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Characterizing mobility patterns of forest 
goers in southern Lao PDR using GPS loggers
Francois Rerolle1,2*, Emily Dantzer1, Toula Phimmakong3, Andrew Lover4, Bouasy Hongvanthong3, 
Rattanaxay Phetsouvanh3, John Marshall5, Hugh Sturrock1,2 and Adam Bennett1,2,6 

Abstract 

Background  In the Greater Mekong Subregion (GMS), forest-going populations are considered high-risk populations 
for malaria and are increasingly targeted by national control programmes’ elimination efforts. A better understanding 
of forest-going populations’ mobility patterns and risk associated with specific types of forest-going trips is necessary 
for countries in the GMS to achieve their objective of eliminating malaria by 2030.

Methods  Between March and November 2018, as part of a focal test and treat intervention (FTAT), 2,904 forest-goers 
were recruited in southern Lao PDR. A subset of forest-goers carried an “i-Got-U” GPS logger for roughly 2 months, 
configured to collect GPS coordinates every 15 to 30 min. The utilization distribution (UD) surface around each GPS 
trajectory was used to extract trips to the forest and forest-fringes. Trips with shared mobility characteristics in terms 
of duration, timing and forest penetration were identified by a hierarchical clustering algorithm. Then, clusters of trips 
with increased exposure to dominant malaria vectors in the region were further classified as high-risk. Finally, gradient 
boosting trees were used to assess which of the forest-goers’ socio-demographic and behavioural characteristics best 
predicted their likelihood to engage in such high-risk trips.

Results  A total of 122 forest-goers accepted carrying a GPS logger resulting in the collection of 803 trips to the forest 
or forest-fringes. Six clusters of trips emerged, helping to classify 385 (48%) trips with increased exposure to malaria 
vectors based on high forest penetration and whether the trip happened overnight. Age, outdoor sleeping structures 
and number of children were the best predictors of forest-goers’ probability of engaging in high-risk trips. The prob-
ability of engaging in high-risk trips was high (~ 33%) in all strata of the forest-going population.

Conclusion  This study characterized the heterogeneity within the mobility patterns of forest-goers and attempted to 
further segment their role in malaria transmission in southern Lao People’s Democratic Republic (PDR). National con-
trol programmes across the region can leverage these results to tailor their interventions and messaging to high-risk 
populations and accelerate malaria elimination.
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Full list of author information is available at the end of the article
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Background
Forest-going populations are high-risk populations for 
malaria in the Greater Mekong Subregion (GMS) [1]. 
Their activities in the forest and forest-fringes areas – e.g. 
logging, hunting, farming—increase their risk for malaria 
[2–12] because of an enhanced exposure to forest mos-
quitoes—Anopheles dirus and Anopheles minimus [13, 
14]-, the main malaria vectors in the GMS. As malaria 
declines in the region, national control programmes in 
the GMS aim to eliminate malaria by 2030 [15, 16] and 
concentrate their prevention and case detection efforts 
on forest-goers [17, 18]. Yet, much remains unknown 
about forest-goers’ mobility patterns and the actual type 
of trips that they take to the surrounding forest and put 
them at higher risk.

As described in a recent literature review on malaria 
and population mobility [19], population movement is 
frequently mentioned as an obstacle in the fight against 
malaria. With that said, the authors point out to the scar-
city of evidence to support that claim and conclude that 
it led to an excessive focus on “mobile populations” as a 
risk group. Malaria programmes are encouraged to go 
beyond identifying who is mobile and instead charac-
terize how mobile they are and refocus their efforts on 
mobility itself. Forest-going populations, often identified 
as a subgroup within “mobile populations” [11, 17, 18], 
also refers to a broad range of different risk behaviours in 
and nearby the forest [3, 20], and the actual mobility pat-
terns behind what “forest-going” means need to be better 
described.

Micro-scale movement data of forest-goers is essen-
tial to understand their role in the transmission of forest 
malaria in the GMS. Heterogeneity in mobility patterns 
likely results in diverse exposures to mosquito vectors 
and heterogeneous risks for malaria. For instance, indi-
viduals who travel through the forest for days at a time 
are likely to play a different role in malaria transmission 
than individuals who cross the forest to reach their rice 
field everyday but return home every night. Data on for-
est-goers’ mobility patterns could also be leveraged to 
better access these population if geographical or tempo-
ral bottlenecks can be identified.

The recent advent of portable global positioning sys-
tem (GPS) logging devices offers unique opportunities to 
collect fine-scale mobility data on these populations and 
characterize their movements in and around the forest. 
These GPS loggers can provide high resolution data both 
spatially and temporally and have shown high accept-
ability in rural settings [21–23]. In previous studies, such 
devices have successfully been used to assess the impor-
tance of individual movement data on the transmission 
of multiple diseases, such as dengue, schistosomiasis, 
hookworm or filariasis [24–27] but also malaria [28–30].

In this analysis, fine-scale movement data were col-
lected from forest-goers recruited in a focal test and treat 
(FTAT) intervention conducted in southern Lao People’s 
Democratic Republic (PDR). This study is the first to 
describe the mobility patterns of forest-going populations 
in the GMS using GPS loggers. A clustering analysis was 
conducted to characterize the heterogeneity within these 
mobility patterns and a regression analysis to attempt 
to further segment forest-going populations in terms of 
their potential exposure to malaria vectors.

Methods
Study area
In 2018, a randomized controlled trial was conducted 
to evaluate active case detection among forest-going 
populations [31] in southern Lao PDR, where 95% of the 
country malaria transmission concentrates [32]. The data 
used in this study was collected among the forest-goers 
enrolled in the Focal Test-And-Treat (FTAT) arm (Fig. 1), 
an intervention administered continuously to seven 
health center catchment areas (HCCA) in Champasak 
province between March and November.

Data sources
FTAT survey
Fifteen teams of two peer navigators (PNs) were 
employed to scout forest fringes areas in FTAT HCCAs 
for individuals presumed to engage in forest-going 
activities. The eligibility criteria for these targeted “for-
est-goers” were to be older than 15 and having slept out-
side of a village on more than one night in the previous 
month. PNs themselves were recruited, in collaboration 
with local health authorities, from the local communities 
of forest-goers and trained to conduct various surveil-
lance activities including blood collection, malaria testing 
and referrals for treatment. Widely used in other disease 
areas -especially HIV/AIDS- to sample hard-to-reach 
groups, the ‘peer-navigators’ technique relies on these 
community members PNs to actively seek out any per-
sons like themselves for testing, treatment, and linkages 
to health services [31, 33, 34].

Upon recruitment of forest-goers in FTAT, PNs con-
ducted an epidemiological survey covering the demo-
graphic, behavioural, occupational, malaria knowledge 
and practice domains. To understand the mobility pat-
terns of this population of forest-goers, PNs offered a 
subset of them, conveniently sampled, to carry a GPS log-
ger that would record GPS coordinates as they carried it.

GPS data
In May, 53 GPS loggers (I-gotU 120) were dispatched 
across the 15 PN teams to be offered to the next 
enrolled forest-goers and carried for about two months. 
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During that first cycle, loggers were configured to col-
lect GPS coordinates every 30 min and were retrieved 
in July/August by the PN teams for data download-
ing. A second cycle of data collection was started in 

September with 69 GPS loggers configured to collect 
GPS coordinates every 15 min. Loggers were retrieved 
in November for data downloading. Recruiting PNs 
teams also carried GPS loggers, configured to collect 
GPS coordinates every 30 min over the two cycles.

Fig. 1  Study timeline and study area. Top left: Study timeline with the FTAT survey conducted continuously between March and November 
2018. Bottom: Study area with 7 health center catchment areas (HCCA) out of 14 randomly assigned to FTAT. The study was in southern Lao PDR 
conducted in the Champasak province that neighbors Cambodia and Thailand (see upper right indent). The map used ESRI imagery available in the 
leaflet R package
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In order to simplify instructions, the GPS loggers were 
configured so that they could not be turned off by forest-
goers or PNs and the logging intervals selected, 15 to 
30 min, afforded an estimated 7 to 12 days of battery life. 
Loggers could be charged on outlets with regular phone 
chargers. To avoid battery depletion while on forest trips 
or off the grid, external charging devices (Verbatim®) 
and two sets of four individual AA lithium batteries were 
provided to recruited forest-goers. Participants were 
instructed to carry the GPS loggers at all times, to fre-
quently charge them (at least once a week) and to meet 
again after two months for GPS loggers’ retrieval. PNs 
demonstrated all aspects of the GPS loggers’ utilization, 
including charging, to recruited forest-goers.

GPS logger retrieval questionnaire
After roughly two months, PNs met again with forest-
goers to collect the GPS loggers in exchange for a $10 
monetary incentive. Upon retrieval, a short questionnaire 
was administered to assess feasibility of using GPS log-
gers to record mobility patterns of forest-goers. In par-
ticular, the survey asked about forest-goers’ charging 
practices and logger utilization over the two-month study 
period.

GPS data processing
Data cleaning
The advertised precision of the I-gotU GPS loggers used 
in this study is 10  m. Yet, the makers warn of possible 
large errors in the GPS coordinates collected, notably 
when the logger stay indoor for long periods of time and 
cannot connect with the satellites. To remove those erro-
neous GPS points, a filtering algorithm that identifies 
GPS points unusually far away from both the previous 
and next GPS points was used. See Additional file 1: S1 
for details.

Significant locations
The data collected by a GPS logger is a time series of 
GPS points forming a trajectory (Fig. 2a). If several GPS 
points cluster together, it indicates a location visited fre-
quently or for long periods of time by the HRP carrying 
the GPS logger (or a location where the GPS logger was 
left behind). Using a method developed by Barraquand 
and Benhamou [35] and implemented in the adehabi-
tatLT [36] package in R [37] (version 4.0.5), the residence 
time spent within a moving 50  m-radius circle window 

centered on every GPS point of the trajectory was com-
puted. Then, the biased random bridge kernel method 
[38] implemented in the adehabitatHR [36] R [37] pack-
age, was used to estimate the utilization distribution (UD) 
30 m per 30 m surface around the trajectory. The UD is 
a concept widely used in animal movement ecology that 
measures the utilization of space via the intensity of the 
GPS points occurrence on the map. A significant location 
was defined as a 100 m-radius circle centered on a local 
maximum of the UD surface that contains at least one 
GPS point of the trajectory with a residence time above 
2 h. Simply put, a significant location is a 100 m-radius 
circle where the GPS logger stayed for more than 2 h at 
least once along the trajectory.

The resulting 1,068 significant locations were mapped 
on top of earth terrain layers, using ESRI imagery in the 
leaflet R package, along with the GPS tracks and manu-
ally classified as forest, forest-fringe/rice field or village-
based locations by visual inspection. Residence time at 
village-based significant location as well as self-reported 
home village by forest-goers in the FTAT questionnaire 
were additionally used to identify forest goers’ home 
location. Finally, PNs’ GPS tracks as well as their self-
reported home village were used to identify significant 
locations that resulted from the study’s activities such as 
follow-up meetings at PNs’ homes. GPS coordinates of 
forest-goers’ and PNs’ home villages were extracted from 
a list of geo-referenced villages in the province provided 
by the national malaria control programme.

Outdoor trips
A trip was defined as a series of consecutive GPS points 
in between two GPS points recorded at the forest-goer’s 
house location. Trips going through an outdoor-based 
significant location (forest or forest-fringe/rice field) 
qualified as an outdoor trip (Fig. 2B). Trips where a for-
est-goer toured the forest for hours but without stopping 
at a single significant location (Fig.  2C) also need to be 
classified as outdoor trips. To identify those other out-
door trips (Fig. 2C), a random forest algorithm was used 
to learn the relationship between the outdoor vs village 
classification at the 1068 significant locations and the 
following covariates: number of Open Street Map [39] 
buildings or places, total 2015 population and average 
2018 tree crown cover within 100 m and distance to clos-
est village in the province. Tree crown cover layers came 
from Hansen [40] and population from WorldPop [41]. 

Fig. 2  Mobility patterns of forest-goers. Trajectories for GPS loggers collected during the first cycle in Moonlapamok district for PNs and HRPs 
(High-risk populations), i.e. forest-goers (2A). Figure 2B shows an example of an outdoor trip that stops at an outdoor significant location (trip #10 for 
GPS logger 47 in 2B). Figure 2C shows an example of an outdoor trip that does not stop at an outdoor significant location (trip #22 for GPS logger 
47 in 2C). Significant stop locations are shown as circles, coloured according to their terrain class (Forest vs forest-fringe/rice field vs village). Arrows 
were added on top of each GPS points in 2B and 2C to represent the travel direction

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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The predicting algorithm was the used to classify all other 
GPS points as outdoor or village-based. Finally, outdoor 
trips were defined as trips that included either an out-
door-based significant location or a series of consecutive 
outdoor GPS points adding up to more than two hours. 
Simply put, an outdoor trip is a trip where the forest-goer 
spent more than two hours consecutively outdoor. Trips 
going through a significant location that resulted from 
the study’s activities were discarded as unrepresentative 
of the forest-goers’ routine.

Cluster analysis
For each outdoor trip, the mobility pattern parameters 
listed in Table  1 were computed. They were selected to 
characterize forest-goers’ exposure to the dominant 
malaria vectors in the GMS, An. dirus and An. minimus 
[13, 14], all along the trip. Four domains were covered. 
Two domains, forest surroundings and timing of the 
trips, pertained directly to the ecology of these mosqui-
toes, which thrive in a forested environment and bite 
during nighttime and around twilight and dawn hours 
(6 pm and 6 am). The two other domains, pace and frag-
mentation of the trips, reflect the possible organization 
and habits of those trips and can influence vector con-
trol options. For instance, it may be easier to carry bed 
nets over short distances and frequently visited location 
along trips may be arranged to offer better mosquito 
protection.

Variables in Table  1 were standardized by subtract-
ing the mean and dividing by the standard deviation and 
right-skewed variables (pace and population density) 
were log-transformed. Then, principal component anal-
ysis was used to project the variables onto the principal 
components (PC) that captured 95% of the variability in 
the dataset. Then, hierarchical clustering with the com-
plete distance method was applied on the selected PCs to 
explore the clustering structure of this dataset of forest-
going trips. The hierarchical clustering algorithm starts 
with one observation per “leaf” (= cluster) and progres-
sively groups similar observations together one at a time 
until they are all grouped together in a single cluster. An 
advantage of hierarchical clustering over other clustering 

algorithms such as k-means is that the number of desired 
clusters, k, does not need to be set in advance. Instead, 
the resulting dendogram tree represents the clustering 
structure for all k from 1 to n, the number of observa-
tions. The length of the tree branches quantifies the dis-
similarity between the leaves and can be used to assess 
how many clusters should represent the structure of the 
data. To help guide the choice of k and its resulting clus-
tering structure, the intra-class correlation coefficient 
(ICC) for input variables in Table 1 was additionally com-
puted, hence evaluating how many clusters would best 
capture the variability in the dataset.

Finally, mobility pattern characteristics in Table 1 were 
summarized for each of the clusters identified and plot-
ted to determine the heterogeneity between the clusters, 
describe their distributions across the trips, and attempt 
to classify the type of trips identified in each of the 
clusters.

Regression analysis
Outdoor trips including twilights or dawn hours 
(6am/6 pm) or happening overnight in clusters with high 
forest penetration were classified as “high-risk” trips 
given the higher probability of exposure to malaria vec-
tors. Then, gradient boosting trees were used to assess 
which of the forest-goers’ socio-demographic and behav-
ioural characteristics collected in the FTAT survey best 
predicted their likelihood to engage in such high-risk 
trips for malaria. Gradient boosting was selected as one 
of the most advanced supervised learning algorithms that 
can accommodate missing values and model non-lineari-
ties. Importantly, its implementation in the GPboost [42] 
R [37] package allows for random effects at forest-goers’ 
levels to correctly account for the correlation structure 
with multiple outdoor trips per forest-goers. Automated 
grid search and fourfold cross validation were used to 
select the best fitting tuning parameters.

Results are presented using SHAP (SHapley Additive 
exPlanations) values [43], an innovative tool increasingly 
used for interpretation of machine learning models. For 
each of the model’s prediction, SHAP values decompose 
the contributive importance of each feature and each 

Table 1  Mobility patterns variables

Mobility patterns variables computed for each of the outdoor trips and used as features in the clustering algorithm (after normalization, standardization, and 
projection onto the principal components)

Domain Forest Pace Fragmentation Timing

Variables Average 2018 tree crown cover Duration Number of stop at significant 
location

Overnight trip

Max 2018 tree crown cover Distance Proportion of trip spent at 
significant location

Trip around twilight and/
or dawn hours (6 am and/
or 6 pm)Proportion of trip where 2018 tree crown 

cover > 50%
Max. speed Population density
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observation. It enables the ranking of different features in 
their ability to predict the outcome but also to visualize 
the adjusted non-linear relationship between the predic-
tors and the outcome.

Results
Data description
FTAT survey
Over the course of 8  months, 2904 forest-goers were 
recruited into the FTAT intervention and 122 carried 
a GPS logger. In terms of acceptability, the field team 
reported informally that most forest-goers accepted to 
carry a GPS logger when offered, with only a few refus-
als. Using answers in the FTAT survey, Table  2 shows 
how forest-goers recruited in the GPS component of the 
study differed from those that did not carry a GPS log-
ger. Overall, the two groups were similar although some 
differences emerged. Forest-goers that carried a GPS log-
ger were older (39.2 vs 36.4  years) and tended to travel 
in smaller groups (3 vs 4) and for fewer nights (4.1 vs 
7.2) than the forest-goers that did not carry a GPS log-
ger. They were also more likely to be male (95% vs 65%), 
to report forest work as their primary activity (46% vs 
28%) and no sleeping structure in the previous night (51% 
vs 30%) than the forest-goers that did not carry a GPS 
logger.

GPS data
Two (1.6%) GPS loggers were not returned and data 
downloading from 5 (4.2%) others failed, resulting in a 
total of 472,751 GPS points collected from 115 (94.2%) 
GPS loggers. Figure  3 shows time series of when GPS 
coordinates were collected for each of the loggers. The 
plot shows relatively few gaps, indicating that the forest-
goers generally kept their GPS loggers charged. The plot 
shows the clean demarcation between the two cycles of 
data collection at the end of August when the loggers 
were returned to the field team for data download and 
configuration. For the first cycle, on the left-hand side of 
the plot, there are almost no data gaps. This motivated us 
to decrease the logging interval from 30 to 15 min in the 
second cycle, which resulted in more gaps but provided 
more battery autonomy to loggers and did not under-
mine the overall quality of the trip data. Also note that an 
additional 15 GPS loggers were distributed in the second 
cycle.

Data visualization exposed a few GPS points obviously 
logged incorrectly and the filtering algorithm discarded 
1973 (0.4%) data points. Most of the time, these errors 
occurred while the GPS logger was sitting at forest-goers’ 
house location, most likely beneath some type of roof 
that disabled connection with the GPS satellites.

Plotting the GPS trajectories also highlighted that 
forest-goers did not always carry their GPS logger with 

Table 2  FTAT variables among recruited forest-goers

Comparison between forest-goers that carried a GPS logger and those that did not in terms of their answers to FTAT variables

FTAT variable Mean among HRP that

Carried a GPS logger Did not carry a GPS logger p-value

Number of forest-goers in group 3 4.14  < 0.01

Age in years 39.2 36.36 0.01

Number of children 1.79 1.63 0.24

Nights away from home on trip 4.12 7.36  < 0.01

Km away from home 6.63 7.58 0.38

Number of people working/traveling with on trip 2.7 3.62  < 0.01

Ever spent night in forest in rainy season 0.92 0.9 0.62

Ever spent night in forest in dry season 0.94 0.89 0.14

Ethnic minorities 0.07 0.1 0.47

Married 0.87 0.8 0.11

Rice farming is main source of income 0.89 0.92 0.24

Male 0.95 0.65  < 0.01

Education less than primary school 0.43 0.49 0.3

Wood collection is primary reason to visit forest in rainy season 0.32 0.34 0.67

Wood collection is primary reason to visit forest in dry season 0.43 0.48 0.4

Forest work is primary activity this week 0.46 0.28  < 0.01

Motorized main mode of transportation 0.69 0.68 0.81

Relationship to people on trip is family 0.6 0.63 0.55

No sleeping structure last night 0.51 0.3  < 0.01



Page 8 of 16Rerolle et al. Malaria Journal           (2023) 22:38 

Fig. 3  GPS loggers’ time series. Time series plot of when GPS loggers were on and collected GPS coordinates. One row per GPS logger. Gaps 
indicate times when loggers ran out of battery
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them. Indeed, some GPS loggers obviously were left at 
home for weeks at a time. The incentive to give the GPS 
logger back to the study team after two months may 
have discouraged forest-goers to take the risk to carry 
them all the time. Importantly, the study’s instruc-
tions insisted primarily on the importance of accurately 
recording trips to the forest, forest-fringes and rice 
fields. That is why the analysis focused on outdoor trips 
rather than on the whole mobility patterns over the 
two-month study period. In the process, the analysis 
discarded 95% of the GPS points to focus on the 21,668 
(5%) collected along 803 outdoor trips from 96 (79%) 
forest-goers. The out of the bag error rate of the terrain 
classification algorithm used to identify outdoor trips 
was 8.6%.

GPS logger retrieval questionnaire
Table  3 summarizes forest-goers’ answers to the 
retrieval questionnaire conducted when they gave the 
GPS logger back to the study team. The majority (93.3%) 
of forest-goers reported to have followed instruc-
tions to charge their GPS logger at least once a week. 
According to the forest-goers, their GPS logger ran out 
of battery rarely, with 77.5% reporting no battery out-
ages. Surprisingly, 61.7% of forest-goers reported that 
they shared their GPS logger with another household 
member, although that happened mostly (80%) for no 
more than a few days. Only 39.3% of the forest-goers 
reported carrying their GPS logger every day, which 
supports the decision to restrict the analysis to outdoor 
trips only.

Cluster analysis
The first seven PCs accounted for 96% of the variability 
in the data and were therefore extracted to summarize 
the outdoor trips data. The dendogram tree (Additional 
file 2: Fig. S2), resulting from the hierarchical clustering 
algorithm, is well-balanced and the distribution of large 
branches suggest cutting down the tree with 6 clusters. 
In addition, for most of the mobility variables in Table 1, 
Fig. 4 shows an improvement in the ICC all the way until 
5–6 clusters but then levels off. In combination, these 
plots oriented us to select 6 clusters to summarize the 
outdoor trips data.

Figure  5 presents biplots of the resulting cluster-
ing structure in the feature space. In combination with 
Table  4, where each of the input mobility variables is 
summarized by clusters, labeling the 6 types of clusters 
identified can be attempted. For instance, the darkblue 
dots of cluster 2 correspond to outdoor trips with high 
forest penetration and that lasted overnight. As a result, 
this cluster was labeled “overnight forest trips”. Overall, 
the recorded forest-goers’ outdoor trips were best differ-
entiated along 3 dimensions (bolded in Table  4): forest 
penetration, duration/distance and whether the trip hap-
pened overnight. Six clusters of outdoor trips emerged: 
overnight forest trip, overnight non-forest trip, short 
forest trip, short non-forest trip, day forest trip, day non-
forest trip (Table 4).

Unsurprisingly, trip duration and trip distance were 
positively correlated while population density and for-
est cover were negatively associated. Most outdoor trips 
tend to stop on at least one occasion and forest-goers 
spend on average between 30 and 80% of their trip time 
at a stop location. About two thirds (66%) of the outdoor 
trips collected were classified as forest trips and just over 
10% of outdoor trips happened overnight. Overnight 
trips are also the longest both in duration and distance 
covered.

Regression analysis
Overnight forest trips as well as forest trips and short 
forest trips that happened around twilight and/or dawn 
hours (6  pm and/or 6 am) further defined 385 (48%) 
high-risk trips because of their presumed higher expo-
sure to malaria vectors. Figure 6 presents the results from 
the regression analysis. Individual-level characteristics of 
the forest-goers collected in the FTAT survey are ranked 
in terms of their ability to predict forest-goers’ prob-
ability to engage in high-risk trips for malaria. Because 
all the features were collected at the individual level, for 
each feature, there is one dot per forest-goer, coloured by 
the feature value. The SHAP value represents the change 
(additive scale) in the forest-goers’ probability to engage 

Table 3  GPS logger self-reported utilization from retrieval 
questionnaire

GPS logger self-reported utilization from retrieval questionnaire after forest-
goers gave back their GPS logger. N = 120

Variable Levels %

GPS logger ran out of battery Never 77.5

1–4 times 15.5

More than 5 times 7

Charging practice At least once a week 93.3

Less than once a week 6.7

Carried GPS Every day 39.3

Most of the time 58.1

Rarely 2.6

Anyone else carried logger Yes 61.7

Who else Household member 100

For how long A few hours 24

A few days 56

A few weeks 20
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in high-risk trips. The more positive the SHAP values 
(right side), the higher is their probability to engage in 
high-risk trips. For instance, forest-goers who reported 
no sleeping structure the night before their FTAT inter-
view (high feature value, coloured in purple) have posi-
tive SHAP values which increase their probabilities of 
engaging in high-risk trips. On average, forest-goers’ 
sleeping structure the night before their FTAT interview 
changed their probability to engage in high-risk trip by 
6.1%. For continuous variables, the whole SHAP depend-
ence plots (Fig. 7) can be drawn for more interpretability. 
For instance, forest-goers aged between 30 and 45 years 
have high positive SHAP values. Therefore, they tend to 
have higher probabilities of engaging in high-risk trips 
than younger and older forest-goers. On average, forest-
goers’ age influences their probability to engage in a high-
risk trip by 17.4%. For some forest-goers, their middle age 
increased their probability to engage in high-risk trip by 
more than 25%.

Together, these results have identified age, lack of out-
door sleeping structure and number of children as the 
best predictors of high-risk outdoor trips for malaria. 
Specifically, being 30 to 45 years old, using no structure 
when sleeping outside and having more than two children 

all increase the probability for a forest-goer to engage in 
high-risk trips in terms of their exposure to malaria vec-
tors. All the other features impact forest-goers’ probabil-
ity to engage in high-risk trips by less than 5% on average. 
As a summary, Fig.  8 presents the probability of engag-
ing in high-risk trips among forest-goers in the 8 strata 
defined by those three main predictors. These predictors, 
in combination, increased the probability of engaging in 
high-risk trips up to 75%. The reference probability of 
engaging in high-risk trips among forest-goers not aged 
between 30 and 45 and who reported sleeping in a struc-
ture the night before their FTAT interview and who have 
less than 2 children was 33%. The average probability of 
engaging in high-risk trips in the seven non-reference 
strata was 54%, only slightly higher than the unstratified 
average (48%).

Discussion
Using GPS loggers to capture fine-scale mobility patterns 
of 122 forest-goers in southern Lao PDR over two-month 
periods, data on 803 trips to the forest, forest-fringes or 
rice fields were extracted. A hierarchical clustering algo-
rithm was used to describe the heterogeneity within 
these mobility patterns and highlight six major types of 

Fig. 4  ICC plot. Plot of how the ICC for mobility patterns variables in Table 1 vary with the number of clusters selected. Except for the proportion of 
trips at stops, the number of different stops and max speed whose ICC continue to improve beyond 9 clusters, for most variables, the ICC increases 
up to 5 or 6 clusters and then levels off
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outdoor trips. Using gradient boosting trees, forest-goers’ 
age, lack of outside sleeping structures and number of 
children were identified as the best predictors of their 
likelihood to engage in trips at higher risk for malaria, 
in terms of an increased exposure to mosquito vectors. 
Together, these three risk factors defined strata of forest-
goers with probability as high as 75% and as low as 33% 
to engage in such high-risk trips.

A key finding from this study is the diversity in for-
est-goers’ mobility patterns highlighted in the cluster 
analysis. The 803 outdoor trips collected were highly 
heterogeneous. Some trips lasted no more than 3 h while 
others lasted up to a week. Distance covered ranged from 
1 to 100 km. Most trips were day trips, with only around 
10% happening overnight. The average tree crown cover 
along the trip ranged from 75% down to around 5%, even 
for long trips. Six clusters of outdoor trips were identified 
with major differences in terms of forest penetration, dis-
tance covered, duration and whether the trip happened 
overnight. These differences likely translate into different 
exposures to the dominant malaria vectors in the GMS, 
An. dirus and An. minimus13,14, which thrive in a for-
ested environment and bite during the night and around 

twilight and dawn hours. This heterogeneity in forest-
goers’ outdoor trips and exposure to the surrounding 
mosquito vectors echoes the result from a recent system-
atic review that focused on qualitative studies on forest-
goers in the GMS [20] and called for a finer description 
of the forest activities that increase malaria risk among 
forest-goers. Importantly, future survey-based studies 
about mobility patterns of forest-going populations in the 
GMS can now leverage the heterogeneity highlighted in 
this study to tailor their questionnaire and collect repre-
sentative data at a cheaper expense.

This study attempted to leverage this heterogeneity 
in mobility patterns to segment the population of for-
est-goers and identify sub-groups at potentially higher 
risk for malaria because of their increased likelihood 
to engage in high-risk trips. This study was able to rank 
individual level characteristics of forest-goers collected in 
the FTAT survey in terms of their ability to predict their 
probability to engage in high-risk trips. The top three 
individual predictors, number of children, lack of out-
side sleeping structure and age, would impact, on aver-
age, forest-goers’ probability to engage in high-risk trips 
by, 5%, 7% and 17% on the additive scale respectively 

Fig. 5  Clustering structure. Bi-plots of the clustering structure in the feature space. Points are coloured by cluster assignment and ellipse capturing 
50% of the clusters’ points, assuming bivariate normal distribution, are superimposed. Features represented were selected for their ability to 
separate the data and highlight the clustering structure of the data
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and together defined strata of forest-goers with prob-
ability as high as 75%. In combination, these predictors 
separated the forest-going population into two subgroups 
with respective probabilities of engaging in such high-
risk trips of 54% across the seven non-reference strata 
and 33% in the reference strata. This difference in risk 
could be leveraged to focus resources and efforts on the 
most high-risk forest-goers but the results also suggest 
that some level of risk is ubiquitous among forest-goers. 
In particular, this study failed to identify a very low-risk 
subgroup and malaria programmes across the GMS 
would miss some high-risk forest-goers if they were to 
further segment this population.

This study also demonstrated how GPS loggers can 
be used to measure fine-scale mobility patterns of rural 
and hard to access forest-going populations in the GMS. 
Thanks to PNs, we were able to recruit forest-goers in the 
study and train them on all aspects of the GPS loggers. 
Acceptability among forest-goers was high and this study 
proved its feasibility with very few data gaps thanks to 

the external charging device and additional batteries that 
were provided with the GPS loggers. GPS coordinates 
every 15 to 30 min along forest-going trips represent an 
incredibly rich dataset about forest-goers’ mobility pat-
terns and interaction with their surrounding environ-
ment that could not be collected otherwise via surveys or 
mobile phone data.

However, data visualization highlighted that forest-
goers did not carry the GPS loggers at all times, likely 
because the instructions insisted too much on the impor-
tance of carrying them during forest-going trips. As a 
result, the analysis was restricted to the 5% of GPS points 
that were collected during the 803 outdoor trips. This 
was a necessary step to ensure high-quality input data 
in our analyses but limits the effectiveness of using such 
GPS loggers. In addition, these data required substantial 
processing time and simple steps such as directly collect-
ing the GPS coordinates of forest-goers’ house and the 
exact timing when the GPS logger was handed out would 
have significantly improved our experience.

Table 4  Distribution of input mobility patterns parameters for each of the six identified clusters

Along with Fig. 6, these numbers are suggestive of what the best labels would be for the clusters

Cluster 1 2 3 4 5 6
Proposed label Day forest trips Overnight forest 

trips
Day non-forest trips Short forest trips Short non-forest 

trips
Overnight 
non-forest 
trips

Count (%) 275 (34%) 75 (9%) 183 (23%) 197 (25%) 58 (7%) 15 9 (2%)

Percent of overnight 
trips (%)

0 100 0 0 0 100

Percent of twilight/ 
dawn trips (%)

97.1 0.0 71 21.8 46.6 0.0

Mean average tree 
crown cover along
trip [IQR]

62.2 [49.1; 77.5] 71.8 [59.6; 85.9] 20.2 [6.2; 31.3] 63.4 [52.6; 75.2] 13.5 [0; 26.3] 14.6 [0.5; 28.5]

Mean max tree crown 
cover along trip [IQR]

84.7 [79.3; 93.4] 90 [85.6; 95.1] 38.6 [22.4; 55.6] 81.5 [75.4; 91] 16.4 [0; 27.4] 41.9 [6.4; 78.7]

Mean proportion of  
trip with tree crown 
cover above 50% 
[IQR]

0.7 [0.5; 0.9] 0.8 [0.8; 1] 0.1 [0; 0.1] 0.7 [0.6; 1] 0 [0; 0] 0 [0; 0]

Mean trip duration 
(h) [IQR]

8.8 [6.7; 10.7] 67.4 [36.4; 83.5] 8 [4.5; 11.2] 4.7 [3.3; 5.2] 6.8 [3.9; 10.4] 55.6 [30.8; 48]

Mean trip distance 
(km) [IQR]

6.4 [3.7; 8.1] 26.6 [15.8; 31.7] 4.9 [1.9; 5.2] 2.5 [1.5; 3.2] 1.5 [1; 2] 15.2 [3.5; 28]

Mean max speed 
along trip (kmh) [IQR]

3.6 [2.2; 3.9] 6.2 [3.5; 7.4] 3.3 [1.8; 4.1] 1.8 [1.1; 2.4] 1.2 [0.9; 1.7] 3.9 [1.4; 6.7]

Mean proportion 
of trip at significant 
location [IQR]

0.5 [0.2; 0.7] 0.7 [0.7; 0.9] 0.6 [0.2; 0.9] 0.3 [0; 0.6] 0.8 [0.7; 1] 0.8 [0.7; 1]

Mean number of stop 
at significant location 
along trip [IQR]

2 [2; 3] 3.1 [2; 3] 1.7 [1; 2] 1.3 [0; 2] 1.7 [2; 2] 2.3 [2; 2.5]

Mean average popula-
tion density
along trip [IQR]

0.9 [0.5; 1.3] 0.6 [0.3; 0.8] 1.3 [0.7; 1.7] 1 [0.6; 1.4] 3 [1.1; 4.6] 2.8 [1.6; 4.4]
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Fig. 6  SHAP importance plot. Forest-goers’ individual features are ranked in terms of their ability to predict the likelihood of forest-goers to engage 
in high-risk trips. For each feature, there is one dot per forest-goers, coloured by the feature value and positioned according to its SHAP value. Larger 
SHAP values means larger impact on the model predictions. Positive SHAP values result in an increased probability to engage in high-risk trips. The 
ranking of features is based on the average absolute SHAP value across all forest-goers

Fig. 7  SHAP dependence plot. SHAP dependence plot for the two main continuous predictors of high-risk trips. For each feature, there is one dot 
per forest-goers. Larger absolute SHAP values means larger impact on the model predictions. Positive SHAP values result in an increased probability 
to engage in high-risk trips. Super-imposed red lines were modeled using loess with 0.9 span
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This study has additional limitations. First, the defini-
tion of high-risk trips is subjective and based on a sim-
plified version of the malaria ecosystem in the GMS 
where what matters is exposure to places with suspected 
higher exposure to mosquito vectors. Having prospec-
tive data on malaria infection among this cohort would 
be extremely valuable. Forest-goers recruited in FTAT 
were tested for malaria before being given GPS loggers, 
but reverse causality would have undermined the results 
from any association analysis and statistical power was 
low with only six forest-goers in the GPS component of 
the study testing positive for malaria cases by PCR (poly-
merase chain reaction). Additional information about 
the actual activities forest-goers engaged in during their 
outdoors trips would also have been valuable for a more 
comprehensive definition of risk. Second, the small 
sample size of 96 forest-goers in the regression analysis 
lacked sufficient variation in some individual level fea-
tures to evaluate their association with high-risk trips. 
For instance, 95% of forest-goers who carried a GPS log-
ger were male. Third and related, the forest-goers partici-
pating in the GPS logger component of the study were 
somewhat different from those that did not. This may be 
due to chance or bias in PNs’ recruitment of forest-goers 

or recruitment of PNs themselves. Ultimately, the quality 
of the data sample relies heavily of the aptitude of PNs 
to navigate their communities of forest-goers and recruit 
representative participants. As a consequence, the results 
may not generalize well to the whole 2,904 forest goers 
recruited in FTAT or even the 20,000 forest-goers or so 
estimated to reside in the study area1.

Conclusion
In conclusion, this study illustrated how GPS loggers 
can be leveraged to measure and characterize fine-scale 
mobility patterns of forest-going populations in south-
ern Lao PDR. The results highlighted the diversity within 
forest-going trips but could not clearly segment the role 
of forest-goers in malaria transmission in the GMS any 
further. These results shall be informative to malaria pro-
grammes across the region to tailor their interventions 
and messaging to high-risk populations and meet the 
objective of eliminating malaria by 2030 in the GMS [15, 
16].

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12936-​023-​04468-8.

Additional file 1: S1. GPS filtering algorithm.

Additional file 2: Figure S2. Dendogram from the hierarchical clustering 
algorithm. Starting from the bottom, every data point, i.e outdoor trip, 
is regrouped one a time into “leaves” (=cluster) until they are all in one 
big and uninformative cluster. The length of the “branches” quantifies the 
dissimilarity between the leaves. The red horizontal line represents our 
subjective decision to cut the tree in 6 clusters. We felt selecting 5 clusters 
would have failed to cut lengthy branches whereas selecting 7 clusters 
would have started to cut short branches.

Acknowledgements
We would like to thank the study participants and study teams for their 
cooperation.

Author contributions
FR designed the study, conducted the analysis, and wrote the manuscript. HS, 
JM and AB supervised the analysis. FR, ED, AAL, TP, BH, RP and AB designed 
the parent study and led data collection. All authors reviewed and edited the 
manuscript. All authors read and approved the final manuscript.

Funding
This study was funded was the Bill & Melinda Gates Foundation (Grant ID 
OPP1116450).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by the National Ethics Committee for Health 
Research at the Lao Ministry of Health (Approval #2016-014) and by the UCSF 
ethical review board (Approvals #16-19649 and #17-22577). The informed 
consent process was consistent with local norms, and all study areas had a 

Fig. 8  Venn diagram. Venn diagram for the raw probability of 
engaging in high-risk forest trips among the 8 strata of forest-goers 
defined by the three main predictors identified in the regression 
analysis: age between 30 and 45, no sleeping structure the night 
before the FTAT interview and more than two children. Probabilities 
are expressed in rounded percent. For instance, the baseline 
probability of engaging in high-risk trips among forest-goers not 
aged between 30 and 45 and who reported sleeping in a structure 
the night before their FTAT interview and who have less than 2 
children is 33%

https://doi.org/10.1186/s12936-023-04468-8
https://doi.org/10.1186/s12936-023-04468-8


Page 15 of 16Rerolle et al. Malaria Journal           (2023) 22:38 	

consultation meeting with, and approvals from, village elders. All participants 
provided informed written consent. The study was conducted according to 
the ethical principles of the Declaration of Helsinki of October 2002.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Malaria Elimination Initiative, The Global Health Group, University of Califor-
nia, San Francisco, CA, USA. 2 Department of Epidemiology and Biostatistics, 
University of California, San Francisco, CA, USA. 3 Center for Malariology, 
Parasitology and Entomology, Ministry of Health, Vientiane, Lao People’s 
Democratic Republic. 4 Department of Biostatistics and Epidemiology, School 
of Public Health and Health Sciences, University of Massachusetts, Amherst, 
MA, USA. 5 Divisions of Epidemiology and Biostatistics, School of Public Health, 
University of California, Berkeley, CA, USA. 6 Malaria and Neglected Tropical 
Diseases, PATH, Seattle, WA, USA. 

Received: 23 May 2022   Accepted: 24 January 2023

References
	1.	 Rerolle F, Jacobson JO, Wesson P, Dantzer E, Lover AA, Hongvanthong B, 

et al. Population size estimation of seasonal forest-going populations in 
southern Lao PDR. Sci Rep. 2021;11:14816.

	2.	 Erhart A, Ngo DT, Phan VK, Ta TT, Overmeir C, Speybroeck N. Epidemiol-
ogy of forest malaria in central Vietnam: a large scale cross-sectional 
survey. Malar J. 2005;4:58.

	3.	 Bannister-Tyrrell M, Gryseels C, Sokha S, Dara L, Sereiboth N, James N, 
et al. F Forest goers and multidrug-resistant malaria in Cambodia: an 
ethnographic study. Am J Trop Med Hyg. 2019;100:1170–8.

	4.	 Sanann N, Peto TJ, Tripura R, Callery JJ, Nguon C, Bui TM, et al. Forest work 
and its implications for malaria elimination: a qualitative study. Malar J. 
2019;18:376.

	5.	 Erhart A, Thang ND, Hung NQ, Toi LV, Hung LX, Tuy TQ, et al. Forest malaria 
in Vietnam: a challenge for control. Am J Trop Med Hyg. 2004;70:110–8.

	6.	 Chaveepojnkamjorn W, Pichainarong N. Malaria infection among the 
migrant population along the Thai-Myanmar border area. Southeast 
Asian J Trop Med Public Health. 2004;35:48–52.

	7.	 Cui L, Yan G, Sattabongkot J, Cao Y, Chen B, Chen X, et al. Malaria in the 
Greater Mekong Subregion: heterogeneity and complexity. Acta Trop. 
2012;121:227–39.

	8.	 Durnez L, Mao S, Denis L, Roelants P, Sochantha T, Coosemans M. 
Outdoor malaria transmission in forested villages of Cambodia. Malar J. 
2013;12:329.

	9.	 Sluydts V, Heng S, Coosemans M, Van Roey K, Gryseels C, Canier L, et al. 
Spatial clustering and risk factors of malaria infections in Ratanakiri Prov-
ince. Cambodia Malar J. 2014;13:387.

	10.	 Parker DM, Tripura R, Peto TJ, Maude RJ, Nguon C, Chalk J. A multi-level 
spatial analysis of clinical malaria and subclinical Plasmodium infections in 
Pailin Province. Cambodia Heliyon. 2017;3: e00447.

	11.	 Dysoley L, Kaneko A, Eto H, Mita T, Socheat D, Börkman A, et al. Changing 
patterns of forest malaria among the mobile adult male population in 
Chumkiri District. Cambodia Acta Trop. 2008;106:207–12.

	12.	 Incardona S, Vong S, Chiv L, Lim P, Nhem S, Sem R, et al. Large-scale 
malaria survey in Cambodia: novel insights on species distribution and 
risk factors. Malar J. 2007;6:37.

	13.	 Obsomer V, Defourny P, Coosemans M. The Anopheles dirus complex: 
spatial distribution and environmental drivers. Malar J. 2007;6:26.

	14.	 Obsomer V, Dufrene M, Defourny P, Coosemans M. Anopheles species 
associations in Southeast Asia: indicator species and environmental influ-
ences. Parasit Vectors. 2013;6:136.

	15.	 WHO. Eliminating malaria in the Greater Mekong Subregion: united to 
end a deadly disease. Geneva: World Health Organization; 2016.

	16.	 WHO. World Malaria Report 2018. Geneva: World Health Organization; 
2018.

	17.	 Guyant P, Canavati SE, Chea N, Ly P, Whittaker MA, Roca-Feltrer A. Malaria 
and the mobile and migrant population in Cambodia: a population 
movement framework to inform strategies for malaria control and elimi-
nation. Malar J. 2015;14:252.

	18.	 WHO. Approaches for mobile and migrant populations in the context 
of malaria multi-drug resistance and malaria elimination in the Greater 
Mekong Subregion, 1–72 (2016). https://​www.​mende​ley.​com/​catal​ogue/​
96f90​246-​272e-​397e-​8ea4-​9718c​1d1cb​74/?​utm_​source=​deskt​op&​utm_​
medium=​1.​19.​8&​utm_​campa​ign=​open_​catal​og&​userD​ocume​ntId=%​
7Bce4​75e61-​0b3a-​497c-​b75e-​53892​9c066​bc%​7D

	19.	 Smith C, Whittaker M. Beyond mobile populations: a critical review of 
the literature on malaria and population mobility and suggestions for 
future directions. Malar J. 2014;13:307.

	20.	 Nofal SD, Peto TJ, Adhikari B, Tripura R, Callery J, Bui TM, et al. How can 
interventions that target forest-goers be tailored to accelerate malaria 
elimination in the Greater Mekong Subregion? A systematic review of 
the qualitative literature. Malar J. 2019;18:32.

	21.	 Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V, Morrison AC, Elder 
JP, Kochel TJ, et al. Usefulness of commercially available GPS data-
loggers for tracking human movement and exposure to dengue virus. 
Int J Health Geogr. 2009;8:68.

	22.	 Duncan S, Stewart TI, Oliver M, Mavoa S, MacRae D, Badland HM, et al. 
Portable global positioning system receivers: static validity and envi-
ronmental conditions. Am J Prev Med. 2013;44:e19–29.

	23.	 Paz-Soldan VA, Stoddard ST, Vazquez-Prokopec G, Morrison AC, Elder 
JP, Kitron U, et al. Assessing and maximizing the acceptability of global 
positioning system device use for studying the role of human move-
ment in dengue virus transmission in Iquitos. Peru Am J Trop Med Hyg. 
2010;82:723–30.

	24.	 Vazquez-Prokopec GM, Bisanzio D, Stoddard ST, Paz-Soldan V, Morrison 
AC, Elder JP, et al. Using GPS technology to quantify human mobility, 
dynamic contacts and infectious disease dynamics in a resource-poor 
urban environment. PLoS ONE. 2013;8: e0058802.

	25.	 Stothard JR, Sousa-Figueiredo JC, Betson M, Seto EYW, Kabatereine 
NB. Investigating the spatial micro-epidemiology of diseases within a 
point-prevalence sample: a field applicable method for rapid mapping 
of households using low-cost GPS-dataloggers. Trans R Soc Trop Med 
Hyg. 2011;105:500–6.

	26.	 Seto EYW, Knapp F, Zhong B, Yang C. The use of a vest equipped with a 
global positioning system to assess water-contact patterns associated 
with schistosomiasis. Geospat Health. 2007;1:233–41.

	27.	 Brant TA, Okorie PN, Ogunmola O, Ojeyode NB, Fatunade SB, Davies 
E, et al. Integrated risk mapping and landscape characterisation of 
lymphatic filariasis and loiasis in South West Nigeria. Parasite Epidemiol 
Control. 2018;3:21–35.

	28.	 Searle KM, Lubinda J, Hamapumbu H, Shields TM, Curriero FC, Smith 
DL, et al. Characterizing and quantifying human movement patterns 
using GPS data loggers in an area approaching malaria elimination in 
rural southern Zambia. R Soc Open Sci. 2017;4: 170046.

	29.	 Fornace KM, Alexander N, Abidin TR, Brock PM, Chua TH, Vythilingam I, 
et al. Local human movement patterns and land use impact exposure 
to zoonotic malaria in Malaysian Borneo. Elife. 2019;8: e47602.

	30.	 Hast M, Searle KM, Chaponda M, Lupiya J, Lubinda J, Sikalima J, et al. 
The use of GPS data loggers to describe the impact of spatio-temporal 
movement patterns on malaria control in a high-transmission area of 
northern Zambia. Int J Health Geogr. 2019;18:19.

	31.	 Lover AA, Dantzer E, Hocini S, Estera R, Rerolle F, Smith JL, et al. Study 
protocol for a cluster-randomized split-plot design trial to assess the 
effectiveness of targeted active malaria case detection among high-
risk populations in Southern Lao PDR (the AcME-Lao study) [version 1; 
peer review: awaiting peer review]. Gates Open Res. 2019;3:1730.

	32.	 Lao National Malaria Database (DHIS2). Vientiane: CMPE/Ministry of 
Health; 2018. https://​hmis.​gov.​la/​dhis-​web-​commo​ns/​secur​ity/​login.​
action.

	33.	 United AI. Best practices for integrating peer navigators into HIV mod-
els of care. Washington, DC: AIDS United. 2015.

	34.	 Corrigan PW, Pickett S, Batia K, Michaels PJ. Peer navigators and inte-
grated care to address ethnic health disparities of people with serious 
mental illness. Soc Work Public Health. 2014;29:581–93.

https://www.mendeley.com/catalogue/96f90246-272e-397e-8ea4-9718c1d1cb74/?utm_source=desktop%26utm_medium=1.19.8%26utm_campaign=open_catalog%26userDocumentId=%7Bce475e61-0b3a-497c-b75e-538929c066bc%7D
https://www.mendeley.com/catalogue/96f90246-272e-397e-8ea4-9718c1d1cb74/?utm_source=desktop%26utm_medium=1.19.8%26utm_campaign=open_catalog%26userDocumentId=%7Bce475e61-0b3a-497c-b75e-538929c066bc%7D
https://www.mendeley.com/catalogue/96f90246-272e-397e-8ea4-9718c1d1cb74/?utm_source=desktop%26utm_medium=1.19.8%26utm_campaign=open_catalog%26userDocumentId=%7Bce475e61-0b3a-497c-b75e-538929c066bc%7D
https://www.mendeley.com/catalogue/96f90246-272e-397e-8ea4-9718c1d1cb74/?utm_source=desktop%26utm_medium=1.19.8%26utm_campaign=open_catalog%26userDocumentId=%7Bce475e61-0b3a-497c-b75e-538929c066bc%7D
https://hmis.gov.la/dhis-web-commons/security/login.action
https://hmis.gov.la/dhis-web-commons/security/login.action


Page 16 of 16Rerolle et al. Malaria Journal           (2023) 22:38 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	35.	 Barraquand F, Benhamou S. Animal movements in heterogeneous 
landscapes: identifying profitable places and homogeneous move-
ment bouts. Ecology. 2008;89:3336–48.

	36.	 Calenge C. The package ``adehabitat’’ for the R software: a tool 
for the analysis of space and habitat use by animals. Ecol Modell. 
2006;197:516–9.

	37.	 R Core Team R. R: A language and environment for statistical 
computing.

	38.	 Benhamou S, Riotte-Lambert L. Beyond the Utilization Distribution: 
identifying home range areas that are intensively exploited or repeatedly 
visited. Ecol Modell. 2012;227:112–6.

	39.	 Bennett J. OpenStreetMap. Packt Publishing Ltd; 2010. http://​www.​opens​
treet​map.​org.

	40.	 Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina 
A, et al. High-resolution global maps of 21st-century forest cover change. 
Science. 2013;342:850–3.

	41.	 Gaughan AE, Stevens FR, Linard C, Jia P, Tatem AJ. High resolution popula-
tion distribution maps for Southeast Asia in 2010 and 2015. PLoS ONE. 
2013;8: e55882.

	42.	 Sigrist F. Gaussian process boosting. JMLR. https://​www.​jmlr.​org/​papers/​
volum​e23/​20-​322/​20-​322.​pdf.

	43.	 Lundberg SM, Lee SI. A unified approach to interpreting model predic-
tions. Advances in neural information processing systems. 2017;30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.openstreetmap.org
http://www.openstreetmap.org
https://www.jmlr.org/papers/volume23/20-322/20-322.pdf
https://www.jmlr.org/papers/volume23/20-322/20-322.pdf

	Characterizing mobility patterns of forest goers in southern Lao PDR using GPS loggers
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Study area
	Data sources
	FTAT survey
	GPS data
	GPS logger retrieval questionnaire

	GPS data processing
	Data cleaning
	Significant locations
	Outdoor trips

	Cluster analysis
	Regression analysis

	Results
	Data description
	FTAT survey
	GPS data
	GPS logger retrieval questionnaire

	Cluster analysis
	Regression analysis

	Discussion
	Conclusion
	Acknowledgements
	References




