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Abstract

Motivation: \While evolutionary approaches to medicine show promise, measuring evolution itself is difficult due to experimental constraints
and the dynamic nature of body systems. In cancer evolution, continuous observation of clonal architecture is impossible, and longitudinal sam-
ples from multiple timepoints are rare. Increasingly available DNA sequencing datasets at single-cell resolution enable the reconstruction of past
evolution using mutational history, allowing for a better understanding of dynamics prior to detectable disease. There is an unmet need for an
accurate, fast, and easy-to-use method to quantify clone growth dynamics from these datasets.

Results: We derived methods based on coalescent theory for estimating the net growth rate of clones using either reconstructed phylogenies or
the number of shared mutations. We applied and validated our analytical methods for estimating the net growth rate of clones, eliminating the
need for complex simulations used in previous methods. When applied to hematopoietic data, we show that our estimates may have broad
applications to improve mechanistic understanding and prognostic ability. Compared to clones with a single or unknown driver mutation, clones
with multiple drivers have significantly increased growth rates (median 0.94 versus 0.25 per year; P=1.6 x 107°). Further, stratifying patients
with a myeloproliferative neoplasm (MPN) by the growth rate of their fittest clone shows that higher growth rates are associated with shorter
time to MPN diagnosis (median 13.9 versus 26.4 months; P=0.0026).

Availability and implementation: \We developed a publicly available R package, cloneRate, to implement our methods (Package website:
https://bdj34.github.io/cloneRate/). Source code: https://github.com/bdj34/cloneRate/.

malignant transformation (Watson et al. 2020, Fabre et al.
2022). However, validated methods for measuring these im-
portant evolutionary parameters, which can vary from patient
to patient, remain limited. Fast, accurate estimates of the un-
derlying clonal dynamics using genomic data could serve to
improve prognostic ability and ultimately lead to better
patient outcomes.

Recent whole genome single-cell sequencing experiments in
blood (Van Egeren et al. 2021, Fabre et al. 2022, Mitchell
et al. 2022, Williams et al. 2022) allow for phylogenetic re-
construction of the ancestral relationships among cells.
Information on the growth dynamics of individual clones is
contained in the phylogeny of sampled cells from a popula-
tion (Stadler et al. 2021). Classical phylodynamics approaches
to estimate population size trajectories depend on Kingman’s

1 Introduction

Clonal expansions of cells that acquire certain mutations
post-conception are a direct result of somatic evolution and
are prevalent across the human body (Jonason et al. 1996,
Jaiswal et al. 2014, Martincorena et al. 2015, 2018, Suda
et al. 2018, Lee-Six et al. 2019, Yokoyama et al. 2019). By es-
timating the timing of clone initiation and subsequent growth
rates of clones, we can characterize evolutionary mechanisms
that underlie aging (Steensma and Ebert 2020) and malignant
progression (Martinez et al. 2016, Scott and Marusyk 2017,
Curtius et al. 2018, Gerstung et al. 2020). In blood, for exam-
ple, this evolutionary process is known as ‘clonal hematopoie-
sis’ and has been associated with many aging-related
disorders such as anemia (van Zeventer et al. 2020), impaired

immunity (Geiger et al. 2013, Schenz et al. 2022), and cardio-
vascular disease (Sano et al. 2022, Tall and Fuster 2022), as
well as progression to hematologic cancers (Jaiswal et al.
2014, Gillis et al. 2017, Warren and Link 2020). Previous
analyses found that somatic mutations conferring higher fit-
ness, measured by clonal growth rate, lead to a higher risk of

coalescent (Kingman 1982) and its subsequent generalization
to variable population size (Slatkin and Hudson 1991,
Griffiths and Tavaré 1994, 1998). With this approach, ances-
tral lineages are assumed to merge at a rate which is inversely
proportional to the population size, and exact computations
are sometimes feasible (Polanski and Kimmel 2003).
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The coalescent, with the assumption of an underlying deter-
ministic population growth model such as logistic growth,
provides the basis for clone growth rate estimation using the
phylodyn R package (Karcher et al. 2017, Van Egeren et al.
2021, Fabre et al. 2022), as well as a method called Phylofit
(Mitchell et al. 2022, Williams et al. 2022). Alternatively, the
package BEAST 2 (Bouckaert et al. 2019) enables phylody-
namic inference either by using the coalescent method or by
modeling the population as a birth-death process, which
allows the population size to vary stochastically without rely-
ing on coalescent approximations (Stadler 2009, Boskova
et al. 2014). Due to the lack of an analytical solution for con-
fidence intervals, these previous approaches estimate the
growth rate using Markov chain Monte Carlo (MCMC), inte-
grated nested Laplace approximations (INLA), or approxi-
mate Bayesian computation (ABC). Here we introduce new
methods for estimating the net growth rate of a continuous
time, supercritical birth-death process. The birth—-death pro-
cess is consistent with a cellular model of symmetric division
(birth) and death or differentiation, and our methods remain
valid for other models of clonal expansion that begin with an
exponential growth phase (e.g. logistic, Gompertzian, etc.) in
the context of hematopoietic data. Importantly, our methods
require few assumptions and do not depend on computation-
ally expensive simulation, allowing for near instantaneous es-
timation of the growth rate and its confidence intervals.

Our methods build on the mathematical work of Harris
et al. (2020) and Lambert (2018), who recently discovered a
relatively simple way to describe the ‘exact’ genealogy of a
sample of size # at time T from a birth—-death process. Using
Lambert’s construction, we derive an approximation to the
genealogy when T and # are large and use this approximation
to obtain a maximum likelihood estimate of the net growth
rate of a clone. We prove a limit theorem which gives the as-
ymptotic distribution for the total lengths of the internal and
external branches in the phylogenetic tree. The asymptotic
distribution of the total internal branch length leads to a sec-
ond method for estimating the net growth rate. This also
allows us to estimate the net growth rate directly from the
number of internal or shared mutations, those which are
inherited by more than one of the sampled cells. Additionally,
we provide an estimate for clone age which is applicable
when the growth rate is known and the mutation rate is
unknown.

Recent single-cell sequencing datasets (Van Egeren et al.
2021, Fabre et al. 2022, Mitchell et al. 2022, Williams et al.
2022) have generated novel insights about the nature of
clones in the blood, identifying high risk mutations and re-
vealing that clonal expansions with known drivers are present
decades before symptoms appear, if they appear at all
(Williams ez al. 2022). Applying our methods to these datasets
generates additional insights on the early growth rates of
clones, which appear to be clinically relevant. We validate our
estimates with longitudinal data and show that our methods
contribute to a better understanding of the overall trajectory
of the population size of a clone, refining previous estimates
and further advancing our understanding of hematopoiesis,
aging and cancer initiation.

2 Materials and methods

We derived new mathematical estimates for evolutionary
parameters (e.g. growth rate of a clone) when analyzing
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single-cell-derived DNA sequencing data from a ‘sample’ of
the clone. A sample is a random subset of the total cells in the
clone, as is commonly available in a realistic single-cell data-
set. In the blood datasets analyzed below, samples of unique
clones range from 4 to 109 cells (Van Egeren et al. 2021,
Fabre er al. 2022, Mitchell e al. 2022, Williams et al. 2022),
while total clone size can hypothetically be as large as the to-
tal number of hematopoietic stem cells (HSCs) in the human
body [estimates range from 25000-300000 (Lee-Six et al.
2018, Watson et al. 2020, Moeller et al. 2022)]. Analysis of
coalescence times then requires explicit consideration of the
size of the sample, and new theoretical results were needed to
obtain analytical growth rate estimates in this setting. In this
section, we provide our estimates for clonal growth parame-
ters under a wide range of applicable modeling assumptions,
then apply them to simulated and real data. We also compare
our results to those produced using Phylofit, a recent
coalescent-based MCMC approach (Williams et al. 2022),
and a birth-death MCMC approach introduced by Stadler
(2009).

2.1 Mathematical models for estimating clonal
growth

First, we describe the biological rationale for inferring the
growth rate from a genealogical tree. All cells sampled from
the same clone progeny will have a common ancestor dating
back to the clone’s origin, i.e. when the first cell acquired the
identifying mutation leading to clonal expansion. Any two
sampled cells may have a more recent common ancestor, and
the most recent time at which the two cells have a common
ancestor is called the ‘coalescence time’ for these cells. In a
sample of n cells, there will be # — 1 distinct coalescence times.
For larger populations, it is less likely that any two sampled
cells will have a recent common ancestor. Therefore, a faster
growing (larger) population should have older common
ancestors and a slower growing (smaller) population should
have more recent common ancestors. Because the probability
of a shared ancestor is dependent on the total clone size, the
distribution of coalescence times provides information on the
clone size trajectory, and here we use it to infer the early
growth rate of the clone, r.

To connect growth rates to a genealogical tree, we consider
the following birth—-death process. We assume each cell
divides symmetrically at rate 4 and dies or differentiates at
rate 4, acquiring mutations through time at rate v. We wish
to estimate 7 = 1 — u, the net growth rate (see Fig. 1A). The
data consists of a sample of n cells from the clone (of total
size =N cells) at a clone age T. We assume that r is positive
and constant during the expansion phase of the clone. We
also assume the sample size 7 is much smaller than the total
clone size N, which is usually valid for single-cell-derived
datasets described herein that typically have most coalescence
events occurring shortly after clone initiation (i.e. star-shaped
genealogies) (Van Egeren et al. 2021, Fabre et al. 2022,
Mitchell et al. 2022, Williams et al. 2022). Although our
mathematical results are proved for this simple birth-death
process, they can be applied to a larger class of models that
describe the expansion of clones in blood with an early expo-
nential growth phase [e.g. logistic growth (Fabre et al. 2022,
Williams et al. 2022), purely exponential growth (Watson
et al. 2020), Wright-Fisher with selection (Van Egeren et al.
2021), etc.]. Our results will be valid when observed coales-
cence times are not impacted by changing growth rates that
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Figure 1. Model schematic and coalescent results. (A) Stem cells undergo symmetric division at rate 4, increasing the population of stem cells by 1.
Asymmetric division does not affect the population size or phylogeny except to introduce mutations. Cell death (or differentiation) occurs at rate u, which
removes the cell’s inherited history from the phylogeny and decreases the population size by 1. Our methods seek only to estimate the growth rate
during the expansion phase of a clone, when the rate of symmetric division is greater than the rate of cell death (r = 4 — u > 0) and both rates are
assumed to be constant during this phase. Mutations, which can occur at or between divisions, are assumed to accumulate linearly with time at rate v.
(B) The approximate distribution of coalescence times for n="50 cells is plotted above one example of n — 1 = 49 coalescence times drawn from the
exact distribution of coalescence times for a birth-death process. The expected population size assuming logistic growth with different carrying capacities
shows that most coalescence events occur at smaller population sizes, when the growth trajectory is still approximately exponential. Other parameters:
r=1,(A=1.5, pn=0.5), T=20. Note that a sampling time T< 10years would artificially affect the distribution of coalescence times, introducing bias. (C)
Method overview: Reconstruction of a genealogical tree using the coalescent point process (CPP) can be done by first adding a vertical line of length T,
and then adding successive vertical lines representing the coalescence times (H)). The coalescence times are drawn i.i.d. from the distribution defined in
Supplementary Section S1.1 and are then connected via horizontal lines to form the ultrametric tree. (D) Tree reconstructed by randomly merging lineages
with coalescence times from (B), which is statistically equivalent to using the coalescent point process.

may occur after the initial expansion phase (see Fig. 1B), and
when the time at sampling, T, does not bias the coalescence
times.

2.2 Approximating genealogy using a coalescent
point process

A recent elegant method by Lambert for computing the exact
genealogy of a sample of size # at time T from a birth—-death
process is described in Supplementary Section S1.1 (Lambert
2018). Because we are mostly interested in the case when the
clone age at sampling T and the sample size # are large, we

can obtain a useful approximation by letting T — oo and
then 7 — oo in Lambert’s construction. This leads to the fol-
lowing simpler method for approximating the coalescence
times Hy,...,H,_1, which provides the foundation for our
estimates of the net growth rate:

1) Let W have an exponential distribution with mean 1.

2) Let Uy, Uy,...,U,_1 be independent and identically dis-
tributed (i.i.d.) random variables having the logistic dis-
tribution, which is a symmetric distribution on the real
line with density given by
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3) Let

H; = T—%(log(l/W) +logn + U,).

For mathematical details of the derivation, see
Supplementary Section S2.1. Note that we model the coales-
cence times as i.i.d. random variables having a logistic distri-
bution, plus a random shift which accounts for the
randomness in the initial growth of the branching process.
Ignatieva et al. (2020) showed using a different method in-
volving a random time change that the coalescence times can
be approximated well by i.i.d. logistic random variables.

Once the H; have been determined, we can construct the ge-
nealogical tree by randomly merging two lineages at each coa-
lescence time, or by using the coalescent point process as
shown in Fig. 1C. To understand the formula for H;, note
that in a supercritical branching process (r > 0), the individu-
als sampled at time T are likely to have been descended from
different ancestors fairly close to time zero, when the clone be-
gan expanding. That is, the genealogical tree will be nearly
star-shaped, with most coalescence occurring near time O.
Note that the expected population size of the clone at time ¢ is
. Considering the case when /4 = r and p =0, the size of the
population after a large time ¢ can therefore be approximated
by We', where W has an exponential distribution with mean
1. This expression equals 7 when ¢ =1 (log(1/W) + logn).
We expect most lineages to coalesce when the size of the pop-
ulation is comparable to 7, which is why the coalescence times
H; are close to T — 1 (log(1/W) + log n).

2.3 Estimating growth rate of a clone

If we can reconstruct the full genealogical tree from data, then
we have estimates for the n—1 coalescence times
Hi,...,H,_1. From the discussion above, we can write

Hi=a+bU,a= T%(log(l/W) +logn), b :%7 (1)

where the random variables Uy, ..., U, are i.i.d. and have a
logistic distribution. Note that we can write b = 1/r instead
of b = —1/r because the logistic distribution is symmetric. We
can therefore estimate the growth rate 7 by estimating the pa-
rameter b. We introduce here three methods. Alongside the
results below, we also created an R package cloneRate for
implementing growth rate estimation on novel user input
data.

2.3.1 Growth rate estimation using maximum likelihood
Maximum likelihood can be used to estimate b from
Hi,...,H,_ 1. Because the maximum likelihood estimate does
not have a closed form expression, it must be found using nu-
merical methods. We computed the maximum likelihood esti-
mate b in R using the Nelder—-Mead method (Nelder and
Mead 1965). From Equation (1), we can estimate 7 by
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#=1/b. (2)

Let0 < o < 1. A100(1 — )% confidence interval (CI) for
r1is

~ 7CZ1/2 A CRy/2 _ 3
- () e

where z,/, is the number such that if Z has a standard normal
distribution, then P(Z > z,/,) = «/2. Note that ¢~ .836,
which we use to compare to the confidence intervals of the
following estimate based on internal branch lengths. See
Supplementary Section S3.1 for CI derivation.

2.3.2 Growth rate estimation using internal branch lengths

If we are able to reconstruct the full tree, then we know the in-
ternal branch lengths L” (e.g. sum of the lengths of red
branches in Fig. 1D). By Theorem 1 in Supplementary Section
S$1.2, the distribution of L is approximately normal with
mean #/r and variance 7/#2. Therefore, we can estimate the
growth rate by

P=— (4)

and we obtain an asymptotically valid 100(1 — «)% confidence

interval for r by
A - Ra/2 A Zu/2
{r(l \/ﬁ),r(l—kﬁ)] (S)

This estimate based on the internal branch lengths can be
compared directly to the maximum likelihood estimate, as both
methods take a time-based ultrametric tree as input. If the coa-
lescence times are accurate, then considering only the internal
branch lengths discards relevant information and one would ex-
pect the maximum likelihood estimate to perform better. The
confidence bounds of the internal lengths estimate reflect this, as
the confidence bounds of the internal lengths method in
Equation (5) are identical in form to the confidence bounds for
maximum likelihood in Equation (3), except that the internal
lengths effectively has ¢ = 1. Because ¢ = 1 > 0.836, the internal
lengths method has wider confidence intervals. See
Supplementary Section S3.2 for CI derivation.

When reconstructing a time-based ultrametric tree from
mutations, there will be some randomness inherent in estimat-
ing the edge lengths, due to the Poissonian accumulation of
mutations. Because the above methods use the time-based tree
as input, neither accounts for this uncertainty. The following
section uses the ideas presented here to estimate the net
growth rate directly from the observed mutations, providing
confidence bounds which account for the randomness of mu-
tation accumulation.

2.3.3 Growth rate estimation using shared mutations rather
than full tree

If we can estimate the mutation rate v during the expansion
phase of the clone, then we can also estimate the growth rate
directly from the number of shared mutations, defined as
those mutations present in more than 1 but not all of the n
sampled cells. The key idea is that there will be more shared
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mutations when the growth rate is smaller and fewer when
the growth rate is larger. As shown in Supplementary Section
S1.3, the distribution of the number of shared mutations M"”
is approximately normal with mean nv/r and variance
o> = n(v/r +v*/#?). Therefore, if the mutation rate v is
known, we can estimate the growth rate by

nv

r:Min'

(6)

An asymptotically valid 100(1 — 2)% confidence interval
for r is given by

. R0/2 n Ra/2 n
(12 o) (-2 )| o

Accounting for Poissonian fluctuations in the observed
number of shared mutations leads to confidence bounds
slightly wider than those from the internal lengths method
[Equation (5)]. See Supplementary Section S3.3 for CI
derivation.

3 Results
3.1 Estimation performance on simulated data

To verify the performance of our methods, we generated trees
using the exact genealogy reconstruction discussed in full de-
tail in Supplementary Section S1.1. Recent work by Lambert
(2018) allows for instantaneous generation of the exact gene-
alogy of a sample from a supercritical birth—death process, re-
moving the need for complex simulations [such as those
employed by the stochastic simulator MASTER (Vaughan
and Drummond 2013) in BEAST 2 (Bouckaert et al. 2019)]
for many population genetics and coalescent applications. We
briefly describe this process here and note that the tree genera-
tor is available in cloneRate. For a sample of size » at time T
from a clone expanding with birth rate 1 and death rate g,
n — 1 exact coalescence times are drawn using the process de-
scribed in Supplementary Section S1.1. An example of a set of
49 coalescence times for a sample of 50 cells is shown in
Fig. 1B. Given the coalescence times Hj, ..., H,_1, the coales-
cent point process can be used to quickly reconstruct the gene-
alogy. To reconstruct the tree from the coalescence times, we
begin by drawing a vertical line of height T. We then draw
vertical lines of heights Hy,...,H,_1 and, at the top of each
vertical line, draw a horizontal line to the left, stopping when
it hits a vertical branch. The resulting tree is ultrametric,
meaning that the root to tip distance is the same for all tips.
Figure 1C shows a schematic example of a tree generated
with 10 tips from 9 coalescence times, and Fig. 1D shows the
tree constructed using the coalescence times in Fig. 1B.

Then, applying our methods to these reconstructed trees
gives a distribution of estimates which allows for benchmark-
ing since we know the “true” growth rate in the simulated
data. We compared the performance of our methods to the
MCMC-based approach, Phylofit, introduced by Williams
et al. (2022). We did not compare to the performance of their
ABC-based estimates, but note that the authors show a strong
correlation between estimates from Phylofit and the ABC-
based method (correlation coefficient r=0.96) (Williams
et al. 2022). We also compared our methods to another
MCMC approach based on the birth-death model using the
likelihood given in Equation (5) by Stadler (2009). Whereas

Phylofit is based on Kingman’s coalescent assuming logistic
population growth, the method based on Stadler’s work mod-
els the population as a birth—death process, and assumes each
individual is sampled with some fixed probability p. Our
methods also use a birth—-death process but instead assume a
fixed sample size 7, allowing us to obtain analytical approxi-
mations when the sample size is much smaller than the popu-
lation size at the time of sampling.

3.1.1 Performance across varying sample size # and growth
rate »

We found similar performance using our methods compared
to the MCMC methods. As shown in Fig. 2A and B, both
MCMC methods appear to perform slightly better for small
sample size 7, while our maximum likelihood method outper-
forms Phylofit for #n > 100. Of our two analytical methods,
maximum likelihood has the lower root mean square error
for larger values of n and converges to the birth—-death
MCMC as n becomes large (see Fig. 2B). When the sample
size 7 is too low, our approximation of the distribution of co-
alescence times, which is valid as # — oo, no longer accurately
describes the population. Intuitively, a smaller sample pro-
vides less information available to make an accurate estimate
of the growth rate. As such, performance deteriorates and the
confidence intervals of our estimates expand with decreasing
n (see Equations (3), (5), and (7)). We use a cutoff sample size
of =10 for each clone when applying to real data below,
but note that this cutoff depends on the desired accuracy of
the estimate.

The confidence intervals for our methods are approxi-
mately accurate, as shown in Fig. 2C. We evaluate the accu-
racy of the confidence intervals using coverage probability,
which denotes the fraction of simulations where the true
growth rate falls within the estimated confidence interval (in
our case, 95% confidence intervals). We note that the maxi-
mum likelihood confidence intervals may be slightly too nar-
row for small 7 because the variance estimate is based on the
asymptotic Cramer—-Rao bound (Antle et al. 1970).
Alternatively, the 95% highest posterior densities (HPD) for
Phylofit are consistently too narrow, where <80% of cover-
age is typically observed for growth rate estimates (Fig. 2C).
A similar observation about overconfidence of coalescent-
based estimates has been made previously (Boskova et al.
2014, Stadler et al. 2015), which is likely due to the fact that
the birth—death process explicitly models stochastic popula-
tion changes while the coalescent-based approach assumes
that the change in population size is deterministic. Finally, we
show that the MCMC methods’ runtimes scale with the num-
ber of samples, while our analytical methods are essentially
instantaneous regardless of the size of the tree (Fig. 2D).

Similarly, we quantified the performance of our methods
across 7 values. As shown in Fig. 3A and B, the four methods
perform comparably well, with the birth-death MCMC hav-
ing the lowest root mean square error. Again, Fig. 3C shows
that our confidence intervals are accurate when r > 0.5, while
coverage by Phylofit is below 80% when applied to the birth—
death trees. In Fig. 3, the smallest growth rates show concern-
ing performance, which motivated further investigation into
the impact of small growth rates.

3.1.2 Small growth rate diagnostic for method utilization

We investigated the performance failure at small growth rates
and derived a diagnostic to determine when the growth rate is
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trees were generated assuming a continuous time birth—death branching process with r=0.5 per unit time and 7= 40 time units, where time units are
arbitrary (e.g. years). Birth rate 2 was sampled from a uniform distribution on [0.5, 1.5] and death rate 4 = 2 — r. (B) Root mean square error for each
method from simulated data shown in (A) illustrates improved performance with number of samples. MCMC methods are most accurate for small n,
while the birth—death MCMC and maximum likelihood perform best for large n. (C) Coverage of 95% confidence intervals methods based on simulations
in (A), measured as the fraction of simulations where the true growth rate falls within the estimated confidence intervals. (D) Runtime (mean +/— st. dev.)
of various methods of estimating net growth rate shows that while the MCMC-based methods scale with the number of samples, n, our methods run

effectively instantaneously for any tree size.

large enough for our analytical methods to be applicable
(Fig. 4A). As shown in Fig. 3, our methods do not perform as
well as the MCMC methods when 7 is small. To understand
why, note that when 7 is large, the population grows rapidly,
and the 7 sampled cells should all have distinct ancestors that
were alive a short time after the initiation of the clone.
Consequently, the genealogical tree will be nearly star-
shaped, with long external branches and short internal

branches near the root (see example in Fig. 1D). Our approxi-
mation was designed to work well under these circumstances.
On the other hand, when =0, so that the branching process
is critical, the population size is nearly stable over time. Then
the genealogy of the 7 sampled cells resembles Kingman’s coa-
lescent, in which most coalescence events occur near the time
of sampling, leading to long internal branches and short ex-
ternal branches. When r is small but positive, the genealogical
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tree will be star-shaped if the sampling time T is sufficiently
large, but the internal branch lengths may still be long.
Consequently, if T is not sufficiently large, then the constraint
that the coalescence times must be less than T will affect the
distribution of the coalescence times, and the approximation
that we derived will not be accurate.

More specifically, we expect to obtain a star-shaped genea-
logical tree when the sample size 7 is much smaller than the
expected population size e’T. Indeed, Theorem 1 (see
Supplementary Section S1.2), establishes that the growth rate
estimate should be accurate as long as #e~'T is small. When
n=100 and T =40, as in the simulations presented in Fig. 4,
the value of ne T equals 0.248, 0.034, and 0.005 when r
equals 0.15, 0.20, and 0.25, respectively, which explains the
large difference in the performance of our estimates over this
range of values of r.

Note that if the birth and death rates are multiplied by a
constant ¢ and the sampling time is multiplied by 1/c, then
the distribution of the shape of the genealogical tree of the
sample will be unchanged except for a rescaling of the branch
lengths. Consequently, the condition for the validity of our
methods should be unchanged by this rescaling. Indeed, the
product 7T is unchanged by this rescaling, and our theorem
shows that as long as ze™" is small, our methods will perform
well, regardless of the values of 1 and u. Because the afore-
mentioned scaling relation allows us to fix one of the

parameters for the purposes of simulation, we considered
T=40 throughout. For fixed T, we show the effects of vary-
ing 7 and the p// ratio in Supplementary Fig. S8, demonstrat-
ing the dependence of the tree shape on r rather than p/ /.

When applying our methods to real data, we can compare
the internal and external branch lengths of a given genealogi-
cal tree to diagnose when estimates should be reliable, because
our methods work well when the tree is star-shaped. As
shown in Fig. 4A, when the ratio of external to internal
lengths is greater than or equal to 3, our methods and confi-
dence intervals are accurate. Fig. 4B shows that most of the
simulated trees with problematic small growth rates fail this
diagnostic cutoff. Applying this cutoff to a simulated dataset
with growth rates between 0.1 and 1 reduces overestimates
and greatly improves performance (Fig. 4C and D). Notably,
small growth rate clones at a relatively young clone age are
unlikely to be observed in enough sampled cells in real data to
make an accurate estimate; a requirement of 7 > 10 cells is
unlikely to be satisfied in these clones. In fact, as shown in
Fig. 4A, none of the 42 clones which we analyze from the
blood datasets below has an external to internal length ratio
less than 4, and only two clones have a ratio less than 5.

3.2 Application to human blood datasets

We applied our methods to single-cell-derived sequencing
data from human blood (Table 1). The methods for
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generating the data are fairly similar across the studies: single
hematopoietic progenitor cells were clonally expanded and
each single-cell-derived colony was sequenced to a mean
depth of roughly 15x, with slight differences depending on
the study (Van Egeren et al. 2021, Fabre et al. 2022, Mitchell
et al. 2022, Williams et al. 2022). Time-based ultrametric

trees are used as input for our methods, Phylofit, and the
birth-death MCMC. Manual annotation is required to iden-
tify clonal expansions, associate clones with specific drivers,
and to remove nested subclonal expansions from the clone of
interest. We generally designated the clones as annotated in
the studies which produced the data (Van Egeren et al. 2021,
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Table 1. Whole genome sequencing datasets of single-cell-derived colonies.?

Number of individuals Number of clones  Data source

Diagnosis References

11 18 (15 unique) Adult peripheral blood (PB) and/or ~ Myeloproliferative neoplasm Williams ez al. (2022)
bone marrow (BM) (MPN)

2 2 Adult BM MPN Van Egeren et al. (2021)

3 15 Adult PB and/or BM Normal Mitchell ez al. (2022)

3 7 Adult PB Normal Fabre et al. (2022)

19 42 (39 unique) Total

? Number of clones indicates the number of clonal expansions with 7 > 10 cells sampled. As some clones profiled by Williams et al. (2022) had #n > 10
cells sampled at multiple timepoints from the same clone, we also specify the number of unique clones. See Supplementary Section S4.4 for details on

annotating clones.

Fabre et al. 2022, Mitchell et al. 2022, Williams ez al. 2022)
and provide details in Supplementary Section $4.4.

First, we check our assumption of neutrality within expand-
ing clones (i.e. all cells within the clone grow at approximately
the same rate). Previous authors have studied the expected
site frequency spectrum for a sample from a birth—death pro-
cess. Letting M¥ denote the number of mutations inherited by
k of the n sampled individuals, Durrett (2013) showed that as
T — oo, for k > 2 we have

k nv 1
Bl ~ 2 (8)

Gunnarsson et al. (2021) calculated the exact expectation
in the case when the entire clone is sampled [see also (Bozic
et al. 2016, Williams et al. 2016) for similar calculations].
Therefore, we expect the site frequency spectrum to follow
the curve 1/k(k — 1), where k equals the number of cells. In
Fig. SA, we show the averaged site frequency spectrum across
all clones, with any nested subclones removed, along with the
95% confidence interval of the mean. The agreement between
the observed mean and the expectation indicates neutrality
within clones, consistent with previous conclusions in blood
(Van Egeren et al. 2021, Fabre et al. 2022, Mitchell et al.
2022, Williams et al. 2022). For more detailed data on the
site frequency spectrum for each clone, see Supplementary
Table SS.

In applying the methods to real data, we found agreement
across our two analytical methods and agreement with the esti-
mates from Phylofit (see Fig. SB-D). Close agreement was also
found between our maximum likelihood method and the birth—
death MCMC approach (R*>=0.995, see Supplementary Fig.
S2). Estimates using the internal lengths method were slightly
higher than maximum likelihood in some clones, and we expect
that this is due to non-random merging of lineages as a result of
slight fitness differences within the clone (see Supplementary Fig.
S3 for details). As discussed in Supplementary Section $4.2, we
only include the estimates from Phylofit without including the
sampled clonal fraction as a target, because clones have been
shown to behave unpredictably at high clonal fractions, deceler-
ating more than would be expected by a logistic growth trajec-
tory (Fabre et al. 2022, Mitchell et al. 2022). Also, sampled
clonal fraction and/or variant allele frequency (VAF) may be a
poor estimate of mutant allele burden in progenitors and HSCs
(see Supplementary Section $4.2), possibly due to lineage bias in
mutated cells, such as the erythroid lineage bias observed in
JAK2 mutants (Van Egeren et al. 2021).

The most fit clones (those with fastest growth rates) were
observed in patients with myeloproliferative neoplasms
(MPN). As shown in Fig. SE, we found significantly increased

estimates of mean detected clone fitness in individuals diag-
nosed with MPN as opposed to healthy adults (P=0.029).
Additionally, Fig. SF shows that multiple-driver clones have
significantly increased rates of expansion as compared to
clones with just one or zero known driver mutations
(P=1.6 x 107°). This suggests increasing fitness effects from
the accumulation of additional mutations. Higher growth
rates may also be associated with shorter time from clone ini-
tiation to cancer diagnosis (log-rank P =0.0026), as shown in
Kaplan—Meier curves in Fig. 5G. Here the clone initiation
time is estimated to occur 1/7 years before the first coales-
cence (i.e. first surviving symmetric division). Together, these
findings indicate that mechanistic rates for clonal dynamics
such as the early growth rate may provide clinically important
information in our understanding of hematopoietic stem and
progenitor cell evolution and transformation to malignancy.

3.2.1 Longitudinal validation of clone growth estimates

We leveraged available longitudinal data to validate our
growth rate estimates. Again, for single-cell-derived data, we
used a lower bound of 7= 10 cells per clone to include in our
analysis. For longitudinal bulk data, we restrict analysis to
expanding clones with a minimum of four timepoints avail-
able of the same bulk cell type. Further, because coalescent
estimates are relevant for the early growth rate, we require
that longitudinal data have at least two samples with a variant
allele frequency between 0 and 0.25. The longitudinal data
consists of peripheral (whole) blood samples (Fabre et al.
2022) and peripheral blood granulocyte samples (Williams
et al. 2022). It has been suggested that clonal fraction may dif-
fer across different blood cell types (granulocyte versus whole
versus mononuclear) (Van Egeren et al. 2021). Data from
Williams et al. (2022) is consistent with this finding, as there
is significantly different clonal fraction across sampled cell
type in three out of four patients where multiple cell types
were sampled within a month of each other (see
Supplementary. Fig. S6). Therefore, we require that a consis-
tent type be used within each longitudinal growth rate esti-
mate. For more details on the criteria for analysis, see
Supplementary Section S4.3.1.

We analyzed four clones from Williams ef al. (2022) and
56 clones from Fabre et al. (2022) that had appropriate longi-
tudinal data. Of these 60 clones, 3 have sufficient matched
data from single-cell-derived whole genome sequencing
(WGS) samples [1 clone from Williams et al. (2022) and 2
clones from Fabre et al. (2022)] to allow for orthogonal esti-
mates from the same clone. Results for these three clones are
shown in Fig. 6A-C, along with a logistic growth model fit.
While we show the corresponding single-cell colony clonal
fraction (orange, divided by 2 to scale to the VAF of a diploid
mutant), we do not use this data point in the fitting as the


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad561#supplementary-data

10 Johnson et al.
A Mean site frequency spectrum B 5 Myeloproliferative Neoplasm (MPN)
Q
- Lengths &
- Max. likelihood
|| = Phyofit
112 £ 44| = Van Egeren ABC
@
= ©
> ~ "
%) - (%o} ~
g g3 o 8§ 7
g‘ @ ~N < QV
8 E| &8 ,
g QU —— © /;\(b
o 2 — & /qu N || <
© I & 2 N
1/6 © > Qf,b{\// NS N O
£ s N Sy
112 % o } & N
0 h‘ § (\,y %? AN /‘bb‘(\
4
> 3 4 5§ 6 1 & 3 3, }H‘f § %< &
# descendant cells ( S—— ——
= JAK2 9pUPD = 7p- 1g+ 99- == PPM1D
== DNMT3A = TET2 = 7Q- 9+ CBL SF3B1
C D
100 Normal —
,,’<\ - Lengths
& - Max. likelihood
- - Phylofit ® R
> 9
5 0.754 o 2 _ 1
g Q,;S/ g 2 R”=0.96
~ 3 /,’
g & & 3 o
o o > N o]
£ 0,50 2 S S o< o < ..
g | 5
3 A < s //bib /;g: N % /;59 < § 1 . ,’f s
Q e | & | $ ° N &< 8 < = -
5 N < Q,;\ <& &/\Q N & é . o
S = »
S 025 ’.‘}.-
5 { ,
O } } %{ % 0L
% gt ; i ;
0.00 Phylofit estimate
E F G
25
—_ . . 1.00+
=15 o 2o o
Q. = O = -6 o
R p=0.029 5 p=1.6x10 L |
© =3 tb 0.75
] ~ (%)
_g g 15 %
21.0 g £ 0.501
[0] = ')
© A £
< 1.0 =
S ) ©
5 £ S 0.25-
= 0.5 £ ’ x
2, . S 05 N7 . o
5 5 :
L d..] : o ’ 0.001
L] o
0 20 40 60

Normal

MPN

0 or 1 drivers

2+ drivers

Time since clone initiation (yrs.)

Figure 5. Applying estimates to blood data. (A) Averaged site frequency spectrum across 42 clones shows agreement with the ﬁ neutral expectation
(solid line). Error bars show 95% confidence interval of the mean. (B-C) Our estimates and Phylofit for clones with n > 10 tips from individuals with (B)
and without (C) myeloproliferative neoplasms (MPN) shows good agreement across methods. Brackets in (B) group estimates from the same clones in
the same patient estimated from two distinct samples taken years apart, showing consistency of estimates. Note that we also include estimates from
Van Egeren et al. (2021) in dark blue for the two clones from their dataset. (D) Correlation between our maximum likelihood estimate and estimates from
Phylofit for all clones from (B) and (C). (E) Mean maximum likelihood net growth rate estimate for clones from patients with and without a diagnosis of
MPN shows that more aggressive expansions are associated with MPN. (F) Maximum likelihood net growth rate estimate for clones with single or
unknown drivers and multiple drivers show that fitness predicted by our methods is consistent with effects of known drivers. Non-parametric Mann—
Whitney test used for P-value calculation in (E, F). (G) In the single most aggressive clone from each patient diagnosed with MPN, stratification by mean
net growth rate r shows significant differences in Kaplan-Meier survival curves from clone initiation to MPN diagnosis (log-rank test P=0.0026) though
sample set was small (13 patients). At time of sampling, mean age of high growth rate group was 60.3 years, median was 50.4 years. Mean age of low
growth rate group was 60.9 years, median was 63 years.



cloneRate 1

B C
PD9478 JAK2 & DNMT3A PD41276 SF3B1 PD34493 SF3B1
051, . R resye 0.5 : 0.5 rerrs e
e
o4 ' To4 : o4 Bulk peripheral
2 2 : = blood granulocytes
) g )
€03 €03 S Bulk peripheral
g g g blood
. < 5 Single cell
K] =0.487 K] < Ingle ce
202 K=0489 202 202 peripheral blood
= = = mononuclear cells
8 8 8
Lo0.1 L01 S04
0.0+ : T : 1 0.0 1 . 1 0.0 t 1 1 1
50 60 70 60 70 80 60 70 80 90
Person Age (yr) Person Age (yr) Person Age (yr)
D
Coalescent and longitudinal estimates from matching clones Coalescent and longitudinal estimates from clones with same drivers
0.81 L 1.59]4 Longitudinal model (bulk)
¢ Longitudinal model 4 Max. likelihood (single cell)
= ¢ Lengths =
i’ é Max likelihood z*
g 061 ¢ Phylofit 8.;
= = 1.04
g g
@© © T
£ 0.4/ o E ¢
®» @
] i}
) + )
© © 05
£ 0.2 <
3 3 ag
S . S * IH }
0 Q I [} ¥ 113
0.0+
0.0 - -
A: PD9478 JAK2 B: PD41276 C: PD34493
& DNMT3A SF3B1 SF3B1 DNMTSA JARZ PEMID
F . .e sse
i PD6646: Competing clones i Max. likelihood estimates 11} Coalescent estimate predicts the winner
1.50
DNMT3A —
mutation 5 L
L 7 QL) ey
£1.25 <04
“ ® =
g 3 . ¢
g g 0.3 * \4
JAK2 V617f £ Z o .
mutation 2 1.00 o PP e
w Le
9 (0] * . . SP‘\(L
8 © 0.21
o =
£ <
~ s 0.1
:§>§ >
Expanded clade with Expanded clade with
and DNMT3A DNMT3A and JAK2 0.50 0.0
mutation (n=13) mitation =51} DNMT3A DNMT3A 76 78 8 82 84
and and JAK2 Age

Figure 6. Longitudinal validation. (A—C) Logistic fit to longitudinal data for three clones which have both single-cell and longitudinal data. Only longitudinal
bulk WGS data were used for fitting. Single-cell colony clonal fraction (divided by 2) and 95% confidence intervals are shown in orange. Source for (A) is
Williams et al. (2022), and source for (B) and (C) is Fabre et al. (2022). (D) Longitudinal and single-cell estimates for each of the clones in (A-C) show
agreement across data types. (E) Longitudinal and single-cell estimates for different clones sharing the same driver. (F) Clonal competition between a
DNMT3A + CBL clone and a DNMT3A + JAK2 clone shown in the reconstructed phylogeny (i). Maximum likelihood single-cell estimate from each clone
(ii) shows that the DNMT3A + JAKZ clone likely has higher fitness. Longitudinal data (iii) shows that the DNMT3A + JAKZ clone increases in VAF over
time while the DNMT3A + CBL clone decreases, confirming that the DNMT3A + JAKZ clone has higher fitness, as predicted by our maximum likelihood
estimate. All error bars represent 95% confidence intervals.



12

different cell type may affect the clonal fraction, as noted
above. The logistic growth model is used primarily to identify
the growth rate, 7, and is chosen because it has been shown to
face fewer parameter identifiability issues than other sigmoid
growth models, such as Gompertz or Richards’, when applied
to similar data (Simpson et al. 2022). For details on the longi-
tudinal modeling, see Supplementary Section $4.3.2.

In comparing the growth rates from the longitudinal fits to
our methods and Phylofit (Fig. 6D), we found general agree-
ment in the estimates, though we note the wide confidence
intervals especially from the logistic model fit. Additional lon-
gitudinal data from Fabre et al. (2022), although not from
clones with matched single-cell data, was also used to com-
pare to our coalescent estimates. First, we identify longitudi-
nal clones with drivers also present in the single-cell data.
Then, we fit the logistic growth model to these longitudinal
clones. After filtering (see Supplementary Section S4.3.1) and
excluding the three clones shown in Fig. 6A-C, there were 13
clones with longitudinal data and a driver gene also found in
single-cell clones. This data comes from clones with a muta-
tion in one of the following genes: DNMT3A, JAK2, or
PPM1D. The estimated growth rates are shown in Fig. 6E.
Similar growth rates in the same driver genes shows general
consistency across all methods, though the small amount of
data and wide confidence intervals limit the conclusions that
can be drawn. Interestingly, similar longitudinal modeling of
white blood cell (WBC) counts in chronic lymphocytic leuke-
mia (CLL) (Gruber et al. 2019) produced comparable esti-
mates of CLL growth rates [median 0.50 per vyear,
interquartile range (IQR)=0.30 — 0.86] to our estimates
based on single-cell data for MPN clone growth rates (median
0.64 per year, IQR =0.40 — 0.96). See Supplementary Fig. S9
for more details.

Finally, we considered competing clones within the same
patient. If our estimates are relevant for clonal fitness, we
would expect that clones with higher estimated growth rates
should out-compete clones with lower estimated growth rates.
The only example of competing clones with sufficient single-
cell data comes from patient PD6646 from Williams et al.
(2022) (Fig. 6F). A CBL and a JAK2 mutation gave rise to
two independent clones, both of which already have a
DNMT3A mutation (Fig. 6F, i). By our maximum likelihood
estimate, the DNMT3A + JAK2 clone is slightly more fit than
the DNMT3A + CBL clone (Fig. 6F, ii). Both Phylofit and
our internal lengths method also estimate a higher growth
rate for the JAK2 clone. While this patient was undergoing
treatment in this time period and the trajectory does not ap-
pear logistic, the JAK2 clone increases in variant allele fre-
quency while the CBL clone decreases (Fig. 6F, iii), consistent
with our estimate suggesting that the JAK2 clone is more fit.
There is an important caveat in this example because the spe-
cific interactions between clone/mutation and treatment may
be responsible for the increasing/decreasing VAF, which is not
accounted for by our estimate of fitness that characterizes
early growth before treatment would have begun.

4 Discussion

We developed new methods using coalescent theory to esti-
mate rates of clonal expansion (and clone age) at greatly re-
duced computational expense. Leveraging previous work
(Lambert 2018), we validated our methods using efficient
computational realizations of phylogenies resulting from
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birth-death branching processes. We then applied our meth-
ods to single-cell resolution data from blood, showing that
our growth rate estimates are both meaningful and consistent
in biological and clinical contexts. We found general consis-
tency of estimates with a previously published MCMC-based
approach, Phylofit (Williams et al. 2022) (R? = 0.94-0.96),
and a birth-death MCMC approach (Stadler 2009)
(R? = 0.965-0.995). Where possible, we validated our esti-
mates using single-cell data from multiple timepoints, and
also show that our estimates are consistent with and generally
more precise than orthogonal estimates of net growth rate de-
rived from longitudinal bulk data. Because they are based on
analytical results, our methods for estimating growth rates
from phylogenetic reconstruction are simple and run quickly
without sacrificing accuracy. For future datasets with a higher
number of sampled cells # and larger numbers of patients and
clones, near instantaneous runtime at any tree size may be a
critical feature separating our methods from MCMC- or
ABC-based alternatives. We provide a simple and easy-to-use
R package, cloneRate, which will allow other researchers to
estimate growth rates with their own input data.

For testing model performance on simulated data, we use
results of Harris et al. (2020) and Lambert (2018) to recon-
struct the exact genealogy of a sample of size # from a birth—
death process at time T, conditional on the population size be-
ing at least 7 at time T. This method avoids the need to simu-
late the entire large clonal population starting from a single
cell as is commonly performed in other methods. From a
mathematical point of view, the idea of using the coalescent
point process to obtain results about statistics such as the site
frequency spectrum and the allele frequency spectrum goes
back to Lambert (2009) and was later developed further
(Champagnat and Lambert 2012, Champagnat and Henry
2016, Delaporte et al. 2016), and then was recently applied to
cancer modeling by Dinh et al. (2020). Here we combine these
ideas with the results from Lambert (2018) to obtain asymp-
totic results for quantities that can be derived from a large
sample from a birth-death process. By taking advantage of
the independence that is inherent in the coalescent point pro-
cess, we are able to apply the m-dependent Central Limit
Theorem to show that the total internal branch length, which
can be used to estimate the growth rate of the process, has an
asymptotic normal distribution. This observation allows us to
obtain an asymptotically valid confidence interval for the
growth rate; to our knowledge, ours is the first method for
confidence interval construction that does not rely on
Bayesian inference techniques. Finally, this is a unifying
method for growth rate estimation that is applicable to many
biologically relevant models assumed in previous works for
clonal dynamics in blood (Watson et al. 2020, Van Egeren
et al. 2021, Fabre et al. 2022, Mitchell et al. 2022, Williams
et al. 2022).

Acknowledging that this is both a limitation and a strength,
our methods estimate only the growth rate in the early expan-
sion phase, when growth is approximately exponential.
Growth rates following the initial expansion phase may
change over time in unpredictable ways and this, in most
cases, should not affect our results. As such, our methods
work well for clones with star-shaped trees that are common
in blood and other somatic cell datasets. In the case of critical
branching behavior (i.e. trees with relatively longer internal
branches), our simulations indicate that the MCMC
approaches should be applied. In focusing only on the early
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growth rate, our methods do not rely on assumptions of the
overall growth trajectory. Additionally, we have shown that
early growth rates are relevant to the greater context of clonal
and malignant hematopoiesis. For example, we found that
higher growth rates are associated with shorter time from
clone initiation to MPN diagnosis. The association between
MPN diagnosis and growth rate suggests a possible avenue
for early detection by predicting which patients are more
likely to remain asymptomatic and which are more likely to
undergo malignant transformation. Understanding the role of
evolutionary dynamics to predict risk of progression in clonal
hematopoiesis and provide prognostic information in hemato-
logical malignancies has been noted as a top clinical priority
(Savona et al. 2015, Stahl et al. 2023).

Further, multi-driver clones show significantly increased
rates of expansion, suggesting possible cumulative and/or syn-
ergistic effects of driver mutations. We found wide heteroge-
neity of fitness effects for JAK2 clones, consistent with
previous findings (Fabre et al. 2022), and relatively low fitness
effects with smaller variation for DNMT3A clones. In the
context of clonal hematopoiesis, single hit drivers with lower
growth rates may increase risk for MPN by increasing the res-
ervoir of cells at risk of additional stochastic mutations, thus
initiating multi-hit driver clones with potentially additive fit-
ness effects. There are other possible benefits to knowing the
early rate of expansion. For example, early expansion rates
are affected by fewer outside pressures such as treatment
(Bolton et al. 2020) and may be more consistent across
patients.

Our findings also provide guidance to experimental
researchers designing single-cell DNA sequencing experiments
that aim to determine clone fitness. The minimum number of
sampled cells required for reliable estimates of growth rates
falls roughly between 10 and 30, depending on desired accu-
racy (see Fig. 2). Bulk whole genome sequencing performed
prior to single-cell experiments could provide variant allele
frequency information that can be used to estimate the cell
fraction of clones of interest. Then, the total number of cells
sequenced can be decided in a way that ensures enough sam-
pled cells from clones of interest are included, while reducing
overall costs.

One limitation is that current methods rely on the manual
annotation of clones from a phylogenetic tree. While this is
currently a fairly easy task given the relatively small size of
single-cell DNA sequencing datasets, it may become more
challenging for expected increases in throughput (Evrony
et al. 2021). An automated way to detect clonal expansions
and distinguish normal cell turnover from expansions may be
required to effectively scale the application of our methods.
Such an automated algorithm would likely have to leverage
not just the distribution of coalescence times, but also meas-
ures of tree balance.

5 Conclusion

Phylodynamics for human somatic data and cancer is a rap-
idly growing area and new tools are needed for useful applica-
tions (Stadler er al. 2021, Househam et al. 2022, Lewinsohn
et al. 2023). With our methods, phylogenetic reconstruction
can become an even more powerful tool to infer the past evo-
lutionary dynamics of a population of cells. It has been hy-
pothesized that individuals at high risk of developing myeloid
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malignancies can be identified before presenting with any
symptoms (Abelson et al. 2018). Knowing which drivers are
associated with more aggressive expansions will provide clini-
cians with better tools to direct treatment and/or prevention
strategies. Additionally, clonal expansions without known
drivers can provide mechanistic and biological insight. While
blood is currently the most convenient medium for creation of
single-cell-derived DNA sequencing data and validation of
these methods, age-related clonal expansions are also a fea-
ture of somatic evolution in tissues with spatial organization.
Selection of the same drivers are found at similar burdens in
solid tissues across patients, and thus accurate phylogenetic
reconstruction in solid tissues may allow our method to be ap-
plicable in a variety of disease types. More comprehensive
methods and datasets leading to the construction of more ac-
curate phylogenetic trees (Kang er al. 2022, Kozlov et al.
2022), when combined with the methods presented here, will
enable researchers and clinicians to quickly draw conclusions
about net growth rate from mutational data.
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