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Abstract
Confirmation bias has been widely studied for its role in failures of reasoning. Individuals
exhibiting confirmation bias fail to engage with information that contradicts their current
beliefs, and, as a result, can fail to abandon inaccurate beliefs. But although most investigations
of confirmation bias focus on individual learning, human knowledge is typically developed
within a social structure. We use network models to show that moderate confirmation bias
often improves group learning. However, a downside is that a stronger form of confirmation
bias can hurt the knowledge producing capacity of the community.

1. Introduction
Chaffee and McLeod (1973) offered individuals a choice of pamphlets to read about
upcoming elections. They found that individuals tended to choose those pamphlets
that fit with their current preferences, rather than those that opposed them. Mynatt
et al. (1978) presented subjects with a dynamic system on a computer and asked them
to discover the laws governing this system. They found that once subjects generated
hypotheses about the system they followed up with tests that would tend to confirm
their hypotheses, rather than disconfirm them. Lord et al. (1979) conducted an exper-
iment on individuals with strong views on the death penalty. They found that when
these subjects were offered new information regarding the deterrent effect of the death
penalty they were very resistant to changing their opinions. Sweeney and Gruber (1984)
surveyed members of the public during the Watergate hearings and found that those who
had voted for Nixon tended to ignore information about the hearings compared to those
who had voted for McGovern.

These studies are just a few of those outlining the pervasive impact of confirma-
tion bias on human learning. Confirmation bias refers to a cluster of related behaviors
whereby individuals tend to seek out, to interpret, to favor, and to selectively recall
information that confirms beliefs they already hold, while avoiding or ignoring infor-
mation that disconfirms these beliefs. It has been widely implicated in the prevalence
and persistence of false beliefs. Individuals exhibiting this bias often ignore information
that might help them develop accurate beliefs about the world. Most notably, they are
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2 Can Confirmation Bias Improve Group Learning?

susceptible to holding onto false beliefs which have been discredited (Festinger et al.,
2017; Anderson et al., 1980; Johnson and Seifert, 1994; Lewandowsky et al., 2012).

Confirmation bias has mostly been studied at the individual level—i.e., how does
it influence individual beliefs and behaviors? Human knowledge and belief, though,
are deeply social. Individuals influence the beliefs of those they interact with, and are
influenced in turn. Ideas and evidence are shared via social networks in ways that impact
further learning and exploration. This leads to a set of questions: how does confirmation
bias influence learning and belief in human groups? Is it harmful to groups in the same
way it seems to be harmful to individuals? A few authors have considered, in particular,
whether confirmation bias might have unexpected or surprising benefits to group inquiry.
Could confirmation bias actually be epistemically useful in the right contexts?

We use network models to study these questions. In particular, we draw on the net-
work epistemology paradigm first developed in economics by Bala and Goyal (1998)
to study learning in groups. Subsequently, this framework has been widely employed
in social epistemology and the philosophy of science to study related topics such as
the emergence of consensus in scientific communities (Zollman, 2007, 2010) and the
impacts of social biases on group learning (O’Connor and Weatherall, 2018). Unlike
some other sorts of network models, in this paradigm agents gather and share data and
evidence with each other. This is an important feature in studying confirmation bias
since this bias impacts the way individuals deal with evidence they receive.

We find that in models incorporating moderate levels of confirmation bias groups
do better than in models where individuals do not exhibit confirmation bias. Dogmatic
individuals who do not easily change positions force the group to more extensively test
their options, and thus avoid pre-emptively settling on a poor one. This result reflects
claims from philosophers and psychologists who have argued that tendencies related
to irrational stubbornness, such as confirmation bias, might benefit group learning in
this way (Kuhn, 1977; Popper, 1975; Solomon, 1992, 2007; Mercier and Sperber, 2017;
Smart, 2018). Our results also echo modeling findings from Zollman (2010) who shows
that groups of stubborn individuals sometimes learn better than more individually ratio-
nal learners.1 In our case, confirmation bias functions as a sort of stubbornness. It leads
individuals to keep exploring theories that might otherwise seem sub-optimal, and, in
doing so, to sometimes discover that these theories are actually worthwhile.

There is a downside to confirmation bias, though. While moderate levels can pro-
mote accurate group-level learning, we find that a more robust type of confirmation bias
leads individuals to entirely ignore theories they do not currently favor. In such cases,
communities can polarize, and epistemic progress is harmed. This suggests that while
our models help confirm a useful function of confirmation bias, worries about its harms
are still legitimate even when considered from the group perspective.

The paper will proceed as follows. In section 2 we describe relevant literature, first
focusing on empirical work on confirmation bias. We then briefly survey related mod-
elling work. Section 3 outlines our model which incorporates a form of confirmation
bias into epistemic network models. In section 4 we present two sets of results. The
first considers models with a moderate level of confirmation bias, and shows how this
bias can improve learning in a community. The second considers models where confir-
mation bias drives polarization, and prevents good group learning. In the conclusion we

1See also Xu et al. (2016); Frey and Šešelja (2018, 2020) and Boroomand and Smaldino (????).
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draw some more general lessons for social epistemology and philosophy of science. One
relates to the independence thesis—that irrational individuals can form rational groups,
and vice versa (Mayo-Wilson et al., 2011). Our models provide one more vein of sup-
port for this claim. Another relates to the rationality or irrationality of ignoring data as
a Bayesian learner. And a last point regards what simple models of polarization can tell
us.

2. Previous Literature
2.1. Confirmation Bias
As noted, confirmation bias is a blanket term for a set of behaviors where are unrespon-
sive or resistant to evidence challenging their currently held beliefs (Klayman, 1995;
Nickerson, 1998; Mercier and Sperber, 2017). The models we present will not ade-
quately track all forms of confirmation bias. They do, however, reflect behaviors seen by
those engaging in what is called selective exposure bias, as well as those who selectively
interpret evidence.

Selective exposure occurs when individuals tend to select or seek out information
confirming their beliefs. This could involve avoidance of disconsonant information (Hart
et al., 2009)or pursuit of consonant information (Garrett, 2009; Stroud, 2017). The study
by Chaffee and McLeod (1973) where participants chose pamphlets to read about an
upcoming election is an example of selective exposure bias. While selective exposure
has been most frequently studied in the context of politicized information, it need not
be. Johnston (1996) observes it in participants seeking to confirm their stereotypes about
doctors. Olson and Zanna (1979) find selective exposure in participants’ art viewing
preferences. Stroud (2017) gives a wider overview of these and related results.

As will become clear, our models can also represent confirmation bias that involves
selective interpretation or rejection of evidence. Recall Lord et al. (1979) where subjects
received information both supporting and opposing the efficacy of the death penalty as
a deterrent to crime. This information did little to change subjects’ opinions on the
topic, suggesting they selectively rejected information opposing their view. Gadenne
and Oswald (1986) demonstrate a similar effect in subject ratings of the importance
of information confirming vs. challenging their beliefs about a fictional crime. Taber
and Lodge (2006) gave participants pairs of equally strong arguments in favor of and
against affirmative action and gun control, and found subjects shifted their beliefs in the
direction they already leaned. In each of these cases, individuals seemed to selectively
reject only the information challenging their views.

As noted, many previous authors have argued that confirmation bias may be epis-
temically harmful. Nickerson (1998) writes that, “Most commentators, by far, have seen
the confirmation bias as a human failing, a tendency that is at once pervasive and irra-
tional” (205). It has been argued that confirmation bias leads to irrational preferences
for early information, which grounds or anchors opinions (Baron, 2000). In addition,
confirmation bias can lead subjects to hold onto beliefs which have been discredited
(Festinger et al., 2017; Anderson et al., 1980; Johnson and Seifert, 1994; Nickerson,
1998; Lewandowsky et al., 2012). Another worry has to do with “attitude polarization”,
exhibited in Taber and Lodge (2006), where individuals shift their beliefs in different
directions when presented with the same evidence.
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Further worries about confirmation bias have focused on communities of learners
rather than individuals. Attitude polarization, for example, might drive wider societal
polarization on important topics (Nickerson, 1998; Lilienfeld et al., 2009). For this rea-
son, Lilienfeld et al. (2009) describe confirmation bias as the bias, “most pivotal to
ideological extremism and inter- and intragroup conflict” (391).

Specific worries focus on both scientific communities and social media sites.
Scientific researchers may be irrationally receptive to data consistent with their beliefs,
and resistant to data that does not fit. Koehler (1993) and Hergovich et al. (2010), for
example, find that scientists rate studies as of higher quality when they confirm prior
beliefs. If so, perhaps the scientific process is negatively impacted.

It has also been argued that confirmation bias may harm social media communities.
Pariser (2011) argues that “filter bubbles” occur when recommendation algorithms are
sensitive to content that users prefer, including information that confirms already held
views. “Echo chambers” occur when users seek out digital spaces—news platforms,
followees, social media groups etc.—that mostly confirm the beliefs they already hold.
While there is debate about the impact of these effects, researchers have argued that they
promote polarization (Conover et al., 2011; Sunstein and Sunstein, 2018; Chitra and
Musco, 2020), harm knowledge (Holone, 2016), and lead to worryingly uniform infor-
mation streams (Sunstein and Sunstein, 2018; Nikolov et al., 2015) (but see Flaxman
et al. (2016)).

While most previous work has focused on harms, some authors argue for potential
benefits from confirmation bias. Part of the thinking is that such a pervasive bias would
not exist if it was entirely harmful (Evans, 1989; Mercier and Sperber, 2017; Butera
et al., 2018). With respect to individual reasoning, some argue that testing the plausibil-
ity of a likely hypothesis is beneficial compared to searching out other, maybe less likely,
hypotheses (Klayman and Ha, 1987; Klayman, 1995; Laughlin et al., 1991; Oaksford
and Chater, 2003). Lefebvre et al. (2022) show how confirmation bias can lead agents
to choose good options even when they are prone to noisy decision making.2

Another line of thinking, more relevant to the current paper, suggests that confirma-
tion bias, and other sorts of irrational stubbornness, may be beneficial in group settings.3

The main idea is that stubborn individuals promote a wider exploration of ideas/options
within a group, and prevent premature herding onto one consensus. Kuhn (1977) sug-
gests that disagreement is crucial in science to promote exploration of a variety of
promising theories. Some irrational stubbornness is acceptable in generating this dis-
agreement. Popper (1975) is not too worried about confirmation bias because, as he
argues, the critical aspect of science as practised in a group will eliminate poor theories.
He argues that, “...a limited amount of dogmatism is necessary for progress: without a
serious struggle for survival in which the old theories are tenaciously defended, none of
the competing theories can show their mettle” (98). Solomon (1992) points out that in
the debate over continental drift, tendencies like confirmation bias played a positive role
in the persistence and spread of (ultimately correct) theories. (See also Solomon (2007).)

2Rollwage and Fleming (2021) also use a decision theoretic model to argue that when agents can
accurately assess their own confidence the harms of confirmation bias can be reduced.

3Some authors also argue confirmation bias could be beneficial in interpersonal settings, either for rea-
soning about social partners (Leyens et al., 1999; Snyder and Stukas Jr, 1999) or when competence is
threatened by social competition (Butera et al., 2018).
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All these accounts focus on how irrational intransigence can promote the exploration of
diverse theories, and ultimately benefit group learning.

In addition, Mercier and Sperber (2017) argue that when peers disagree, confirma-
tion bias allows them to divide labor by developing good arguments in favor of opposing
positions. They are then jointly in a position to consider these arguments and come to a
good conclusion. This fits with a larger picture where reasoning evolved in a social set-
ting, and what look like detrimental biases actually have beneficial functions for groups.
All these arguments fit with what Smart (2018) calls “Mandevillian Intelligence”—the
idea that epistemic vices at the individual level can sometimes be virtues at the collec-
tive level. He identifies confirmation bias as such a vice (virtue) for the reasons listed
above.

The results we will present are largely in keeping with these arguments for the group
benefits of confirmation bias. Before presenting them though we will take some time to
address previous, relevant modelling work.

2.2. Previous Models
To this point, there seem to be few models incorporating confirmation bias specifically
to study its effects on epistemic groups. Geschke et al. (2019) present a “triple filter-
bubble” model, where they consider impacts of 1) confirmation bias, 2) homophilic
friend networks, and 3) filtering algorithms on attitudes of agents. They find that a
combination of confirmation bias and filtering algorithms can lead to segmented “echo
chambers” where small, isolated groups with similar attitudes share information. Their
model, however, does not attempt to isolate confirmation bias as a causal factor in group
learning. In addition, they focus on attitudes or opinions that shift as individuals aver-
age with those of others they trust. As will become clear, our model isolates the effects
of confirmation bias, and also models learning as belief updating on evidence, thus
providing better structure to track something like real-world confirmation bias.

There are a wider set of models originating from the work of Hegselmann et al.
(2002), where agents have “opinions” represented by numbers in a space, such as the
interval [0, 1]. They update opinions by averaging with others they come in contact with.
If agents only average with those in a close “neighborhood” of their beliefs they settle
into distinct camps with different opinions. This could perhaps be taken as a representa-
tion of confirmation bias, since individuals are only sensitive to opinions near their own.
But, again, there is no representation in these models of evidence or of belief revision
based on evidence.

As noted, we draw on the network epistemology framework in building our model.
While this framework has not been used to model confirmation bias, there have been
some relevant previous models where actors devalue or ignore some data for reasons
related to irrational biases. O’Connor and Weatherall (2018) develop a model where
agents update on evidence less strongly when it is shared by those with different beliefs.
This devaluing focuses on the source of information, rather than its content (as occurs in
confirmation bias). Reflecting some of our results, though, they find that devaluation at a
low level is not harmful, but at a higher level eventually causes polarization. Wu (2021)
presents models where a dominant group devalues or ignores information coming from
a marginalized group. Wu’s model (again) can yield stable polarization under conditions
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in which this devaluation is very strong.4 In both cases, and, as will become clear, in our
models, polarization emerges only in those cases where agents begin to entirely ignore
data coming from some peers.

There is another set of relevant results from epistemic network models. Zollman
(2007, 2010) shows that, counter-intuitively, communities tend to reach accurate con-
sensus more often when the individuals in them are less connected. In highly connected
networks, early strings of misleading evidence can influence the entire group to pre-
emptively reject potentially promising theories. Less connected networks preserve a
diversity of beliefs and practices longer, meaning there is more time to explore the
benefits of different theories. A very similar dynamic explains why, in our model, mod-
erate levels of confirmation bias actually benefit a group. Zollman (2010) finds similar
benefits to groups composed of “stubborn” individuals, i.e., ones who start with more
extreme priors and thus learn less quickly. Frey and Šešelja (2018, 2020) generate sim-
ilar results for another operationalization of intransigence. And Xu et al. (2016) yield
similar results for another type of model. In our model, confirmation bias creates a
similar sort of stubbornness.5

One last relevant set of models find related results using NK-landscape models,
where actors search a problem landscape for solutions. March (1991), Lazer and
Friedman (2007), and Fang et al. (2010) show how less connected groups of agents
may be more successful at search because they search the space more widely and avoid
getting stuck at local optima. Mason et al. (2008) and Derex and Boyd (2016) confirm
this empirically. And Boroomand and Smaldino (????), in draft work, find that groups
searching NK-landscapes adopt better solutions when individuals have preferences for
their own, current solutions. This is arguably a form of irrational stubbornness that
improves group outcomes. (Their models, though, do not involve actors with preferences
for confirmatory data the way ours do.)

3. Model
3.1. Base Model
As discussed, our model starts with the network epistemology framework (Bala and
Goyal, 1998), which has been widely used in recent work on social epistemology and
the philosophy of science. Our version of the model builds off that presented in Zollman
(2010).

There are two key features of this framework: a decision problem and a network. The
decision problem represents a situation where agents want to develop accurate, action-
guiding beliefs about the world, but start off unsure about which actions are the best
ones. In particular, we use a two-armed bandit problem, which is equivalent to a slot
machine with two arms that pay out at different rates.6 The problem is then to figure out
which arm is better. We will call the two options A (or “all-right”) and B (or “better”).
For our version of the model, we will let the probabilities that each arm pays off be

4See also Fazelpour and Steel ( f orthcoming).
5See Wu and O’Connor (2022) for an overview of network models considering how mechanisms that thus

promote transient diversity of practice improve group outcomes. And see Smart (2018) for a summary of
modelling and empirical results showing how individual epistemic vice can promote group exploration.

6Note that previous investigations of confirmation bias on the individual level have used these and similar
decision problems (Rollwage and Fleming, 2021; Lefebvre et al., 2022).
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pb = .5 and pa = pb − ε . In other words, there is always a benefit to taking option B,
with the difference between the arms determined by the value of ε .

Agents learn about the options by testing them, and then updating their beliefs on
the basis of these tests. Simulations of the model start by randomly assigning beliefs to
the agents about the two options. In particular, we use two beta distributions to model
agent beliefs about the two arms. These are distributions from 0 to 1, tracking how
much likelihood the agent assigns to each possible probability of the arm in question.
The details of the distribution are not crucial to understand here.7 What is important is
that there are two key parameters for each distribution, α and β . These can be thought
of as tracking a history of successes (α) and failures (β ) in tests of the arms. When
new data is encountered, say n trials of an arm with s successes, posterior beliefs are
then represented by a beta distribution with parameters α + s and β + n− s. It is easy
to calculate the expectation of this distribution, which is α

α+β
.

Following Zollman (2010), we initialize agents by randomly selecting α and β from
[0, 4]. The set-up means that at the beginning of a trial, the agents are fairly flexible
since their distributions are based on relatively little data. As more trials are performed,
expectation becomes more rigid. For example if α = β = 2, then expectation is 0.5.
Expectation is flexible in that if the next three pulls are failures, then expectation drops
to 2

2+5 ≈ 0.286. However, if a thousand trials resulted in α = β = 500, three repeated
failures would result in an expectation, 500

500+503 ≈ 0.499 (which is still close to 0.5). In
simulation, if the agents continue to observe data from the arms, their beta distributions
tend to become more and more tightly peaked at the correct probability value, and harder
to shift with small strings of data.

As a simulation progresses we assume that in each round agents select the option they
think more promising, i.e., the one with a higher expectation given their beliefs. This
assumption corresponds with a myopic focus on maximizing current expected payoff.
While this will not always be a good representation of learning scenarios, it represents
the idea that people tend to test those actions and theories they think are promising.8

Each agent gathers some number of data points, n, from their preferred arm. After doing
so, they update their beliefs in light of the results they gather, but also in light of data
gathered by neighbors. This is where the network aspect of the model becomes relevant.
Agents are arrayed as nodes on a network, and it is assumed they see data from all those
with whom they share a connection.

To summarize, this model represents a social learning scenario where members of a
community 1) attempt to figure out which of two actions/options/beliefs is more suc-
cessful, 2) use their current beliefs to guide their data gathering practices, and 3) share
data with each other. This is often taken as a good model of scientific theory devel-
opment (Zollman, 2010; Holman and Bruner, 2015; Kummerfeld and Zollman, 2015;

7The function is defined as follows.
Definition (Beta Distribution) A function on [0, 1], f (·), is a beta distribution iff for some α > 0 and β > 0

f (x) =
x(α−1)(1− x)(β−1)

B(α, β )

where B(α, β ) =
∫ 1

0 u(α−1)(1− u)(β−1)du.
8Kummerfeld and Zollman (2015) present models of this sort where agents also explore options that they

think are suboptimal.
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Weatherall et al., 2020; Frey and Šešelja, 2020) or the emergence of social consen-
sus/beliefs more broadly (Bala and Goyal, 1998; O’Connor and Weatherall, 2018; Wu,
2021; Fazelpour and Steel, f orthcoming).

In this base model, networks of agents eventually settle on consensus—either prefer-
ring the better option B, or the worse option A. If they settle on A, they stop exploring
option B, and fail to learn that it is, in fact, better. This can happen if, for instance, mis-
leading strings of data convince a wide swath of the group that B is worse than it really
is.

3.2. Modeling Confirmation Bias
How do we incorporate confirmation bias into this framework? As noted, confirmation
bias is varied and tracks multiple phenomena (Klayman, 1995). For this reason, we
develop a few basic models of confirmation bias that track the general trend of ignoring
or rejecting evidence that does not accord with current beliefs. The goal is to study
the ways such a trend may influence group learning in principle, rather than to exactly
capture any particular version of confirmation bias.

For each round of simulation, after trial results are shared according to network con-
nections, agents have some probability of accepting and updating their beliefs based
on the shared results. This probability is based on how likely they believe those results
are given their prior beliefs, λ . This likelihood is a function of the agent’s current beta
distribution parameters, α and β , as well as the details of the results, successes, s, per
number of draws, n.9 An agent calculates λ separately for each set of results shared via
a network connection. Examples of these probabilities as a function of an agent’s α and
β values are shown in Figure 1.

Additionally, the model includes an intolerance parameter, t, that impacts how likely
agents are to accept or reject results for a given prior probability of those results
occurring. The probability of an agent accepting a set of results is:

paccept = λ
t

When t is low agents are more tolerant of results they consider unlikely, and when t
is high they tend to reject such results. For example, suppose an agent thinks some
shared results have a 5% chance of occurring given their prior beliefs (i.e. λ = .05). Then
for t = 1, the agent has a probability of accepting paccept = .05. For t = 2, the agent is
extremely intolerant with paccept = .052 = .0025.10 For t = .5, the agent is more tolerant
and paccept = .05.5 = .22. And when t = 0 the probability of acceptance is always 1,
i.e., our model reverts to the base model with no confirmation bias. Whenever evidence

9The likelihood for some agent of some set of results is given by a beta-binomial probability mass
function:

pm fX (s, n, α, β ) =

(
n
s

)
B(s + α, n− s + β )

B(α, β )

where B(α, β ) =
∫ 1

0 u(α−1)(1− u)(β−1)du, X is the action (A or B) that generated the results, α and β are
the values corresponding to the receiving agent’s beliefs about action X , n is the number of pulls, and s
is the number of successes in shared results. For further discussion of the beta-binomial probability mass
function, see (Johnson et al., 2005, 282) or (Gupta and Nadarajah, 2004, 425).

10We do not actually consider values of t > 1 in our simulations because generally prior probabilities of
evidence are fairly small to begin with.
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Figure 1. The probability mass functions of beta-binomial distributions for different values of α and β .

is accepted, agents update their beliefs using Bayes rule as described. Agents never
reject evidence they generated themselves.11 This feature mimics confirmation bias by
representing either, 1) a situation in which agents are selectively avoiding data that does
not fit with their priors, or 2) engaging with, but rejecting this data and thus failing to
update on it.

Notice that, for a given tolerance, t, agents with the same expectation do not typically
have the same probability of accepting evidence. For example, α = β = 2 gives the same
0.5 expectation as α = β = 50, but for any t 6= 0, an agent with the former beliefs will
be more likely to accept a 1000 test trial with 650 successes. The latter agent finds
this data less likely because of the relative strength of their beliefs (see Figure 1). In
general, stronger beliefs in this model will be associated with a higher likelihood of
rejecting disconsonant data. This aspect of the model neatly dovetails with empirical
findings suggesting that confirmation bias is stronger for beliefs that individuals are
more confident in (Rollwage et al., 2020).

11This is true across our models, and we take it to be psychologically realistic. We ran limited simulations
to confirm that this choice did not significantly impact results. In all cases, results were very similar in
models where agents also applied confirmation bias to their own results.
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Figure 2. Several network structures.

We consider several different simple network structures, including the cycle, wheel,
and complete networks (see Figure 2). We also consider Erdos-Renyi random networks,
which are generated by taking some parameter b, and connecting any two nodes in
the network with that probability (Erdős et al., 1960). In general, we find qualitatively
robust results across network structures. For each run of simulation, we initialize agents
as described, and let them engage in learning until the community reaches a stable state.

4. Results
4.1. Moderate Confirmation Bias
In the model just described, notice, actors can be very unlikely to update on some data
set. But the structure of the beta distribution and our rule for rejecting evidence means
that they always accept data they encounter with some probability. Whenever agents
continue to test different theories, their data continues to reach networks neighbors and
shape the beliefs of these neighbors. This mutual influences means that, as in previous
versions of the model without confirmation bias, actors in our model always reach con-
sensus eventually: either correct consensus that B is better, or incorrect consensus on A.
The question is: how does the introduction of confirmation bias influence the frequency
with which correct vs. incorrect consensus emerges?

Surprisingly, we find that confirmation bias improves the knowledge producing
capacity of epistemic networks, in that it increases the likelihood a particular network
will reach correct consensus. This finding is robust across network structures, and vari-
ations in other parameters (network size, N, number of pulls per round, n, difference
between the arms, ε).12 Figure 3 shows this result for the wheel network with different
numbers of agents. Results are averages over 1000 runs of simulation for each parame-
ter value. Each trace tracks a different amount of confirmation bias, as modulated by t.
As is clear, the larger t is, i.e., the more confirmation bias, the more often the network
of agents correctly concludes that B is the better option.13,14

12In all results presented we hold ε = .001 and n = 1000. These choices follow previous authors. They
also keep the difficulty of the bandit problem in a range where it is at least somewhat challenging to identify
the better option. This reflects the fact that we wish to model the sort of problem that might actually pose
a challenge to a community trying to solve it. If ε is larger, or n larger, the problem is easier and more
communities reach accurate consensus in this sort of model.

13For all results displayed, we ran simulations long enough to reach stable consensus. To check replicabil-
ity, many of our models were coded independently by two separate team members. Results were all highly
similar, with some small variations based on exact details of algorithm implementation.

14In one variation, we drop the assumption that agents always accept their own data and instead allow
agents to reject their own information according to the same dynamics with which they accept or reject
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Figure 3. When agents use moderate levels of confirmation bias, groups tend to reach accurate consen-
sus more often. This figure shows results for small wheel networks. Qualitative results are robust across
parameter values. ε = .001, n = 1000.

As noted this trend is robust across parameter values. In figure 4 we show similar
results for larger graphs randomly generated using the Erdos-Renyi algorithm described
above. Again, higher levels of confirmation bias correspond to better group learning.

As noted, this finding relates to results from Zollman (2007, 2010) showing that both
lowering connectivity and increasing stubbornness can improve outcomes in this sort of
model. This “Zollman effect” occurs because individuals can influence each other too
strongly, and, as a result, incorrectly settle on option A as a result of early strings of
misleading data. By making agents less willing to accept data that might change their
mind, confirmation bias decreases social influence in a similar way to decreasing con-
nectivity or stubbornness and leads to longer periods of exploration for both theories.
This, in turn, increases the chances that the entire group selects the better option B in the
end. While it is surprising that a reasoning bias which is usually treated as worrisome
can actually improve the performance of a group, this result, as noted, reflects previous
claims from philosophers and psychologists. The mechanism we identify—where con-
firmation bias leads to continued exploration and data gathering about multiple theories

other’s data. Results were similar, and qualitative findings were robust. For example, with b = .5 and t =
0.25, correct consensus rates, for 4, 6, 9, 12, 15, and 25 agents respectively, shifted from 0.757, 0.875, 0.952,
0.971, 0.990, 0.997 as shown in figure 3 to 0.819, 0.908, 0.970, 0.988, 0.995, 1.000 in the variation in which
agent can reject their own data. This variation had similarly results for model of strong confirmation bias
reported in section 4.2. Code is available at REMOVED FOR REVIEW.
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Figure 4. When agents use moderate levels of confirmation bias, groups tend to reach accurate consensus
more often. This figure shows results for moderate sized ER random networks with the probability of
connection between any two nodes, b = .5. Qualitative results are robust across parameter values. ε = .001,
n = 1000.

or actions—is very similar to that described by Kuhn (1977); Popper (1975); Solomon
(1992, 2007); Smart (2018).

To test the robustness of our general finding, we implement another version of the
model. Confirmation bias in the first version responds to the likelihood of some data set
given current beliefs. But confirmation bias often occurs in the context of fairly coarse-
grained information. What if we suppose individuals ignore details of the data and ask
simply: which theory does this data support? And: do I think that theory is the better
one? In deciding to accept or reject a set of data in this version of the model, the actor
calculates their probability that B is better than A, or vice versa, and scales with an
intolerance parameter as before.15 Actors accept any data set supporting B (or A) with
probability Paccept .

The qualitative results of this “coarse grained” model are similar to the previous one.
Across parameters, increasing confirmation bias leads to improved group outcomes.
Figure 5 shows results for ER random networks with different numbers of agents. As

15That is we calculate Paccept as

Paccept =

[
999

∑
i=0

(
pm fA(i, n, αA, βA) ∗

1000

∑
j=i+1

pm fB( j, n, αB, βB)

)]t

where pm fX (s, n, α, β )) is the same as before.
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Figure 5. Moderate confirmation bias increases epistemic success under a different operationalization of
confirmation bias. This figure shows results for moderate sized ER random networks with the probability of
connection between any two nodes, b = .5. Qualitative results are robust across parameter values. ε = .001,
n = 1000.

is clear, a higher value of t is again associated with a greater probability that the group
adopts a consensus on the better option, B.

Our results to this point seem to suggest that confirmation bias is an unmitigated
good in a group setting. It is true that the sort of confirmation bias modelled so far
always improves group consensus formation in our models. There are a few caveats,
though. First, for parameter settings where the decision problem is relatively easy—
where the network (N) is large, agents draw more data (n is large), and/or the two
arms are relatively easy to disambiguate (ε is large)—most groups successfully learn
to choose the correct arm. In these cases confirmation bias does little to improve learn-
ing.16 On the other hand, confirmation bias as we model it always slows down consensus
formation, sometimes very dramatically. This creates a trade-off between speed of learn-
ing and accuracy of consensus formation (Zollman, 2007, 2010). In cases where it is
important for a group to quickly reach consensus, then, confirmation bias might cause
problems. Second, as will become clear in the next section, stronger assumptions about
what confirmation bias entails will shift this narrative.

16See also Rosenstock et al. (2017) who point out that the benefits of network connectivity shown in
Zollman (2010) are only relevant to difficult problems.



14 Can Confirmation Bias Improve Group Learning?

4.2. Strong Confirmation Bias
To this point, we have only considered models where agents always have some prob-
ability of updating on data they encounter, though this probability may be small. This
means that all agents continue to exert influence on each other, regardless of what they
believe and what sorts of data they gather. This influence might be small, but it ensures
that given enough time the community will eventually reach consensus on one of the
two options.

But what if agents sometimes entirely discount data that does not fit their prior
beliefs? We now look at a much simpler version of confirmation bias. Agents calculate
how likely some data set is given their current beliefs, as before. If that probability is
below some threshold, h, they discard the data. If it is above that threshold, they update
on it.

In this version of the model, we now observe outcomes where groups do not settle
on consensus. It is possible for subgroups to emerge which favor different options, and
where data supporting the alternative position is unpersuasive to each group. This can
be understood as a form of polarization—agents within the same community settle on
stable, mutually exclusive beliefs, and do not come to consensus even in the face of
continued interaction and sharing of evidence.17

Figure 6 shows results for Erdos-Renyi random networks with different thresholds
for ignoring discordant data, h. As is clear, as the cutoff becomes more stringent, fewer
simulations end up adopting an accurate consensus.

As noted much of the reason that communities fail to reach accurate consensus in
these models is because they polarize. When this happens, some actors adopt accurate
beliefs, but others do not. Because actors with inaccurate beliefs develop credences
where the accurate belief looks very unlikely to them, they become entirely insensitive
to data that might improve their epistemic state. As figure 7 shows, polarization occurs
more often the stronger the agents’ confirmation bias. Both accurate and inaccurate
consensus become less common. For parameter values where only very likely data is
accepted, polarization almost always emerges.

Another question we might ask is: how does this stronger form of confirmation
bias impact the general epistemic success of agents in the network? Note that since
polarization occurs in these models this is a slightly different question than how strong
confirmation bias impacts correct group consensus. Given that confirmation bias leads
to an increase in polarization, and a decrease in both correct and incorrect consensus
formation, it is not immediately clear whether it is epistemically harmful on average.

In general we find that this stronger form of confirmation bias leads fewer individual
actors, on average, to hold correct beliefs. As is evident in figure 8 for high levels of
strong confirmation bias, fewer individuals hold true beliefs. In this figure notice that for
lower levels of confirmation bias there is relatively little impact on average true belief.
In fact, given details of network size, we find that there is often a slight advantage to a
little confirmation bias for the reasons outlined in the last section—it prevents premature
lock-in on false consensus.18 This slight advantage is eventually outweighed by the

17There are many ways the term polarization is used. Here we operationalize it as any outcome where the
community fails to reach consensus, and where this lack of consensus is stable. This approximately tracks
notions of polarization that have to do with failure of a community to agree on matters of fact.

18In the simulations pictured here, the 20-30% cutoff range does the best by a hair.



Philosophy of Science Association 15

Figure 6. Strong confirmation bias hurts group learning. This figure shows results for moderate sized ER
random networks with the probability of connection between any two nodes, b = .5. Qualitative results are
robust across parameter values. ε = .001, n = 1000.

negative impacts of too much distrust. As confirmation bias increases, eventually too
many agents adopt false beliefs, and fail to engage with disconfirmatory evidence.

At this point, it may seem that small differences in how confirmation bias is mod-
elled have large impacts on how it influences group learning. As long as agents continue
to have some influence on each other, no matter how small, confirmation bias improves
consensus formation (and thus average true beliefs). Once this is no longer true, it gener-
ally harms average true beliefs. This picture is not quite right. Recall from the previous
section that moderate confirmation bias always slows consensus formation, sometimes
dramatically. When this happens, a network can remain in a state of transient polariza-
tion for a long period of time. If we stopped our models at some arbitrary time period,
rather than always running them to a stable state, the two sorts of confirmation bias
would look more similar. In both cases confirmation bias leads to polarization, but in
one case that polarization eventually resolves, and this process improves community
learning. The take-away is thus a complex one—confirmation bias can have surprising
benefits on group learning, and for the very reasons supposed by some previous authors,
but these benefits are neither simple, nor unmitigated.
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Figure 7. Strong confirmation bias leads to polarization. This figure shows results for ER random networks
with the probability of connection between any two nodes, b = .5. Qualitative results are robust across
parameter values. N = 6, ε = .001, n = 1000.

5. Conclusion
We find that confirmation bias, in a moderate form, improves the epistemic performance
of agents in a networked community. This is perhaps surprising given that previous work
mostly emphasizes epistemic harms of confirmation bias. By decreasing the chances
that a group pre-emptively settles on a promising option, confirmation bias can improve
the likelihood the group chooses optimal options in the long run. In this, it can play a
similar role to decreased network connectivity or stubbornness (Zollman, 2007, 2010;
Xu et al., 2016; Wu, 2021). The downside is that more robust confirmation bias, where
agents entirely ignore data that is too disconsonant with their current beliefs, can lead to
polarization, and harm the epistemic success of a community. Our modeling results thus
provide potential support for arguments from previous scholars regarding the benefits
of confirmation bias to groups, but also a caution. Too much confirmation bias does not
provide such benefits.

There are several discussions in philosophy and social sciences where our results are
relevant. Mayo-Wilson et al. (2011) argue for the independence thesis—that rationality
of individual agents and rationality of the groups they form sometimes come apart. Our
results lend support to this claim. While there is a great deal of evidence suggesting
that confirmation bias is not ideal for individual reasoners, our models suggest it can
nonetheless improve group reasoning under the right conditions. This, as noted, relates
to the notion of Mandevillian intelligence from Smart (2018).
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Figure 8. Avegerage correct beliefs under strong confirmation bias. This figure shows results for ER ran-
dom networks of size 6 and 9, with the probability of connection between any two nodes, b = .5. Qualitative
results are robust across parameter values. ε = .001, n = 1000.

This argument about the independence thesis connects up with debates about whether
it is ever rational to ignore free evidence.19 According to Good’s theorem, it is always
rational to update in such cases (Good, 1967). The proof relies on the idea that an indi-
vidual who wishes to maximize their expected utility will not do worse, and will often
do better, by updating on available, free information. But in our models agents some-
times choose to ignore evidence, and thus increase their chances of eventually holding
true beliefs. Of course, in the meantime they ignore good evidence that should, on aver-
age, improve the success of their actions. Whether or not they “should” ignore evidence
in this case arguably depends on what their goals are. But if the central goal is to even-
tually settle on the truth, we show that ignoring some data can help in a group learning
setting.

As noted, our results are consonant with previous argumentation regarding the value
of stubbornness or dogmatism to science. There is a question, though, about whether
confirmation bias, or other forms of arguably irrational stubbornness, are the best mech-
anisms by which to improve group learning. Santana (2021) argues that stubbornness in
science can have negative consequences, such as hurting public trust. Wu and O’Connor

19Of course if data is costly, a rational agent might not be willing to pay the costs to update on it. But in
our modeling set-up, we assume that data may be shared cost-free.
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(2022) overview the literature on transient diversity of beliefs in network models, and
argue that in scientific communities there are better ways to ensure this diversity than
to encourage actors to be stubborn. For example, centralized funding bodies can pro-
mote exploration across topics instead. By doing so, they allow scientists to learn about
data rationally, but still prevent premature adoption of sub-optimal theories. But Wu
and O’Connor’s conclusions are specific to scientific disciplines where there are levers
for coordinating exploration across a group. When it comes to more general epistemic
groups, especially outside of science, such coordination may not be possible. If so,
confirmation bias may provide benefits that are not available via more efficient routes.

One larger discussion this paper contributes to regards the mechanisms that can lead
to polarization in real communities. Such mechanisms often include feedback loops
wherein similarity of opinion/belief leads to increased influence between individuals,
and vice versa. Individuals whose beliefs diverge end up failing to influence each
other, and their divergent beliefs become stable. But under this general heading, the-
orists have identified a number of different such mechanisms. Hegselmann et al. (2002)
show how this can happen if individuals fail to update on the opinions of those who
do not share their opinions. Weatherall and O’Connor (2020) find polarization emerges
when individuals conform with those in their social cliques, and thus ignore data from
those outside. Pariser (2011) argues that algorithms can drive polarization by supply-
ing only information that users like in the face of confirmation bias. Echo chambers
function when individuals seek out and connect to friends and peers who share their
beliefs (see also modeling work by Baldassarri and Bearman (2007)). Wu (2021) finds
polarization arises when entire groups mistrust other groups based on social identity.
O’Connor and Weatherall (2018) find that polarization emerges when actors do not trust
data from peers who hold different beliefs. And in our models polarization can follow
from confirmation bias because subgroups ignore different sets of disconfirmatory data.

This suggests that identifying sufficient causes of polarization is very different from
identifying necessary, or even likely, causes of polarization. It also suggests that in
considering real instances of polarization researchers should be sensitive to many pos-
sible causes. Thus experimental/empirical research and modeling are both necessary in
figuring out just what real causes are at work in producing social polarization.

As a last note before concluding, we would like to discuss limitations of our models.
Of course the models we present are highly simplified compared to real social networks.
This means that the results should, of course, be taken with a grain of salt. In particu-
lar, we only consider one type of learning problem—the one-armed bandit model. The
question remains whether and to what degree these results will be robust. We suspect
that models with other problems might yield similar results. The general benefit of slow-
ing group learning, and promoting a period of exploration, has been established across
a number of models with different problems and mechanisms. We leave this for future
research.

We conclude with one last note about why models are especially useful to this project.
Psychological traits like confirmation bias are widespread and deeply ingrained. It is not
easy to intervene on them in experimental settings. This means that it is hard to devise
an experiment where one group learns with confirmation bias, and one without. Models
allow us to gain causal control on the ways confirmation bias can impact group learning,
even if we do so for a simplified system.
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Frey, D. and Šešelja, D. (2020). Robustness and idealizations in agent-based models of scientific interaction.

The British Journal for the Philosophy of Science.
Gadenne, V. and Oswald, M. (1986). Entstehung und veränderung von bestätigungstendenzen beim testen

von hypothesen. Zeitschrift für experimentelle und angewandte Psychologie.
Garrett, R. K. (2009). Echo chambers online?: Politically motivated selective exposure among internet news

users. Journal of computer-mediated communication. 14(2), 265–285.
Geschke, D., Lorenz, J. and Holtz, P. (2019). The triple-filter bubble: Using agent-based modelling to test

a meta-theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of
Social Psychology. 58(1), 129–149.



20 Can Confirmation Bias Improve Group Learning?

Good, I. J. (1967). On the principle of total evidence. The British Journal for the Philosophy of Science.
17(4), 319–321.

Gupta, A. K. and Nadarajah, S. (2004). Handbook of beta distribution and its applications. Marcel Dekker.
Hart, W., Albarracı́n, D., Eagly, A. H., Brechan, I., Lindberg, M. J. and Merrill, L. (2009). Feeling vali-

dated versus being correct: A meta-analysis of selective exposure to information. Psychological Bulletin.
135(4), 555–588.

Hegselmann, R., Krause, U. et al. (2002). Opinion dynamics and bounded confidence models, analysis, and
simulation. Journal of artificial societies and social simulation. 5(3).

Hergovich, A., Schott, R. and Burger, C. (2010). Biased evaluation of abstracts depending on topic and
conclusion: Further evidence of a confirmation bias within scientific psychology. Current Psychology.
29(3), 188–209.

Holman, B. and Bruner, J. P. (2015). The problem of intransigently biased agents. Philosophy of Science.
82(5), 956–968.

Holone, H. (2016). The filter bubble and its effect on online personal health information. Croatian medical
journal. 57(3), 298.

Johnson, H. M. and Seifert, C. M. (1994). Sources of the continued influence effect: When misinforma-
tion in memory affects later inferences. Journal of experimental psychology: Learning, memory, and
cognition. 20(6), 1420.

Johnson, N. L., Kotz, S. and Kemp, A. W. (2005). Univariate discrete distributions. Wiley-Interscience.
Johnston, L. (1996). Resisting change: information-seeking and stereotype change. European Journal of

social psychology. 26(5), 799–825.
Klayman, J. (1995). Varieties of confirmation bias. Psychology of learning and motivation. 32, 385–418.
Klayman, J. and Ha, Y.-W. (1987). Confirmation, disconfirmation, and information in hypothesis testing.

Psychological review. 94(2), 211.
Koehler, J. J. (1993). The influence of prior beliefs on scientific judgments of evidence quality.

Organizational behavior and human decision processes. 56(1), 28–55.
Kuhn, T. S. (1977). Collective belief and scientific change . In The essential tension. University of Chicago

Press. pp. 320–339.
Kummerfeld, E. and Zollman, K. J. (2015). Conservatism and the scientific state of nature. The British

Journal for the Philosophy of Science. 67(4), 1057–1076.
Laughlin, P. R., VanderStoep, S. W. and Hollingshead, A. B. (1991). Collective versus individual induction:

Recognition of truth, rejection of error, and collective information processing. Journal of Personality and
Social Psychology. 61(1), 50.

Lazer, D. and Friedman, A. (2007). The network structure of exploration and exploitation. Administrative
science quarterly. 52(4), 667–694.

Lefebvre, G., Summerfield, C. and Bogacz, R. (2022). A normative account of confirmation bias during
reinforcement learning. Neural computation. 34(2), 307–337.

Lewandowsky, S., Ecker, U. K., Seifert, C. M., Schwarz, N. and Cook, J. (2012). Misinformation and its
correction: Continued influence and successful debiasing. Psychological science in the public interest.
13(3), 106–131.

Leyens, J.-P., Dardenne, B., Yzerbyt, V., Scaillet, N. and Snyder, M. (1999). Confirmation and disconfirma-
tion: Their social advantages. European review of social psychology. 10(1), 199–230.

Lilienfeld, S. O., Ammirati, R. and Landfield, K. (2009). Giving debiasing away: Can psychological
research on correcting cognitive errors promote human welfare? Perspectives on psychological science.
4(4), 390–398.

Lord, C. G., Ross, L. and Lepper, M. R. (1979). Biased assimilation and attitude polarization: The effects
of prior theories on subsequently considered evidence. Journal of personality and social psychology.
37(11), 2098.

March, J. G. (1991). Exploration and exploitation in organizational learning. Organization science. 2(1),
71–87.

Mason, W. A., Jones, A. and Goldstone, R. L. (2008). Propagation of innovations in networked groups.
Journal of Experimental Psychology: General. 137(3), 422.

Mayo-Wilson, C., Zollman, K. J. and Danks, D. (2011). The independence thesis: When individual and
social epistemology diverge. Philosophy of Science. 78(4), 653–677.

Mercier, H. and Sperber, D. (2017). The enigma of reason. Harvard University Press.



Philosophy of Science Association 21

Mynatt, C. R., Doherty, M. E. and Tweney, R. D. (1978). Consequences of confirmation and disconfirmation
in a simulated research environment. Quarterly Journal of Experimental Psychology. 30(3), 395–406.

Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of general
psychology. 2(2), 175–220.

Nikolov, D., Oliveira, D. F., Flammini, A. and Menczer, F. (2015). Measuring online social bubbles. PeerJ
computer science. 1, e38.

Oaksford, M. and Chater, N. (2003). Optimal data selection: Revision, review, and reevaluation.
Psychonomic Bulletin & Review. 10, 289–318.

Olson, J. M. and Zanna, M. P. (1979). A new look at selective exposure. Journal of Experimental Social
Psychology. 15(1), 1–15.

O’Connor, C. and Weatherall, J. O. (2018). Scientific polarization. European Journal for Philosophy of
Science. 8(3), 855–875.

Pariser, E. (2011). The filter bubble: How the new personalized web is changing what we read and how we
think. Penguin.

Popper, K. (1975). The rationality of scientific revolutions In Problems of Scientific Revolution: Progress
and Obstacles to Progress, Harre, R. (eds). Clarendon. pp. 320–339.

Rollwage, M. and Fleming, S. M. (2021). Confirmation bias is adaptive when coupled with efficient
metacognition. Philosophical Transactions of the Royal Society B. 376(1822), 20200131.

Rollwage, M., Loosen, A., Hauser, T. U., Moran, R., Dolan, R. J. and Fleming, S. M. (2020). Confidence
drives a neural confirmation bias. Nature communications. 11(1), 2634.

Rosenstock, S., Bruner, J. and O’Connor, C. (2017). In epistemic networks, is less really more? Philosophy
of Science. 84(2), 234–252.

Santana, C. (2021). Let’s not agree to disagree: The role of strategic disagreement in science. Synthese.
198(25), 6159–6177.

Smart, P. R. (2018). Mandevillian intelligence. Synthese. 195, 4169–4200.
Snyder, M. and Stukas Jr, A. A. (1999). Interpersonal processes: The interplay of cognitive, motivational,

and behavioral activities in social interaction. Annual review of psychology. 50(1), 273–303.
Solomon, M. (1992). Scientific rationality and human reasoning. Philosophy of Science. 59(3), 439–455.
Solomon, M. (2007). Social empiricism. MIT press.
Stroud, N. J. (2017). Selective exposure theories . In The Oxford handbook of political communication.
Sunstein, C. and Sunstein, C. R. (2018). # Republic. Princeton university press.
Sweeney, P. D. and Gruber, K. L. (1984). Selective exposure: Voter information preferences and the

watergate affair. Journal of Personality and Social Psychology. 46(6), 1208.
Taber, C. S. and Lodge, M. (2006). Motivated skepticism in the evaluation of political beliefs. American

journal of political science. 50(3), 755–769.
Weatherall, J. O. and O’Connor, C. (2020). Conformity in scientific networks. Synthese. pp. 1–22.
Weatherall, J. O., O’Connor, C. and Bruner, J. P. (2020). How to beat science and influence people: policy-

makers and propaganda in epistemic networks. The British Journal for the Philosophy of Science. 71(4),
1157–1186.

Wu, J. (2021). Epistemic advantage on the margin: A network standpoint epistemology.
Wu, J. and O’Connor, C. (2022). How should we promote transient diversity in science?
Xu, B., Liu, R. and He, Z. (2016). Individual irrationality, network structure, and collective intelligence: An

agent-based simulation approach. Complexity. 21(S1), 44–54.
Zollman, K. (2007). The communication structure of epistemic communities. Philosophy of science. 74(5),

574–587.
Zollman, K. (2010). The epistemic benefit of transient diversity. Erkenntnis. 72(1), 17–35.


	Can Confirmation Bias Improve Group Learning?
	Confirmation Bias
	Previous Models
	Base Model
	Modeling Confirmation Bias
	Moderate Confirmation Bias
	Strong Confirmation Bias




