEw are all clustered 

together for a variety of SPNC*(t) and a variety of patterns of MEE*(t). This indicates that 

the impact of misspecifying ATE is so substantial that it overwhelms the other aspects of the 

generative model.

When the magnitude of MEE(t) is correct (ATEw = ATE*) but its pattern is misspecified, 

whether the MRT is adequately powered depends on the type of misspecification. If the 

input MEEw(t) is constant but the truth MEE*(t) is linear or quadratic, the MRT is adequately 

powered (Figure 7a). On the contrary, if the input MEEw(t) is linear or quadratic but the 

truth MEE*(t) is constant, the MRT is under-powered unless θf
w is chosen close to 0 so 

that MEEw(t) is nearly constant (Figure 7b). The same result was observed over a range of 

SPNC(t) patterns and ATE and ASPN values, shown by the clustered curves. Section D.1 of 

the Supplementary Materials includes additional simulation results where one of MEEw(t)
and MEE*(t) is linear and the other is quadratic, or the two are of the same polynomial 

shape but θf
w ≠ θf

*. The conclusion is that when the pattern of MEE(t) is misspecified, the 

desired power is guaranteed only if the input MEEw(t) is constant; when MEEw(t) is linear or 

quadratic and is different from MEE*(t), the MRT can be severely under-powered.

6.4 Simulation Results When (WA-b) Is Violated

Suppose that (WA-b) is violated and the remaining working assumptions are satisfied.

Under GM-0, we considered two ways (WA-b) can be violated: the magnitude of SPNC(t)
is misspecified (ASPNw ≠ ASPN*), or the pattern of SPNC(t) is incorrect. The pattern of 

SPNC(t) being incorrect means that either the polynomial degree of SPNC*(t) is different 

from SPNCw(t), or that the two are of the same polynomial degree but θg
* ≠ θg

w.

When the pattern of SPNC(t) is correct and its magnitude is misspecified, if ASPN w > ASPN*
then the MRT is under-powered; if ASPNw < ASPN* then the MRT is over-powered (Figure 

8). The amount of over-/under-power is moderated by the value of ASPN*, shown by the 

three clusters of curves. Therefore, if one is uncertain about the magnitude of the success 

probability under no treatment, one should specify a smaller ASPNw.
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When the magnitude of SPNC(t) is correct (ASPNw = ASPN*) but the pattern of SPNC(t)
is misspecified, whether the MRT is adequately powered depends on the type of 

misspecification. If the input SPNCw(t) is constant but the truth SPNC*(t) is linear or 

quadratic, the MRT is adequately powered (Figure 9a). On the contrary, if the input 

SPNCw(t) is linear or quadratic but the truth SPNC*(t) is constant, the MRT is under-powered 

unless θg
w is chosen close to 0 so that SPNCw(t) is nearly constant (Figure 9b). Section D.2 of 

the Supplementary Materials includes additional simulation results where one of SPNCw(t)
and SPNC*(t) is linear and the other is quadratic, or the two are of the same polynomial 

shape but θg
w ≠ θg

*. The conclusion is that when the pattern of SPNC(t) is misspecified, the 

desired power is guaranteed only if the input SPNCw(t) is constant; when SPNCw(t) is linear 

or quadratic and is different from SPNC*(t), the MRT can be severely under-powered.

Under GM-DE, we simulated under a variety of γ1
* values (recall γ1

* captures the 

magnitude of delayed effect of At − 1 on Y t + 1). The violation of (WA-b) is such that 

the input SPNCw(t) takes a constant, log-linear, or log-quadratic form but the true 

SPNC*(t) = exp γ1
* pt − 1 + 1 − pt − 1 exp{g*(t)Tα*} does not take any of these three forms. When 

we choose the input αw so that ASPNw = ASPN*, the MRT is adequately powered regardless 

of the magnitude and direction of the delayed effect (Figure 10). However, when we ignored 

the delayed effect by setting αw = α* and gw(t) = g*(t), a positive/negative γ1
* would result in 

an over-/under-powered MRT. This is because a positive/negative γ1
* would then correspond 

to a positive/negative delayed effect, which in turn would correspond to SPNCw(t) being 

less/greater than SPNC*(t) for all t and thus ASPNw will be less/greater than ASPN*. The 

same result is observed over a range of SPNC(t) patterns and MEE(t) patterns, shown by the 

clustered curves.

6.5 Simulation Results When (WA-c) Is Violated

Suppose that (WA-c) is violated and the remaining working assumptions are satisfied.

Under GM-0, we considered two ways (WA-c) can be violated: the magnitude of AA is 

misspecified, or the pattern of τ(t) is incorrect. The pattern of τ(t) being incorrect means that 

either one of τ*(t) and τw(t) is linear and the other is periodic, or they are both linear or 

periodic but θτ
* ≠ θτ

w.

When the pattern of τ(t) is correct and its magnitude is misspecified, if AAw > AA* then the 

MRT is under-powered; if AAw < AA* then the MRT is over-powered (Figure 11). This is 

expected as a larger availability probability corresponds to a larger proportion of decision 

points that are used in the analysis. Therefore, if one is uncertain about the magnitude 

of the availability probability, one should be conservative and specify a smaller one. The 

same result is observed over a range of SPNC(t) patterns and MEE(t) patterns, shown by the 

clustered curves.
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When the magnitude of τ(t) is correct (AAw = AA*) but the pattern of τ(t) is misspecified, the 

MRT is adequately powered as long as the input τw(t) is constant, regardless of whether the 

true τ*(t) is periodic or linear (Figure 12). Therefore, one can use a constant τw(t) and focus 

on getting a good estimate of the average availability AA*. The same result was observed 

over a range of SPNC(t) patterns and MEE(t) patterns, shown by the clustered curves.

6.6 Simulation Results When (WA-d) Is Violated

To simulate when (WA-d) is violated, we used GM-SC with a variety of γ2
* values, where γ2

*

encodes the magnitude of serial correlation. SPNC*(t) depends on γ2
* in a rather complicated 

way (see Section C.4.1 of the Supplementary Materials). We considered three ways to 

specify SPNCw(t):SPNCw(t) = SPNC*(t) (thus ASPNw = ASPN*), SPNCw(t) ≠ SPNC*(t) but 

ASPNw = ASPN*, and SPNCw(t) ≠ SPNC*(t) and ASPNw ≠ ASPN*. Figure 13 shows that as 

long as ASPNw = ASPN* (the first two cases), the MRT will be adequately powered even 

if the pattern of SPNCw(t) is incorrect (thus (WA-b) is violated). When both SPNCw(t) and 

ASPNw are incorrect, a larger γ2
* results in a larger ASPN*, which in turn results in a higher 

power (solid curves in Figure 13). In summary, when the outcome has serial correlation, as 

long as ASPNw = ASPN*, the MRT will be adequately powered.

6.7 Simulation Result When (WA-e) Is Violated

To simulate when (WA-e) is violated, we used GM-EA with a variety of γ3
* and γ4

* values, 

where γ3
* encodes the impact of At − 1 on It and γ4

* encodes the impact of Y t on It . τ*(t) depends 

on γ3
* and γ4

* in a rather complicated way (see Section C.5.1 of the Supplementary Materials). 

We considered two ways to specify τw(t):τw(t) = τ*(t) (thus AAw = AA*), and τw(t) ≠ τ*(t)
and AAw ≠ AA*. Figure 14 shows that even when τw(t) = τ*(t), the MRT can be slightly 

over- or under-powered depending on the direction of γ3
* and γ4

*, even though the power at 

most deviates from 0.8 by about 0.05. Thus, if (WA-e) might be violated in practice, the 

researcher can increase the output sample size slightly to be conservative.

6.8 Simulation Results When Multiple Working Assumptions Are Violated

We consider simulation settings where multiple working assumptions are simultaneously 

violated in the following way, which results in a factorial design of 96 generative models:

• (WA-a) is violated in that the pattern of MEE(t) is misspecified but its magnitude 

is correct. In particular, MEEw(t) is constant and MEE*(t) is linear or quadratic 

with θf
* ∈ { − 0.3, 0.3}, and ATEw = ATE* = 1.2. And

• (WA-b) is violated in that the pattern of SPNC(t) is misspecified but its magnitude 

is correct. In particular, SPNCw(t) is constant and SPNC*(t) is linear or quadratic 

with θg
* ∈ { − 0.3, 0.3}, and ASPNw = ASPN* ∈ {0.2, 0.4}. And

• (WA-c) is violated in that the pattern of τ(t) is misspecified but its magnitude 

is correct. In particular, τw(t) is constant and τ*(t) is linear or periodic with 

θτ
* ∈ {0.1, 0.2}, and AAw = AA* = 0.6.
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Sections 6.3–6.5 showed that each individual violations of the above does not affect the 

performance of the sample size formula. Figure 15 showed that when (WA-a), (WA-b), 

and (WA-c) are simultaneously violated in this way, the MRT is still adequately powered. 

This provides a stronger evidence for the practical guidelines in Table 3, that one should 

set MEE(t), SPNC(t), and τ(t) to constant values unless there is compelling evidence to the 

contrary.

7 Discussion

We considered the primary analysis of micro-randomized trials (MRT) with binary proximal 

outcomes and derived a sample size formula to guarantee desired power and type I error 

control under a set of working assumptions. The sample size formula is user-friendly with 

intuitive inputs. Extensive simulations showed that in order for the sample size formula to 

have good performance, one needs to have good knowledge about the following quantities 

(or be conservative when specifying them): the multiplicative average treatment effect 

(ATE), the average success probability of the outcome under no treatment (ASPN), and the 

average probability of availability (AA). The sample size formula is robust to the pattern of 

the marginal excursion effect over time MEE(t) , the pattern of the success probability null 

curve SPNC(t) , and the expected availability over time τ(t), in that they can be incorrectly 

specified as constant and the desired power will still be achieved. We provided practical 

guidelines on how to use the formula and illustrated the formula by sizing the Drink Less 

MRT.

The sample size formula is applicable to MRTs where the treatment At is binary. It is 

common for mobile health interventions to have more than two options. For example, an app 

may choose from multiple types of push notifications if randomized to receive treatment. 

To size such MRTs, one can combine all active treatments into one bucket and denote it 

by At = 1, and use the “any treatment vs. no treatment” comparison as the primary analysis. 

This way the sample size formula can still be used. Exploratory analysis can further assess 

the differential effect of different treatment types. If, however, one wishes to size the study 

for comparison across active treatments, the current method cannot be used, and we leave 

the sample size calculator for such settings for future research.

The sample size formula relies on knowledge of the magnitude of the treatment effect, 

the success probability of the outcome under no treatment, and the availability probability. 

When such knowledge is unavailable, an alternative is a two-stage adaptive design approach, 

where a pilot study is first conducted to obtain preliminary estimates of the inputs to the 

sample size formula, and then the sample size is re-estimated using the pilot information and 

additional subjects are enrolled to obtain the desired power. Such a strategy may be more 

efficient than a fixed-sample design, especially if uncertainty during the planning stage is 

high. It remains an open question of how to precisely operationalize this approach.

Another open question, as pointed out by a reviewer, is how to define a standardized effect 

size that combines the treatment effect and the success probability null curve. By employing 

such a standardized effect size, the sample size calculator may no longer depend on the 

the success probability null curve upon fixing the standardized effect size. However, given 
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the potential need for new causal effect definitions and corresponding estimators, further 

research is necessary to fully explore this approach.

We assumed that the number of decision points, m, is the same for all participants. This is 

usually a reasonable assumption when sizing the MRT. For MRTs where the actual number 

of decision points may differ by participant due to drop out, as a rule of thumb one may 

set a decreasing time trend for expected availability (i.e., treating those who dropped out as 

unavailable later in the study).

In deriving the sample size formula we did not consider time-varying covariates other 

than the decision point index. Therefore, in the sample size formula, the impact of the 

time-varying covariates on the outcome is marginalized and incorporated into how the causal 

effect and the success probability under the null change over time. In analyzing the MRT 

data, one should still adjust for time-fixed and time-varying covariates to improve precision, 

which can further increase power.

R code to reproduce the results in the paper can be downloaded at https://github.com/tqian/

paper_MRTSampleSizeBinary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The dependence of the sample size formula output (n) on ATE and ASPN, where 

m = 30, pt = 0.6, τ(t) = 1, and f(t) = g(t) = 1 so that both MEE(t) and SPNC(t) are constant.
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Figure 2: 
The dependence of the sample size formula output (n) on the pattern of MEE(t)
(parametrized by θf) and the pattern of SPNC(t) (parameterized by θg), where 

m = 30, pt = 0.6, τ(t) = 1, ATE = 1.15 and ASPN = 0.3. The n corresponding to constant 

MEE(t) and constant SPNC(t) is 123, which is marked with a dashed line.
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Figure 3: 
The dependence of the sample size formula output (n) on the average availability 

(AA) and the pattern of τ(t) (parametrized by θτ), where for both panels 

m = 30, pt = 0.6, τ(t) = 1, ATE = 1.15, ASPN = 0.3. For the left panel, f(t) = g(t) = 1 so that 

both MEE(t) and SPNC(t) are constant. For the right panel, MEE(t) takes a few different 

patterns and SPNC(t) is still constant.
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Figure 4: 

(a-c) Illustration of MEE*(t) = f*(t)Tβ* parameterized by θf
* for ATE* = 1.2. (d-f) Illustration 

of log{SPNC*(t)} = g*(t)Tα* parameterized by θg
* for ASPN* = 0.4. (g) Illustration of τ*(t)

parameterized by θτ
* for AA* = 0.7. The figures serve to illustrate the various patterns 

considered. In the simulation, we also vary ATE*, ASPN*, and AA* (not shown here).
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Figure 5: 
Power when all working assumptions hold. The left panel shows the histogram of the power 

under 1,372 settings. The right panel shows the power under each setting against the output n
from the sample size formula.
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Figure 6: 

Power when (WA-a) is violated in that ATEw ≠ ATE*. Here, 

ATE* = 1.4, SPNC*(t) = SPNCw(t) are both quadratic, the patterns of MEE*(t) and MEEw(t)
are the same, and τ*(t) = τw(t) ≡ 1.
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Figure 7: 
Power when (WA-a) is violated in that the pattern of MEE(t) is incorrect: one 

of MEE*(t) and MEEw(t) is constant and the other is linear or quadratic. Here, 

ATE* = ATEw, ASPN* = ASPNw, SPNC*(t) = SPNCw(t), and τ*(t) = τw(t) ≡ 1.

Cohn et al. Page 25

Stat Med. Author manuscript; available in PMC 2023 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 

Power when (WA-b) is violated in that ASPNw ≠ ASPN*. Here, MEE*(t) = MEEw(t) are both 

constant with ATE* = ATEw = 1.2, SPNC*(t) and SPNCw(t) are of the same pattern, and 

τ*(t) = τw(t) ≡ 1.
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Figure 9: 
Power when (WA-b) is violated in that the pattern of SPNC(t) is incorrect: one of SPNC*(t)
and SPNCw(t) is constant and the other is linear or quadratic. Here, MEE*(t) = MEEw(t) are 

both constant, ASPN* = ASPNw, and τ*(t) = τw(t) ≡ 1.
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Figure 10: 
Power when (WA-b) is violated in that Ai, t − 1 has a delayed effect on Y i, t + 1 so that 

SPNCw(t) ≠ SPNC*(t). Here, MEE*(t) = MEEw(t) with ATE* = ATEw = 1.3, ASPN* = 0.3, and 

τ*(t) = τw(t) ≡ 1.
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Figure 11: 

Power when (WA-c) is violated in that AAw ≠ AA* but τ*(t) and τw(t) are of the 

same pattern. Here, MEE*(t) = MEEw(t) with ATE* = ATEw = 1.3, SPNC*(t) = SPNCw(t) with 

ASPN* = ASPNw = 0.3, and AA* = 0.6.
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Figure 12: 
Power when (WA-c) is violated in that the pattern of τ(t) is incorrect. 

Here, MEE*(t) = MEEw(t) with ATE* = ATEw = 1.3, SPNC*(t) = SPNCw(t) with ASPN 

ASPN* = ASPNw = 0.3, and AA* = AAw = 0.6.
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Figure 13: 
Power when (WA-d) is violated in that there is serial correlation in the outcome. Here, 

MEE*(t) = MEEw(t) = log(1.2) with ATE* = ATEw = 1.2, ASPN* = 0.2, and τ*(t) = τw(t) = 1.
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Figure 14: 
Power when (WA-e) is violated in that It depends on At − 1 and Y t. Here, 

MEE*(t) = MEEw(t) = log(1.4) with ATE* = ATEw = 1.4, and SPNC*(t) = SPNCw(t) = 0.5 with 

ASPN* = ASPNw = 0.5.
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Figure 15: 
Power when (WA-a), (WA-b), and (WA-c) are simultaneously violated in that the patterns 

of MEE(t), SPNC(t) and τ(t) are all misspecified but their magnitudes are all correct. The 

histogram shows power under 96 generative models, as detailed in Section 6.8.
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Table 1:

Input to the sample size formula.

Input Interpretation

1 − b desired power

η desired type I error

m total number of decision points per participant

pt 1 ≤ t ≤ m randomization probability at a decision point

τ t 1 ≤ t ≤ m probability of a participant being availability at a decision point

β0, f(t) 1 ≤ t ≤ m marginal excursion effect for the target alternative: MEE(t) = f(t)Tβ0

α0, g t 1 ≤ t ≤ m success probability null curve: E Y t + 1 ∣ At = 0, It = 1 = exp{g(t)Tα0}
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Table 2:

Performance of the sample size formula when working assumptions are violated.

WA violated Details about the setting Power Setting

(WA-a)

MEE(t) magnitude incorrect
ATEw > ATE* ↓ 1

ATEw < ATE* ↑ 2

MEE(t) pattern incorrect
MEEw (t) constant → 3

MEEw (t) non-constant ↓* 4

(WA-b)

SPNC(t) magnitude incorrect
ASPNw > ASPN* ↓ 5

ASPNw < ASPN* ↑ 6

SPNC(t) pattern incorrect
SPNCw (t) constant → 7

SPNCw (t) non-constant ↓* 8

delayed effect but is accounted for (ASPNw = ASPN*) → 9

delayed effect not accounted for (ASPNw ≠ ASPN*)
positive delayed effect ↑ 10

negative delayed effect ↓ 11

(WA-c)

τ(t) magnitude incorrect
AAw > AA* ↓ 12

AAw < AA* ↑ 13

τ(t) pattern incorrect
τw(t) constant → 14

τw(t) non-constant → 15

(WA-d) & (WA-b)

serial corr. but is accounted for (ASPNw = ASPN*) → 16

serial corr. not accounted for (ASPNw ≠ ASPN*)
positive serial corr. ↑ 17

negative serial corr. ↓ 18

(WA-e) endogenous availability process ↓* 19

↓ under-powered; ↑ over-powered; → adequately powered (precisely at the desired level); ↓* under-powered for some generative models. In 
settings 1–8 and 12–15, we considered two ways to violate each of (WA-a), (WA-b), and (WA-c): MEE(t), SPNC(t), or τ(t) has an incorrect 
magnitude or has a correct magnitude but an incorrect pattern. In settings 9–11, we considered a delayed effect of past treatments on the outcome, 

which violates (WA-b) because SPNC*(t) would depend on the delayed effect in a complicated way and we do not expect SPNCw(t) = SPNC*(t). 
In settings 16–18, we considered a serial correlation in the outcome, which violates (WA-b) in addition to (WA-d) because SPNC*(t) would depend 

on the serial correlation in a complicated way and we do not expect SPNCw(t) = SPNC*(t). In setting 19, we allow the availability to depend on 
past treatments and outcomes.
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Table 3:

Practical guidelines for specifying the inputs to the sample size formula. MEE(t): marginal excursion effect at 

time t, defined in (2). ATE: treatment effect averaged over time on the multiplicative scale, defined in (11). 

SPNC(t): success probability under the null at time t, defined in (10). ASPN: success probability under the 

null averaged over time, defined in (12). τ(t): = E It : expected availability at time t. AA: expected availability 

averaged over time, defined in (13).

For 1 − b, η, m, pt

• Specify according to the MRT design.

For MEE(t) = f(t)Tβ0

• Use a constant pattern unless strong prior knowledge about the specific non-linear form.

• Calculate ATE (= β0 if constant MEE(t) ).

• Be conservative in ATE; e.g., use the lower end of the conjectured range.

For SPNC(t) = exp{g(t)Tα0}
• Use a constant pattern unless strong prior knowledge about the specific non-linear form.

• Calculate ASPN (= exp(α0) if constant SPNC(t)).

• Be conservative in ASPN; e.g., use the lower end of the conjectured range.

• Use an even lower ASPN if a negative delayed effect or negative serial correlation is expected.

For τ(t) (for MRT with availability considerations)

• Use a constant pattern unless strong prior knowledge about the specific non-linear form.

• Calculate AA.

• Be conservative in AA; e.g., use the lower end of the conjectured range.

• If availability may depend on prior treatments or outcomes, slightly increase the sample size.

• Try out multiple sets of inputs (formed based on domain knowledge and prior data) to the sample size formula to understand the sensitivity of 
the output sample size to the inputs. Be conservative and use the larger sample size among the calculated results if budget permits.
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