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ABSTRACT OF THE DISSERTATION

Smartening Legacy Objects:

Transforming Legacy Physical Objects into Smart Entities through Robotic Augmentations

by

Jiahao Li

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2024

Professor Dennis W. Hong, Co-Chair

Professor Xiang Chen, Co-Chair

Recent digital technologies have envisioned a future ecosystem where objects are not

merely passive entities but actively participate in and respond to the interaction between the

user and the environment. While the majority of existing physical objects remain unsmart,

researchers and practitioners have made efforts to incrementally upgrade legacy objects to

perform digital tasks. However, there has been limited support for the automation of physical

tasks, which is essential for users within certain demographics (e.g., the elderly and people

with disabilities) or in scenarios of situational impairments.

To bridge this gap, my thesis research aims to augment physical legacy objects with the

ability to perform physical tasks automatically. My research explores two different types

of augmentations: (i) involves augmenting the physical objects to perform tasks without

external assistance, and (ii) augmenting the objects to be more manipulable by robots.

Specifically, I have introduced innovative methods for designing mechanical mechanisms

that either empower objects to actuate on their own or enable actuation through an ex-

ternal robotic arm. A crucial aspect of enabling such robotic manipulation is a novel data

collection technique I proposed, aimed at accurately estimating the pose of objects whose

appearance changes during manipulation. Furthermore, given the diverse range of physical

ii



objects present in our daily lives, a central goal of my research is to democratize the design

process, making it more accessible for augmenting these legacy items.

In summary, my thesis aspires to enhance physical objects with the approach of robotic

augmentations, smartening them to perform physical tasks for a more interactive and re-

sponsive future.
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CHAPTER 1

Introduction

1.1 From the Conventional to the Smart Realm

In an era where digital technologies become ubiquitously embedded in our daily lives, the

integration of physical objects into interconnected networks has long been extensively ex-

plored in the realms of ubiquitous computing [131] and the Internet of Things (IoT) [8],

enhancing user efficiency and quality of life. This fusion has blurred the boundaries between

the digital and physical worlds. For example, a user might establish a weekly routine wherein

automated blinds close at 10pm and open at 7am, managing lighting and privacy. Similarly,

a system could automatically detect and alert if a pair of scissors is not securely stored,

thereby mitigating potential risks to children.

This envisions an ecosystem where objects are not merely passive entities but actively

participate in and respond to the interaction between the user and the environment. Such

objects, referred to as smart objects [100, 216], are embedded with integrated sensors, ac-

tuators, and computational capabilities, enabling them to communicate and exchange data

and to be remotely monitored and controlled. However, a significant number of legacy ob-

jects remain untouched by this technology evolution, lacking inherent actuation and sensory

capabilities. Replacing these legacy objects with new, smart-capable counterparts is costly,

both financially and environmentally.

Therefore, a question arises: how can we ensure a seamless transition from the con-

ventional to the smart realm, enriching individuals’ daily lives by progressively introducing

smart objects into the environment? By “progressively”, I refer to two primary strategies:

(i) incrementally upgrading legacy objects with smart features (e.g., replacing light bulbs
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with smart bulbs such as Philips Hue1) and (ii) adding previously absent, cost-effective smart

devices, such as smart speakers, which not only function as audio devices but also serve as

central hubs to control smart devices.

1.2 Challenges and Research Questions in Smartening Legacy Ob-

jects with Physical Capabilities

Objects with smart capabilities are expected to perform tasks autonomously, which consists

of both digital and physical tasks. Digital tasks refer to operations executed electronically,

such as data communication (e.g., sending room temperature to central hub) or control

parameters of smart device (e.g., adjusting the brightness of a light bulb). Physical tasks,

on the other hand, refer to tangible actions in the real world, such as movement, actuation,

or structural modifications of physical properties (e.g., opening an automatic door).

While researchers and practitioners have explored various way to augment legacy objects

with digital capabilities (being able to perform digital tasks), such as replacing light bulbs

with smart bulbs, or attaching smart tag for digital information storage, it is still challenging

to augment legacy objects with physical capabilities. Physical tasks are crucial in aiding

individuals in daily life, such as enhancing human labor efficiency, or assisting people with

disabilities or elderly individuals. Product have been made available to public, such as smart

switches2 or smart blind motors3 which can be attached to legacy objects, enabling remote

control functionalities. Researchers have also explored ways to retrofitting legacy objects

with external mechanisms to perform a wider range of tasks on custom objects [39, 174].

For example, a custom toaster can be augmented to autonomously toast bread to perfection

every morning [174].

Efforts in this domain predominantly employ the design of mechanical mechanisms, driven

1Philips Hue.

2Smart light switches.

3Smart blind motors.

2

https://www.philips-hue.com/en-us
https://www.amazon.com/dp/B01EZV35QU
https://www.amazon.com/Electric-Control-Rechargeable-Wireless-Curtain/dp/B0CCF63LNG/


by actuators affixed to traditional physical objects, to facilitate the execution of physical

tasks. However, the current landscape of technology for augmenting legacy objects with

physical capabilities remains limited. Most of the prior work focuses on simple motions

on interfaces, such as the toggling motion of a switch, or the linear motion of a blind.

Furthermore, the scope of prior work rarely encompasses tasks involving multiple objects,

such as cooking a meal or using handheld tools. Additionally, a distinctive challenge arises

in augmenting objects with physical capabilities correlated to the challenges above: the need

for customizing these augmentations to adapt to custom objects. These challenges align

closely with the fields of human-computer interaction (HCI) and robotics. Consequently,

addressing these issues gives rise to several pertinent research questions:

RQ1: From a user standpoint, how can we enable individuals to customize augmentations to

their specific legacy objects to perform desired physical tasks?

RQ2: Considering the augmentation itself, how can we design and fabricate it to execute

complex tasks or those encompassing multiple interactions?

Below, I elaborate on these research questions and outline the goals for addressing them.

1.2.1 Enabling Individuals in Customizing Augmentations

User customizability is pivotal to the adoption of such augmentations. Given the wide variety

of objects each with their unique form and function, a one-size-fits-all solution is not feasi-

ble. Hence, it is essential to enable users to design augmentations based on their own needs.

Furthermore, as the desired motion grows in complexity, the requisite design, encompassing

robotic or electronic components, may demand a higher level of expertise from the user.

This presents a considerable challenge for the general public. Within the domain of HCI,

researchers have endeavored to develop tools that enable end-users to harness the potential

of cutting-edge technologies. These tools, tailored to distinct applications and user require-

ments, underscore the importance of accessibility and adaptability. Consequently, when it

comes to designing augmentations to enhance physical objects with physical capabilities,
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there emerges a need for novel tools that highlight user customizability.

1.2.2 Enabling Augmentations to Adapt to Complex Tasks

There are two different strategies to design augmentations such that legacy objects are able

to perform physical tasks in a smart manner: (i) augmenting legacy objects to perform

physical tasks autonomously, with embedded or add-on mechanisms, and (ii) augmenting

legacy objects to be more amenable to be manipulated by robotic systems to perform physical

tasks.

Augmenting for Self-Task Automation In designing augmentations for objects to ex-

ecute tasks autonomously, the task complexity is a pivotal factor to consider. Motions

extending beyond basic linear or rotary actions may be necessary, especially when tasks

involve actuating an entire component of an object or engaging in more intricate manipu-

lations. These augmentations need to navigate the nuanced requirements of various tasks,

potentially demanding multi-dimensional movement, precise control, and interaction with

other objects or systems. Hence, the design process must account for these complexities to

ensure effective and reliable task automation.

Augmenting for Robot-Task Automation Researchers have devoted significant efforts

towards developing robotic systems that emulate human interaction with everyday objects to

aid individuals. In the realm, numerous open research questions (e.g., robotic manipulation

[18], localization [163], and navigation [139]) need to be addressed before such systems can be

smoothly integrated into our daily lives to assist with physical tasks–—a challenging endeavor

not easily achieved in the near future. Thus, the goal of augmenting legacy objects to be

more amenable to be manipulated by robotic systems is to facilitate easier manipulation and

interaction of objects with the robotic system, thereby creating a broader smart environment

where everything works more smoothly.
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1.3 Research Goals

To address the aforementioned challenges, my thesis research aims to explore methods for

integrating legacy objects into the smart realm, leveraging add-on devices and mechanical

mechanisms to perform physical tasks by themselves or robotic systems.

The research goals are (i) enhancing user customizability, making it easier for end-users

to design and fabricate their own augmentations for their custom legacy objects, and (ii) de-

signing robotic augmentations, such that objects can perform physical tasks either by them-

sevlves or by robotic systems. Specifically, this thesis presents

1. Several design tools for end-users to interactively express their intent of the target task

and automatically generates and fabricate the design of the augmentation.

2. Support for augmenting the legacy objects to be manipulated by robotic systems,

focusing on both actuation and sensing perspectives.

The outline of this dissertation is as follows:

• Chapter 2 discusses the background and related work in the field, including the history

and challenges of smart home environments and personal robotic systems, the state-

of-the-art in smartening legacy objects, and the challenges in designing augmentations

for robotic systems.

• Chapter 3 starts with addressing the research question of user customizability, dis-

cussing the design and implementation of my paper – Robiot, which is a design tool

for users to design external mechanical mechanisms to for legacy everyday objects to

perform physical tasks autonomously, such as adjusting the angle of a desk lamp or

opening a drawer. Users can express their design intent by simply recording a short

video of how they manipulate the object and the system will automatically generate

the design of the mechanisms that can be attached to the objects to perform the task.
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• Chapter 4 focuses on more complex and customized physical tasks for everyday physi-

cal objects, showcasing the potential to augment these physical objects with additional

functionalities. Specifically, I present Romeo, which is a design tool enabling end-users

to design and fabricate physical objects with embedded transformable parts to perform

augmented tasks (e.g., a spatula can automatically stir the pot). Users can specify the

desired motion points of the target tasks in the user interface and the system will

automatically generate the printable part of the objects.

• Chapter 5 transitions to augment legacy objects to be manipulated by robotic sys-

tems. In Roman, I identified various robotic manipulability problems that are appli-

cable to the physical objects and proposed mechanical design guidelines which can be

utilized by any robotic arm to manipulate the physical handheld objects to perform

physical tasks.

• Chapter 6: Unlike human, robotic systems may struggle to perceive the spatial in-

formation of the target objects, which is a core component in manipulating physical

objects, which is not addressed in the previous chapter. In this chapter, I present a

novel pipeline – Rocap, to augment the physical objects with enhanced perceptibility

for robotic systems, focusing specifically on 6-DoF pose estimation. Data essential

for training a deep learning model is collected through the Rocap pipeline, enabling

the augmentation of physical objects traditionally deemed challenging for pose esti-

mation (e.g., deformable, transparent, or articulated objects). These objects can be

augmented to be tracked via an RGB camera, establishing a crucial foundation for

robotic systems to accurately manipulate the target objects.

• Chapter 7 concludes this thesis by reflecting on the contributions and limitations of

this work, and discussing future directions.
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CHAPTER 2

Background and Literature

Prior to delving into the details of my work on smartening legacy objects, I first provide a

contextual background through an overview of the related technology and state-of-the-art

research in the related field. To start with, I discuss the historical evolution of smart homes,

spotlighting cutting-edge products and technologies that have significantly impacted this

domain.

Alongside the discussion on the general smart home landscape, I also delve into the

academic research. The spectrum of the discussion ranges from research in smartening

legacy objects to explorations in personal robotics aimed at executing physical tasks for

users. Lastly, given that my research tackles specific challenges inherent in smartening

legacy objects, such as enhancing user customizability for design and personal fabrication,

enabling machine manipulability and vision, I also discuss related research in these areas.

2.1 History of Smart Home and Related Technologies

The concept of smart home has been around for decades, embodying the integration of

common devices that control features of the home, such as environmental systems including

lighting and heating [178]. Over time, the evolution of smart homes represents the conver-

gence of technological innovations and changing societal needs. In this section, I discuss the

historical journey of smart homes and the development of their associated technologies.
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2.1.1 Early Explorations of Home Automation

ECHO IV (1966) ECHO IV1, is a prototype of a home computer developed by West-

inghouse Electric in the mid 1960s. While it is not technicically a smart home system, it

is recognized as one of the first computer systems designed for home use. It was designed

to control home temperature, automate appliances and even managing household inventory.

This system was working in the creator’s house until 1976.

X10 (1975) Features the Beginning of Home Networks X102, a pioneering protocol

for home automation developed in 1975, facilitated communication between compatible de-

vices over existing electrical wiring in the home, allowing for remote control of devices from

a central system. Released to consumers in the late 1970s, X10 was an early indicator of the

potential for integrated home automation.

The Echelon Corporation’s LonWorks (1990) Echelon’s LonWorks platform3, an

early multi-device communication platform, allowed home devices to interface and be gov-

erned from a single user point, advancing the pursuit of comprehensive home automation

systems.

2.1.2 The Explosion of Modern Smart Homes

The advent of wireless technologies opens a new era in smart home capabilities, obviating the

need for cables to connect different devices. This wireless revolution significantly streamlined

the installation and expansion of smart home systems, making them more accessible and

appealing to a broader demographic. Also, the evolution of the internet played an important

role in connecting various devices to the internet, allowing for remote control and monitoring

functionalities.

1https://en.wikipedia.org/wiki/ECHOIV

2https://en.wikipedia.org/wiki/X10(industrystandard)

3https://en.wikipedia.org/wiki/LonWorks
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In the last decade, the smart home market has seen a surge of innovative products.

Examples include lighting systems like Philips Hue4, which allows users to control lighting

colors and schedules through their smartphones; thermostats like Nest5, that learn your

preferences over time and adjust the heating or cooling to save energy while keeping you

comfortable; security systems like Ring6, which provide video surveillance and alerts directly

to your smartphone; and smart refrigerators that can keep track of expiry dates, suggest

recipes based on the items inside, or even allow you to order groceries directly from the

touch screen on the door.

More recently, consequent to the proliferation of smart devices and associated protocols,

the market witnessed the emergence of numerous home automation hubs. Examples include

voice-controlled devices such as Amazon Echo7 and Google Home8 simplified user interaction

with connected devices and enabled the integration of third-party devices into a single system.

2.1.3 The Gap of the Current Smart Home Technology

Despite the rapid growth of the smart home market, notable gaps persist within the current

smart home technology landscape. As previously mentioned, the overarching goal of smart

home technology is to enrich the home experience including promoting efficiency, energy

conservation, and safety. This entails empowering smart objects within the home to perform

both digital and physical tasks on behalf of the users.

Costly to replace. Transitioning from conventional to smart homes requires not only

the integration of new smart devices, but also replacement of existing legacy objects with

smart-enabled counterparts. Unlike merely adding a smart bulb or a smart plug, which are

4https://www.philips-hue.com/en-us

5https://home.nest.com/

6https://ring.com/

7https://www.amazon.com/Echo-4th-Gen/dp/B07XKF5RM3

8https://home.google.com/welcome/
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relatively inexpensive, replacing major household items like appliances or heating/cooling

systems can be prohibitively expensive. Moreover, many legacy objects are still in good

condition and replacing them would not be cost-effective or environmentally sustainable.

This highlights the need of developing solutions that can smarten legacy objects in a cost-

effective and sustainable manner.

Insufficient support for physical tasks. Presently, existing technology predominantly

addresses the digital realm (e.g., enabling users to remotely control the brightness of lights or

adjust the thermostat). However, the domain of physical tasks remains largely unaddressed.

Although there are products like automatic doors and smart blinds that cater to the physical

domain, a myriad of other physical tasks are yet untouched by smart technology. This

is primarily due to the inherent complexity associated with physical tasks as opposed to

digital tasks. While digital tasks often involve wireless signaling, physical tasks necessitate

the perception, manipulation, and precise control within the physical world. Addressing

these physical tasks is particularly crucial for certain user demographics, such as individuals

with motor impairments or those in situational impairments (e.g., scenarios where hands are

occupied and unable to open a drawer or door). Hence, there is a compelling need to extend

smart home technology to encompass a broader range of physical tasks, promoting a more

inclusive, adaptable, and holistic smart home environment.

The goal of this thesis aims to address the aforementioned gap in the current smart home

technology by developing novel approaches to smarten legacy objects with the support to

perform physical tasks for users. In the following section, the discussion transitions towards

the research trends in order to address the aforementioned gaps in the current smart home

technology.
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2.2 Research Trends in Smartening Legacy Objects

Researchers have been investigating methods to augment legacy objects with the ability to

perform both digital and physical tasks. As previously mentioned, smart objects should pos-

sess the capablities to be monitored, actuated, and connected to a central platform, enabling

data exchange with other devices. Smartening objects stands in the intersection of multi-

ple research domains including computer vision, embedded system, mechanical engineering,

robotics and human-computer interaction. My research primarily focuses on the intersection

of human-computer interaction (HCI) and robotics, specifically, smartening objects with

robotic augmentations to enhance the sensing and acutation capabilities of legacy objects.

Within this scope, several research areas closely align with the goal including (i) devel-

oping general-purpose personal robots to assist with a variety of tasks and (ii) developing

methods to augment physical objects to perform physical tasks automatically.

2.2.1 General-Purpose Personal Robots for Home Automation

Application persective. From the application perspective, researchers in personal

robotics have sought to democratize robots to assist people with a variety of different appli-

cations of physical tasks. Generally, employing robots to assist humans in daily tasks can

enhance user efficiency. In personal environments, they can aid with office tasks [160], and

perform household chores such as cooking [197] and cleaning [58]. In social environments,

robots can assist with navigating public spaces [193] or delivering food (e.g., Starship delivery

robots9).

Furthermore, the presence of such robots proves to be more crucial for other user groups,

particularly individuals with motor impairments or elderly people, who may face challenges

in performing physical tasks. For example, robots can assist users in different tasks such as

fetching an objects from afar [57, 108, 147], opening a medicine bottle for users with limited

dexterity [101, 51] or even full-body activities such as assistance with bathing [135].

9https://www.starship.xyz/
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Technical perspective. The development of the personal robotic systems largely rely

on the cutting-edge technology within the field of robotics, in a smaller scale, encompassing

facets such as robotic manipulation, perception, control and locomotion. These represent

ongoing research domains in the broader field of robotics, with a myriad of work continually

emerging. To offer a more insightful overview of the discourse in this dissertation, I briefly

delve into the related work in robotic manipulation, given its closer relevance to this thesis

centered on enhancing legacy objects to execute physical tasks.

Recent advancements in robotic manipulation have primarily centered around enhancing

either the ‘brain’ or the ‘limbs’ of robots. In the quest for a better ‘brain’, researchers

have ventured into various directions, such as employing machine learning to determine the

optimal gripping position of novel objects [98, 187, 188, 86], or augment robots’ perception

of the environment and objects through advanced sensing techniques [30, 212, 32]. On the

other side, to develop better ‘limps’ for robots, researchers have been exploring methods of

enhancing robotic dexterity through novel design of robotic hands [170, 171, 145, 224] or

different types of robotic end-effectors [148, 227, 226, 180]. Advanced control mechanisms

are also crucial for robots to perform robust and smooth manipulation of physical objects

[168, 18].

The discussed research focuses on advancing the technology of robots in order to per-

form physical tasks involving physical objects. Instead of adhering to a one-directional

approach—waiting for robots to be advanced enough to perform physical tasks—it’s plausi-

ble to adopt a bi-directional strategy, in which physical objects can be enchanced to play a

contributory role in actualizing smart home automation. A substantial body of research in

HCI has been dedicated to enabling the sensing and actuation of phyiscal objects, which I

disucss in the following sections.

2.2.2 Augmenting Physical Objects

Augmenting physical objects emcompasses two different aspects: (i) enhancing the objects

to be more sensible allowing for improved monitoring and control, and (ii) enhancing the
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objects to be more actuable such that the objects can autonomously execute physical tasks

and interact with its environment in more dynamic ways.

Sensing of Physical Objects One of the key features of smart objects is their ability

to be monitored and remotely controlled. Towards this end, research has ventured into

enabling the sensing of physical objects. The focal points of sensing encompass activities

and events, spatial information, and the state of the objects. Given that most legacy objects

lack embedded sensors to relay the aforementioned information, researchers have probed into

diverse methods of employing various sensors to facilitate the sensing of physical objects.

One typical type of sensor is vision-based sensors. Camera is one of the most commonly

used vision-based sensors as it can provide wide-area and versatile sensing capabilities. For

example, researchers can extract spatial information of the objects leveraging visible markers

such as fiducial markers [62, 146, 207], optical tracking systems [230, 177] or via computer

vision techniques such as color tracking [198], feature matching [15] or point cloud alignment

[75]. However, owing to challenges like occlusion and potential privacy concerns, researchers

have ventured into exploring other types of sensors to achieve always-on sensing of physical

objects.

The sensor technologies in focus include wireless sensors, which are apt for monitoring

object states and detecting events and activities. These methodologies frequently harness

machine learning techniques, which can be trained to recognize various activities while pre-

serving user privacy. For instance, synthetic sensors exemplify a typical general-purpose

sensing system that processes multiple raw sensing signals (e.g., accelerometers, microphone,

EMI) and possesses the capability to detect various activities of physical objects within a

smart home setting [111]. This concept has been further expanded upon by various works

within the HCI domain [228, 110, 48, 229], where specific sensor data is employed to afford

higher-fidelity sensing of physical objects (e.g., detecting motion status of physical object

using RF signals [221]).
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Actuating Physical Objects Different from personal robots, which leverages mobile

robots or robotic arms to execute physical tasks for users, systems designed to actuate

physical objects for purposes of remote control or user assistance embed robotic mechanisms

into physical objects. This setup allows these objects to autonomously perform tasks on

behalf of users without the necessity of intermediary devices or platforms.

Products like Clicbot10, Smartians11, and Microbot-push12 employ retrofitting devices

equipped with gear mechanisms to facilitate the remote actuation of physical objects, thereby

performing tasks on behalf of users. In the research domain, researchers have developed

various systems featuring robotic mechanisms to retrofit legacy objects and enable their

actuation. The idea of ‘mechanical hijacking’ was first demonstrated by Davidoff et al. as

it uses LEGO Mindstorms13 as the building blocks to mechanically control physical objects

such as volume knobs [39]. This concept was later extended by other researchers in HCI.

For example, RetroFab [174], which offers an authoring tool to scan an existing physical

interface and automate its controls by adding external mechanical and electronic components.

IoTIZER [31] and Mobiot [5] offer various mechanisms to augment legacy objects while

considering different factors such as aesthetics and mobile capabilities.

Most of the aforementioned work employs relatively straightforward mechanical mecha-

nisms to actuate the motion of physical objects, such as gear-based or linkage-based mecha-

nisms. The rapid advancements in 3D printing technology have significantly facilitated the

easy fabrication and customization of these mechanical mechanisms to accommodate various

shapes of physical objects. However, the design of even such simple mechanisms necessitates

a certain level of expertise. This includes selecting the appropriate mechanism, designing

fasteners to securely attach to the object [103], among other considerations. Moreover, cur-

rent work still lacks the ability to generate mechanisms for more complex motion, as most of

10https://keyirobot.com/

11https://www.frolicstudio.com/portfolio/smartians

12https://keymitt.com/products/microbot-push

13LEGO Mindstorms
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the target retrofitting is limited to 1-DoF actions, such as toggling a light switch or turning

the knob of an oven.

Part of my my thesis situated within this realm of work, specifically focusing on the

generation of mechanical mechanisms affixed to custom legacy objects, while dedicating

efforts to address the challenges of user customizability and motion complexity. In the

following sections, I discuss from the HCI perspective how researchers have been working on

to enhance the user customizability and address the motion complexity in physical object

actuation.

2.3 Democratizing the Smartening of Legacy Objects

As previously outlined, enhancing legacy objects to imbue them with smart capabilities

presents numerous hurdles in democratizing the process for a broader user base. This has

been a major focus in HCI research—democratizing technology to ensure that end-users,

regardless of their expertise in the target domain, can still leverage and benefit from the

technology itself. In the context of smartening legacy objects, the challenges arise from the

complex nature of mechanical design, personal fabrication and robotic motion planning. In

the following, I discuss the related research in (i) enabling general users to create custom

design of personal fabrication and (ii) interactive design tool in the domain of generating

robotic motion.

2.3.1 Design Tools for Personal Fabrication

The advent of low-cost fabrication technology has facilitated personal fabrication, enabling

users to create custom designs for their own use. While the design process retains a level

of expertise requirement, researchers within the HCI domain have delved into approaches of

empowering general users to create custom designs. This is particularly relevant to smarten-

ing legacy objects as it involves the creation of 3D printable mechanism affixed to custom

legacy objects. For example, researchers have developed various tools to enable users to
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create 3D printed mechanism via interactive interfaces, such as 3D printed springs [72, 73],

laser-cut mechanisms [182, 113], hydraulic devices [219] and mechnisms to interact with ev-

eryday objects [202]. Other research has explored diverse forms of support such as enabling

users to directly manipulate a mobile 3D printer for printing purposes [199], or incorporat-

ing augmented reality (AR) in the printing process [166]. The work above lowers the entry

barrier for general users to create custom designs for personal fabrication.

2.3.2 Design Tools for Robotic Motion

Another challenge for general users is to design the robotic motion for the smartening mecha-

nism. Robotic motion planning is complex, primarily because users typically do not program

the motion directly; rather, this motion is controlled by actuators, often motors, which makes

the process non-intuitive. The task demands an understanding of necessary mathematical

concepts such as forward and inverse kinematics, which are challenging to grasp and solve,

thereby elevating the difficulty of motion design for users without a technical background.

Researchers have looked into computational methods to interactively design robotic mo-

tion. For example, Ha et al. developed a design tool to enable the robotic devices (e.g.,

length of links) by directly specifying the desired motion [68]. Megaro et al. presented a

design system that automates the tedious process of creating 3D-printable robotic creature

while allowing for casual users [140] and Geppeto is an interactive system that allows users

to design expressive robots by editing complex parameters in a semantic level [43]. Part

of my thesis work extends this line of research by enabling users to specify the high level

motion of the mechanisms and generating the 3D printable components automatically.

2.4 Summary of the Related Work

In this chapter, I begin by delving into the history of smart homes and identifying the gaps

present in current technology. The primary gaps my thesis intends to bridge are twofold:

(i) enabling physical objects to perform physical tasks for users, and (ii) democratizing the
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smartening of legacy objects, allowing general users to design and fabricate their own aug-

mentations. Subsequently, I shift focus to discuss the state-of-the-art research in robotics

aimed at achieving the sensing and manipulation of physical objects. Conversely, research

has also dedicated to augmenting physical objects to enhance their sensing and actuation ca-

pabilities, a realm where significant contributions have been made by the Human-Computer

Interaction (HCI) community. Lastly, I provide an overview of how researchers are striving

to democratize the design process in personal fabrication and robotic design, making these

domains more accessible to the general populace. The next few chapters unfold a presenta-

tion of four projects that emcompass these two themes, starting from embedding actuation

into legacy physical objects to augmenting the robotic manipulability and machine vision of

legacy physical objects.
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CHAPTER 3

Enabling Users to Design and Generate Add-on

Mechanisms to Actuate Legacy Physical Objects

As mentioned in the previous chapters, there remains a lack of support for physical tasks in

the current development IoT, e.g., adjusting the angles of a desk lamp for optimal brightness

as you perform a soldering task. Automating physical tasks has important implications for

people with a disability or in a situational impairment. For example, turning on a manual

faucet without touching it becomes useful when both of your hands are dirty, opening a

pantry is helpful when you are holding bags of groceries, and it is convenient to have a

window that closes by itself when sensing the temperature drops.

The recent development of actuatable appliances (e.g., smart blinds [151], switches [109],

and TV deck [123]) and reconfigurable furniture [47] suggests a future of ubiquitous robotic

things: akin to how ubiquitous computing imagined a world of omnipresent computational

power, we can envision a future of everyday objects and appliances equipped with robotic

capabilities to interactively carry out a series of complex actions. With such physical tasks

and dynamic actions that assist people in a variety of contexts, the future of everyday robotic

IoT devices can open a door for a new world of everyday interactive systems.

To bridge us to this vision, instead of waiting to replace and upgrade a whole world

of legacy static objects with fully automation-intended gadgets, one reasonable first step is

to come up with solutions that allow end-users to augment these objects with actuatable

behaviors. Leveraging a democratization of robotic kits and rapid prototyping machines,

prior work has proposed the design of external [210, 114] or add-on [173, 195] actuation

mechanisms to operate a physical control interface. To generalize the approach to a wider
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Figure 3.1: Robiot enables end-users to take a video and automatically generates mechanisms

that can actuate everyday objects to perform simple physical tasks. All the four examples

were designed by participants in our design session: lowering a lamp while busy soldering

(a), waving a hand up to open a trashcan afar (c), setting up a scheduled house plant water

spraying system (e), and asking the drawer to open itself when having no extra hand (g).

range of everyday things, past research primarily focuses on generating passive adaptations

to reduce the effort of operating handheld objects [28]. In contrast, active mechanisms

on everyday objects remains a nascent topic—very little is known how average users can

create actuation mechanisms with desired motion to automate everyday objects for even the

simplest physical tasks.

In this chapter, I present the design and implementation of Robiot — a design-by-

demonstration tool for end-users to fabricate add-on mechanisms to actuate legacy static

objects for everyday physical tasks. Using Robiot, users only need to take a short video ma-

nipulating an object to demonstrate an intended physical behavior, such as lowering a desk

lamp, squeezing a spray bottle, or opening a drawer. To generate the actuation mechanisms,

Robiot extracts two requisite parameters: (i) first it performs a scene and motion analysis

in the video domain to infer the type of joint corresponding to the demonstrated motion;

(ii) then it retrieves the object’s 3D model from a pre-constructed repository and identifies

maneuverable/ground parts—where on the object to ground a mechanism and where

to let it exert the actuation. These two parameters lead to a set of candidate mechanism

designs, which can be further filtered by adjusting several design parameters, e.g., range of

motion, torque and speed. Figure 5.1 shows several of exemplary applications designed using
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Robiot, fabricated and installed by the study participants. In an hour-long design session,

six participants successfully designed 14 mechanisms. After 3D printing, they were able to

assemble and install mechanisms on existing objects with instructions given by the system,

finding its usefulness for future use in their environment to actuate own things.

The main contribution of this chapter is an end-to-end pipeline that requires very min-

imal user input to automatically generate 3D printable actuation mechanisms by a novel

combination of 2D video analysis and 3D geometry processing. Although I demonstrated

3D printing as the main fabrication technique, the pipeline’s ability to extract mechani-

cally meaningful information from user demonstration can potentially generalize to other

manufacturing techniques.

3.1 Related Work

In this section, I discuss the prior related to the work presented in this chapter more thor-

oughly. Robiot provides end-users with a design tool that can create mechanisms to attach

to and actuate existing everyday objects for simple physical tasks. This goal cross-cuts

three areas of prior work: (i) personal robots that interact with and assist people with their

physical tasks; (ii) reality-based design tools that extract information from the real world to

create designs that can in turns augment the real world; and (iii) computational methods of

designing and prototyping functional objects.

3.1.1 Personal Robotics

Research in personal robotics has sought to democratize robots to assist people with a

range of physical tasks in home and offices. Designing robots with motion enables users

to communicate and dynamically engage with robots, such as having a robot aid a user’s

office tasks [78]. Further, to consider a broader audience, personal robots are taking an

increasingly important role in enabling people with disabilities [19].

At a smaller scale, robots can perform grasping and manipulation of everyday objects.
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Grasping and manipulation remains a fundamental challenge that drives new algorithmic

and system designs [184]. At the application level, grasping and manipulation also enables

robots to assist people’s daily living tasks, from fetching a mug [209] to taking medications

[165]. On the other hand, robots can now support people’s whole-body activity in a large

scale, such as a soft assistive robot that provides scaffolding and protection for elderly people

when they take a bath [134]. Robot assistance is also frequently used in navigation, from

orienting oneself in a work area [201] to maneuvering in a shopping mall [64].

Despite such development, the range of physical tasks a personal robot can handle re-

mains limited due to the large variety of tasks as well as the different objects involved. To

make robot’s ability flexible and scalable, prior work has been focusing on using program-

ming by demonstration to teach robot custom behaviors [52, 17, 214]. Although in this

way the physical tasks become programmable to a robot, the performance is by and large

determined by the one-size-fits-all design of the robot that is available. Worse, at times such

a robot might not even be available to perform a bespoke task. To overcome this limit, prior

work such as Coros et al.’s provides an expressive means for specifying robotic behaviors by

sketching a user-defined motion path, which generates a corresponding linkage design for an

automata [36]. Instead of sketching, our design tool allows a user to directly manipulate

an existing object to specify a desired physical behavior, and then automatically generates

a behavior-specific robotic component that can retrofit to and actuate everyday objects to

assist users in automating simple physical tasks.

3.1.2 Reality-based Design Tools

Related to enabling design of actuating physical tasks, past research has explored a class of

reality-based design tools that address two important issues: (i) how to extract information

from the physical world that can lead to (ii) creating solutions that can leverage personal

fabrication to augment the physical world.

The need to extract information from the physical world coincides with many research

goals of Augmented Reality (AR). Early work such as DART allows designers to rapidly
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transition storyboards to a work experience based on a camera view and an live AR authoring

environment [132] A recent surge of AR technologies gives rise to prototyping tools that

incorporate real-world information in the design process, such as directly viewing, positioning

and iterating a 2D sketch in a 3D real environment [6, 155, 211, 95, 166].

Obtaining an understanding of the physical world informs new ideas of augmentation,

often manifested as the idea of ‘mechanical hijacking’ first demonstrated by Davidoff et al.

[39] and later extended by Chen et al. in adapting hand-operated objects for easier manip-

ulation [28]. AutoConnect enables the automatic generation of structures that connect (i.e.,

holding in place) two user-selected objects based on their scanned digital representations

[104]. Printy allows novice users to fabricate fully-functional internet-connected object [7].

Patching provides a hybrid platform that scans, mills, and additively fabricate new compo-

nents to replace part of an existing object with augmented functionality [149]. Facade uses

the crowd to annotate a visually inaccessible physical interface (e.g., buttons without tactile

feedback) and generates 3D printable tactile overlay to assist visually-impaired people to

use these interfaces [66]. Perhaps the most related to our work is RetroFab, which offers

an authoring tool to scan an existing physical interface and automate its controls by adding

an enclosure consisting of mechanical and electronic devices [173]. However, Retrofab only

addresses actuation specific to operating physical controls and does not consider a more

general way to encompass motions from various other everyday objects.

To summarize, as shown in Table 3.1, the most related work in reality-based design tools

either focuses on physical interfaces [66, 173], or only addresses everyday objects with passive

add-on components [28]. Robiot complements existing research with a generative pipeline

to create active actuation mechanisms on everyday objects.

3.1.3 Designing and Prototyping Functional Objects

The eventual goal of our tool is to generate fabrication-ready actuation mechanisms. To

achieve such functional design, prior work has demonstrated two approaches: assembly-

based and generative design.

23



Table 3.1: Robiot goes beyond prior work with active mechanisms to actuate a range of

everyday objects.

Physical Interfaces → Everyday Objects

Passive Facade [66] Reprise [28]

Active Retrofab [173] Robiot

Assembly-based solutions allow users to put together off-the-shelf components for a func-

tional, often complex object. For example, consider a plethora of robotic kits, such as the

popular LEGO Mindstorms [114] used in early work of mechanically ‘hijacking’ the control

of physical devices [39]. TrussFormer enables users to 3D print large-scale kinetic structures

[102]. Zykov et al.’s Molecubes is an open-source modular robotics kit that provides a low-

cost, ruggedized and expandable platform with software support for visual and control design

[235]. Schweikardt and Gross demonstrated the expressiveness of roBlocks—a reconfigurable

modular robotic prototyping tool where small, magnetic, heterogeneous components can be

snapped together to create large and complex constructs [192]. Grafter largely automates

the process of extracting and recombining mechanical elements from 3D printed machines

and affords extracting groups of mechanical elements that already work together, such as

axles and their bearings or pairs of gears [183].

Generative design allows users to specify their high-level design goals while leaving the

low-level functional considerations to a generative algorithmic process. Autodesk’s Project

DreamCatcher takes a data-driven approach to generate hundreds of thousands of design

options based on input functional requirements [176]. To explore the many generated de-

sign alternatives, DreamLens provides a visualization platform built for exploring large-scale

design datasets [138]. DreamSketch allows a user to integrate generatively designed compo-

nents with the workflow of sketching [92]. To further incorporate users’ intents, Forte loops

user input into the optimization process to create structures that not only meet functional re-
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Figure 3.2: Overview of Robiot’s end-to-end pipeline for generating actuation mechanisms

from a user’s input video.

quirement but also mimic users’ sketches [29]. Generative design also enables end-user design

and fabrication of robots, from creating linkages to exhibit specific motion path [12], to the

automation of a comprehensive set of design considerations, including different morphology,

proportions, gait and motions [141].

It is also possible to take a hybrid approach that combines existing components as well

as a generative process. Desai et al. propose an assembly-aware design pipeline that au-

tomatically lays out user-defined electromechanical components and creates 3D printable

enclosures to assemble the robot [44]. Robiot employs a hybrid approach: the mechanisms

design is generated based on the intrinsic geometry of the object as well as the extrinsic

motion demonstrated by the user; then these generated components are assembled together

with existing parts (eg/ motor) and installed on the object.

3.2 Robiot: Mechanisms to Actuate Everyday Things

3.2.1 Overview of Robiot’s Workflow

As shown in Figure 3.2, our technical contribution is an end-to-end pipeline that requires

minimum user input to generate 3D printable mechanism, which actuates legacy static ob-

jects. Using Robiot, a user simply takes a short video demonstrating how they want an
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Figure 3.3: A screenshot of the user interface provided to the user once Robiot generated a

set of candidate mechanisms from a given video demonstration: the corresponding 3D model

(a), the generated mechanisms (b), and sliders to filter the list by range of motion, torque

and speed (c).

object in motion. A wide range of these rigid-body objects’ motion can be expressed as

linear or rotational [28]. Thus to generate the enabling mechanisms, Robiot models the

actuated components in two types of joints : prismatic (linear) and revolute (rotational).

As shown in Figure 3.2, Robiot performs a scene and motion analysis of the input video to

extract the following information.

Type of joint - The object is extracted from the video and an optical flow technique

analyzes the motion, which is used to classify whether the motion is linear (prismatic) or

rotational (revolute). This information leads to specific mechanisms that can actuate the

object to behave as the user demonstrates in the video.

Maneuverable vs. Ground parts - First a 3D model is retrieved from an existing repository

that contains preprocessed information for matching which 3D model best corresponds to

the object as viewed in motion. Further, results from the above optical analysis are used

to segment the 3D model into maneuverable and ground parts. Robiot then automatically

generates a list of possible mechanism designs that also raise implicit constraints inferred

from the input video, e.g., the size of the object’s components, the required minimal torque.

As shown in Figure 3.3, Robiot also provides more advanced features that allow a user to
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a b

Figure 3.4: Automatic stapler is one common office appliance, that Robiot can robotize from

a cheap manual stapler

a b

Figure 3.5: Robiot mechanism attached on top of a soap bottle performs pressing to squeeze

liquids without touching

tweak and filter design options by adjusting preferred range of motion, torque, and speed.

Below we first showcase a series of examples designed using Robiot’s workflow while

leaving the technical details later in following sections.

3.2.2 Examples Generated by Robiot

We present a series of examples created by Robiot, which automatically generates the 3D

models of the mechanisms from a user input video. As we focus on the design tool, all the

subsequent interaction was developed ad hoc (e.g., using commercially available voice or
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a b

Figure 3.6: A manual faucet can automatically turn to release water by attaching a mecha-

nism to pull the handle.

a b

Figure 3.7: Automatically adjusting mirror can aid a user who wears make-ups and contact

lens using both hands
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gesture sensing input devices) as a way to demonstrate Robiot’s potential to perform simple

physical tasks for users.

Figure 5.1 showcases exemplary applications with mechanisms installed to everyday ob-

jects at home and offices. When both of user’s hands are occupied and tied to a task, such as

for soldering, an automatically adjustable lamp with a reading lens can come closer to him,

assisting his delicate task such as soldering (Figure 5.1a,b). In the similar vein, as shown

in Figure 5.1, when user’s hands are full with garbage grabbed from a counter top (c) and

a heavy box with clutter (g), automatically opening trash can (d) and drawer (h) become

convenient for her to ease the cleaning task. For a busy office worker who is likely to forget

to water the plant regularly, a squeezer mechanism attached to a spray bottle will do the

watering tasks according to a predefined schedule (e-f).

Figure 4-7 further demonstrate a wider range of example applications with actuation

mechanism attachments. There exist many commercial automated staplers, which we can

replicate using a Robiot-created mechanism that performs the same task using a cheap

stapler (Figure 3.4). When the user’s both hands are dirty, a soap bottle that automatically

presses the top to squeeze liquid soap (Figure 3.5) on her hand and a water tap turning on

water help those who do not want to spread the mess (Figure 3.6). As another example,

wearing make-ups is one of the most complex tasks, from which people can benefit from a

mirror with automatable angle adjustment so that its usage becomes hands-free.

3.3 Implementation

In this section, we detail step by step process of creating a mechanism, from user input to

ready-to-print 3D model for end users to assemble and install with the instruction.

3.3.1 Preprocessing

Robiot’s analysis of real-world objects starts from a repository of 3D models corresponding

to it. As opposed to 3D scanning of the object, the models in the repository offer clearer and
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better-defined mesh information than the currently-limited scanned data that often requires

additional post-scan processing. Such a repository can also be populated with manufacturers

cataloging the CAD models at design time and 3rd party dataset. However, the advancement

in scanning technology might soon provide a viable alternative in lieu of a repository.

As shown in Figure 3.2, for each object, Robiot performs a one-time preprocessing step

by taking snapshots of the 3D model at a set of predefined locations spherically around

the object. Snapshots are stored together with the object’s 3D model and will be used for

retrieving the 3D model as detailed below.

3.3.2 #1 Extracting an object’s 2D and 3D representations

The input of Robiot’s generative pipeline is a video of a user manually manipulating an

object to demonstrate the action, expected to be produced by some mechanisms. Our first

step is to extract the object’s 2D and 3D representations from the video (based on the

preprocessed 3D repository).

As shown in Figure 3.2, after identifying the first stable frame we perform‘sa scene

analysis—a foreground extraction to obtain the object’s 2D representation as a binary mask

Mvideo (with the 1’s representing the object and 0’s the background). We implement this

step using GrabCut [181], although other methods (e.g., deep learning based direct object

segmentation [107]) can also be used to replace this component in Robiot’s pipeline.

Next, we use Mvideo to retrieve a 3D model from the Robiot repository by snapshot

matching, i.e., finding a 3D model that has a snapshot that best matches Mvideo. For each

3D model, we perform a stepwise searching process. Specifically, for each snapshot we first

binarize it into Msnapshot and scale it to match the aspect ratio of Mvideo. We then measure

how well Msnapshot matches Mvideo by computing a matching score:

smathcing =
sum(Mvideo ∧Msnapshot)√

sum(Mvideo) · sum(Msnapshot)
(3.1)

We identify the 3D model that has the highest smatching as the object’s 3D representation;
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we also save the corresponding Msnapshot for latter processing.

3.3.3 #2 Determining the type of joint

Once the area containing the object is extracted, the next step is to perform a video-based

motion pattern analysis. First we extract feature points using the Shi-Tomasi corner detector

[87], and then use the Lucas-Kanade method [129] to calculate the optical flow of these feature

points during the course of the video. As shown in Figure 3.8, each feature point is ‘tracked’

frame by frame, resulting in a 2D trajectory comprised of an array of X/Y coordinates. Next

we filter out noises and jitters by setting an empirically defined threshold to cut off feature

points whose trajectory coordinates with a low covariance.

Now that we have collected trajectories representing how the object should be actuated,

the next step is to determine whether such motion can be enabled using a revolute or

prismatic joint. For each trajectory, we use a least-square method to fit it to an arc. The

rationale is that if the actuation is revolute (rotational), the pivot should physically be part

of the object thus the fitted radius must be significantly smaller than the fitted radius of

a prismatic actuation. Now we compare the radius and the distance between two states–

initial vs. final. Note that without occlusion, the initial/final state can be robustly extracted

from the first/last frame of the demonstration video, respectively. As the length of an arc is

approximately equal to len = R sinα (where α is the rotation angle) if len < R
4
, resulting in

α < 15◦, the joint is regarded as prismatic joint, otherwise it is regarded as revolute joint. As

shown in Figure 3.8, we compute a distribution of the fitted radii from all the trajectories,

which exhibit a clear separation between the two types of joint.

One challenge here is that some objects might have very few ‘sharp corners’ that can be

used as feature points for the optical flow analysis. To address this, we incorporate the user’s

hand, which provides ample feature points. As shown in figure 3.10, as the hand is used to

manipulate the object, its motion must match that of the object’s. Thus we use the hand as

a supplement when there is a lack of feature points detectable from the target object. We

detect the hand’s position using a skin color based method [175].
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a b

Figure 3.8: Optical flow analysis shows distinct difference between prismatic (a) and revolute

(b) joints by comparing the least-square fitted radius (prismatic joint’s fitted radius is much

larger, extending beyond the camera view).

Figure 3.9: Technical sketches of the three mechanisms showing how they are actuated.
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a b

Figure 3.10: Some objects due to their geometry and texture provide very few feature points.

To solve this problem, we incorporate a user’s operating hand whose motion correlates to

the manipulated object’s.

3.3.4 #3 Finding maneuverable parts and grounds

Having identified the type of joint, the next step is to find out where and how to attach a

mechanism to an object. The joint should be fixed to part of the object that does not move,

ground, and should ‘grab on’ to part of the object that can move, maneuverable parts. The

key of the following steps is to identify maneuverable parts and grounds, not just in the video

domain but also in the 3D space as eventually we will generate 3D models of mechanisms

attached to the actual object.

Recall that the above motion analysis (Figure 3.8) has already identified a set of feature

points with significant motion trajectory. We use these feature points to train a segmentation

model (we use k-nearest neighbor [3]) and apply it to the snapshot (Msnapshot) of the object’s

3D model, marking each pixel either as maneuverable or ground. As shown in Figure 3.2,

we then unproject pixels of the snapshot back to the 3D model using ray casting. As a

result, each face of the 3D model is associated with one or more snapshot pixels. We take a

majority vote to determine whether the face should be considered maneuverable or ground.
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Figure 3.11: Three mechanisms and their parameters (gear rack appears twice for both types

of joints). For revolute joints, different mechanisms can be considered and modeled after the

same set of parameters – l1, l2, l3 and α.
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Figure 3.12: Two cases where gear rack does not apply

3.3.5 #4 Generating Actuation Mechanisms & Instructions

As described in an overview, Robiot provides a list of possible mechanisms as options from

the library—gear-rack, four-bar linkage, and pin-in-slot—that can afford actuating various

everyday objects. Figure 3.9 shows how the three mechanisms are actuated basically. Below

we describe how mechanisms are chosen based on constraints and generated from a core set

of parameters.

Prismatic joint (linear motion) . Gear rack is the only mechanism that we use for both

types of joints. As shown in Figure 3.11(a), the gear-rack system translates the rotary motion

of the motor into linear motion, which enables a lamp height (linear) to be adjusted by a

motor (rotation). Most of the gear-rack components are standardized, except for the length

or rack to be determined by the range of motion, computed from the union of trajectories

from the optical flow analysis.

Revolute joint (rotational motion) . When the type of joint is revolute, all three (See

Figure 3.11) mechanisms can be considered and modeled after the same set of parameters.

Each of the three mechanisms can be generated based on three parameters and their relations:

the lengths of the two links l1 and l2 (see Figure 3.11) and the range of motion (rotation) α.

Despite their similarity, the choice of one mechanism over another is based on intrinsic

constraints. Gear-rack allows larger motion and larger torque at a cost of larger installation
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space, whereas pin-in-slot could be installed in a smaller space but cannot provide large

torques; four-bar-linkage stands in between and has much fewer applicability constraints.

Specifically, for gear-rack as a revolute joint, two constraints contribute: (i) the size of the

motor (currently set to default in the system) and the two connecting components limit the

minimum length of l3; (ii) the range of rotation α cannot exceed 180◦(figure 3.12). For pin-

in-slot, the main constraint is whether it can meet the required torque on the pivot τp. For

the same motor torque τm, pin-in-slot generates a much smaller τp (τp = τm sin(β − 90◦)/l2)

compared to the other two mechanisms.

Programmatically generating 3D models of mechanisms All mechanisms are generated

procedurally using basic primitives and boolean operations. For example, for gear-rack, we

use trapezoid shape to generate the teeth of the rack and use rectangle or self-defined closed

curve to extrude to get the 3D model; the gear is based on an existing example provided

by OpenJSCAD. For pin-in-slot, the link attached to the motor to transmit the power from

the motor contains a wheel and a connecting rod, which are generated using cylinders. For

four-bar-linkage, the link is cylinder-shaped and we use cylinders to generate the connecting

joints between two links.

Installation: fasteners and instructions For fastening, we employ Chen et al.’s method

[27] to compute the circumference of a cross section corresponding to a maneuverable/ground

part. We then generate a pipe clamp as part of the mechanism that can be bolted to fasten

the mechanism onto existing objects. Other attachment techniques (e.g., [27, 104]) can be

also applied based on the target shape.

User interface After the system automatically generates a set of recommended mech-

anisms, Robiot’s UI allows a user to further specify desired strengths and properties (e.g.

range of motion, required torque and speed of the motion).

Finally, we generate instructions to assist end-users to install the generated mechanisms

onto existing objects. We provide standard instructions for fastening a pipe clamp with bolts

and configuring a motor; for each specific case, as shown in figure 3.14, we also visualize where

on the object to install which part.
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3.3.6 Software and Hardware

Robiot’s front end is written in JavaScript using jQuery1 for UI development, three.js2 for

3D graphics, and OpenJSCAD3 for procedurally generating the geometry of actuation mech-

anisms. The back end Python. Everything runs on a MacBook Pro (15-inch, 2016 year)

with a 2.7 GHz Intel i7 and 16 GB 2133 MHz LPDDR3 memory. In our design session and

demonstrations, the front end runs on a Google Chrome web browser. We use Dynamixel

XL-430 W-250 motors to power the actuation mechanisms, which were all 3D printed using

an Ultimaker S5 using primarily white PLA.

3.4 Design Sessions

To validate Robiot, we conducted informal, qualitative design sessions with six participants

(aged 20-25, female=3, male=3). The objective of the study is to let participants create

mechanism designs to actuate a set of everyday objects using Robiot’s generative pipeline.

In so doing, we try to elicit users’ initial reaction and feedback to the system in order to

validate Robiot’s easiness to use, its usefulness for automating physical tasks, as well as what

to further improve to enhance its efficiency in robotizing things.

3.4.1 Participants

We recruited participants from the university. One participant had a Mechanical Engineering

background and one an Electrical and Computer Engineering background, both of which self-

reported that they were knowledgeable in mechanical engineering. The other participants

did not have any engineering background. Amongst all participants, three had experienced

CAD systems, while the others did not. One participant did not even know what CAD

1https://jqueryui.com/

2https://threejs.org/

3https://openjscad.org/
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means.

3.4.2 Apparatus, Tasks and Procedure

There were two different sessions in two days to budget time for 3D printing mechanisms

that participants designed on the first day, which they continued to assemble and interact

with them on the second day.

Design Session (Day 1) - started with a five-minute quick tutorial. We introduced to

a participant how Robiot works step by step using a simple educational example—making

an old-school stapler automatic (Figure 3.4). Once the participant understood the concept

and the process of Robiot, they proceeded to try out our design tool. Participants were

free to choose at least two from a set of seven objects we provided, including lamps (×3),

spray bottle, squeeze bottle, trash can, make-up mirror, and drawer. These objects strike a

balance between prismatic and revolute joints, also variations of the same object (lamps),

and between different actuation types for similar functionalities (spray vs. squeeze bottles).

The main tasks consisted of participants using Robiot to create an actuation mechanism

by taking a video (using an iPhone XS max running iOS 12.1.4) provided by us) as they

manipulated each object. To avoid leading the participant, for each object we showed them

images of the initial state (e.g., drawer closed) and final state (e.g., drawer open). The

participant was asked to manipulate each object to achieve the final state.

After taking the video, participants explored and selected from a number of mechanism

designs generated by Robiot from a viewer using a laptop (Figure 3.13b). As we would

fabricate user-created mechanisms, we had to budget the printing time, thus allowing each

participant to choose two objects, each of which with one mechanism design. The first session

took about 45 minutes.

Assembly & Interaction Session (Day 2) took place after we 3D printed participants’

designs. On Day 2, the participants were given instructions for assembly generated by Ro-

biot Figure 3.14, based on which they assembled the printed mechanisms and attach to

38



a b

Figure 3.13: Participants in our study took videos of them manipulating everyday objects (a),

whereby Robiot generated corresponding actuation mechanisms for participants to explore

on our user interface (b)

the corresponding objects. Participants could try out interaction with the actuated objects

using pre-defined gestures implemented via a Leap Motion4. Our main goal is to let partici-

pants experience their created mechanisms in action as they act; studying different types of

techniques to interact with such mechanisms and letting them assign desired interactions to

actuate them is beyond the scope of this paper, which we leave for future work.

At the end of the session on Day 1, participants filled out a questionnaire regarding

overall user experience, including the difficulty to learn how to use Robiot and whether the

process required extra effort than what they had expected (in the Likert scale 1-7). At the

end of the Day 2, they filled out another questionnaire to answer (i) how difficult it was to

assemble the mechanisms; (ii) whether the installed mechanisms behave as they expected;

(iii) perceived usefulness of having such mechanisms to actuate legacy objects. Then we

solicited feedback about the entire design and fabrication process and any suggestions for

improvement.

4https://www.leapmotion.com/
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a b

c d

Figure 3.14: Robiot generates an instruction for assembly (a), then a participant can assemble

and install following that instruction (b), to interact with the robotic things using gesture

(c) lowering the lamp height to work with optimal brightness when soldering (d)
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3.4.3 Results and Findings

Participants created a total of 14 mechanism designs using Robiot. All but one participant

successfully assembled their designs (the only failure case was due to a critical component

broken before the second session).

We first analyzed participants’ questionnaire responses for the quantitative analysis. Ta-

ble 3.2 summarizes the results on each question, gauging easiness and usefulness of the

tool and design pipeline. Then we transcribed video recordings to observe key insights from

participants’ behaviors for qualitative analysis. We transcribed video data based on the con-

text (e.g., taking video, using Robiot desktop system, assembly, etc.), logging participants’

spoken responses (e.g., “why does this look [the] same?”) and description on their behaviors

(e.g., P1 tried to handle 2 DOF at a time). Then we classified this data to identify findings

as follows.

Easiness of using the System - The most participants reported that the pipeline is sim-

ple and the user interface is easy to use, being able to operate without much background

knowledge (Q1-2). Participants commented ”I’ve never thought that machines can be made

through that simple steps” (P4) and ”I thought designing robotic tools involves heavy mea-

surement, designing and trial and errors. But using Robiot, I simply record the video and

it automatically did all the work”. However, one participant reported an important aspect

about instruction ”I won’t know I can rotate and zoom if I am using it independently” (P6),

which suggest user interface improvement to better inform possible functionalities, what

design options are available when users perform a design task.

Accessible Pipeline and Design Assistance - Participants had no problem assembling and

installing the mechanisms, interacting with objects actuated by the mechanisms (Q3-4),

reporting ”The part is straightforward, I just need to put the joints together and tighten

screws. Then everything works well” (P1) as well as ”It’s only few components with clear

instructions” (P3). Also, all participants were satisfied with generated motions, because

robotized objects behaved as they expected from the beginning of the design. However, one

participant mentioned ”It works well though not very sensitive” (P4), raising concerns on
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* 1: Strongly disagree – 7: Strongly agree

1 2 3 4 5 6 7 Mean

Q1: It is easy to learn how to use Robiot

1 - 1 - - 3 1 4.8

Q2: The process requires less effort than I had expected

1 - - - 1 2 2 5.3

Q3: It is easy to assemble the mechanisms

- - - 1 2 1 2 5.7

Q4: The installed mechanism behaves as expected

- - - - 1 2 3 6.3

Q5: It is useful to have such mechanisms to actuate legacy objects

- - - - 1 5 - 5.8

Table 3.2: Selected statements with survey scores, counts in each cell indicate how many

participants rated their scores

the granularity of motion Robiot can generate. We will discuss in more detail later in the

paper.

Usefulness of the Tool and Aesthetics - All participant were in favor of the tool as they

foresee potentials (Q5) to help them ”customize [my] own things that meet my own needs”

(P3), ”on many objects around me” (P4). Though, participants also have higher expectations

in aesthetics and design to fully utilize the system in their everyday lives, commenting that

”Without proper design, these modern mechanisms will look strange on old-time objects” (P1)

and ”The design part could be previously done by specialists, instead of automatic algorithm”
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(P2). We expect addressing concerns around design aspects would expand future use case

of Robiot, by involving more users who care aesthetics in creating custom robotic things.

Remaining Challenges - There were a few common challenges among participants. Some

participants struggled to understand what ‘initial state’ and ‘final state’ meant. In hindsight,

we realized such wording was too technical, and perhaps an alternative expression such as

‘before/after’ would have been more understandable. Also, participants did not react posi-

tively to the sliders that can further adjust design parameters and filter a subset of generated

mechanisms. Although participants were satisfied when finishing the process, they did com-

ment on a lack of understanding of how things work, such as ”I cannot understand why I

choose one mechanism, or how to choose one option” (P6). In addition to the instructions

we provided for assembly, in the design phase, animated previews of each suggested mecha-

nism in action and step by step instructions for users to manipulate a design interface would

help them feel more engaged in the design process with less confusion.

3.5 Discussion

In this section, we discuss existing issues, limitations, and opportunities for future work.

3.5.1 Future Technical Work

There are several technical details Robiot needs to focus on in the future. In cases where

a user accidentally blocks the camera at the beginning or the end of the video, one future

direction will be employing computer vision techniques to detect such occlusion and providing

a simple UI for the user to select a better, unblocked start/end frame.

As there are usability issues with sliders in user interface, one future direction of user

interface will be providing interactive tutorials to help users understand the mechanical effect

of adjusting each slider.
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3.5.2 Scale of Mechanisms

Robiot suggests mechanisms that best suit user-specified action and generate a 3D printable

model by a desktop 3D printer. The scale of mechanisms and mechanical elements (e.g., size

of gear teeth and the length of the rack) are dependent on the capability of the printer, with

common hardware settings. Investigating possibilities for the system (1) to design larger

mechanisms to support furniture scale objects’ actuation and (2) to handle granularity of

the motion, which is defined by the size of mechanical elements, could be an interesting

extension of our work.

3.5.3 Camera Angle to Capture Desired Motion

To best extract series of motion path captured from a video, users need to capture the

objects in motion orthogonal to the movement paths. Because Robiot currently lets users

design mechanisms in one degree of freedom at a time, motion extraction and generating

mechanisms are based on 2D, where an orthogonal scene best derives the motion. Prior work

has investigated retaining 3D information when converting 2D videos [82, 124], by estimating

depth from 2D scenes. Another future direction of Robiot is extending its capability to

extract features for motions with depth in 3D from 2D videos, and generate mechanisms in

multiple degrees of freedom at a time that addresses 3D motions.

3.5.4 Designing Motion Beyond Given Affordances

Currently, Robiot helps users to create 3D printable actuation mechanisms to perform ex-

pected action of legacy objects. For example, users are likely to design height adjusting

mechanisms for a chair and a rotating mechanism for an old water faucet. Users’ choices

on actuating mechanisms are decided by the existing affordances of a physical interface, it

is hard to imagine a user would change these affordances, such as making a linear switch to

attach on a rotating faucet and turning pulling drawer opening in rotational angle. Reprise

is an approach that allows users to change the type of required movement to perform actions

44



on physical handheld objects, particularly for people with fine motor impairments [28]. One

interesting future direction could be applying this technique to generate mechanisms that

enable users to alter the type of motion to perform a fixed physical task, such as rotational

to linear motion and vise versa.

3.5.5 Sensing and Designing Custom Interactions

The main contribution of ours is an end-to-end pipeline, enabling designing fabricable mech-

anisms; sensing and defining custom interactions, and mapping them to desired actions are

beyond the scope of this paper. Nonetheless, there exist commercial kits that welcome aver-

age users to install add-on motion sensors to trigger actuating home IoT (e.g., [1, 85]), and

it becomes common to perform such tasks using connected devices or voice assistance using

home intelligence devices (e.g., [79]). We demonstrated the feasibility of mapping custom

gesture interactions using LeapMotion, which opens future opportunity to implement novel

interfaces for end users to define custom user interactions to fine-control the motion, given

different user requirements. With these interfaces, existing work on novel sensing techniques

on everyday objects to detect unique object touch [186] or direct sensing of a human body

to detect motion [35] can be applied to enrich user experiences in everyday use of robotic

things.

3.5.6 Performing Ungrounded Action

Recent advancements in ubiquitous computing have presented the future vision of moving

objects that do not require explicit user intention to perform such actions. For example,

Nissan showcased their visionary self driving cars through smart slippers [158] and chairs

[157] that self-organize. It is also viable to imagine salt and pepper bottles shaking by

themselves, as having them on a soup bowl is a common routine. Envisioning the future

with omnipresent robotic things that accommodate people’s everyday routines and expected

activities as triggers (e.g., sandals coming to you when you come into the door, desktop

self-adjusting height as you stand up to refresh your posture) by predefined activity sensing,
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Robiot sheds lights on a new possibility for end-users to robotize objects at home and office

to make their everyday life easier towards functional home/office.
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CHAPTER 4

Enabling Users to Design and Generate Embedded

Mechanisms to Robotically Augment Default

Functionality for Legacy Objects

Reconfiguring shapes of objects enables transforming existing passive objects with robotic

functionalities, e.g., a transformable coffee cup holder can be attached to a chair’s armrest,

a piggybank can reach out an arm to ’steal’ coins. Despite the advance in end-user 3D de-

sign and fabrication, it remains challenging for non-experts to create such ‘transformables’

using existing tools due to the requirement of specific engineering knowledge such as mech-

anisms and robotic design. In this chapter, I present Romeo—a design tool for creating

transformables embedded into a 3D model to robotically augment the object’s default func-

tionalities. Romeo allows users to express at a high level, (1) which part of the object to be

transformed, (2) how it moves following motion points in space, and (3) the corresponding

action to be taken. Romeo then automatically generates a robotic arm embedded in the

transformable part ready for fabrication. Romeo is validated with a design session where 8

participants design and create custom transformables using 3D objects of their own choice.

4.1 Introduction

Objects that can transform its geometry and/or functionality (which we referred to as trans-

formables) hold the promises of dynamically adapting to multiple usages by reconfiguring

shapes, either automatically or via manual reconfiguration as depicted in Figure 4.2 with

several examples.

47



Figure 4.1: Romeo enables a user to transform a Minion model into a coin-stealing pig-

gybank by selecting the mid-section of the Minion as the transformable part (a), specifying

motion path for the transformed part to pick up a coin and place it in the bank (b), gen-

erating the corresponding transformable robotic arm (c) and 3D printing and installing the

result (d-e).

The advent of computational design and 3D modelling tools offers the possibilities for ca-

sual makers [84] to create custom objects. However, for non-technical users, designing trans-

formables remains challenging due to the requirements of expert-level engineering knowledge

such as mechanisms and robotic design that are not provided in existing end-user oriented

design tools.

Prior work focused on actuating passive objects [28, 174, 117] using attachable mech-

anisms, yet has not taken account how to transform given objects. Prior work that ad-

dressed transformables tends to focus on computational analysis of geometry and optimiza-

tion [225, 231, 83], rather than providing design assistance to create user-defined custom

transformables. Further, these approaches almost exclusively exploit geometry as the only

constraint when generating a transformable design (e.g., [225]), with little consideration of

obtained functionality, i.e., how a transformable can perform a user-defined task.

I present Romeo—a design tool for generating and embedding transformable parts in

3D models to robotically augment the default functionality. Figure 5.1 shows an exemplar

workflow of Romeo: A user selects a cross section of the minion to be a transformable part

(a), specifies a motion path to pick up a coin and place it in the bank (b), based on which

Romeo generates the corresponding transformable robotic arm (c), which is then 3D printed
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Figure 4.2: Existing examples of objects with multiple functionalities by transforming its

geometry: a stealing coin piggybank (a), a transformable cup holder (b), and an iPad cover

folded into a stand (c).

and installed with motors to perform the coin-stealing task (d-e).

I conducted a design session with eight participants conducting both controlled task

to replicate a task using given 3D objects (stirring spatula and sanitizing tissue box) and

open-ended tasks (design a piggy bank using participant-chosen 3D model) of creating trans-

formables. Overall, participants were able to understand and complete design using Romeo

as a design tool, to define functional tasks by parts selection and motion path specification,

to generate ready-to-print transformable parts for fabrication, and to assemble the parts into

a fully functional transformable object.

The main contribution is an end-user design tool that addresses both geometric and

functional constraints in generating a transformable part embedded into an object’s 3D

model (geometric constraint) while being able to transform and perform a user-defined task

(functional constraint).

4.2 Related Work

Romeo provides end-users with a design tool to augment an object’s functionality by trans-

forming a subset of the object. This goal cross-cuts three areas of prior work: (i) designing
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objects that can transform original shapes (ii) reality-based design tools that extract real-

world information (e.g., object geometry and context) to create designs; and (iii) interactive

design of robotic characters.

4.2.1 Computational Design of Shape-Changing Objects

Past research has explored the design of articulated objects that can actuate existing shape

by transformation. Cal̀ı et al. proposed to generate assembly-free models by inserted joint

configurations of an animation rig to articulate mechanical object [22]. Bächer et al. takes

a skinned mesh as input and estimate the corresponding virtual articulated part segment to

compute placement of the joints [13]. Ureta et al. proposes an interactive system for creating

3D printable joints with user-controlled appearance while taking into account the range of

motion achievable [208]. All this work focuses largely on inserting assembly-free joints in the

articulated parts given the input shapes, rather than to transform such objects away from

their given shapes.

One body of research on transforming shapes is concerned with the design of recon-

figurable objects. Li et al. and Garg et al. proposed computational approaches to design

foldable furniture to save space while not in use [115, 61]. In this process, Boxelization helps

transform a 3D object into a series of small cubes where adjacent cubes are either linearly-

linked and/or fold [231]. Huang et al. explores the design and animation of the motion of

transformation based on the input 3D model and target skeleton representing the desired

figure [83]. Yu et al. investigates transforming the object with telescopic structures using

user sketches or an arbitrary mesh as input [223]. Perhaps the most related to our work is

the design approach by Yuan et al., which uses the target model and skeleton as user input

to automatically generate fabricable transformable objects [225]. However, Yuan et al. only

addresses the automatic generation of transformables based on input geometry constraints,

but does not consider higher-level goals of the desired function as input. Across prior work,

there is a lack tool support for non-expert users to create custom transformable objects.

Also, design of origami robots is also related as such robots can be initially fabricated
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as flat sheet then be folded into a complex 3D shapes. Schulz et al. proposed an end-to-

end system for design of robots with ground locomotion [191]. Mehta et al. proposed a

tool that users can create printable 3D origami-inspired robot from high-level structural and

functional specification [142, 143, 144]. Romeo focuses on using existing 3D shapes with a

default function and transform into another 3D shape with augmented functionality.

4.2.2 Reality-based Design Tools

Romeo enables end-users to define a task that the transformable part will conduct, to interact

with real-world objects (e.g., picking up and depositing a coin). Existing work has explored

reality-based design tools that address (i) how to design objects with kinematic and robotic

features from (ii) high-level, real world context-based design goals as an input, while leaving

low-level functional considerations to a generative algorithm.

Design of objects with kinematic feature that could physically interact with the real world

has been a focus of many research. Obtaining an understanding of the physical world informs

new ideas of augmentation, such as ‘mechanical hijacking’ first demonstrated by Davidoff

et al. facilitated physical interaction with real-world object using LEGO MindStorm toolkit

[39]. TrussFormer enables users to design and 3D print large-scale structures with kinematic

features [102]. Grafter helps end users extract and reconstruct mechanical elements from 3D

printable machines. It affords users to be aware of real-world constraints when fabricated,

allowing to clean out sweeping space along with rotation axles[183]. RetroFab offers an

authoring tool to scan an existing physical interface and automate its controls with an

enclosure consisting of mechanical widgets and electronic devices [174]. Robiot turns legacy

static objects into robots by generating 3D printable attachment mechanisms to automate

physical tasks [118]. Similarly, Romeo aims at empowering end-users to create transformable

parts of objects that are able to physically interact with real-world objects, given context-

aware, user-defined task.

Generative design is also related to our work in that it allows users to only provide

high-level information as input. Reprise invites users to express what type of action is
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applied to an object at a high level, and so generates adaptation for hand-held objects for

easy manipulation [28]. AutoConnect promotes the automatic generation of the attachment

mechanisms between two user-selected objects based on input 3D model or scanned digital

model of real-world object [103]. Further incorporate users’ intent, Forte loops user input

into the optimization process to create structures that meet functional requirement as well

as mimic users’ sketches [29]. Patching provides a hybrid platform that scans, mills, and

fabricates new components ad-hoc, to replace part of an existing object with updated user-

context [203]. DreamSketch allows a user to integrate generatively designed components

with the workflow of sketching [93]. In comparison, Romeo employs a hybrid approach that

combines the automation of robotic feature generation as well as a generative process: users

input a 3D model and specify a reality-based target task, based on which the tool generates

the corresponding transformable parts.

4.2.3 Interactive Design of Robotic Characters

The eventual goal of Romeo is to generate functional ready-to-transform objects based on

user-defined high-level specification. To achieve this, Romeo builds upon prior work that

examine interactive design of robotic characters.

Megaro et al. present a design system that automates the tedious process of creating

3D-printable robotic creatures while allowing for customization for casual users [140]. Re-

cent research focused on computational approaches for non-expert users to design animated

or robotic characters by high-level motion specification such as motion curves [37, 205, 68].

LinkedIt enables end-user design and fabrication of robots, from creating linkages to ex-

hibit specific motion path [14]. Geppeto is an interactive system that allows users to design

expressive robots by editing complex parameters in a semantic level [43]. Using modular

electromechanical components known as ‘computational abstractions’, novices become ca-

pable to easily create custom robotic devices using a visual design environment [46, 45]. In

contrast, Romeo enables the generation of robotic mechanisms by only requiring users to

specify sample points along a motion path and to select an action to be taken along the way,
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thus simplifying the specification of tasks into just a few steps.

4.3 Overview of Design and Fabrication Process

We break down Romeo’s process of generating a user-defined transformable part into four

steps, which we briefly describe here and discuss in further details in the next few sections:

1. Selecting which part of the object to be transformed. To start, Romeo allows

users to select a part of an 3D object to be transformed by sweeping its cross-sectional

area along one of the X/Y/Z axes.

2. Specifying motion points to follow and corresponding action to be taken.

Romeo lets users specify a task that consists of a series of motion points for the end-

effector of the robotic arm to follow, as well as what action should be taken at each

motion point: (i) pick or place, (ii) follow a trajectory and (iii) attach to a surface.

3. Generating a robotic arm embedded in the transformable part. Romeo then

generates a robotic arm that follows the user-specified motion points to perform a

task, segmenting user-specified parts into a series of joints. The object-embedded arm

is visualized and the resulting motion is animated so users can iteratively modify their

design.

4. Generating components for fabrication and deployment. Finally, Romeo gen-

erates fabrication-ready 3D models, guides to assemble all the components along with

motors, and software needed to control the motors that actuate the robotic arm.

4.3.1 Preprocessing

Before the workflow starts, Romeo assumes the input 3D model has been preprocessed using

existing CAD tools: (i) the model has been oriented to be as axis-aligned as possible, e.g.,

a spatula’s handle aligned with one of the X/Y/Z axes, a minion model at an upright

orientation; (ii) non-transformable functionality has been implemented in the model, e.g., a
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Figure 4.3: A screenshot of Romeo’s user interface: a) target object; b) reference object; c)

functional buttons, from left to right: selecting transformable part, specifying motion points

and action, generate embedded robotic arm, animation, export and d) button to restart the

current step
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Figure 4.4: Romeo enables selecting part of an object to transform by sweeping cross-sec-

tional area along X/Y/Z axis.

model for piggybank has been hollowed for storing coins; (iii) optionally, reference objects

have been placed around the model with its relative position, e.g., a pot placed next to a

spatula to serve as a reference when a user specifies motion points of the spatula stirring in

the pot.

#1 Selecting Part of An Object to Transform

Currently Romeo supports selecting a transformable part as a cross-sectional area swept

along one of the X/Y/Z axes of the object with its bounding box (Figure 4.4). Such an axis-

aligned selection approach is designed to simplify the 3D manipulation task for non-expert

users. Admittedly, it trades off expressiveness, e.g., selecting a semantically-meaningful part

unaligned with X/Y/Z such as minion’s goggle. which we further discuss later as future

work.

Once an axis is selected by clicking an arrow parallel to each axis, users could adjust

the starting and ending position of the sweeping area, by dragging the two corresponding
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surfaces of the bounding box highlighted in yellow (Figure 4.4b). A boolean operation is

conducted to obtain the intersection of the target 3D object and the selected cuboid. This

intersection is then set to the transformable part and the rest is automatically set to the

static part (Figure 4.4c).

One issue in this step is that the transformable part is likely to divide the object into

two disjoint components in the static part, sometimes causing overhang due to a vertical

segmentation (e.g., Figure 4.4 c). Romeo can detect such cases by comparing the trans-

formable part’s and the entire object’s bounding boxes. If disjoint components are detected,

Romeo generates a cylinder in between as a connection (d). The radius of the cylinder is

proportional to the dimension of the transformable part, while constrained by the need to

leave sufficient space for mounting motors around this pillar.

#2 Specifying Motion Points and Action

The next step is to specify the motion points of the selected transformable part, in order

for the parts to follow and operate the corresponding action. The transformation is led by

the end-effector—a component that follows the path defined by user-specified motion points.

For example, the tip of the transformed arm of the piggybank is the end-effector that will

follow the motion points to steal the coin (Figure 4.8).

Motion points involve two types of information: 3D positions and orientations (the orien-

tation of the end-effector when it approaches a point). At each motion point, the end-effector

will take the action in one of the three types: pick-and-place, following a trajectory or at-

taching to a surface.

Position One well-known challenge here is letting users directly specify a 3D point on

a 2D screen. Romeo addresses this by providing a two-step process. First, the user specifies

the 2D position of a motion point on a reference plane coplanar to the cross section of the

transformable part (Figure 4.6a): for the very first motion point, the reference plane cuts

across the centroid of the transformable part and for the subsequent points, the reference
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Figure 4.5: Users can specify the motion points for the end-effector to follow in order (abc)

and the corresponding action to be taken (d).

plane cuts across the previous motion point. Next, the user specifies the third dimension

by sliding the motion point along a reference line perpendicular to the reference plane (Fig-

ure 4.6c). To help user have a better understanding about the relative position of motion

points in 3D space, a top view and a side view are displayed on the right side of the tool

(Figure 4.6b-d). While the end-effector tracks the motion points in sequence, users could

specify a loop by setting the last point close to the first point (the threshold is 50 mm).

Orientation As shown in Figure 4.6e-g, we use a spherical widget similar to [28], to

help a user specify the orientation of the end-effector as it approaches one motion point from

the previous motion point. Orientation is only required in the special context, for example,

the contact face of the stamp needs to be parallel to the paper placed on the ground, while

stamping. Users can click on the spherical surface to specify the orientation, or by clicking

anywhere outside to indicate that no specific orientation is needed.

At each motion point, the end-effector can perform one of the following three actions:

• Picking/placing Picking an object and placing it at another location is the most

common task for a robotic manipulator useful in many real-world contexts, e.g., in the
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Figure 4.6: Romeo allow users to first specify the 2D position on a reference plane (ab),

and then the third dimension along a perpendicular reference line (cd). A spherical widget

is used for specifying the end-effector orientation (d). Lack of orientation specification may

result in bad result (fg).
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Figure 4.7: Romeo lets a users to specify the target surface for attaching action (a) and

further define the orientation of the surface (b)

assembly line. The first choice of this action automatically becomes a picking action

and the following choice will be regarded as a placing which is subsequent to the prior

action.

• Following a trajectory indicates that the end-effector simply moves to motion point

without taking any other action. For examples, additional motion points between pick

and place are simply trajectory following.

• Attaching to a surface can be used to transform an object to attach some parts to

an existing physical object, e.g., coffee cup holder (Figure 4.7a) that can be mounted

on a chair’s armrest. Romeo provides three standard types of surface to represent

the existing geometry: cylinder, rectangular-prism and flat-plane [103] to specify an

attachment surface. A user places a surface object similar to specifying the position of

a motion point, then the user can further specify the orientation of the surface using a

spherical widget (Figure 4.7b).
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#3 Generating An Embedded Robotic Arm

As the user finished defining the task, Romeo takes the transformable part and motion points

as parameters to generate an embedded robotic arm. The union of all the points reachable

by a robotic arm is found and called as workspace, determined by linkage length and the

moving range of each joint.

One challenge here is the trade-off between embedding more links to enlarge the workspace

and securing space to host these links the limited volume of selected part. We found an op-

timal balance for Romeo to segment the part into a four-joint robotic arm, as with four

joints, Romeo could change the moving direction of each joint to cover a wide variety of

user-defined tasks. We determined the number of joints to be four after investigating sev-

eral pilot examples. We define different combinations of each joint as configurations of the

robotic arm.

Another consideration for a user to decide is at generating a robotic arm, to determine

the base and the end-effector. In the case of the coin-stealing piggybank (Figure 4.8b), it

is natural to use the static part as the base and the end of the transformable part as the

end-effector for pick/placing coins. However, in some cases the relationship needs to be

flipped. For example, for a spatula (Figure 4.8a), the static part (i.e., the blade) becomes

the end-effector as it carries the stirring function requisite for the user-specified task. In

Romeo, a user can click a button (third from left in Figure 4.3c) to switch between two

types of transformation, using the static part as the base vs. as the end-effector.

Below we detail two key steps for Romeo to generate a robotic arm from the selected

part: (i) segmenting the transformable part and (ii) generating joints between segmented

links.

4.3.2 Segmentation of the Transformable Part

Romeo employs two ways of segmentation based on the shape of the transformable part:

slender and non-slender.
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Figure 4.8: End-effector can be on different part of the object: static part of spatula (a) or

end of the transformable part of Minion piggybank (b)

Slender shape Romeo considers a transformable part as slender if one of the dimensions

(X/Y/Z) is at least four times as longer as the others 1. For this type of shape, Romeo

segments it by quartering along its longest axis into links of equal lengths (Figure 4.9a).

Non-slender shape For a non-slender transformable part, we need to first determine a

principal axis, the normal axis of the plane whereon the transformable part unfolds. Romeo

picks the cross-section of transformable part with the largest area as the unfolding plane and

set its normal as the principal axis. Then Romeo quarters the transformable part equally

around the principal axis to operate segmentation (Figure 4.9b).

4.3.3 Searching for Robotic Arm Configurations

Romeo generates a four-joint robotic arm, divided into two groups—one steering joint and

three driving joints (Figure 4.12). Generally speaking, a steering joint controls the overall

orientation of the robotic arm, the choice of which is based on the motion points; the driving

joints control how far the joint can reach, parallel to the principal axis. By only changing the

1Recall that we have preprocessed the object to make it as axis-aligned as possible.
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Figure 4.9: Two types of segmentation, (a) slender (b) non-slender shapes.
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Figure 4.10: Four parameters to translate the coordinates. The figure is borrowed from

Wikipedia: DH Parameters (Accessed 5/5/2020)

axis of the steering joint while keeping the same design of the driving joints, Romeo simplifies

the number of possible configurations to three. Then for each configuration, Romeo samples

value at each joint within its range to calculate the workspace and compare with each other

to pick the workspace closest to the motion points.

To compute the workspace, we first introduce modified Denavit–Hartenberg (DH) pa-

rameters [70]— four parameters (a, α, d, θ) in mechanical engineering to represent spatial

linkage systems, such as a robotic arm (Figure 4.10 indexes each parameter). With DH

parameters, the position and orientation of the ith joint relative to the i-1th joint can be

63



represented as a transformation matrix (c for cos, s for sin):

i−1
iT =



cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1


Therefore, the cartesian position and orientation of the end-effector can be computed by 0

NT

using forward kinematics:

0
NT = 0

1T
1
2T

2
3T...

N−1
NT

In our case, upon the transformable part selection, Romeo first generates a robotic arm

with seven joints representing the three configurations in a single form of a robotic arm.

Three joints correspond to the steering joint for each configuration, while another three

joints represent the driving joints. The 7th joint represents the end-effector. With the list

of DH parameters, Romeo computes the position and orientation of the end-effector by

sampling values at each joint. For each configuration, Romeo only changes the value of the

corresponding steering joint while keeping the other two constant.

To determine the best configuration for the user-defined task, Romeo takes the sam-

pled end-effector positions and orientations as a workspace (represented as its convex hull

as depicted in Figure 4.11) and calculates the minimal distance to the motion points. If

there exists the orientation requirement, Romeo selects end-effector position only within the

specified orientation range. Finally, Romeo picks the configuration whose distance to the

motion points has the minimal RMSE (Root-Mean-Square-Deviation). In the following, we

discuss details about arranging the steering and driving joints in distinct cases based on the

resultant robotic arm:

(i) Unfolded robotic arm For object in a slender shape, the generated embedded robotic

arm is already unfolded at its initial state, e.g., spatula (Figure 4.12a). Therefore, Romeo
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Figure 4.11: Visualized workspace (a). Double clicking makes the motion points outside,

highlighted in red (b), snaps to the closet workspace (c).

65



Figure 4.12: Corresponding robotic arm representatives and the joint placement for three

distinct cases.

66



Figure 4.13: If the steering joint locates at the first joint while the transformable part lies

in the middle, both cases of b and c will cause collision between geometries.

places the steering joint at the location which is farthest to the end-effector (Figure 4.12b).

(ii) Folded robotic arm/End-effector on transformable part For objects that have a

non-slender shape and the end-effector is on the transformable part, the initial state of the

embedded robotic arm is folded, e.g., a piggybank (Figure 4.12c). Romeo places the steering

joint at the second joint from the static part (Figure 4.12d), because if transformable part

locates in the middle of two static parts, it is likely cause collision with the object when

unfolding, due to the steering joint placed at the first joint (Figure 4.13).

(iii) Folded robotic arm/End-effector on static part For objects with a non-slender shape

but the end-effector is not in the selected part (e.g., See stamp in Figure 4.12e), the initial

state of the embedded robotic arm is set to the folded state. Romeo places the steering

joint to where it is farthest from the static part when the transformable part is unfolded.

The steering joint will be fixed to the ground, so to become a base of the generated arm

(Figure 4.12f).

Please refer to Appendix for the complete DH tables. Other search criteria include

the following.

Matching the orientation When searching for the best configuration, we also need to
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match the orientation if it is specified at a certain motion point. Romeo uses the X-axis

of the end-effector joint as it matches the pointing direction. The pointing direction of

the stamp is represented by the X7 axis (as illustrated as a red arrow in Figure 4.14a),

which is used to match the user-specified orientation at the motion point (black arrow in

Figure 4.14b). Recall the transformation matrix of end-effector relative to the base 0
NT :

0
NT =

 n o a t

0 0 0 1


in which n is a normalized vector (n ∈ R3) representing the direction of X-axis of the end-

effector. Take the users specify direction as dir and the positions of the end-effector whose

orientation matches |n − dir| ≤ 0.5 are included to compute the minimal distance to the

motion points.

Obstacle avoidance The collision between the transformed robotic arm and the remaining

object itself (mainly the static part) is a significant factor that determines the performance

of the robotic arm. Currently, Romeo defines the bounding box of the static part(s) as an

obstacle. While searching for the best configuration, Romeo eliminates pose options of the

robotic arm in which a joint position intersects the obstacle’s bounding box.

Users’ modification After the configuration of the robotic arm is determined, there could

be cases where some of the motion points still situate outside of the workspace. To address

this, Romeo detects if the point is inside the workspace by forming a convex hull of all the

sample points and highlighting exterior points in red (Figure 4.11b-c). Then Romeo enables

users to double click on such points, which snaps it to the nearest points on the workspace

surface.

#4 Generating Components for Fabrication

As the final step, Romeo automatically generates 3D printable components. To generate

assembly-ready components, Romeo performs a series of Boolean operations to create space
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Figure 4.14: Matching the orientation by aligning the x-axis of the end-effector with the

arrow direction of the spherical widget control. The coordinate system represent the target

orientation of the end-effector (a). Black arrow indicates the specified orientation (b).

69



for motor fasteners, joint connectors, screw holes and end-effectors.

Motor fasteners Romeo allows users to choose whether to embed motors when gener-

ating the embedded arm. For manual transformation, Romeo generates hinges between each

link. For motors integration, the system computes each motor’s pivot position. The links

connect directly to the motors without any power transmission system (e.g., gear system,

four-bar-linkage system). Therefore, pivot positions are set in a way that it prevents links

from colliding with each other, as shown in Figure 4.15a. Based on the pivot position, Romeo

adds a ‘shell’ to mount the motor.

Joint connectors Romeo creates two types of joint connectors. Type A (Figure 4.15a)

is used when the two connecting links move in the same plane, while type B (Figure 4.15b)

is used when there is an offset between the two moving plane. For type A , the system fillets

on the link corners to prevent self-collision and to secure spaces for the joint connectors to

move. For type B, Romeo creates a fastening mechanism using screws.

Screw holes Screws are needed to fasten motors and joints with the links, thus, Romeos

adds screw holes as shown in Figure 5.16a. The system creates rivet holes specifically for

Dynamixel XL-320 motors2, although other types of motors can be supported in future work.

End-effectors For motion points that include ‘picking and placing’ action, Romeo

generates a robotic gripper as the end-effector which will need additional motor to actuate it.

We currently provide one universal gripper design that can be directly imported into Romeo

(Figure 5.16b). For ‘attaching to a surface’ action, Romeo employs AutoConnect’s approach

[103] to generate clamp fasteners to be associated with the different types of attaching

surface.

4.4 FABRICATION AND SOFTWARE IMPLEMENTATION

Romeo’s front end is written in JavaScript using jQuery for UI development, three.js for

3D graphics, and ThreeCSG for progressively generating the geometry of components. The

2http://www.robotis.us/dynamixel-xl-320/
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Figure 4.15: Two types of joint connectors.
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Figure 4.16: Romeo generates screw holes (a) and gripper (b).

back end is written in MATLAB 2018a. Everything runs on a MacBook Pro (15-inch,

2016 year) with a 2.7 GHz Intel i7 and 16GB 2133 MHz LPDDR3 memory. In our design

session and demonstrations, the interface runs on a Google Chrome web browser. For remote

participants, we use TeamViewer 3 for screen sharing and remote control. We use Dynamixel

XL-320 motors to actuate the transformed objects, all parts are 3D printed by the Ultimaker

S5 using white PLA.

4.5 Examples Generated using Romeo

We present a series of examples created by Romeo. As we focused on demonstrating Romeo’s

potential to augment objects’ functionality, we used other CAD tools for non transformable-

related postprocessing, e.g., making a fastener to affix a spatula to the side of a pot, adding

a small water tank to the flowerpot for keeping water.

3https://www.teamviewer.com/en-us/
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Figure 17—23 showcase exemplary augmentation of daily objects by transforming part

of the objects into a robotic arm: A cup holder’s lower half can be (manually) extended to

attach to a chair to free the user’s hands (Figure 4.21). A paper towel stand unfolds its base

to hold the paper towel helping user pull apart a sheet (thus avoid touching the roll using

wet hands) (Figure 4.17). A spatula can be robotized so that it is affixed to the pot’s handle

and to automatically stir the pot to free a user’s hands (Figure 4.19). A conventional stamp

with an UIST 2020 logo can be robotized to become a self-inking stamp (Figure 4.18). For a

busy office worker who is likely to forget to water the plant, the flowerpot can be transformed

to water itself regularly (Figure 4.22). Under the contagious COVID-19 pandemic, a box

of sanitizing wipes can disinfect the doorknob every time someone touches the doorknob

(Figure 4.20).

Figure 5.1d and Figure 4.23 depict examples with different 3D models transformed into

a ‘stealing piggybank’ using Romeo.

4.6 Design Sessions

We conducted informal, qualitative design sessions to validate Romeo’s ability to support

non-expert users’ design of transformables using existing 3D models.

4.6.1 Participants

We recruited eight participants (aged 23-26, female=5, male=3). No participant had back-

ground in Mechanical Engineering. Five participants had Electrical and Computer Engi-

neering background, two of which had experience in the computer vision area of Robotics.

The rest Participants did not have background in engineering. Amongst all participants,

three had experience using CAD tools before.
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Figure 4.17: By robotizing a paper towel holder, a user can pull one sheet without contam-

inating the others.

Figure 4.18: A conventional stamp can be robotized by Romeo to become a self-inking stamp.
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Figure 4.19: Romeo can robotize a spatula to automatically stir the pot when unattended.

Figure 4.20: A tissue box can be stick to the door and wipe the doorknob every time someone

opens the door.
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Figure 4.21: A cup holder can extend the lower part of it to attach to the chair.

Figure 4.22: A flowerpot can be robotized to automatically water the plant according to a

predefined schedule.
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Figure 4.23: Different 3D objects can be augmented into a stealing coin piggy bank using

Romeo. The examples are made by the participants in the design sessions: a dodo bird (a)

and a Tesla cybertruck (b)
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4.6.2 Apparatus, Tasks and Procedure

We split design tasks in two sessions spanning two days to budget time for 3D printing

the resulting transformables. In the first session, participants designed transformables via

TeamViewer’s remote desktop to interact with Romeo running on the experimenter’s com-

puter. The components were then 3D printed for assembly, tested with its designed task in

the second session on the next day. However, due to the COVID-19 outbreaks, only four

participants were able to meet in person to join the second part for assembly and test the

fabricated results. Therefore, alternatively, the results of remote-only participants’ designs

are assembled and tested by the experimenter and the process is recorded to be shown to

these participants.

Design Session (Day 1) To start, each participant was introduced some basic knowledge

of how an robotic arm works (e.g., how a 6-DOF arm moves along with rotary joints)

and how to use Romeo by walking through an example of making a snowman-shaped coin-

stealing piggybank. Then participants proceeded to use Romeo for one controlled and one

open-design tasks. Each task’s objective is using Romeo to augment an object by creating

transformable parts to add a new functionality. In the first (controlled) task, the participant

was to replicate either the spatula (Figure 4.19) or the tissue box examples (Figure 4.20).

Specifically, the spatula would be transformed to stir in a pot and the tissue box to pick

a tissue and wipe a door knob. In the second open-design task, the participant used a 3D

object of their own choice to design a coin-stealing piggybank.

After the first session, we manually post-processed the resulting components, creating

holes for cables and hollowing internal volume to reduce printing time.

Assembly & Interaction Session (Day 2) For the four participants who were able to join

the in-person assembly session, they were given instructions (Figure 4.24b) based on which

they assembled the printed parts. The logged data of their design were fed into a universal

code for actuating the motors. Then the participants test the automated tasks, if they match

with the simulated animation.

78



Figure 4.24: A participant installs the printed components (a) following a provided instruc-

tion (b).

Metrics & Measurements At the end of the Day 1 session, participants filled out a

questionnaire regarding overall user experience, including the difficulty to learn how to use

Romeo and whether the process required extra knowledge than what they had expected

(in Likert scale of 1-7). After the Day 2 session, the four participants filled out another

questionnaire to answer how difficult it was to assemble the fabricated results, whether

the installed mechanisms behave as they expected, and perceived usefulness of having such

augmented transformable objects. Finally, we conducted a brief interview and solicited

feedback about the entire process and suggestions.

4.6.3 Results

Overall, during the first session of using Romeo to create transformable designs, participants

were able to complete the controlled and open-ended tasks. During the second session with

four participants, they were able to complete assembly given the instruction, linking parts

in order and connect motors in the right orientation. They were mostly satisfied with the

design flow and underlying automation that aided the design and assembly (Satisfaction

score in Mean=5.25—6.75/7 across questions). See Figure 4.25 in Appendix for quantitative

summary of the result and Figure 4.26 for all participants design.
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4.6.4 Observations & Findings

We present the findings by questionnaire responses, analyzing the logged observation of

participants’ behaviors and spoken responses during the design session as follows.

Users enjoyed the simplicity of Romeo’s design process with automation, noting that it

is very simple with only four steps (P8). Participants seemed to highly value the automated

mechanism generation, as it removed the needs in engineering expertise (P4) and reduced

the required intellectual efforts (P3)—“After I specify points, Romeo helps me do the other

things even though I don’t have any related background” (P1). “[There was] No need to

consider about the transformation and movement design. All I need is a clear goal” (P4).

Although Romeo requires some manual adjustment if the design is not viable (e.g., double-

clicking an outside point to snap it back to the workspace) participants felt the overall process

is “completely automatic” (P6-7). Participants also appreciated the animation function

that helps visualize and validate resulting movement, showing their satisfaction about the

simulation of a designed task.“It’s very clear to help me understand how the movement is

achieved” (P1).

However, since Romeo is targetted for novices and does not require any pre-knowledge

about mechanical engineering and robotic design, the participants have some confusions in

handling interfaces during the study. The major challenge seems to be understanding where

to place the end-effector. As introduced in the earlier section, users can place the end-effector

either on transformable part (as in the piggy-bank model, Figure 4.23) or on the static part

(as in the spatula example, Figure 4.19), but some users have difficulties in determining

which of these two approaches to use. “ I can try either one to decide which is right” (P1).

Participants also had difficulties in understanding how a transformable will be anchored,

i.e., where the base is. For example, P1 selected only the middle part of the spatula handle

in the first trial, thinking she needs to leave the top part to serve as the base that anchors the

spatula while stirring. Another participant also questioned “If I specify the middle part, will

the top part move with it?” (P8). However, after seeing the generated results, participants

naturally understood the consequence, becoming able to select the placement of end-effector
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in the subsequent tasks: “I did not understand why we did them. I understood it after

couple of examples though!” (P2).

Such confusion was partial result of our design choice, abstracting away low-level details

for users, while allowing them to rapidly explore different designs and see results, so to

iterate on their earlier decision (e.g., where to place the base/end-effector). We can also

support users to explore different possibilities simultaneously to choose between different

results. Further approaches to solve this problem are discussed in the next section.

* 1: Strongly disagree – 7: Strongly agree * 1: Strongly disagree – 7: Strongly agree
1 2 3 4 5 6 7 Mean 1 2 3 4 5 6 7 Mean

1 1 5 1 1 1 2

2 4 2 1 2 1

1 2 2 1 2 1 1 1 1

1 1 6

2 6

2 3 3

DQ6. I think I can independently create a custom 
robotic object using Romeo in the future 6.125

DQ3. I found it easy to specify which part of the object 
to be transformed 5

DQ4. I found generating a robotic movement easy once 
parts and points specified 6.25

DQ5. The visualization and animation helped you 
understand and validate the designed movement 6.75

5.5

5.5

AQ3. The installed result is able to finish the task you 
designed.

AQ2. The installed transformable object behaves as 
what is shown in the animation.

DQ1. It is easy to understand how Romeo works using 
the snowman example 5.75

DQ2. It is straightforward to follow the romeo design 
flow from the interface 6

AQ1. It is easy to assemble the components given the 
instruction. 5.25

Figure 4.25: Participants’ rating on the Romeo assessment. DQ refers to questions asked

in the design session with 8 participants and AQ refers to questions asked in the assembly

session with 4 participants
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Figure 4.26: Participants’ design of coin-stealing piggy bank of their chosen 3D objects:

(a) piggy bank, (b) baby yoda, (c) minion, (d) rilakkuma, (e) polar bears, (f) stitch, (g)

Tesla cybertruck and (h) dodo bird. (Original 3D models are designed by Thingiverse users:

layerone, MarVinMiniatures, sota919, Anthonylu, MakerBot, Erinfezell, wov, stargatedalek

4.7 Discussion, Limitations & Future Work

Scale of Mechanism One of the limitation is that Romeo requires the input 3D models

have sufficient volume to embed the motors in each link. Further, the scale of an input

3D model also determines the possible range of movement of a robotic arm transformed

from part of the object. As a next step, Romeo can support automatically scaling a 3D
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model to meet both the requirements of housing motors and accommodating sufficiently

large workspace, while estimating the printing time/cost to help users make an informed

decision whether to use the scaled model. Yet, even with the sufficiently large initial volume

of an input object, it is possible that a user selects too small parts to embed transformable

mechanisms, as also questioned by one of our participant: “If I only want to transform ears,

will that be too small?” (P7). Guiding users with alert message to notify that the parts

need to be larger, and automatically adjusting to the minimal-scale would aid users to avoid

any potential design errors.

Challenges in Selecting a Transformable Part To simplify the design process, we

currently allow users to specify a transformable part by sweeping an object’s cross section

along one of X/Y/Z axis, in other words, Romeo may not have good performance on ir-

regular shapes such as bent or twisted objects. Future work should explore techniques for

more expressive selection of transformable parts in order to support cases such as selecting

the face of a bear, the wing of a bird, the arm of a minion character. One possible solu-

tion is to include functions provided in existing CAD tool such as a brushing interface to

select parts by painting areas of interest and automatically offsetting enough volumes [222]

or automating complex mesh-segmentation with semantic segmentation [89]. Also, users’

selection of transformable part may affect the object’s original functionalities. Future work

may enable highlighting the original functional part of the object using a machine learning

model to guide users not to select that part as transformable. Further, users’ selection of

transformable part may cause separation if the object has concave part or hollows (e.g.,

selecting top half of the head of stitch in Figure 4.26f), jointness detection can be part of

the future work to eliminate the unexpected disjointed parts.

Error Detection and Automatic Geometry Processing Current segmentation al-

gorithm has good performance if the transformable part has convex and solid shape but it

might cause disjoint links if the transformable part has high concavity such as branching

shapes. Future work can detect the concavity of selected transformable part and explore an

adaptive segmentation method to avoid creating disjoint components. Romeo automatically
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generates the motion path for conducting the tasks, however, without detecting the collision

between the motion points, which may result in collision as also observed in one case in our

assembly session. Furthermore, while detecting the collision of the motion points, Romeo

only considers the bone without the skin of each link, which may result in self collision be-

tween links. An interesting future direction could be applying trajectory planning algorithm

and obstacle avoidance of robotic arm to generate collision-free motion path and applying

the skin collision analysis of each link to achieve optimized bone embedding.

Desired Task Specification Assigning task by each point appears unintuitive to some

users. P4 asked “Do I need to specify the action for every point?”, and P8 thought there

would be some high-level task description to select, questioning “Is the following a trajectory

action means the action of wiping?”. Future work can provide a user with an option to

specify the task type upfront and provide more details on demand (e.g., at which point to

pick/place) and real-time animation can also provide users with more intuitive feedback.

Another interesting possibility is allowing users to describe a high-level task and search in a

library of existing transformable designs that meet such requirements.

Pre/post-processing Currently, an input 3D model needs to be pre-processed to sim-

plify meshes, to align the bounding box’s axis parallel to the coordinates, to rotate and locate

it in a way that motion points can match the world-coordinate to aid the user’s understand-

ing of its relative position to the target 3D object. To reduce weight, material cost and

printing time, one common post-processing step is hollowing the components using existing

3D modelling tool. In the future, both pre- and post- processing steps can be engineered

into Romeo for better integration.
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CHAPTER 5

Making Physical Objects Robotically Manipulable

with 3D-Printable Add-on Mechanisms

One important vision of robotics is to provide physical assistance by manipulating different

everyday objects, e.g., hand tools, kitchen utensils. However, many objects designed for dex-

terous hand-control are not easily manipulable by a single robotic arm with a generic parallel

gripper. Complementary to existing research on developing grippers and control algorithms,

we present Roman, a suite of hardware design and software tool support for robotic engi-

neers to create 3D printable mechanisms attached to everyday handheld objects, making

them easier to be manipulated by conventional robotic arms. The Roman hardware comes

with a versatile magnetic gripper that can snap on/off handheld objects and drive add-on

mechanisms to perform tasks. Roman also provides software support to register and author

control programs. To validate our approach, we designed and fabricated Roman mecha-

nisms for 14 everyday objects/tasks presented within a design space and conducted expert

interviews with robotic engineers indicating that Roman serves as a practical alternative for

enabling robotic manipulation of everyday objects.

5.1 Introduction

Various types of robots that inhabit our living spaces, such as vacuum cleaners, robotic

toys, home/office-assistive robots, promise to aid humans with numerous everyday tasks.

Future robots are expected to provide physical assistance for the elderly at home or help

with household chores that require the use of diverse tools and everyday objects [94].
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Figure 5.1: Roman is a novel robotic design making everyday handheld objects more robot-

ically manipulable, i.e., easier to be manipulated by a conventional robotic arm. This figure

shows a sequence of a Roman-enabled robotic arm picking up a wire cutter on the desk

and performing a wire cutting task collaborating with a human (a-d). Roman provides a

magnetic gripper (e) for the robotic arm to easily attach and augment the wire cutter with

Roman mechanism (f). Snapping in the mechanism using magnets (g), the gripper can actu-

ate the gear-rack movement on the wire cutter (h) to perform the cutting task by squeezing

the cutter’s handles (i).
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Many recent advances in robotic research (primarily on manipulation [213, 136, 57, 215])

aim to solve robotic arms’ manipulation problem for niche, fixed tasks, e.g., opening medicine

bottles, handling cookware, and sorting waste. However, creating a universally dexterous

robotic arm remains challenging as there are a large number of everyday objects that are

not robotically manipulable, i.e., difficult to manipulate by a consumer-level robotic arm

with a generic parallel gripper, especially so for those dynamic objects that have multiple

mechanically movable parts, e.g., a pair of pliers and a spray bottle with a pump pushable

toward the body.

To tackle this robotic manipulability challenge, prior work often considers the action of

grippers and manipulators as completely decoupled, reducing the complexity of task planning

and control involved [10]. To date, researchers have focused on developing manipulation

strategies by analyzing the best grasping points of static objects [213, 136]. However, when

it comes to dynamic objects such as a spray bottle with a pump pushable toward the body,

prior work tends to mimic the pose and force of a human with multiple robotic arm [51, 126]

or dexterous robotic hand [4] rather than tackling the task self-containedly with a single

robotic arm. Meanwhile, on the objects’ side, augmenting objects with actuable mechanisms

is a new approach to enhance their interactivity or functionality (e.g., [28, 118]); however,

little has been explored on how to enable robotic arms to better manipulate such augmented

objects.

We present Roman—a suite of hardware design and software tool for robotic engineers to

make everyday handheld objects more Robotically manipulable by a consumer-grade 6-DoF

robotic arm.

Roman’s hardware components consist of (i) a library of 3D printable powerless mecha-

nisms that are attached to and can drive different handheld objects to perform specific tasks,

e.g., squeezing a cutter to cut wires (Figure 5.1a→d); (ii) a gripper (Figure 5.1e) that uses

magnets to securely and automatically attach/detach a robotic arm to/from an object1. The

gripper also contains an RFID-based module to recognize which object the robotic arm is

1Caveat: currently, an object’s placement needs to be known for auto-attachment
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expected to manipulate thus to run the corresponding control program for specific tasks.

Roman’s software component is a user interface for robotic engineers to register and

specify the motor input of custom tasks with pre-defined templates and real-time feedback.

A user can rapidly and iteratively author a control program for a Roman-enabled robotic arm

to manipulate a handheld object. Note that Roman does not reinvent tools for generating 3D

models of add-on mechanism, which is already supported; rather, Roman’s software focuses

on creating a control program to operate such mechanisms as different handheld objects

require unique sequences of action to perform a specific task, which would otherwise be

tedious to specify even for robotic experts.

To validate Roman, we first designed and fabricated mechanisms for 14 everyday objects

to demonstrate how a generic 6-DoF robotic arm (built with 3D printed links and Dynamx-

iel XH-540 motors2) can manipulate these objects to perform specific tasks. Further, we

conducted a preliminary interview with four robotic engineers. Participants found Roman’s

approach complementary to the current research on robotic manipulation within the human

environment, which could be beneficial in specific task scenarios such as cooking, electronics

assembly, and caring for house plants. Provided with the pre-fabricated gripper and attach-

ing mechanisms, all participants were able to use Roman’s software module to replicate the

wire cutter scenario (Figure 5.1).

Overall, Roman empowers robotics engineers to use 3D printable powerless mechanisms

attached to different objects for enhancing these objects’ robotic manipulability with task-

specific control program embedded in the mechanisms. Our specific contributions are as

follows.

• Categorization of the robotic manipulability problem in everyday handheld

objects (§5.2), including the challenge of speed and range of motion, and the chal-

lenge of dexterity when manipulating an dynamic object with its constituent parts

(squeezing, twisting, and pumping);

2https://www.robotis.us/dynamixel-xh540-w150-t/
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• A library of 3D printable add-on mechanisms able to manipulate both static

and dynamic objects (§5.6.2) based on variations and combinations of spur gears,

bevel gears, gear racks, and pin-in-slot mechanisms, which can be attached to everyday

objects to enhance their manipulability by a consumer-grade 6-DoF robotic arm;

• The design of a versatile magnetic gripper (§5.6.1) that can securely attach to

the add-on mechanisms on an object, run the control program to drive the mechanism,

and detach from the mechanism without outside intervention;

• Software that enables robotic engineers to interactively author a program

(§5.7) to control the Roman mechanism-installed hardware to perform object-specific

tasks.

At present, Roman has not achieved total autonomy, as there is no sensing modules to

detect where an object is positioned or how it is oriented for pick-up (which is a separate topic

well studied in robotics and computer vision [53, 63]). Currently, in most of our examples,

the object is handed off to the robotic arm by a human (e.g., kitchen utensils) or the position

of the object is manually input to the robotic control program by the human user (e.g., the

spray bottle example).

5.2 Categorizing Challenges of Handheld Objects for Robotic Ma-

nipulation

Many everyday objects are not robotically manipulable due to the following challenges:

• Speed and range of motion challenges when manipulating an object as a whole. For

example, objects that require a high speed/frequency of manipulation may exceed the

motor’s capability at the end-effector, e.g., a rapidly rotating whisker at a high speed

to whip cream (Figure 6.11a). Meanwhile, manipulating a screwdriver at certain angles

might exceed the reach of a situated robotic arm (Figure 6.11b)

90



Figure 5.2: A human hand manipulating a variety of objects that present challenges for

robotic arms such as using a whisk (a), rotating a screwdriver (b), squeezing a wire cutter

(c), and opening a jar lid (d).

Figure 5.3: Why manipulating a screwdriver might require range of motion beyond a robotic

arm’s capability: (a) normal working grasp/distance; (b) when the distance increases, the

grasp changes and the end-effector can no longer rotate around the screwdriver’s axis; (c)

in some edge cases, the manipulation might be interfered by the physical surroundings, e.g.,

the ground.

• Dexterity-related challenges when manipulating an object by its constituent parts.

For example, to cut a wire, a robotic arm would first need to grasp the cutter legs then

apply a steady force to squeeze the handles (Figure 6.11c); however, a generic parallel

gripper might find it hard to both securely grasp and squeeze the cutter. Bi-manual

manipulation is even harder, e.g., opening a jar lid (Figure 6.11d) is almost impossible

for a single robotic arm and requires either a holding stand or assistance from another

robotic arm or a human hand.

Our goal is to make everyday handheld objects manipulable by a consumer-grade
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generic 6-DoF robotic arm. To achieve this, we first need to understand what objects are

currently inaccessible and how they are inaccessible for robotic manipulation. Everyday

objects are mostly designed to be manipulated by humans. With flexible fingers and the

coordination of four limbs, humans are able to manipulate a wide range of objects with

different manipulation complexities, from picking up a cup to playing a piano. In contrast,

there exist a large number of everyday objects that are not manipulable by generic robotic

arms due to the fact that a general-purpose gripper has limitations in performing different

types of grasping and manipulation tasks [10]. As shown in Figure 5.4, we consider two

categories of such objects: those manipulated as a whole (e.g., raising/lowering a knife,

rotating a screwdriver) vs. those manipulated by constituent parts (e.g., squeezing a pair of

pliers’ handles, twisting a pepper grinder cap against the bottle, pushing the pump towards

the body of a bottle of hand sanitizer).

5.2.1 Objects Manipulated as a Whole (Static Objects)

As shown in Figure 5.4A-B, objects in this category require a ‘grasp & move’ type of manip-

ulation as the body of the object moves as a whole while performing tasks, e.g., the whole

knife moves vertically while chopping vegetables (linear motion), the whole egg beater rotates

when mixing eggs (rotational motion). Although in theory such objects can be manipulated

by a robotic arm—by first grasping it using a gripper and then performing manipulation by

a series of joint rotations to create the movement, there remain two limitations that prevent

the robotic arm from manipulating such objects to perform tasks as well as humans: Speed

and Range of motion.

5.2.1.1 Speed limitation

A robotic arm mostly manipulates objects at its end-effector, which generates large loads

on the arm due to the moment of inertia. Therefore, tasks such as knife chopping (Fig-

ure 5.4A1), which require a fast periodic motion at the end-effector may exceed the robotic

arm’s capability.
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Figure 5.4: Everyday handheld objects are often not manipulable by a generic robotic arm

with a common parallel gripper: when manipulating an object as a whole, speed and range

of motion are two main limitations and; when manipulating an object by its constituent

parts, the dexterity required to both grasp and perform a range of manipulation (squeez-

ing/releasing, twisting and pumping) is the main challenge.

5.2.1.2 Range of motion limitation

Using a conventional robotic gripper, some object manipulation requires a certain type of

grasp, e.g., rotating a screwdriver (Figure 5.3a). However, when the object is further way,

even though it is still within reach of the robotic arm, the grasp is different and as such, it is

no longer able to afford the same manipulation (Figure 5.3b). In other words, grasping the

tool at a certain angle might render the manipulation impossible because reaching that angle

would already constrain the robotic arm’s joint rotation, thus limiting how it can perform

subsequent manipulation (Figure 5.3b). In some edge cases, the manipulation might be

interfered with by the physical surroundings, e.g., the ground (Figure 5.3c). In robotic

terms, under such circumstances, the robotic arm is said to be outside of its dexterous space

[122] when having to perform the manipulation at certain angles.
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5.2.2 Objects Manipulated by Constituent Parts (Dynamic Objects)

In contrast to objects manipulated as a whole, there exist objects made up of and manipu-

lated by their movable parts, as shown in Figure 5.4C-E. Manipulating such objects tends

to be more difficult for a robotic arm, which needs to first grasp the object stably and then

perform a dexterous manipulation like human hand(s), e.g., grasping a pepper grinder and

then twisting the grinding cap (Figure 5.4D2). We summarize the following three types of

manipulation that makes objects not manipulable by generic robotic arms, each of which

can be either one- or bi-directional.

5.2.2.1 Squeezing

In order to manipulate objects that require ‘squeezing’ (e.g., a wire cutter in Figure 5.4C2),

a robotic arm (e.g., with a common parallel gripper) would have to pick two points on the

squeezing handles for a firm grasp, and then apply a steady force to squeeze the object.

However, as the best grasping points for performing the squeezing manipulation (e.g., near

the tip of the handle ) are usually the furthest away from the center of gravity, this makes

the grasp unstable and slippery.

5.2.2.2 Twisting

The twisting force applied to objects e.g., a door knob (Figure 5.4D1) would produce a

rotational torque on the robotic arm itself after securing the grasp, which may cause the

whole system to become unstable. This is also the most common failure in the DARPA

Robotic Challenge [105].

5.2.2.3 Pumping

Different from the above, after grasping an object, the robotic arm needs an additional con-

tact surface to perform the pumping task (e.g., to press the hand sanitizer in Figure 5.4E1),

which makes it nearly impossible to perform by a common gripper with a parallel design.
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Finally, note that some objects (e.g., pepper grinder, pump) would require bi-manual

manipulation. In other words, a single robotic arm, even as dexterous as a human hand,

would find it challenging to manipulate these objects.

5.3 Related work

5.3.1 Augmenting Generic Robotic Interfaces and Everyday Objects

Roman can be thought of as enabling two types of augmentation: (i) augmenting a generic

robotic arm so that it can attach to and manipulate various handheld objects and (ii) aug-

menting everyday objects so that they become manipulable by the robotic arm.

5.3.1.1 Augmenting generic physical interfaces

Existing work has explored various designs for extending the functionality of generic in-

terfaces. For example, HERMITS extended the capability of self-propelled tangible user

interfaces (TUIs) by designing mechanical shell add-ons for TUIs to dock and drive dynamic

interactions [152]. Katakura et al. introduced a novel way of augmenting a 3D printer

head into a robotic manipulator with the mechanical attachments printed by the printer

itself [90, 91]. Other researchers augmented a pin-based display by the conversion of the

mechanical motion of pins with passive mechanisms to enrich the pins’ dynamic interaction

[153, 189]. HapLinkage simulated the motion and haptic feedback of virtual hand tools us-

ing linkage mechanisms and generated a design space of handheld tools based on motion

types and force profiles [120]. Davidoff et al. designed mechanical actuators based on the

Lego MindStorm toolkit to operate on switches that were intended for humans only [39]. In

comparison, Roman’s mechanisms augment the physical interface of a robotic arm, i.e., the

end-effector, with a versatile magnetic gripper with a focus on assisting the robotic arm to

manipulate different everyday objects that would otherwise be difficult to manipulate.
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5.3.1.2 Augmenting everyday objects

Another focus of previous research is extending the capability of everyday objects. Reprise

makes handheld objects easy-to-manipulate by people with disabilities by generating adap-

tions attached to the object [28]. Medley enhanced the material properties of 3D printed

objects by embedding different reusable materials into the model [26]. Romeo extended the

default functionality of everyday objects by embedding a transformable robotic arm into the

3D model of the object [116]. RetroFab augmented the interactivity of physical interface by

adding an enclosure consisting of mechanical and electrical components that could automate

physical controls [174], which was later extended by Robiot in automating dynamic everyday

objects, e.g., adjusting a lamp’s joint angle [118].

RetroFab and Robiot employed active mechanism (i.e., with motors onboard), which

inevitably makes the augmented object bulky and expensive to scale to the numerous every-

day objects in the environment. In contrast, Roman utilized a passively actuable mechanism

attached to an object with only mechanical components to be manipulated by a generic

robotic arm.

Since Roman proposes a different complementary approach for robotic arms to grasp

and manipulate everyday objects, below we will review related work in robotics research,

focusing on gripper design and manipulation.

5.3.2 Relationship to Robotic Research

5.3.2.1 Gripper design

In Robotics, grippers are the most common type of end-effector and an important medium for

robots to interact with the real world. The design of robotic grippers has been extensively

studied in academia and industry by researchers and practitioners to explore designs of

different types of robotic end effectors, e.g., grippers for pick and place, tight grasping,

and more. There are two major strategies in designing a gripper: for general purposes or

for a specific task. Researchers have explored different types of general purpose robotic
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grippers including linkage-based parallel mechanism robotic grippers [71, 99] and compliant

underactuated robotic grippers [112, 34, 125, 150]. Meanwhile, exploring how to configure

task-specific grippers is an emergent topic that has gained recent attention. Feix et al.

provided a taxonomy to categorize the potential tasks and the corresponding design features

of the robotic gripper [56]. Researchers have designed grippers for different shapes of target

objects [154], e.g., for picking objects lying on flat surfaces [9, 11], for assembly tasks [218],

or for operating a heavy load [200].

Furthermore, the design of robotic grippers should not only consider the geometry of

the objects, but also the interaction with the environment and the kinetostatic properties

of the grippers [10]. Different factors are considered in previous research such as dynamic

loads [156] and active surfaces after grasping [159, 65]. These are closely related to the

tasks conducted by robotic grippers in daily life interacting with everyday tools, which

are summarized by the robotic grasping and manipulation challenge [54]. Roman uniquely

combines both strategies by implementing a general purpose versatile gripper that could

grasp different objects and object-specific mechanisms that could be driven by the gripper

to achieve a dynamic manipulation of everyday handheld objects.

Another important gripper-related topic is to create ‘tool changers’ that adapt to the

different shapes and sizes of everyday objects. There are different types of tool changers

for a robotic arm: automatic tool changers that are electro-mechanically actuated [67] or

passive mechanisms actuated by a host robot [16, 169]. Similar to our method, researchers

also proposed the design of mechanical tool for robots to grasp different daily objects with

modular two-finger gripper but only focused on the grasping of objects with different sizes

[81]. Adding to that, our method could solve a more complex manipulation problem of

manipulating tools with movable parts (Figure 5.4), which is almost unattainable using a

two-finger type end effector. Furthermore, since Roman provides customized mechanisms

for different objects that can be driven by the same custom gripper, our method provides a

less complex method to program the motion of the arm than solutions that incorporate tool

changers.
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5.3.2.2 Manipulation

Besides innovating the gripper design, researchers have also investigated methods of control

and task planning that program a given robotic arm to perform tasks in human environment.

Some research focused on developing a control strategy based on perception such as analyzing

the geometry of the objects to obtain the best grasping point [213, 136] or imitating human

operation to open medicine bottles [51, 126]. Some developed new algorithms and system

designs for specific contexts such as grasping flat objects [185]. At the application level,

robots can assist people with daily living tasks which range from fetching a mug [57] to

taking medications [101]. In contrast to the above approaches of enhancing perception and

control, Roman aims for a different and complementary goal of achieving manipulation by

augmenting everyday objects to be more manipulable by a generic robotic arm.

Different from traditional robotic research, a concept of dexterous manipulation was first

defined by Okamura et al. in which a robotic gripper moves objects from one configura-

tion to another [162], e.g., adjusting the angle of a phone in the hand. Such a concept is

still being actively studied by researchers in scenarios such as robotic in-hand manipulation

[206, 4, 233]. However, such manipulation requires precise control of the forces and motions

of fingered or specialized robotic hands and therefore cannot be accomplished by conven-

tional robotic grippers. Roman, as a complementary solution to dexterous manipulation,

enables a conventional robotic arm to connect with a versatile magnetic gripper to grasp

and manipulate everyday objects with dexterity enabled by object-specific mechanisms.

5.4 Examples: Roman Makes Handheld Objects Robotically Ma-

nipulable

We showcase a series of examples where Roman mechanisms attached to handheld objects

make them more manipulable by a consumer-grade 6-DoF robotic arm (equipped with a

Roman gripper). There are two major types of application scenarios where the objects need

to be robotically manipulable: (i) A human collaborates with a Roman-equipped robotic
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arm, e.g., the human would hand an object over to the robotic arm where it would then

be picked up and manipulated, in tasks that the robot is expected to manipulate a lot of

different handheld objects, e.g., making a scrambled egg (Figure 5.6de, Figure 5.14, etc) and

(ii) a Roman-equipped robotic arm takes the place of human in performing repetitive tasks

by manipulating a hard-to-manipulate object, e.g., a spray bottle. We focus on demon-

strating the wide capabilities of Roman in enabling object manipulation, while discussing

the technical details of the gripper design and the mechanism generation method later in

subsequent sections.

5.4.1 Manipulating Objects as a Whole

5.4.1.1 Increasing speed

As mentioned above, some objects may require a high speed of manipulation that exceeds the

motor’s capability at the end-effector. Figure 5.5 and Figure 5.6 showcase several different

examples where Roman enables a high speed of manipulation: by attaching a pin-in-slot

mechanism, the Roman gripper can drive a knife to perform repetitive high-speed vertical

motion, e.g., for chopping scallions (Figure 5.5a-b), or to mimic a human’s tapping motion on

the spice bottle to spread enough white pepper (Figure 5.5c-d). With a spur-gear mechanism,

the Roman gripper enables a high speed of rotation of the whisk to mix an egg (Figure 5.6d-

e).

5.4.1.2 Expanding range of motion

Roman helps expand the range of motion while manipulating specific objects. For example,

grasping a screwdriver at certain distances/angles may prevent a conventional robotic arm

from performing the rotating manipulation (Figure 5.3). Therefore, Roman adopts a bevel

gear mechanism that could change the rotational axis of the input, expanding the range of

motion of the screwdriver’s manipulation (Figure 5.6a-c). Similarly, by attaching the whisk

at a small angle (as opposed to being perpendicular) when fastened to the output spur gear,
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Figure 5.5: Configuration of the pin-in-slot mechanism (a) to produce periodic up and down

motion with a knife (b) and an alternative configuration of the pin-in-slot mechanism (c) to

produce periodic side to side motion for spreading peppers from a spice bottle (d).
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Figure 5.6: Configuration of the bevel gear mechanism to produce rotational motion at an

angle on a screwdriver (a), allowing for two attachment configurations (b, c); the spur gear

mechanism with a reverse reduction gear ratio produced higher rotation speeds for a whisk

(d) and tilting it by a small angle further expands the range of motion at its end (e).

we can expand the range of rotational motion at its end (Figure 5.6de).

5.4.2 Manipulating Objects by Constituent Parts

5.4.2.1 Enabling squeeze & release manipulation

As shown in Figure 5.1, the wire cutter augmented with a gear-rack mechanism can perform

the task of cutting a wire by squeezing the handles (Figure 5.1h). Similarly, a gear-rack is

used for the spray bottle and thus a robotic arm could fetch the bottle and water the flower
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Figure 5.7: Configuration of the gear rack mechanism to produce linear motion (a) in a

single direction to squeeze the handle of a spray bottle (b).

automatically (Figure 5.7). As the spray bottle only requires one-directional manipulation,

the mechanism only needs to squeeze in one direction before releasing the handle to return

to its original position.

The chopsticks require a bi-directional squeezing and releasing manipulation to pick and

place food and a spur gear mechanism is used for the manipulation (Figure 5.8). A gear-rack

mechanism is utilized for the can opener to perform the squeezing and rotating manipulation

to pierce the peanut butter can (Figure 5.12d-g). Specifically, a ratchet design (Figure 5.12e-

f) is used to ‘lock’ the squeezing of the handles (Figure 5.12h), which then enables the gripper

to detach from the handles, attach to the cutting part (Figure 5.12c), and drive the rotation

of the handle to open the can (Figure 5.12h).

5.4.2.2 Enabling twist manipulation

Following the manipulation of piercing the can, the robotic arm is able to twist the handle

continuously to open the can by using a spur gear mechanism (Figure 5.12ch). Since both

the squeezing and the twisting manipulation of the can opener require a relatively large

strength to manipulate, a gear box with ratio of 9:1 is adopted to increase the output torque

applied to the target object (Figure 5.19d). Using a pepper grinder is important in a series
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Figure 5.8: Configuration of the spur gear mechanism to produce rotational motion to

squeeze together the tips of chopsticks (a), and a practical demonstration of the chopsticks

being manipulated with the mechanism attached (b).

of cooking tasks (e.g., making an omelette). With a bevel gear mechanism, the robotic arm

can twist the grinder repetitively to sprinkle pepper on the eggs (Figure 5.10c-d). A robotic

arm can also collaborate with a human in a cooking task by opening the lid of a starch jar

with a bevel gear mechanism (Figure 5.10a-b). Roman also enables a robotic arm to open

the door by twisting the door knob with a spur gear mechanism on it (Figure 5.9).

5.4.2.3 Enabling pump manipulation

With a gear-rack mechanism, an oil spray can be manipulated by a robotic arm to help human

cook (Figure 5.14). A robotic arm can fetch a bottle of hand sanitizer augmented with a

gear-rack mechanism and pump it when the user approaches it (Figure 5.11). To enable

a repetitive manipulation of the balloon pump, a gear-rack mechanism is also adopted to

perform a bi-directional manipulation (Figure 5.13).
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Figure 5.9: Configuration of the spur gear mechanism with a reduction gear ratio to produce

rotational motion with high torque in order to rotate the door knob (a), and a practical

demonstration of the door knob being twisted with the mechanism attached (b, c).

Figure 5.10: Two examples of the bevel gear mechanism to produce rotational motion at an

angle to unscrew the lid (a, b) or to rotate the pepper grinder (c, d).
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Figure 5.11: Configuration of the gear rack mechanism to produce bi-directional linear mo-

tion in order to squeeze a bottle of hand sanitizer (a), and a practical demonstration of the

bottle of hand sanitizer being squeezed with the mechanism attached (b, c).

Figure 5.12: Combination of two separate mechanisms with a reduction gear ratio to produce

high torque: a spur gear to cut around the can (c), and a gear rack to pierce the can (also

using spur gears to increase torque) (d). A ratchet mechanism (f) is used to maintain the

position of the piercing mechanism (i.e., keep the handles squeezed), which allows the gripper

to switch to the other mechanism (c) for cutting the can open.
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Figure 5.13: Configuration of the gear rack mechanism to produce bi-directional linear mo-

tion in order to actuate a pump (a), and a practical demonstration of the pump being

actuated with the mechanism attached (b, c).

Figure 5.14: Configuration of the gear rack mechanism to produce linear motion in order to

depress the spray button (a), and a practical demonstration of the button being squeezed

with the mechanism attached (b, c).
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Figure 5.15: Overall hardware structure of Roman

5.5 System Overview of Roman

Roman is an all-in-one solution to make everyday objects manipulable by generic robotic

arms and includes both hardware and software support:

• Hardware modules consist of (as shown in Figure 5.15)

– §5.6.1: A modular magnetic gripper that can attach to or detach from an object’s

add-on mechanism, recognize the object to retrieve the corresponding control

program, and transfer the driving force from the robotic arm’s motor to the

mechanism to execute the object-specific manipulation;

– §5.6.2: 3D-printable powerless mechanisms (spur gear, bevel gear, gear-rack, and

pin-in-slot) attached to the object which enables objects to be manipulated as a

whole or by their constituent parts. The mechanisms are easy to remove/assemble

using screws.

• §5.7: Software module is a tool for robotic engineers to interactively specify custom

motion profiles for manipulating a specific object (e.g., amplitudes of a signal over

time to be sent to the motor that drives the mechanisms to squeeze a wire cutter). We

specifically focus on authoring motion profiles, which, to the best of our knowledge,

is unsupported by prior work; meanwhile, the task of generating the 3D models of

mechanisms—based on the type of motion and an object’ geometry—can be supported
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Figure 5.16: Exploded view of the Roman gripper.

by existing tools [116, 118, 28, 25].

5.6 Hardware Implementation

5.6.1 A Magnetic Gripper to Attach to, Recognize, and Transfer Motion to an

Object’s Add-on Mechanism

The magnetic gripper serves as the intermediary between the robotic arm with two main

functionalities: 1) attaching to and detaching from the passively actuable mechanism on

the target objects and 2) driving the mechanisms on the target objects to perform the

manipulation. Further, the gripper also contains an RFID reader for recognizing which

object it is attached to and running the corresponding control program.

5.6.1.1 Attaching and detaching mechanisms:

The gripper uses four neodymium magnets (Figure 5.16D) to generate the magnetic force

for attaching to the mechanism on the target objects. The four neodymium magnets could

generate a pull force (the vertical force required to pull the magnets from a steel surface) of
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Figure 5.17: Meshing (a) and detaching (b) operations of Roman gripper.

11.2lbs in total, which is sufficient to securely attach to common everyday handheld objects.

Furthermore, the strong magnetic force enables the gripper to attach to objects when it is

within approximately 1cm of them, which increases the fault tolerance of the robotic arm’s

manipulation (e.g., a low cost robotic arm3 may have accuracy larger than 5mm). To further

strengthen the connection, we designed a pin structure (Figure 5.16L) to counter the lateral

force generated during the actuation of the mechanisms.

On the other hand, a stronger connection means larger force required for the detachment.

To provide auto-detachment of the mechanisms, Roman employs a Dynamixel XL-320 mo-

tor4 (Figure 5.16E) and a gear-rack mechanism (Figure 5.16F/O), which could transfer the

rotational motion of the motor into linear motion, for the auto-detachment (Figure 5.17b).

While the XL-320 motor can generate a maximal torque of 0.39 N·M, we designed the gear

of the gear-rack mechanism to have a radius of 5mm which enables it to generate 17.52lbs

of force on the rack for detachment (Figure 5.16O).

5.6.1.2 Motion transmission:

The gripper also serves as the actuator of the mechanisms on target objects. Same as the

detachment, Roman employs an XL-320 motor (Figure 5.16B) and a pair of crown gears

(Figure 5.16C/I). The crown gear could transmit the rotational motion of the motor to the

3PincherX 150 Robotic Arm: https://www.trossenrobotics.com/pincherx-150-robot-arm.aspx

4https://www.robotis.us/dynamixel-xl-320/
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mechanism with auto-alignment of the teeth (Figure 5.17a). On the side of the mechanism,

modular driving gears (e.g., gears or gear-rack mechanism, Figure 5.16N) can be assembled

with the female crown gear to actuate different types of mechanisms.

5.6.1.3 Communicating with target object

Roman employs NodeMCU ESP-12 module5 for communicating with the web server (Fig-

ure 5.16H). An RFID reader is used for recognizing different objects (Figure 5.16G) and each

mechanism on the object comes with an RFID tag (Figure 5.16K) whose ID is associated

with a user-defined control program to perform a specific task. Fasteners can also be cus-

tomized and 3D printed to fit different robotic arms using screws (Figure 5.16P). Finally,

the gripper can be powered by an additional 7.4v LiPo battery. The whole system weighs

110g without the battery, which makes it possible to be installed and used on any generic

robotic arm.

5.6.2 Mechanisms for Manipulating Handheld Objects with Different Motion

Profiles

We first discuss the mechanism design on the objects’ side that transfers the rotary input

from the motor into task-specific motion profile for different objects.

Objects require different motion profiles in order to perform their tasks. The motion

profile is defined as the required output motion for the objects in order to perform an

object-specific task. For example, objects in the squeezing category may require a curved

motion profile (e.g., the legs of the wire cutter move in an arc trajectory for a cutting task

Figure 5.1); objects in the twisting category require a rotary motion profile (e.g., rotating

the door knob to open the door Figure 5.9) and objects in the pumping category require a

linear motion profile (e.g., linear pushing motion for the balloon pump Fig Figure 5.13).

To address this, Roman adopts four basic types of mechanical mechanisms: spur gears,

5https://www.nodemcu.com/
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Figure 5.18: Overview of the four types of mechanisms used to achieve target motions: spur

gears for rotational motion (a), bevel gears for rotational motion at an angle (b), gear rack

for linear motion (c), and a pin-in-slot mechanism to achieve periodic motion (d).

bevel gears, gear-and-rack and pin-in-slot mechanisms (Figure 5.18). As the motor outputs

rotary motion, the goal of the selected mechanisms is to transfer the rotary motion into

desired motion profiles. Comparing to the mechanisms used in [118], Roman only focuses

on the motion output while selecting the mechanisms and uses additional gearbox to tackle

the torque requirement.

5.6.2.1 Spur gears

Spur gears are a mechanism in which multiple gears mesh together to transmit the rotary

motion from one shaft to another (Figure 5.18a). Therefore this mechanism can transfer the

rotary motion from the motor input into a rotary motion profile.

Rotary to rotary While the output motion has the same rotary motion as the input,

the gear-pair mechanism can translate the rotary axis to a parallel position, which enables

the mechanism to be anchored to a fixed point on the object while manipulating the object.

As shown in Figure 5.9, instead of being directly anchored to the door knob, which may get

in the way of people using it, the mechanism for driving the knob can be shifted to a position

where it does not interfere with regular use of the knob.

Speed and strength Besides the translation of the rotational axis, Roman leverages

the property of reduction in gears to generate higher speed or strength than is typically
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Figure 5.19: Breakdown of the configuration of the gearbox, showing how to produce higher

speeds at the expense of torque (a) and to produce higher torque at the expense of speed

(b), as well as the physical configuration of the gears (c) and the design of the gearbox (d).

available from a motor. Gear reduction is an arrangement of gears in which an input speed

can be raised at the expense of torque, or the output torque can be raised at the expense of

speed as explained in the following equations:

Speedoutput =
rinput
routput

× Speedinput

Torqueoutput =
routput
rinput

× Torqueinput

With a proper selection of the gears, the mechanism can generate much larger torque than

the motor’s base ability (Figure 5.19). In the meantime, with a reversed reduction gear, the

mechanism can generate higher rotational speed than the motor’s typical maximum speed.

The whisk is an example of leveraging reversed reduction gears to enable the whisk to rotate

at a high speed to beat the egg (Figure 5.6de). Such reduction gears can also be combined

with other mechanisms depending on the task (e.g., the can-opener adopts a reduction gear

box over its gear-rack mechanism to generate enough force to pierce the can as shown in

Figure 5.12d).

5.6.2.2 Bevel gears

Similar to the spur gears, the output of the bevel gears is also rotary motion. Unlike spur

gears, bevel gears change the orientation of the rotational axis, which enables robotic arms

to execute a twisting task from different angles (Figure 5.18b).
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Rotary to rotary Bevel gears can generate a rotary motion profile for target objects.

With the property of being able to change the orientation of the rotational axis, bevel gears

enable robotic arms to operate twisting tasks with a space-efficient solution. For example, in

order to perform a lid opening task, a spur gears design would make the mechanisms bulky

as the driving gear will protrude from the jar lid. In contrast, A bevel gears design rotates

the protruding gear so that it reduces the overall volume occupied by the entire mechanism

(Figure 5.10).

5.6.2.3 Gear-rack

The gear-rack mechanisms are utilized to convert the rotary motion from the gear into the

linear motion of the rack (Figure 5.18c). As the gear-rack mechanism generates a linear

motion profile, this mechanism can be used by the objects in the grasp & pump category.

Further, the gear-rack mechanism can also be utilized for generating a curved motion profile,

which will be discussed below.

Rotary to linear While the gear-rack mechanism converts the rotary motion from the

gear into the linear motion of the rack, it could help the robotic arm to manipulate objects

that require pumping (Figure 5.4E). Designers of the mechanism could adjust the output

velocity and force by modifying the size of the gear based on the equation:

Speedoutput = rpmmotor × r

Forceoutput =
torquemotor

r

where r represents the radius of the gear attached to the motor. For example, hand sanitizer

is an example that requires large torque to squeeze out sanitizer Figure 5.11.

Rotary to curved Besides the linear motion profile, the gear-rack is able to generate

a curved motion profile for squeezing objects such as the squeezing leg of can opener (Fig-

ure 5.12). Roman leverages the compliant property of the PLA material to design racks that

can bend themselves to adapt to the curved motion (Figure 5.12e). As a result, the fastener

on the rack (normally attached with the other movable part of the object) would require an
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active joint for the rack to rotate relatively, without which the curved motion may generate

a large offset at the tip of the rack and break the mechanism.

Bi-directional manipulation The gear-rack mechanism may deal with objects re-

quiring either one or bi-directional manipulation. For objects with only one-directional

manipulation such as the oil spray (Figure 5.14), a simple bar is sufficient for generating a

one-directional force. However, objects that require bi-directional manipulation such as the

balloon pump, require an additional structure fastened to the part to enable motion in two

directions (Figure 5.13b).

Single-direction constraints Roman also provides a single direction constraint using

the gear-rack mechanism. For example, in order to perform the task of piercing the can

and then opening it, the mechanism needs to lock the squeezing mechanism for the opener

to continue to pierce through the surface of the can. To achieve this, we employ a design

inspired by the ratchet gear, where the rack can move freely in one direction while being

prevented from moving in the opposite direction unless a pin is depressed, which releases the

mechanism (Figure 5.12d).

5.6.2.4 Pin-in-slot

A pin-in-slot is a mechanism where a pin-joint moves along or parallel to a slide-joint (Fig-

ure 5.18d). The pin-joint receive the rotary input from the motor and transfer the motion to

the slide-joint. By fixing one side of the slide-joint, the pin-in-slot mechanism can generate

a single-sided motion profile (Figure 5.18d bottom) while a double-sided motion profile can

also be generated by placing the slide-joint inside of another slider joint (Figure 5.18d top).

The spice bottle is an example of using the pin-in-slot mechanism to mimic the human

shaking action by generating a single-sided motion profile (Figure 5.5cd) and the knife is

an example of performing the chopping task by generating a double-sided motion profile

(Figure 5.5ab).

Periodic motion Besides generating linear and curved motion profiles, the pin-in-slot
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Figure 5.20: Demonstration of the two types of periodic motion that could be accomplished

with a pin-in-slot mechanism: angular (a), and up and down (b).

mechanism is good at generating a periodic motion. As shown in Figure 5.20, the continuous

rotation of the pin-joint can generate a double-sided or single-sided periodic motion at the

slide-joint, e.g., for continuously shaking a spice bottle (Figure 5.5cd). While it is possible for

other mechanisms to generate a periodic motion with periodically changed control input, the

control signal may experience data loss when changing intensely in short periods. Differently,

the periodic motion generated by the pin-in-slot mechanism is easier to control because it

relies on the stability of the mechanism components.

5.7 Software Implementation: A Tool for Robotic Engineers to

Specify Custom Motion Profiles for Object-Specific Mecha-

nisms

In this section, we illustrate the workflow of a user authoring the control program for a task

given some pre-generated mechanisms to manipulate a target object. We assume that the

users are robotic engineers with a mechanical or robotic background and the mechanism

generation is supported elsewhere by tools similar to [118, 28, 68]. We exclusively focus on

the less-supported part where the users author control programs for different object-specific

tasks. Roman’s front end is written in JavaScript and the back end is written in Python.

Roman communicates with the ESP8266 module on the NodeMCU and stores the motion

profile through a Python-based web server. The RFID reader on the gripper reads the ID
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of different RFID chips on the objects and accesses the corresponding motion profile via the

NodeMCU.

5.7.1 Custom Motion Profiles

As Roman transfers the rotary motion input from the motor to a customized output mo-

tion profile, it requires further specification of the motion profiles in order to perform an

object-specific task. For example, to design a task for manipulating the wire cutter while

collaborating with a human user (Figure 5.1), the wire cutter is expected to (i) move to

the desired position for the user to hold the wire for cutting, (ii) squeeze the handles about

half-way and hold the position in order for the user to align and adjust the wire, (iii) squeeze

fully to cut the wire, and (iv) return the handles to the initial configuration. While step

(i) is conducted by the movement of the robotic arm, the rest are done by Roman hardware

and require a custom design of the motion profile. More specifically, the customizability of

the motion profiles amounts to specifying the amplitudes u of the control signal over time,

which corresponds to the rotational speed of the motor output. The aforementioned task for

the wire cutter has a motion profile as the control signal shown in Figure 5.22.

5.7.2 User Interface

As shown in Figure 5.21, to facilitate the design of such custom motion profiles, the Roman

software provides a user interface for interactively specifying the custom motion profiles by

adding or adjusting the key points in the graph of a control signal (Figure 5.21c). The u

for the y-axis is a unitless value ranged from -1 to 1 which represents the rotational speed

of the motor relative to the maximum speed under the current load (with negative values

corresponding to rotation in the opposite direction). The x-axis represents time and the user

has the ability to modify the total time the motor is running at a certain speed by adjusting

the length of each period of the control signal. With the combination of different control

signals, the user could design a custom motion profile for a object-specific task.
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Figure 5.21: The Roman user interface used for selecting motion templates, authoring control

programs, and uploading them to the robotic arm.

Figure 5.22: A sample motion profile used to control the wire cutter in order to cut a wire.
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5.7.2.1 Motion Profile Templates and Interactive Graph Editing

Roman provides different ways to interact with the graph of the control signal. As shown

in Figure 5.21a and d, Roman provides four types of motion profile templates for a user to

adapt to their needs, including endless rotation (e.g., whisk), periodic motion (e.g., knife),

one-way motion (e.g., jar lid), and two-way motion (e.g., wire cutter). By clicking on the

corresponding template, the control signal is imported into and visualized on the interactive

graph and the user can further adjust the motion profiles.

To start editing the graph, a user simply double-clicks anywhere on the graph and then

adjusts the position of an existing point by dragging it. The user can also adjust the range

of the x-axis (i.e., increase/decrease time) by clicking on the +/- signs (Figure 5.21b), which

either adds or removes 1 second.

5.7.2.2 Real Time Testing

There is uncertainty in manipulating real-world objects, e.g., the manipulation of a wire

cutter (the motor’s rotational speed) might need to vary with different wires. As such,

Roman enables a real-time testing mode (Figure 5.21b) that creates a feedback loop in which

the user could test and adjust the custom motion profile to see how well the manipulation is

performed on the target object. The user could also check the box of ‘continuous’ to specify

a repetitive motion. Once a user has tested and is satisfied with the motion profile, they can

click on the ‘save’ button to store the motion profile to the target object.

5.8 Validation with Expert interview

We conducted an expert interview as an initial step to evaluate Roman. The purpose of this

interview is to evaluate the usefulness and practicality of Roman in helping robotic engineers

achieve object manipulation tasks, as well as to gather feedback and further suggestions from

experts in the field of robotics.
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5.8.1 Participants & Procedure

Four participants (all male with an average age of 28.25) with expert knowledge in the domain

of robotics and mechanism design were invited for interviews. Three of them are Ph.D.

students in the Mechanical Engineering Department with a focus on the research of robotic

design and control (P1-P3). Among these, two had prior experience in developing robotic

manipulators as a product in a robotic start-up (P1 and P2). The other participant is a

post-doc researcher in Electrical Engineering Department with a Ph.D. degree in mechanical

engineering and his research focuses on the computational design for origami robots (P4).

Although no participants worked in the exact area of robotic manipulation in a human

environment, all were familiar with the concept of mechanism design and control of robotic

arm manipulation.

Each of the participants was interviewed in-person. First, they were explained the goal

and function of Roman hardware and one author showed them demos of using the Roman

gripper to manipulate five different objects (wire cutter, hand sanitizer, jar lid, whisk and

spice can). These objects covered the four types of mechanisms we used in Roman as well as

the four motion profile templates in the user interface. Afterwards, they were introduced to

the Roman software and were asked to replicate the custom motion profiles of the wire cutter

(which has the most complicated motion profile as shown in Figure 5.22). The motion profiles

designed by the participants were test by performing a cutting task (similar to Figure 5.1) of

an AWG 18 wire. The participants were able to design the profile and cut the provided wire

physically in only 5 minutes (excluding the time needed to become familiar with interacting

with the user interface) We then conducted a semi-structured interview, mainly to collect

their feedback on the capability and practicality of Roman and potential directions for future

research. The entire study lasted on average 25 minutes per participant.
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5.8.2 Results and Feedback

All the participants were positive to Roman’s features, leaving feedback for its utility and

practicality of Roman.

5.8.2.1 Roman is complementary to current approaches in robotic manipulation

in human environment

All the participants considered Roman to be a complement to the current research in the

robotic manipulation in situations that require robotic arms in human environment. P2

stated that most of the existing robotic arms have limited functions or they required com-

plicated programming of the control to use different types of tools. He thought that Roman

provided a simple solution as the object + mechanism can be pre-designed as a product and

delivered to customers. From the perspective of a user, P2 was initially concerned about

the practically of possessing a robotic arm in daily life, which was later answered by himself

when he noted that the Roman solution could make a robotic arm adapt to different objects

in a task-heavy scenario like cooking. P1 was concerned about the pre-design of the custom

motion profiles to be time-consuming, but he also pointed out that in the application sce-

narios such as cooking, the number of target objects is limited and therefore it is acceptable.

P3 considered Roman usable, but he was more concerned about the necessity of the usage of

robotic arm in such scenarios versus designing more easy-to-manipulate objects for human

(e.g., designing a jar that can be opened by pressing a button instead of adding mechanism

to be manipulable by robotic arm). P4 mentioned that it makes more sense to have a strong

and functional robotic hand to manipulate different objects without altering them but he

agreed that the artificial hand solution is costly (a powerful enough robotic hand normally

costs more than $10k) and Roman could be a low-cost solution.
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5.8.2.2 Roman’s mechanism designs and custom motion profiles are replicable

by robotic experts

When asked about whether they are able to replicate the hardware design of Roman’s five

examples6, all the participants agreed and were able to understand the rationale behind the

design of each mechanism. P1 thought that it would be easy for a person with fundamental

knowledge of mechanical design to replicate all of the examples. P2 also pointed out that with

the explanation of different mechanisms as in the previous section (§5.6.1.3) as a guideline,

it is a lot easier to select and design the mechanisms for specific objects. P4 stated that it

is easy for robotic experts to replicate the examples but it would be great if a parametric

design tool is provided for novice users.

All the participants were able to replicate the custom motion profiles for the wire cutter to

perform a wire cutting task. All the participants could understand the differences between

each motion profile template. P2 also valued the provided templates because, with the

templates, he could know the overall movement of the mechanism and would only need to

adjust a few parameters.

5.8.2.3 Roman’s hardware could be further improved

The participants suggested that the hardware components can be improved to make the

overall structure smaller and more durable including developing new types of mechanism

(making the mechanisms more versatile), replacing the neodymium magnets with electro-

magnets (making the mechanisms smaller) and printing the custom mechanism in carbon

(making the mechanisms stronger).

In summary, results of the expert interview indicated that Roman could be a potential

solution for robotic manipulation to assist human with daily tasks in certain scenarios. Also,

it was considered practical for people with a robotic or mechanical engineering background

6Note that participants did not actually replicate those examples, considering the time-consuming process
of modeling, printing and assembly.
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to design and replicate the objects with mechanisms using Roman. The participants also

recommended that a tool for novice users to custom such mechanism for existing objects

would be valuable.

5.9 Limitations, TradeOffs, future work

5.9.1 Performance testing

Roman’s main contribution is the idea of adding mechanisms to enhance objects’ manipula-

bility, which complements existing approaches focused on gripper design and manipulation

algorithms. As such, we chose to validate Roman by creating various examples to show

the idea’s wide applicability and by interviewing four robotic experts to obtain their initial

feedbacks and reactions that would set the scene for future work. As next steps, future work

that uses Roman on a specific type of objects/tasks (e.g., manipulating a wire cutter) should

define metrics for success of each task (e.g., a wire is completely cut in one trial), control

pertinent variables (e.g., the thickness of wires), and employ repeated measures to obtain

such metrics.

5.9.2 Mechanisms interfering with normal use

As Roman attaches 3D printed mechanism onto the existing object, some of the mechanisms

may interfere with the normal use of the objects. For example, the spur gear mechanism

on the chopsticks obstruct the way of a human would use them (Figure 5.8) and the bulky

mechanism on the can opener also makes it hard for human to manipulate (Figure 5.12).

While some of the mechanism can be easily disassembled, e.g., the rack of the hand sanitizer

can be easily pulled out (Figure 5.11), future work can focus on making the mechanisms

modular and easy to disassemble such as LEGO MindStorm [97]. It is also possible to

embed such function during the product design stage that aims at making the overall object

+ mechanism manipulable by both humans and robotic arms.
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5.9.3 Incorporating sensing & perception

Roman focuses on enhancing manipulability by enabling human collaborating with Roman-

equipped robotic arm or a Roman-equipped robotic arm to perform tasks independently.

However, the latter scenario assumes that the object’s position and orientation are known,

which is a trade-off of not integrating sensing modules in the current design. Given the

plethora of work on sensing and perception (e.g., [188]), future work can add such modules

to Roman’s hardware components, which are expected to work independently and comple-

mentarily to the current set-up.

5.9.4 Generalizability of the design

Currently, Roman only focuses on tasks driven by the motor of the gripper while the robotic

arm have to be manually configured. As such, a Roman mechanism only affords manipulation

in a limited space and cannot enable large-scale tasks, e.g., holding a spatular to make stir-

fry.

Future work may extend Roman to include software support involving the entire robotic

arm, e.g., linking the action of the robotic arm with the actuation of the mechanism. With

that, the Roman hardware could collaborate with the robotic arm to achieve more compli-

cated tasks e.g., scooping ice cream (enabled by Roman mechanisms) and distributing it into

different locations (enabled by the rest of the robotic arm) automatically.

On the control side, Roman uses open-loop control of the mechanisms. This limits Roman

to manipulate objects that have dynamic feedback such as tightening screws in different

conditions. One of the future directions is adding haptic sensors to the mechanisms and

incorporate feedback control while performing the tasks.

5.9.5 Trade-off between torque and the size/complexity of mechanisms

Currently, Roman enables the manipulation of objects by generating motions using a low-cost

motor and 3D printed mechanisms. As a result, Roman is limited to supporting objects that
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do not require a lot of torque. While Roman provides a partial solution by adding a gearbox

in between the gripper and the object to increase the torque (see the can opener example

Figure 5.12), there is a trade-off between the size of the mechanism and the maximum torque

the gripper could generate. For example, manipulating a hedge trimmer (too large) or a

sealed jar (too tight) will require rather bulky mechanisms unrealistic to be attached to the

object. Substituting the motors in the current design with stronger models could partially

solve the problem. Alternatively, there exist research opportunities to solve this problem

with improved mechanisms, e.g., using more durable materials such as metal linkages or

cables to increase the generated force.

5.9.6 Manipulating objects with multiple movable parts or multiple consecutive

manipulations

Some objects are articulated with multiple movable parts, e.g., multi-functional pliers, Swiss

army knife, flexible selfie rods, and Rubik’s cubes. Technically, Roman’s mechanisms can

extend to more parts by enabling one additional motion at a time, yet, practically, too many

mechanisms might not be fittingly added to an object and might even interfere with one

another. Future work could focus on involving different materials (cable, metal, carbon) to

make the mechanism smaller while functional.

Other objects might require consecutive manipulations to perform a task, e.g., a corkscrew

requires a twisting motion on the handle to penetrate a wine cork and a subsequent squeez-

ing motion on the two arms, followed by pulling out the same handle. Currently Roman

needs to provide separate mechanisms for each motion, which could result in the overall

mechanisms too bulky. To address this problem, future work could incorporate interactive

trajectory design into the mechanism design of Roman, similar to the approach in [37] that

would need only one custom mechanism to accomplish multiple consecutive manipulations.
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5.9.7 Opportunities to support novice users

As mentioned by the robotic engineers in the interview, while it is easy for people with

knowledge of robotics to replicate examples in Roman or design mechanism for new examples,

novice users might struggle to design mechanism and understand which mechanism to use

and how to specify the control signals since Roman does not provide 3D modelling support.

One possible idea for future work is to instrument sensors on an object similar to the current

Roman mechanisms. Then a user can demonstrate how they would manipulate an object,

which can be captured by such sensors (e.g., inertial measurement units or reflective markers

+ external optical tracking) and incorporate the algorithm in Robiot [118] which could

generate the mechanism and control program automatically. In this way, Roman would be

more usable to novice users.

5.9.8 Areas of hardware improvement

The hardware of Roman can be improved by: (i) switching to a half-duplex enabled mi-

crocontroller board that could enable the control of the mechanism to be self-adaptive to

different loading conditions; (ii) replacing the neodymium magnets with electromagnets that

can be programmatically controlled for attachment/detachment, thus dispensing with the

additional motor currently used for detachment.
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CHAPTER 6

Enabling Pose Estimation of Apperance-changing

Physical Objects

3D reconstruction is an increasingly popular method to synthesize training data for vision-

based object 6D pose estimation. However, these methods are designed for static objects

with diffuse colors and do not work well for objects that change their appearance during

manipulation, such as deformable objects like plush toys, transparent objects like chemical

flasks, reflective objects like metal pitcher, and articulated objects like scissors. To address

this limitation, we propose RoCap, a robotic pipeline that emulates human manipulation

of target objects while generating data labeled with ground truth pose information. The

user first gives the target object to a robotic arm, and the system captures many pictures

of the object in various 6D configurations. The system trains a model by using captured

images and their ground truth pose information automatically calculated from the joint

angles of the robotic arm. We showcase pose estimation for appearance-changing objects

by training simple deep-learning models using the collected data and comparing the results

with a model trained with synthetic data based on 3D reconstruction via quantitative and

qualitative evaluation. The findings underscore the promising capabilities of RoCap.

6.1 Introduction

Accurately predicting the 6D pose (position and orientation) of a physical object is a crucial

task for a wide range of applications in the field of robotics and augmented reality (AR)

where robots or human users need to interact with these objects in the environment. Vision-
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Figure 6.1: The RoCap pipeline is a robotic system designed to collect datasets for the

purpose of pose estimation of appearance-changing objects, e.g., a deformable plush toy

(a). The system consists of a robotic arm and an RGB camera, which allows for data

collection (c) of objects with appearance-changing features (b). Through data augmentation

and training on off-the-shelf deep learning models using the collected data, the system can

effectively estimate the pose of the plush toy during manipulation, even as it transitions

through deformation (d).

based pose estimation has gained popularity in the past few years over tracker or sensor

based methods, as it does not require additional hardware, alter the appearance or interfere

with the normal use of the objects and it is cost effective and accessible.

However, estimating the 6D pose of an object from an unconstrained RGB image remains

highly challenging due to the ambiguity nature of the estimation. To solve this problem,

researchers have adopted different approaches including mapping image feature to the 3D

model of the object [75] and matching point cloud constructed by depth camera [15]. More

recently, data-driven deep learning methods [217, 167] demonstrated accurate predictions

of the 6D pose of pre-defined sets of object included in carefully crafted datasets [23, 106].

However, it remains unclear how well they work on objects where carefully labelled data do

not exist such as personal objects. To address this issue, some prior work enables end-users

to collect datasets for everyday objects 6D pose estimation [137, 172], introducing synthetic

approaches to generate a large amount synthetic data given the 3D model of the objects [50],

or adopts a few-shot learning method by training on 3D mesh reconstructed from a short

clip of video [128].
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A limitation of these existing methods is that they mainly focus on objects that are

static objects with diffuse colors, with a lesser focus on objects that change their appear-

ances when being manipulated, including objects with challenging appearance materials

(e.g., transparent and specular objects), deformable objects and articulated objects [204]. a

pair of scissors will dramatically change its physical appearance due to mechanical operation

and a model trained on the image of a closed pair of scissors might produce lower accuracy

at recognizing the same pair in an open configuration. Similarly, a plush toy that changes

its shape during manipulation when being affected by gravity will affect the performance of

the pose estimation. While one intuitive approach is to capture data while a human user is

manipulating the objects, annotating such data at scale would be costly and error-prone.

To address the challenge, we propose RoCap, an automated pipeline to collect image

data of appearance-changing object for 6D pose estimation using a robotic arm with min-

imum human intervention. We deploy a robot arm to mimic human’s hand to manipulate

the objects while capturing the image data as shown in Figure 6.1. The 6D poses of the

object of each image can be obtained with robotic forward kinematics as each joint of the

robotic arm is precisely controlled. Specifically, RoCap performs the data capturing process

for eight different appearance-changing objects with deformable, transparent, reflective and

articulated properties (Figure 6.3).

We also implemented a simple pose estimation pipeline to quantitatively and qualita-

tively evaluate the pose estimation performance of the model trained on our collected data

comparing against a few-shot learning pose estimation approach based on 3D reconstruction

(Gen6D [128]). Both the quantitative and qualitative evaluation results demonstrate that

existing work struggles with appearance-changing objects and our approach shows promise

in overcoming these limitations with improved pose estimation accuracy.

In summary, our contributions are two-fold:

• A robotic data collection pipeline with a 6 DoF robotic arm which captures and

annotates 6D pose data for objects that change their appearance during manipulation,

addressing limitations in existing data collection methods.
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Figure 6.2: 3D reconstructed results for a transparent flask.

• Quantitative and qualitative evaluations to demonstrate the feasibility of the

pipeline via improved accuracy of appearance-changing objects pose estimation by

comparing with an advanced pose estimation method in the field of computer vision.
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6.2 Related Work

6.2.1 Object pose estimation

Object pose estimation plays a crucial role in various HCI applications such as augmented

reality [75, 15, 74] and robotics and automation [119]. Over recent decades, researchers have

explored diverse approaches to predict an object’s pose. These includes sensor applications

like IMUs, physical marker techniques such as fiducial markers [88, 207, 62], optic trackers

[230] 3D printed embedded QR code [49], computer vision techniques such as color-based

tracking, feature point tracking [15] and point cloud alignment [75]. Recent advancement in

deep learning has unlocked new challenging tasks such as predicting the poses of hand-object

interaction [69, 127, 24], articulated objects [121] and other problem setups [130, 2, 38, 220].

Extending this line of research, RoCap focuses on a new problem setup where the objects

will change their appearance during the manipulation. Note that RoCap does not contribute

new model architecture or algorithm to improve the performance in the field of deep learning.

Instead, RoCap contributes a novel data collection method and the data captured by the

system can serve as great resources for researchers in the community of computer vision and

machine learning to solve the downstream tracking problems.

6.2.2 Pose data collection

Data-driven deep learning approaches require data annotated with ground truth labels. Yet,

annotating 6D pose data is challenging, as it is hard to specify 3D bounding box on a

2D image. To address this, researchers have investigated various methods including three

primary strategies: (i) training on synthesized data, (ii) utilizing publicly available datasets

and (iii) designing interactive tools for data collection.
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Figure 6.3: Example objects for each category that RoCap is focusing on, Viewing-angle

dependent : (1) flask, (2) water bottle and, (3) pitcher, Deformable : (4) flexible frog and

(5) stiff anpanman, Articulated : (6) scissors, (7) spray head and (8) clamp.
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6.2.2.1 Synthetic data

One typical way is synthesizing data with the available resources such as the 3D model of

the objects. This approach is commonly used in tasks such as object segmentation [179] and

object detection [50]. And a standard way of using synthetic data in pose estimation is to

obtain the 3D model and texture of the objects first and then render them with different

target background [196]. Although synthetic data can be easily scaled, it comes with the

drawback of a disparity between real and virtual data, which might impact model perfor-

mance. Moreover, as illustrated in Figure 6.2, the necessary step of object reconstruction

may fail for our target objects, such as the flask.

6.2.2.2 Real-world data

An intuitive way to bypass the issue of synthesized data is to collect data in the real world.

In the recent years, researchers have adopted two major types of data collection methods.

The first is “static object + moving camera”, where the pose of the object is calculated

from the pose of the camera, which can be read from the embedded sensor. Normally it

requires a certain level of human labor as first couple frames need to be manually annotated

by matching the 3D model to the physical object. For example, several publically available

datasets have been collected in this way for benchmarking in the pose estimation domain,

such as YCB Video dataset [217], Linemod [76, 20] and T-Less [77]. Additionally, researchers

have also developed interactive data collection pipeline to collect data on custom objects (e.g.,

Label Fusion [137]. However, since the objects remain static, it is challenging to capture the

appearance-changing features.

Another approach is “moving objects + static or moving camera”. While effec-

tive for capturing appearance-changing objects, this approach poses challenging for labeling

ground truth. For instance, ARnnotate, used in augmented reality [172], requires users

to hold and move the object along a recorded path, leading to potential errors, especially

with objects like articulated items or deformed plush toys. RoCap adopts this approach
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and ensures the labeled ground truth to be precise by calculating the robotic arm’s forward

kinematics while it manipulates the object to capture the appearance-changing features.

6.3 Appearance-changing objects

In this section we define and explain the importance of three categories of appearance-

changing objects that we aim to track using RoCap. We collected and captured eight items

from the three categories with RoCap.

6.3.1 Deformation

Deformation refers to changes in the shape or size of an object due to external forces applied

during manipulation (i.e., force of the hand and gravity). Objects with naturally deformable

features can include soft and malleable objects such as fabric materials, clothing and plush

toys/stuffed animals. During manipulation, the objects are affected by gravity all the time,

leading to the deformation while the user is moving the objects into different orientation.

We picked two plush toys of different stiffness, anpanman (stiffer) (Figure 6.3(5)) and frog

(more flexible)(Figure 6.3(4)) as examples of the deformable objects.

6.3.2 Viewing-angle dependent

The visual appearance of viewing-angle dependent objects includes two main sub-categories

of objects, transparent objects (e.g., glass) and reflective objects (e.g., polished metal).

Appearance of transparent objects depends on the background behind them, which may

contain the environment and the user’s hands. Tracking and estimating the pose of such

transparent objects is a known challenge [55] and hand manipulation may make this even

harder. Appearance of reflective objects on the other hand depends on the environment

in front and around it. We picked a conical flask and a plastic bottle(Figure 6.3(1, 2)) as

representations of transparent objects of different level of translucency (Figure 6.7b). We

also included a reflective pitcher to represent reflective object.
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Figure 6.4: Overview of RoCap. RoCap pipeline consists of camera calibration (§6.4.1), data

capturing (§6.4.2), data labeling (§6.4.3), data processing (§6.4.4) and data augmentation

(§6.4.4). By training on an existing deep learning framework, RoCap achieves object seg-

mentation, state classification and pose estimation for appearance-changing objects.

6.3.3 Articulated

Objects with articulated features refer to objects whose appearance changes through manual

manipulation or interaction. These changes can occur due to the inherent function of the

physical objects. For examples, various handheld tools will change their mechanical forms

while being manipulated by human. We selected three manually-changing objects: a clamp,

a pair of scissors and, a head of spray bottle to represent two different types of manual

gripping and hand operation (holding and pinching).

6.4 RoCap pipeline

In this section, we will introduce the design of the RoCap pipeline, which is easily repli-

cable using any 6-DoF robotic arm, we document the essential knowledge and technical

challenges addressed including (i) camera calibration, (ii) data collection, (iii) data labeling

and (iv) data pre-processing. Figure 6.4 shows the overview of the RoCap pipeline and we
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Figure 6.5: Illustration of the eye-to-hand camera calibration (a). The robotic arm grip a

checkerboard and move to multiple positions and orientations for an accurate calibration

(b).

discuss each step in details as follows.

6.4.1 Eye-to-hand camera calibration

The first step of RoCap pipeline is to calibrate the camera to the robotic arm (Figure 6.4a).

During data collection, the robotic arm will hold the target object using a gripper and the

camera is standing on the side to capture the images. In this setup, the pose of the object in

the image refers to the homogeneous transformation of the object from its reference frame

to the camera’s reference frame. This is a typical hand-eye calibration problem because as

shown in Figure 6.5. Assuming the object has the same pose as the end-effector, the goal

is to calculate the transformation matrix of the gripper to the camera: cTg, which can be

calculated from the following equation:

cTg = cTb ·b Tg (6.1)

In which bTg refers to the transformation from the gripper to the base of the robotic arm

which could be calculated by forward kinematics [41] while cTb refers to the transformation

from the base of the robotic arm to the camera frame, which is unknown.

To calculate cTb, a camera calibration step is required which can be accomplished by

using a checkerboard with known size of the squares, which is illustrated in Figure 6.5b . By

moving the robotic arm to multiple configuration, cTg can be calculated from the following

135



Figure 6.6: Pose coverage in RoCap capturing pipeline.
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Here cTt refers to the transformation from the checkerboard to the camera frame, which can

be calculated knowing the size of the pattern [164]. Then the calibration target cTb can be

calculated from Eq. 6.1.

After the camera is calibrated, the next step is to capture the image data of the objects.

6.4.2 Data collection

As mentioned in the previous sections, RoCap collect data of the objects that exhibit the

appearance-changing features. More specifically, RoCap collects objects categorized in four

types of appearance-changing features: deformable, reflective, transparent and articulated.
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6.4.2.1 Pose coverage

The goal of the capturing is simple: capture the images of the objects from as many angles

as possible to have a good coverage of all the potential pose. Quaternions possess the ad-

vantage of representing each rotation without introducing any ambiguity. However, directly

sampling quaternions proves to be a challenging task. To overcome this obstacle and achieve

comprehensive coverage of poses, we opt for sampling Euler angles with a specific step of de-

grees for each yaw, pitch, and roll channel. Once we have obtained the Euler angles, they are

converted into quaternions. These quaternions are then utilized to calculate the arc distance

between each orientation. This methodology is employed due to the inherent redundancies

that can arise from sampling Euler angles. By computing the arc distance of quaternions,

we effectively eliminate these redundancies. The threshold for eliminating redundancies is

set at 0.35, roughly equivalent to a 20◦ azimuth angle.

However, due to the hardware limitation of the robotic arm (e.g., the joints may have

a limited range of motion), RoCap cannot cover the whole possible poses sampled in this

process. We use the inverse kinematics solver and path planners in ROS and achieve the

final sampling of the poses RoCap supports. Figure 6.6 visualizes the coverage of the poses

in RoCap. Noted that in existing data collection method where the objects are placed on

floor, there will be at least half of the poses not capturable because it is occluded by the

contacting ground.

6.4.2.2 Capturing process

During the capturing, a human user will be required to hand the target object to the robotic

arm and the robotic arm will move along the designed path and the camera capture the

RGB images on each sampled point.

For deformable, reflective and transparent objects, there is no further actions from the

users as the change of the appearance happens naturally when the object is oriented to

different direction while being manipulated by the robotic arm 6.7abc. For articulated
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Figure 6.7: RoCap captures the appearance-changing feature of deformable objects (a),

viewing-angle dependent objects including transparent objects (b) and reflective objects (c),

and objects with articulated features (d). Human operator is needed if the robotic arm is

not able to change the states automatically (d).
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Figure 6.8: Data processing of data collected in by RoCap. RoCap generates mask for each

image (d) by prompting SAM with bounding box (b) and points (c).

objects, actions need to be taken in order to change the mechanical states of the objects. The

manually-changing action can be achieved either by human or the robotic arm automatically

depending on the capability of the robotic arm to change the appearance. As is shown in

Figure 6.1b, the size of the clamp is small enough to be grasped by the gripper. And the

clamp is expected to have multiple states such as closed, open, and mid-open states. Without

the help of human, the gripper could be able to change the states of the clamp by applying

different forces on the parallel grippers. However, for the pair shown in Figure 6.7d, the

robotic gripper is not able to automatically change the states because the handle is too

wide for the parallel gripper when it is in open state. This is a typical robotic manipulability

problem as mentioned in [119]. For the case that a robotic arm cannot establish firm gripping

on the object, a human operator will be required to manually change the opening angle of

the scissors in the interval between the capturing of different states.

6.4.3 Data labeling

The transformation from the base frame of the robotic arm to the target object is logged for

each captured image in a 4×4 homogeneous transformation matrix. Then the transformation

from camera frame to the object could be calculated using Equation 6.1. The rotation and

the translation serve as the 6D pose label for the object in each image as shown in Figure

6.4c left.
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6.4.4 Data processing and augmentation

After capturing the data with the ground truth labels of objects using RoCap, crucial pro-

cessing step must be performed to facilitate subsequent pose estimation training. A typical

object pose estimation task comprises two subtasks: (i) segmenting the object from the

scene, and (ii) predicting the orientation of the segmented object. Therefore, the processing

steps involves generating object masks for each label and augmenting the data to adapt to

various environment in application.

6.4.4.1 Generating masks

RoCap leverages the recent emergence of Segment-Anything Model (SAM) [96] which is

capable of producing high quality segmentations given points or bounding boxes as prompts.

For each image captured by RoCap, the subsequent procedures must be executed:

Bounding box As the camera is calibrated to the robotic arm’s coordinate frame, we

generate the initial bounding box of the object by assuming the robotic arm is holding a

15x15x15 cm cube. We then project the cube’s coordinates onto the camera’s 2D plane to

obtain the bounding box (Figure 6.8b). Generally, this method yields satisfactory masks for

objects that are distinct and easily identifiable in the image. However, complications arise

when objects are partially obscured by the robotic arm, difficult to distinguish (e.g., a flask

whose appearance is influenced by the background), or even entirely invisible. To address

these challenges, an additional filtering process is introduced. This process either segments

the semi-occluded objects or discards the invisible data.

Filtering To improve the quality of the masked objects, we leverages the interaction with

SAM by providing additional prompts (points) to specify the objects and background (Figure

6.8c). Specifically, we incorporated two additional steps: (i) we provide additional prompts

for the SAM to highlight the object’s location and (ii) we wrap the gripper in green tape to

reduce its potential interference with segmentation performance.
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• Providing additional prompts for the SAM to highlight the object’s loca-

tion. Given that the gripper consistently holds the objects, we can infer that the

center of the 15x15x15 cm cube corresponds to the object.Thus, we add the projected

pixel coordinate of this center as a point prompt for the SAM, indicating the object’s

location.

• Removing green background. Given that the gripper can partially obscure the

object, it might predominantly appear within the bounding box. This could lead the

SAM to mistakenly segment the gripper as the target object. To counteract this, we

detect the green regions in the image, which are presumed to represent the gripper. We

then calculate the geometric center of these regions and use its coordinates to provide

the SAM with a prompt, pointing out the undesired areas.

6.4.4.2 Data augmentation

We augment each masked image of the object with random exposure, contrast, saturation,

etc. via Albumentations [21] to achieve better generalizability.

6.5 Evaluation

To demonstrate the feasibility of our data collection pipeline, we conducted both quantitative

and qualitative evaluation of the model trained on our data to compare with a few-shot learn-

ing pose estimation approach Gen6D [128]. Gen6D has shown competitive performance on

any custom object by using a single video as input for 3D reconstruction (via COLMAP [190])

and performed feature matching based on the image and resulting pointcloud.

We evaluated the model in two settings, controlled setting where the ground truth can

be reliably obtained for quantitative evaluation, and application setting, where the user

manipulates the object during pose estimation for qualitative evaluation, as the ground

truth pose cannot be obtained easily.
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6.5.1 Implementation of pose estimation pipeline

Before we delve into the result of quantitative evaluation, We will discuss the pose estimation

pipeline first. As mentioned earlier, the pose estimation pipeline should consists of one

model for segmenting the target object and another for predicting the orientation based

on the segmented output. For objects with manually-modifiable states (e.g., scissors), an

additional state classifier is employed.

For the segmentation task, we leveraged a recent advancement based on SAM: HQTrack

[232]. It is a zero-shot approach and requires no training while being able to consistently

produce high-quality segmentation of target objects in videos.

For the orientation estimation, the model is a VGG16 model, pretrained on ImageNet [42],

followed by a fully connected layer outputting the quaternion and the 2D pixel location of

the object. The loss function is a combined loss of the Geodesic Loss on the quaternion

prediction and the MSE Loss of the displacement prediction. We train the model on the

augmented data for 120 epochs, using the Adam optimizer with a learning rate of 0.0001.

For the state classification, the model is a MobileNet V3 [80], pretrained on ImageNet [42],

followed by a fully connected layer, and the output dimension is equivalent to the number

of the states of the object. We train the model on the augmented data for 120 epochs, using

the Adam optimizer with a learning rate of 0.0001.

6.5.2 Quantitative evaluation

For quantitative evaluation, we modified the environment by changing the camera angle and

updating the background (Figure 6.9). Using a newly designed trajectory for the robotic

arm, we sampled 1041 data entries. The accuracy threshold for pose estimation remained

consistent with our training data parameters: set at 0.35 or an azimuth angle of 20◦.

To clarify, our evaluation only focused on the accuracy of the orientation prediction,

since RoCap rely on prior to determine the position of the object. For Gen6D, we could

not modify its training pipeline to incorporate HQTrack to enhance its object detection.
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Figure 6.9: Quantitative evaluation setup. The green bounding box represents the ground

truth and the read bounding box represents the predicted pose.

Instead, we adhered to the guidelines provided for pose estimation on custom objects as

outlined in Gen6D’s guidelines1. Specifically, we performed 3D reconstruction of the object

using COLMAP [190] and followed the preprocessing procedure in the guideline.

anpanman frog pitcher flask bottle scissors clamp spray

RoCap 91.9 61.9 73.7 87.1(66.9) 71.9 83.4 42.0 87.6

Gen6D [128] 19.6 12.9 12.7 16.2 16.9 38.3 19.4 28.4

*The number in parentheses indicates flask accuracy in a different background (Figure 6.9).

Table 6.1: Quantitative evaluation result. The numbers indicate the average precision at

20◦ azimuth error.

For objects with multiple manual states, test data is gathered for each state, and the

model is evaluated accordingly. The results represent the mean accuracy across all states.

Specifically, the flask was tested against two different backgrounds: its original setting (a

black background) and an alternate setting with a typical orange-colored desk surface. Table

1https://github.com/liuyuan-pal/Gen6D/blob/main/custom_object.md

143

https://github.com/liuyuan-pal/Gen6D/blob/main/custom_object.md


6.1 shows the accuracy comparison between our approach and Gen6D.

We note that the accuracy is much lower in our testing result as compared to the result

Gen6D demonstrated in their paper. This could be due to several factors:

• 3D reconstruction failures (e.g., Figure 6.2).

• Data collection with objects in static positions, leading to challenges when the object’s

unseen side becomes visible during manipulation (e.g., a plush toy might be placed

face-up on a table during data collection).

• Gen6D’s documented issue with size-changing objects in frames (as the object moves

closer and further away from the camera), as mentioned in their GitHub issues2.

The results indicate that a simple pose estimator trained with data from RoCap can

deliver relative working pose estimation performance. However, the quantitative findings

also reveal some limitations. For example, the accuracy of clamp is relatively low compared

to other objects due to ambiguity caused by its symmetry. Additionally, objects whose ap-

pearances are environment-dependent demonstrate inconsistent performance under varying

backgrounds. More details are discussed in the limitation in Sec. 6.6.1.

6.5.3 Qualitative evaluation

To test the performance in the application setting, due to the difficulty in collecting ground

truth, we conducted a qualitative evaluation on videos of humans manipulating the objects.

Figure 6.10 shows the qualitative comparison between model trained on RoCap data and

Gen6D. For example, RoCap recorded both closed and open states during data collection

for the pair of scissors. This allowed it to provide viable pose estimation for the open state

(Gen6D which struggled with the unobserved state). Please refer to the supplementary

materials for the video.

2https://github.com/liuyuan-pal/Gen6D/issues/29
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Figure 6.10: Qualitative evaluation of the eight objects.

6.6 Discussion

6.6.1 Limitations

The quantitative and qualitative evaluation has demonstrated the feasibility and potential

of our data collection method. However, the result also shows certain limitations. Below,

we will discuss the limitations from the perspectives of data capturing, model performance

and other constraints.

Data capturing While RoCap addresses the data capturing of appearance-changing ob-

jects, it requires the objects have distinct appearances in different defined poses. One typi-

cally example that is challenging for RoCap is cloth, which is highly deformable. Its extreme

flexibility results in a loss of the pose information when being manipulated by the robotic

arm. As illustrated in Figure 6.11, the piece of cloth is nearly identical in two different poses

manipulated by the robotic arm.

On the other hand, as currently we target objects that people can easily change their
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Figure 6.11: Failure case for a highly deformable cloth.

appearances with hands, leading to the target object size ranging from 0.5x˜1.5x of a palm

size. Additionally, our robotic arm’s mechanical gripper, with a maximum gripping width

of 80mm, further constrains the size of objects it can handle. However, this limitation can

be resolved when a system applies our method to a larger scale robotic arm (e.g., in a mass

manufacturing setting).

Model performance Indicated in the evaluation results, the pose estimation pipeline

does not handle symmetric object well. While this has been an open challenge in object

pose estimation [204], recent work have proposed different network architecture to address

this issue [217, 194]. While addressing symmetry is beyond the purview of this paper, future

enhancements could incorporate a sophisticated pose estimator or gather supplementary data

like depth via depth cameras.

Furthermore, variations in the environment from the capturing stage may also affect the

model performance, especially for viewing-angle dependent objects. While it is feasible to

maintain an environment similar to the capturing setup (e.g., using a black background when

operating a transparent flask), future improvements could include varying environmental fac-

tors such as different lighting conditions [40, 161]. Additionally, future work could introduce
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other augmentation method such as [234] to adapt to various environment.

Other constraints Currently the need of a robotic arm may require a lab setting. How-

ever, the pipeline can also be applied to scenarios such as (i) product manufacturers collect

data and train a model for their product, and include it as part of their solution package

and (ii) home users asks their robot to train a model for their own object when robots are

more accessible in the future, and later the user uses the model to estimation the pose in

specific applications.

6.6.2 Handling Occlusion

Occlusion happens in different scenarios, including the objects being manipulated by hands

during interaction, or the objects being held by the robotic arm during data capturing.

While the hand occlusion does have an impact on the model performance trained on RoCap

data, our pipeline is less impacted compared to Gen6D as shown in the qualitative results.

This is due to the fact that during the capture phase, the robotic arm may partially obscure

the object throughout the capturing process, which simulates hand occlusion in the training

data.

To further address the occlusion problem, one possible approach is to introduce a hand-

like robotic hand during the data capturing process. For example, anthropomorphic robotic

hands, such as those presented in [59], can closely mimic human hand movements and provide

more realistic interaction scenarios for data collection. By using a robotic hand, it is possible

to better account for occlusions that occur during human-object interactions and develop

models that can better predict user intent in such cases. Additionally, to address occlusion

caused by the robotic arm during data capturing, multiple cameras could be employed to

ensure the complete visibility of the objects being captured.

147



6.6.3 Automatic Changing of Mechanical States

As mentioned in the paper, certain articulated objects necessitate human intervention to

change their states, as they cannot be manipulated by the parallel gripper of the robotic

arm [119]. Examples of such objects include those that require a large range of motion

or those that demand bi-manual operation. Recent research in HCI has proposed different

methods of attaching mechanisms to the physical object to automatically actuate the motion

without human intervention [119, 118, 116], which can be potentially leveraged by future

data collection system using robotic arms to automatically collect a large amount of data.

By automating the data collection process, it is possible to scale up the dataset and sample

object states at smaller intervals. For instance, instead of having discrete states of a clamp,

we can sample from a continuous parameter space evenly while capturing. This would enable

the prediction of the continuous parameter such as the angle of a pair of scissors, thus opening

up a wider range of applications. Future direction should include how to design mechanisms

that will not affect the apperance of the objects during capturing while being able to actuate

the objects.

6.6.4 Leveraging Robots for Large-Scale Data Collection

Robots possess the capability to perform repetitive tasks consistently and efficiently. Re-

searchers in computer vision and HCI have explored various approaches to employing robots

for data collection across a diverse range of applications [33, 60, 133]. This has opened up

new opportunities for augmenting tasks that necessitate a substantial amount of repetitive

work, such as data collection for multiple objects, through the integration of robotic sys-

tems. By leveraging robotic systems, researchers can not only streamline the data collection

process but also minimize human error and fatigue. This can lead to the acquisition of

more accurate and reliable datasets, which are critical for the development and evaluation

of advanced algorithms and models.

In addition to automating repetitive tasks, robotic systems can be equipped with various
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sensors and end effectors to collect multimodal data, such as visual, tactile, and auditory

information. This can significantly enrich the datasets and provide researchers with a more

comprehensive understanding of the objects and environments being studied. As robotics

technology continues to advance, we can expect even more sophisticated and versatile robotic

systems to be employed in the data collection process. This will ultimately lead to more

robust, accurate, and diverse datasets, which will contribute to the improvement of various

computer vision and HCI applications.
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CHAPTER 7

Summary

Smart homes have been a popular topic in both the research community and the industry

for decades since the 1970s, with the goal of elevating the quality of life for users by au-

tomating various applications. With a large amount of legacy objects have not yet become

smart, researchers and practitioners have devoted considerable efforts towards incrementally

enhancing these legacy items. The aim is to enable them to autonomously execute tasks

for users, using diverse methods that are both financially and environmentally sustainable.

Such tasks involve physical tasks, which play a vital role in assisting users in their daily

lives, especially for those with limited mobility, or people in a situational impairements (e.g.,

occupied hands while holding groceries).

While there has been only limited support for the automation of the physical tasks, the

goal of this dissertation is to enable legacy objects to perform physical tasks for users. In

order to achieve this, two challenges have to be addressed:

C1: How can we enable users to customize the augmentation of physical objects to be smart?

The vast diversity of legacy objects makes crafting a universal solution for their smart

transformation challenging. Consequently, user-driven customization becomes imper-

ative. Yet, the intricacies of augmentation—spanning mechanical design, motion plan-

ning, electronic structuring, and personal fabrication—demand specialized expertise.

This presents a gap between users’ limited knowledge and the complexity of the design

process. It’s crucial, therefore, to simplify this complex procedure, making it accessible

for general users to personalize the smart adaptations of their physical objects.

C2: How can we enable physical objects to be easier to perform physical tasks?
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Legacy objects were predominantly designed with human interaction in mind and not

for autonomous functionality. When introducing smart capabilities to these objects,

the challenge lies in determining how to streamline task automation. This can be

through either direct actuation of the object or intervention via an external robotic

arm. Thus, it becomes crucial to introduce designs that render these physical objects

more adept at autonomously conducting physical tasks.

During my PhD, I have explored different approaches to address these challenges. Fore-

most, I propose two methods to automate the physical tasks for legacy objects: (i) directly

augmenting the legacy objects with robotic actuation to perform physical tasks without ex-

ternal assistance and (ii) augmenting the legacy objects to be more easily manipulated by

external robotic arms.

In Chapter 3, I developed a computational design tool to enable users to create customized

add-on mechanisms to automate the physical tasks of legacy objects (e.g., adjusting the angle

of a desk lamp automatically). This tool allows users to use only a video demonstrating the

manipulation as the input and outputs the 3D printable mechanisms automatically.

Extending the work in Chapter 3, I developed another computational tool to enable

users to design embedded mechanism in 3D models of physical objects (Chapter 4). These

embedded mechanisms are designed to augment the default functionalities of the physical

objects. By specifying the highlevel motion points of the target tasks, users are able to use

the tool to automatically generate 3D printable components of the final physical objects.

Beyond directly augmenting the legacy objects to perform physical tasks without exter-

nal assistance, I also explored the approach of augmenting the legacy objects to be more

easily manipulated by external robotic arms. Augmenting the legacy objects to be more

manipulable by robotic arms consists of two aspects: (i) better to be sensed by the robotic

arms (Chapter 6) and (ii) better to be manipulated by the robotic arms (Chapter 5).

In Chaper 5, I identified the issues of the manipulability of existing physical handheld

objects and proposed a design of a magnetic gripper along with mechanical mechanisms to

augment the manipulability of physical objects. The magnetic gripper serves as a verstatile
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interface between a generic robotic arm and the target physical objects that the robotic arm

is able to actuate the mechanisms on the physical objects automatically.

One of the prerequisite to enable the actuation in Chapter 5 is the ability to sense

the spatial configuration (i.e., the pose) of the target objects. It is a known challenge to

perform pose estimation on objects that change their apperance during the manipulation

(e.g., articulated objects in Chapter 5). Thus in Chapter 6, I proposed a method to collect

datasets of these apperance-changing objects and enable the pose estimation of such objects

by training a deep learning network.

7.1 Limitations and Future Work

7.1.1 Enabling More Complex Tasks

The tools and methodologies presented in this dissertation primarily address a select subset

of physical tasks. While they have proven effective in their targeted applications, the realm

of automation encompasses a wider range of complexities.

Currently, the design of the mechanical mechanisms only addresses single-DoF (degree

of freedom) motion of the physical objects. While this approach simplifies the design and

operational parameters, it inherently limits the range and complexity of tasks that these

objects can undertake. Covering a wide array of physical tasks with just a single-DoF is

certainly commendable, but to truly harness the potential of smart augmentation, multi-

DoF systems need to be explored and integrated.

Handheld tools, for instance, often employ multi-DoF systems to offer users a wide range

of motions. A classic example is the 3-DoF ball joint found in many modern-day accessories

such as selfie rods or camera tripods.

Beyond these examples, the potential of multi-DoF systems becomes even more evident

when we look at objects with multiple 1-DoF joints. For example, some objects are artic-

ualted with multiple movable parts, e.g., multi-functional pliers, Swiss army knife, Rubik’s
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cube. Technically, mechanisms presented in the thesis can be extended to more parts by

enabling additional motion at a time. However, pratically, too many mechanisms might not

be fittingly added to an object and might even interfere with one another.

In essence, while single-DoF designs have paved the way for the initial exploration of

smart object augmentation, the future envisions a more comprehensive integration of multi-

DoF systems. Such an evolution will not only enhance the capabilities of smart objects but

also bring them a step closer to mimicking the dexterity and adaptability of human beings.

Furthermore, this also hightlights the need for a more robust design tool that can support

the creation of multi-DoF mechanisms.

7.1.2 Adapting to Humans and Environments

Legacy objects, once augmented, need to not just perform tasks but also able to adapt to

changing environments or unpredicted scenarios. Furthermore, as users engage with such

augmented objects, they may have feedback or preferences on how tasks are executed. Thus

it is also crucial to create a system where user feedback can be seamlessly integrated to refine

task performance.

Incorporating machine learning techniques throughout the design and operational phases

can harness this adaptability. By analyzing user interactions, these intelligent systems can

tailor designs that are more attuned to user expectations. Moreover, post-augmentation,

continuous learning from both environmental cues and direct user feedback is essential. This

iterative process ensures that the system’s interactivity remains dynamic, evolving in tandem

with user needs and environmental nuances.

7.1.3 Studying Human Behavior

The introduction of augmented functionalities to everyday objects ushers in a new paradigm

in human-object interactions. When inanimate objects begin to exhibit ”alive” qualities, it

inevitably alters the way humans perceive, interact with, and rely on them. A shift from
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passive objects to active, responsive entities poses fascinating questions for future research:

Research questions on the social science or psychology may arise, for example, will users

begin attributing human-like traits or emotions to these objects? Or how will ‘alive’ objects

fit into our social interaction. Exploring these areas will not only enhance the design and

functionality of such augmented objects but will also pave the way for a more harmonious

integration of these entities into our daily lives.
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