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Abstract Our current understanding of the mechanisms driving spatiotemporal yield

variability in rice systems is insufficient for effective management at the sub-field scale.

The overall objective of this study was to evaluate the potential of precision management

for rice production. The spatiotemporal properties of multiyear yield monitor data from

four rice fields, representing varying soil types and locations within the primary rice

growing region in California, were quantified and characterized. The role of water man-

agement, land-leveling, and the spatial distribution of soil properties in driving yield

heterogeneity was explored. Mean yield and coefficient of variation at the sampling points

within each field ranged from 9.2 to 12.1 Mg ha-1 and from 7.1 to 14.5 %, respectively.

Using a k-means clustering and randomization method, temporally stable yield patterns

were identified in three of the four fields. Redistribution of dissolved organic carbon,

nitrogen, potassium and salts by lateral flood water movement was observed across all

fields, but was only related to yield variability via exacerbating areas with high soil

salinity. The effects of cold water temperature and land-leveling on yield variability were

not observed. Soil electrical conductivity and/or plant available phosphorus were identified

as the underlying causes of the within-field yield patterns using classification and

regression trees. Our results demonstrate that while the high temporal yield variability in

some rice fields does not permit precision management, in other fields exhibiting stable

yield patterns with identifiable causes, precision management and modified water man-

agement may improve the profitability and resource-use efficiency of rice production

systems.
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Introduction

Rice (Oryza sativa L.) is a staple food source for almost half of the world population (Rice

Almanac 2002). To feed the growing population in a sustainable manner will require

increasing productivity of existing rice cropping systems to avoid the environmental deg-

radation caused by the expansion of agricultural land. Increases in genetic yield potential are

not keeping pace with growing food demand, calling for sustainable intensification of

existing rice systems utilizing precision agriculture methodologies to narrow the gap

between genetic yield potential and actual yield (Cassman 1999). Within-field spatial

heterogeneity of soil properties can partly account for the yield gap (Mzuku et al. 2005;

Casanova et al. 1999), yet the conventional practice in irrigated rice fields as large as 75-ha

in California, is uniform management despite the availability of technology to implement

precision management at the within-field scale (e.g. GPS-equipped yield monitors and

variable-rate fertilizer technology). This is due to insufficient understanding of the under-

lying causes of yield spatiotemporal variability. An understanding of the processes shaping

the yield patterns, and identification of the main yield-limiting factors across space and time

are requisite for the development of precision management zones and practices.

Yield spatial variability is comprised of both permanent and transient components. In

general, the persistent patterns are controlled by native field soil properties, or endoge-

neous factors, while the transient patterns are controlled by exogeneous factors, such as

climate, pests and disease (Bakhsh et al. 2000; Basso et al. 2007; Waggoner and Aylor

2000). When these factors interact they affect yield across temporal and spatial scales,

making it difficult to unravel the causes. Land-leveling and flood-irrigation practices make

irrigated rice systems particularly complex due to their influence on both endogenous and

exogenous factors, such as soil and water chemistry and microclimate.

Land-leveling of rice fields is done to improve water management and crop profitability,

but it can also alter the magnitude and spatial variability of soil biochemical properties

(Brye 2006) and yield due to the major disturbance to the soil profile caused by the

redistribution of soil from high to low areas (Walker et al. 2003; Roel and Plant 2004a, b).

The thickness of the relatively nutrient-rich plow layer, or Ap horizon, is reduced in ‘‘cut’’

areas and augmented in ‘‘fill’’ areas, generally resulting in distinct soil chemical properties

(Walker et al. 2003). Walker et al. (2003) reported that yield declines in cut areas were

strongly related to the amount of soil moved during land leveling, although they were

unable to show if this was due to reduced nutrient availability.

Flood irrigation has been shown to affect the spatial and temporal variability of climate, soil

chemistry and water chemistry within a rice field in three important ways: cold temperature of

intake irrigation water (Raney et al. 1957), the mass flow of solutes and their evapoconcentration

(Scardaci et al. 2002). In some rice fields, water temperature is not uniform due to low tem-

perature of intake irrigation water (Raney et al. 1957). The temperature of irrigation water affects

rice productivity by regulating photosynthetic and developmental rates (Shimono et al. 2004 and

Shimono et al. 2002) and by influencing the susceptibility of the rice plant to spikelet sterility

(Shimono et al. 2007). The threshold water temperature for yield loss is 20 �C (Roel et al. 2005).

Rice is salt-sensitive (Maas and Hoffman 1977; Shannon et al. 1998), especially during

early seedling (Flowers and Yeo 1981; Maas 1990; Lutts et al. 1995) and pollination

(Khatun and Flowers 1995). Scardaci et al. (2002) observed that flood water salinity and

soil salinity increased from the uppermost to lowermost basins in 27 rice fields, suggesting

that salts are redistributed within fields by mass flow and evapoconcentration.

Various analytical approaches have been used to reduce the complexity of spatial

phenomena in agricultural fields, and to elucidate the main predictive factors of yield
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variability. Various clustering procedures have been used to partition the data space of

multiyear yield data space into clusters, which have the property of maximal variance

among clusters and minimal variance within clusters across all years analyzed, as well as

the highest probability of occurring. Lark and Stafford (1997) were the first to use fuzzy k-

means clustering for multiyear yield monitor data to delineate management classes within

fields. Using both yield and soil map data, Guastaferro et al. (2010) compared several

clustering algorithms for the delineation of management zones. Roel and Plant (2004a, b)

and Perez-Quezada et al. (2003) combined k-means clustering with randomization methods

to analyze within-field yield variability. Roel and Plant (2004b) assert there are three key

measures to evaluate if the clusters are physically meaningful: (1) the stability of the

clusters when subject to random permutations; (2) the degree of spatial contiguity of the

clusters and (3) the stability of the clusters when the number of clusters (i.e. k) is increased.

Roel and Plant (2004a, b) found that the spatiotemporal yield variability in two rice fields

could be characterized by spatially contiguous clusters (i.e. not randomly spaced), but that

the degree of inter-annual variability of the average yields of each clusters differed. Thus,

the authors concluded that the yield patterns were driven by edaphic properties in the field

with the stable yielding clusters, and by more transient factors (e.g. climate, weeds) in the

field with unstable yielding clusters. Using classification and regression trees (CART),

Delmotte et al. (2011) identified weed competition as the primary yield-limiting factor in

both conventional and organic rice cropping systems, while Roel and Plant (2004b)

identified elevation, soil pH, clay content, soil organic matter and soil penetration resis-

tance as the main explanatory factors for cluster membership in two rice fields.

Alternative statistical methods have been used by others to identify the primary yield-

limiting factors within rice fields. Dobermann (1994) used a factor analysis and multivariate

linear regression, and found that soil pH, microrelief, weed growth and seeding rate were

driving yield variability. Casanova et al. (1999), using multiple regression and the boundary-

line method, reported that topsoil cation exchange capacity and salinity explained the yield

patterns, and calculated a yield-gap of 3,000 kg ha-1 due to soil factors.

Most yield variability studies in rice systems have investigated a single process

hypothesized to drive within-field yield variability, such as land-leveling or water tem-

perature, and/or a collection of soil attributes expected to be involved in yield variability.

Additionally, many of the studies have been carried out in fields ranging in size from 0.5 to

3.6 ha (Yanai et al. 2001; Dobermann 1994; Casanova et al. 1999), while fewer studies

exist on larger fields comprised of numerous basins.

We studied a collection of rice fields, ranging in size from 23 to 69 ha, including multiple

internal basins within each field. The fields were representative of varying soil types and

locations within the primary rice growing region of California. The main objective of this

study was to evaluate the potential of precision management for rice production. Specifically,

we sought to: (1) quantify and characterize within-field spatiotemporal variability of yield;

and (2) determine underlying causes of yield variability due to water management, land-

leveling and soil chemical and physical properties within fields.

Materials and methods

Site description

The experimental sites were located in four commercial rice fields (designated F1, F2, F3

and F4) in the Sacramento Valley of California. Each field was comprised of varying
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numbers of sub-fields (i.e. basins) and combinations of soil types (Fig. 1 and Table 1).

Field F1 contained 43-ha with five basins, located in Willows, CA (UTM Zone 10-N,

coordinates 576 820 E, 4 369 898 N). Field F2 was a 69-ha field with four basins, located

in Marysville, CA (UTM Zone 10-N, coordinates 622 817 E, 4 343 710 N). The F3 and F4

fields were adjacent 23-ha areas, each comprised of six basins, located on the same ranch in

Arbuckle, CA (UTM Zone 10-N, coordinates 593 230 E, 4 320 325 N). All fields were

managed by the cooperating growers, who implemented conventional, but field-specific,

flow-through irrigation systems and applied uniform rates of fertilizers throughout the field

(Table 2). Weeds and other pests were controlled as needed. The initial land-leveling

events occurred 35–56 years prior to the study (Table 2). Fields were wet-seeded with pre-

germinated rice seed. High yielding medium-grain rice cultivars were grown in all fields

and all years (Table 2).

Field study

Soil and water sampling and yield monitoring occurred in 2008 and 2009. In addition to

this data, historic yield maps were included in the analyses where available; three years of

historic yield (i.e. 2005–2007) for F2 and one year of historic yield (i.e. 2007) for F4 were

utilized, whereas, no historic yield data were available for F1 or F3. A geo-referenced grid

sampling design was configured in each field (approximately two points per hectare), from

which soil water temperature data at a subset of the points were collected. The grid points

served as a common scale to compare soil properties to yield at the same locations in the

field. Water samples for chemical analyses were taken from the inlets, outlets and weirs

through which water flowed into each consecutive basin.

Soil data

Soil texture, depth to plow pan, pH, electrical conductivity of a saturated paste extract

(ECe), soil organic carbon (SOC), total nitrogen (N), extractable nitrate–nitrogen (NO3–N),

available phosphorus (P) and exchangeable potassium (K) were analyzed for samples from

all geo-referenced grid points. All soil properties were measured in 2008 and 2009 except

soil texture and depth, which were assumed to be temporally stable in the timescale of the

two-year study. The rice fields in this study were originally land-leveled 35–56 years prior

to the start of the experiment in 2008 (Table 2). Thus, the most significant disturbance to

the soil profile occurred at that time. Annually, the fields are land-planed to maintain a

level field. Soil sampling for soil texture and chemical analyses occurred in the spring, after

tillage and land planing, but before fertilizer application and flooding. A composite of five

sub-samples was taken from an area of approximately 5-m2 at each geo-referenced grid

point. Because the plow layer (i.e. Ap horizon) was assumed to be well-mixed from tillage,

a bulk soil sample was collected from the soil surface to the depth of the plow layer. Soil

samples were air-dried and after large pieces of plant debris were removed they were

ground (\2 mm fraction) for textural and chemical analyses. Soil texture was determined

using a Beckman-Coulter LS-230 (Miami, FL, USA) laser diffraction particle size ana-

lyzer. Soil pH was measured directly in the saturated paste using a calibrated combination

electrode/digital pH meter (Burt 2004). Solution ECe was measured in the saturation

extract using a calibrated Oakton CON11 handheld conductivity/TDS meter (Vernon, IL,

USA) (Burt 2004). Prior to the analyses for SOC and N determination, soil was ball-milled

and carbonates were removed by acid fumigation (Harris et al. 2001). The SOC and N

concentrations were measured by combustion using a PDZ Europa ANCA-GSL elemental
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analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd.,

Cheshire, UK). Soil NO3–N concentration was determined by flow injection analyzer

method (Knepel 2003). Soil P concentration was determined by sodium bicarbonate

extraction buffered to pH 8.5 (Olsen and Sommers 1982). Exchangeable soil K was

determined by displacement with ammonium acetate solution buffered to pH 7.0 (Thomas

1982).

Soil depth was measured after the field was flooded to obtain more accurate mea-

surements of depth to the plow pan. A 1.2-cm diameter metal rod with a 3.3-kg weight was
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Fig. 1 Layout of the four rice fields, including the basins comprising each field, direction of the dominant
path of flood water movement down the fields, and the Natural Resources Conservation Service (NRCS) soil
map unit delineations and identification numbers (Table 1)
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used to measure the maximum depth to which a constant force penetrated the soil. Due to

high variability of soil depth at each point, a Winsorized mean of five sub-samples was

calculated for each location.

Water data

To determine if flood water temperature is related to spatial yield patterns, hourly surface

water temperature was recorded at a subset of the grid sampling locations using Onset

HOBO Pro Data Loggers (Bourne, MA, USA) from the onset of the initial flood to the final

drain. Approximately three loggers per basin were installed in all basins within F1 and F2,

and in the top, middle and bottom basins in F3 and F4. The loggers were secured to stakes

with the temperature sensors approximately 2-cm above the soil surface, which was below

the flood water surface for the majority of the growing season. In F1, F3 and F4, the flood

water depth was below the temperature sensors for a maximum of four days; in contrast, F2

was drained for two weeks for an early-season herbicide application.

To determine if the spatial distribution of soil chemical properties are related to flood

water movement, and subsequently yield variability, water samples were collected from

the irrigation inlet, weirs that connected the individual basins and outlet(s) twice during the

growing season (i.e. during the initial flood and at approximately the anthesis develop-

mental stage of the rice) and analyzed for electrical conductivity (ECw), dissolved organic

carbon (DOC), total dissolved nitrogen (TDN), nitrate–nitrogen (NO3–Nw), ammonium–

nitrogen (NH4–Nw), soluble phosphorus (sol-P) and soluble potassium (sol-K). Water

samples were collected only from weirs with flowing water to prevent inflated concen-

tration readings due to localized accumulation of solutes in stagnant water. Immediately

after collection, water samples were stored on ice. Within 24 h, an unfiltered sub-sample

from each sampling location was analyzed for ECw using a calibrated Oakton CON11

handheld conductivity/TDS meter (Vernon, IL, USA). The other portion of the sample was

filtered with a 1.2 lm glass fiber filter. Approximately half of the filtered sample was

refrigerated (maximum of 5 days) until analysis for concentrations of DOC and TDN using

a Shimadzu TOC-V CSN Analyzer (Kyoto, Japan). The other half of the filtered sample

Table 1 Description of the soil series and taxonomic classifications of the Natural Resources Conservation
Service (NRCS) map units in the fields of the study

ID (Fig. 1) Soil series Taxonomic classification

1a Willows clay, dense subsoil,
slightly saline-alkali

Fine, smectitic, thermic Sodic Endoaquerts

1b Willows clay, dense subsoil,
moderately saline-alkali

Fine, smectitic, thermic Sodic Endoaquerts

2a Kimball loam Fine, mixed, active, thermic Mollic Palexeralfs

2b Hollenbeck silty clay loam Fine, smectitic, thermic Chromic Haploxererts

2c San joaquin loam Fine, mixed, active, thermic Abruptic Durixeralfs

3a, 4a Vina loam Coarse-loamy, mixed, superactive, thermic Pachic
Haploxerolls

3b, 4b Scribner silt loam Fine-loamy, mixed, superactive, thermic Cumulic
Endoaquolls

3c, 4c Clear lake clay Fine, smectitic, thermic Xeric Endoaquerts
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was immediately frozen until further chemical analyses could be performed. In 2008, NO3–

Nw concentration was determined using a single reagent spectrophotometric method,

adapted from Miranda et al. (2001) and Doane and Horwath (2003), while NH4–Nw

concentration was determined using a dual-reagent spectrophotometric method, adapted

from Forster (1995) and Verdouw et al. (1978). In 2009, NO3–Nw and NH4–Nw concen-

trations were determined using a flow injection analyzer method (Knepel 2003; Hofer

2003). Soluble P (sol-P) concentration was determined according to a spectrophotometric

method using Lachat Flow Injection Analyzer (Standard Methods for the Examination of

Water and Wastewater (20th ed.) 1998). Soluble K (sol-K) concentration was determined

by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) according to

EPA Method 200.7 (U.S. Environmental Protection Agency Method 2001).

Yield data

Rice was harvested using combines with global positioning system (GPS)-equipped

commercial yield monitors, which were calibrated according to manufacturer’s instructions

prior to each harvest. Fields F3 and F4 were harvested using the same combine by the

grower. Yield map data files consisted of geographic coordinates, yield and grain moisture.

Raw yield data were cleaned in five stages prior to spatiotemporal analyses: (1) Points

outside of the field boundary were deleted; (2) Points with inconsistent logging intervals

(i.e. [1 s) were deleted; (3) Points within 5-m of the field boundary were omitted to

remove edge effects; (4) Data records with extreme yield values (\2.2 Mg ha-1 or

[18 Mg ha-1) or negative moisture values were omitted and (5) The remaining dataset

was passed through a Moran Scatterplot screening process from the R package spdep

(Bivand et al. 2010) version 0.5-21 (R statistical software, version 2.10.1). This function in

turn uses the R function influence.measures to identify influential data values through a

variety of statistical tests. All data values satisfying the default criteria for identification as

an influential point were removed.

To obtain yield values on the same sampling grid from which soil samples were col-

lected, the cleaned yield dataset for each field was imported into the ArcGIS, version 9.3

(ESRI, Redlands, CA, USA), geographic information system (GIS). We tested several

methods for estimating yield at the grid points and chose the method having the highest

correlation with all the other methods. The method we chose utilized the Spatial Analyst

tool in ArcGIS to interpolate the yield data using the ordinary kriging method and then

averaged the kriged yield surface within a 5-m radius of each grid point. Finally, yield data

were centered and scaled for each field and year combination.

Data analysis

To evaluate whether flood irrigation practices drive yield heterogeneity through cold

temperature of intake water and/or redistribution of soil nutrients and salts by flood water

movement and evapoconcentration, a trend analysis was performed using R statistical

software, version 2.10.1. Simple linear regression was used to model the change in (a) two

flood water temperature parameters using a threshold temperature identified by Roel et al.

(2005) for California rice (i.e. total number of hours below 20 �C and inverse degree days

below 20 �C); (b) water chemical properties (i.e. ECw and solute concentrations of DOC,

TDN, NO3–Nw, NH4–Nw, sol-P and sol-K) and (c) soil chemical properties (i.e. ECe and

concentrations of SOC, N, NO3–N, P and K) with increasing distance from the inlet.

Distance from the inlet (DIST) was calculated for each sampling location as the average of
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the possible path distances through the weirs to the point where the water or soil sample

was collected. With respect to water chemical data, if a weir was closed during a sampling

event, it was not considered as a possible route in the distance calculation. Due to the

spatial nature of the dataset, assumptions of regression analyses were not met. Therefore

statistical significance for each linear model was determined using an algorithm that

generated a random permutation of each response variable and corresponding slope (b1),

simulated 10,000 times, wherein the fraction of permutations with a b1 value more extreme

than the observed value was taken to be the p value of the null hypothesis that b1 = 0.

i.e. p ¼

Pn

i¼1

b1;i

n
, where n = no. of simulations,

bi ¼
1 if the simulated slope is greater than the actual slope

0 if the simulated slope is less than the actual slope

(

To identify and determine the underlying causes of the most spatially and temporally

stable homogenous yield patches within each field, a procedure using k-means clustering

and CART, adapted from Roel and Plant (2004b), was applied to the dataset. The k-means

cluster algorithm was performed using the R package e1071 version 1.6 (Dimitriadou et al.

2010). The aim of this procedure was to identify physically meaningful clusters that would

serve as the response variable in the CART analysis (Roel and Plant 2004b). There was no

statistic that would allow a comparison of the temporal yield variability across fields due to

varying number of years of yield data available for each field. Therefore, yield temporal

variability was evaluated visually by examining the stability of the mean scaled yield of the

clusters over time. Fields F1 and F3 had 2 years (2008–2009), F2 had 4 years (2005–2008)

and F4 had 3 years (2007–2009) of yield data available. Yield data from 2009 in F2 were

excluded, as the top two basins were converted from rice production to a wildlife preserve.

Prior to the CART analysis, a correlation analysis was performed using JMP version 9.0.0

(SAS Inst. Inc., Cary, NC, USA) to evaluate the stability between 2008 and 2009 obser-

vations of soil chemical properties. A CART analysis was performed using the R package

rpart version 3.1-45 (Therneau and Atkinson 2009). In this step, the yield clusters were the

response variable and the soil parameters and DIST were the explanatory variables.

The selection procedure for the optimal size of the classification tree was carried out in

three steps: (1) rpart was replicated ten times, producing ten random rearrangements of the

cross-validation training set with ten cost-complexity (cp) tables; (2) using the ‘‘1 SE rule’’

(Therneau and Atkinson 2009) for each table, the tree size corresponding to the lowest cp

value and with a cross-validation relative error \1 standard error greater than the lowest

value of the cross-validation estimate of the relative error was chosen for that replication

and (3) the smallest tree of the ten replications was chosen as the optimal tree size.

Results

Temporal stability and descriptive statistics of soil properties

The correlation analysis between 2008 and 2009 soil chemical data at all grid points in

each field indicates that soil chemical properties were generally temporally stable in all

fields (Table 3). The Pearson rank correlation coefficients (r) for all soil properties were

C0.29 except for N in F2 which was not significantly correlated between years. Since soil
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data were stable (Table 3), only 2008 summary statistics are presented to simplify the

characterization of field soil properties (Table 4).

The degree of in-field variability of measured soil properties depended on the property

and, in some instances, the field (Table 4). Soil NO3–N, P and ECe varied the most in all

fields (CV range, 24.0–72.6 %) except F2, in which NO3–N, P and K were most variable.

Soil K was also moderately variable in F1, F3 and F4 (CV range, 16.1–22.1 %). The SOC,

N and soil depth were moderately variable in all fields (CV range, 11–21.1 %), while pH

varied the least (CV range, 1.82–6.61 %). Silt was the least variable of the particle size

fractions in all fields (CV range, 2.4–4.9 %).

Water and soil properties in relation to flood water movement

A significant spatial relationship between flood water temperature and DIST was detected

in F1, F2 and F4 (p \ 0.05) (Table 5). In F1 and F4, flood water temperature was highest

in the uppermost basins near the inlets, whereas temperature was lowest closest to the inlet

in F2 in 2008 only.

Solute concentrations in flood water, most notably DOC, TDN and sol-K, generally

increased as water moved towards the outlets in all fields during the initial flooding event

(Table 6). For example, in 2008 flood water DOC, TDN and sol-K concentrations in F1

increased by 2.79, 0.44 and 0.90 mg L-1, respectively, from the inlet to 1 000-m down the

field (i.e. approximately to the bottom of the lowermost basin 5) (Table 6; Fig. 1). The

greatest increases in DOC, TDN and sol-K concentrations were observed in F3 in 2008;

DOC, TDN and sol-K concentrations increased by 7.44, 1.95 and 1.04 mg L-1, respec-

tively, from the inlet to 1 000-m down the field (i.e. approximately to the lowermost basin

6) (Table 6; Fig. 1). Additionally, in four of the eight field and year combinations, ECw

increased with increasing DIST (Table 6).

During the anthesis stage of the rice plant, the trend in observed flood water chemistry

was less consistent across all fields (Table 7). Similar to the initial flood, DOC concen-

trations increased with increasing DIST, but this trend was only significant in four of the

eight field and year combinations (Tables 6; 7). Mean DOC and ECw increased from the

initial flood to anthesis (i.e. 2.33 to 3.91 mg L-1 and 0.149 to 0.276 dS m-1, respectively),

while TDN and sol-K decreased (i.e. 0.37 to 0.15 mg L-1 and 1.57 to 0.65 mg L-1,

respectively) (Tables 6, 7).

In parallel to the flood water trend analysis, soil chemistry at the grid points in each field

were analyzed in relationship to DIST (Table 8). Except for F1, in all fields SOC, N, P and

Table 3 Temporal correlation of field soil properties measured in 2008 and 2009 represented by Spearman
rank correlation coefficients (r) based on 95, 51, 57, and 57 samples, in F1, F2, F3 and F4, respectively

Field SOC N NO3–N P K pH ECe

F1 0.35 0.41 0.39 0.95 0.72 0.91 0.87

F2a 0.29 0.49 0.95 0.72 0.76 0.44

F3 0.65 0.57 0.60 0.96 0.94 0.94 0.86

F4 0.51 0.73 0.75 0.95 0.87 0.89 0.87

The higher the value of r, the lower the temporal variability. Only significant values are shown (p \ 0.05)
a Based on the bottom two basins only due to the top two basins being taken out of rice production in 2009
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K either increased in concentration with DIST or no significant relationship was observed

(Table 8). In F1, only decreasing trends in soil chemical properties with increasing DIST

were observed (Table 8).

Table 5 Change in flood water temperature parameters with increasing distance from the inlet

Field Years Na TNHBa IDDb TNHB-4wc IDD-4wd

(Change in temperature parameter per m)

F1 2008 13 0.27 -1.18 0.02 -0.23

F1 2009 8 -0.35 0.02 -0.21

F2 2008 13 0.25 -0.03 0.20

F2e 2009 5

F3f 2008 8 NA NA

F3 2009 9

F4 2008 8 0.09

F4 2009 9 0.34 -0.60

A b1 value indicates a significant relationship (p \ 0.05)
a Total number of hours below 20 �C from initial flood to final drain

b Inverse degree days below 20 �C from initial flood to final drain; IDD jð Þ ¼
P24

i¼1

ðTwj � 20Þ�, where Twj is

the water temperature at hour i, and the operation ()-1 is defined for x C 0 as (x)-1 = x, and for x \ 0 as
(x)-1 = 0 (Roel et al. 2005)
c Total number of hours below 20 �C for the 4 weeks following the initial flood
d Inverse degree days below 20 �C for the 4 weeks following the initial flood
e Excludes the top two basins in 2009
f Data loggers failed during the first 4 weeks of the growing season

Table 6 Change in concentration of flood water solutes with increasing distance from the inlet during the
initial flood

Field Years Nb DOC TDN NO3–Nw NH4–Nw Sol-P Sol-K ECw

(Change in mg L-1 1,000 m-1) (Change in dS m-1

1,000 m-1)

Meana 2.33 0.37 0.09 0.08 0.03 1.57 0.149

F1 2008 10 2.79 0.44 0.13 -0.02 0.90

F1 2009 6 2.55 -0.07 0.46

F2 2008 9 1.35 0.10 0.28 -0.009

F2c 2009 5 2.46 0.23 0.04 0.02 0.50 -0.016

F3 2008 5 7.44 1.95 0.49 0.28 0.03 1.04 0.129

F3 2009 8 2.45 0.43 0.09 0.082

F4 2008 5 0.08 0.57 0.024

F4 2009 7 1.78 0.25 0.04 0.028

A b1 value indicates a significant relationship (p \ 0.05)
a Mean values across all fields and both years
b Sample size
c Excludes the top two basins in 2009
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Yield temporal and spatial variability: univariate statistics and cluster analysis

The yield point data provided by the yield monitors were used to quantify and characterize

the within-field yield spatiotemporal variability. In all fields, the mean interpolated yield at

the grid points varied \ 3 % of the mean yield of the whole field (Table 9). Whole field

yield monitor data ranged from 6.52 to 16.85 Mg ha-1 and from 6.13 to 16.34 Mg ha-1

across all fields in 2008 and 2009, respectively (Table 9). To aid in visualization of the

relationship between the clusters and yield, the interpolated yield at the grid points was

drawn using Thiessen polygons for each field and year used in the cluster analysis (Figs 2a,

Table 7 Change in concentration of flood water solutes with increasing distance from the inlet during
approximately the anthesis stage of the rice

Field Years Nb DOC TDN NO3–Nw NH4–Nw Sol-P Sol-K ECw

(Change in mg L-1 1,000 m-1) (Change in dS m-1

1,000 m-1)

Meana 3.91 0.15 0.09 0.06 0.03 0.65 0.276

F1 2008 9 2.69 -0.27 -0.02 0.020

F1 2009 7 -0.03

F2 2008 9 0.56 -0.11 0.007

F2c 2009 5 -2.12

F3 2008 4 -0.07 -0.51 0.038

F3d 2009 1 NA NA NA NA NA NA NA

F4 2008 4 2.92 -0.34 -2.12 -0.12 -0.46 0.027

F4 2009 3 4.74 0.16 0.04 -0.45

A b1 value indicates a significant relationship (p \ 0.05)
a Mean values across all fields and both years
b Sample size
c Excludes the top two basins in 2009
d Missing data due to weirs being closed during the sampling event

Table 8 Change in pre-season soil chemical properties measured at grid points with increasing distance
from the inlet

Field Years SOC N NO3–N P K ECe

(Change in g kg-1

1,000 m-1)
(Change in mg kg-1

1,000 m-1)
(Change in dS m-1

1,000 m-1)

F1 2008 -1.50 -1.47

F1 2009 -0.47 -1.78 -7.39

F2 2008 0.96 0.05 0.81 6.21 32.81 0.04

F2a 2009 19.91

F3 2008 0.31 0.27 2.78 43.84

F3 2009 3.58 0.14 0.71 2.27 31.57

F4 2008 1.64 0.35 -0.53 3.25 51.98 -0.86

F4 2009 5.27 0.19 -0.92 3.02 52.59 -0.57

A b1 value indicates a significant relationship (p \ 0.05)
a Excludes the top two basins in 2009
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3a, 4a, 5a). With respect to the whole field, yield variability was most evident in F1, F3 and

F4 (CV range, 16.08–16.73 %) compared to F2 (CV, 8.81 %) in 2008 (Table 9). The

Moran’s I statistic was computed for the grid point yield in each field and year combination

used in the cluster analysis, and shows that yield was spatially autocorrelated in all

instances except in F1 (Table 10). The Thiessen polygon maps of the yield clusters in each

field depict the degree of the spatial relationships and contiguity of the clusters identified in

the cluster analysis (Figs 2b, 3b, 4b and 5b). The optimal k-value for each field varied, and

was decided upon in each case according to the procedure outlined by Roel and Plant

(2004b).

Table 9 Comparison of yield monitor univariate statistics of grain yield, at 14 % moisture content, of the
whole field verses interpolated at the grid points in Fields 1–4 (F1–F4) in 2008 and 2009

Field Statistic Yield monitor

Whole fielda

(Mg ha-1)
Grid pointsb

(Mg ha-1)
Whole fielda

(Mg ha-1)
Grid pointsb

(Mg ha-1)
2008 2008 2009 2009

F1 Mean 10.50 10.63 12.33 12.12

SDd 1.69 1.11 1.65 0.90

CVe 16.08 10.48 13.37 7.42

Minf 6.52 7.69 7.83 9.83

Maxg 14.20 13.09 15.95 13.77

F2 Mean 10.54 10.28 9.21 9.24

SDd 0.93 0.73 1.42 1.34

CVe 8.81 7.09 15.37 14.48

Minf 8.09 7.73 6.13 6.69

Maxg 12.48 11.82 12.14 12.04

F3 Mean 10.41 10.54 10.78 11.05

SDd 1.70 1.10 1.68 1.03

CVe 16.29 10.41 15.63 9.31

Minf 6.86 8.32 6.87 8.93

Maxg 16.44 13.97 15.28 13.08

F4 Mean 10.85 10.82 11.38 11.30

SDd 1.82 1.05 1.89 1.10

CVe 16.73 9.69 16.63 9.69

Minf 6.62 8.15 6.30 8.38

Maxg 16.85 14.41 16.34 13.56

a F1 n = 59 633 in 2008 and n = 59 664 in 2009; F2 n = 81 154 in 2008 and n = 38 442 in 2009; F3
n = 23 056 in 2008 and n = 20 961 in 2009; F4 n = 21 979 in 2008 and n = 17 746 in 2009
b F1 n = 95 in 2008 and 2009; F2 n = 111 in 2008 and n = 51 in 2009; F3 n = 57 in 2008 and 2009; F4
n = 57 in 2008 and 2009
c F1 through F4 n = 15 in all years with the exception of F2 n = 10 in 2009 and F4 n = 13 in 2009
d Standard deviation
e Coefficient of variation
f Mean of bottom 3 % of data records for whole field or the actual minimum value for grid points
g Mean of top 3 % of data records for whole field or the actual minimum value for grid points
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In F1, k = 2 was used for 2008 and 2009 yield data (Fig. 2). The two clusters were

temporally stable, in that over the 2 years, cluster 1 had above-average yield and cluster 2

had below-average yield (Fig. 2c). However, the yield-gap between the two clusters

increased in 2009 (Fig. 2c). There were no strong spatial patterns of the clusters (Fig. 2b).

Although a portion of the points belonging to the low-yielding cluster 2 were concentrated

in the uppermost basin 1, and to a lesser extent, along the west field boundary in basins 4

(a)

(b)
Year

2008 2009
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(c)

Fig. 2 a Interpolated yield point data (kg ha-1 at 14 % moisture content) in F1 presented using Thiessen
polygons. b Cluster classifications of interpolated yield data for k = 2 in F1 presented using Thiessen
polygons. c Change in the scaled, mean yield of points belonging to each cluster classification over time
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and 5 (Fig. 2b). Additionally, the higher-yielding cluster 1 was somewhat concentrated in

basin 2 and the east side of the field (Fig. 2b).

There was not a temporally stable spatial yield pattern in F2 over the 4-year period from

2005 to 2008, which is illustrated by the difference in the two cluster sets for k = 2; with

the west side of the field a member of cluster 2 (i.e. Set 1), cluster 1 is higher yielding all

years except for 2008, whereas with the west side of the field included in cluster 1 (i.e. Set

2), cluster 2 is higher yielding all years except for 2007 (Fig. 3b, c).

The cluster maps for both k = 2 and k = 3 are shown for F3 (Fig. 4b). The temporal

variability of yield of the individual clusters from 2008 to 2009 was stable and consistent

with increasing k-value (Fig. 4c). The first split of the data space for k = 2 divided it into

two relatively spatially distinct regions of low and high yield (Fig. 4b). The points

belonging to the low-yielding cluster 1 were concentrated in the west-central side of basins

2, 3 and 4 (Fig. 4b, c). The points surrounding this area, primarily in basin 1, basin 6 and

the east side of basins 2, 3, 4 and 5, belong to the higher yielding cluster 2 (Fig. 4b, c).

When k was increased from 2 to 3, the higher-yielding cluster 2 was split into the average-

yielding cluster 3 and cluster 2 with above-average yield, while the lowest yielding cluster

1 remained generally intact (Fig. 4b, c).

In F4, k = 2 was used for 2007–2009 yield data (Fig. 5b). The temporal variability of

the 2 clusters over the 3 years was generally stable and the relative yield difference

between them increased with time (Fig. 5c). Generally, the north-central to east region of

the field (i.e. predominately basins 2 and 3) belongs to the lower yielding cluster 1, while

the southernmost portion of the field (i.e. predominately basins 5 and 6) belongs to the

higher yielding cluster 2 (Fig. 5b, c).

CART analysis

For each field, the stable yield clusters identified in the cluster analysis served as the

categorical dependent variable in the CART analysis, with the exception of F2 for which

no stable cluster set was identified and therefore was excluded from the CART analysis.

The predictor variables included DIST, to indirectly test for the effect of water manage-

ment, and the soil parameters: depth, pH, ECe, SOC, N, NO3–N, P, K and percent clay.

Percent sand and silt were omitted from the CART analysis due to redundancy if all three

particle size fractions were included. Both 2008 and 2009 soil data were included in the

analysis, but the years are not specified to simplify the results. If both years of a particular

variable were of importance in the analysis, only the logic expression for the highest

ranking year is mentioned.

In F1, for k = 2, a portion of the replications of the rpart function resulted in a cp value

corresponding to 0 splits, which would not produce a tree. Using a cp value corresponding

to 1 split (the next highest cp value among the replications) resulted in a partition of the

field into points with ‘‘low P’’ (\7.75 mg kg-1) and ‘‘high P’’ (C7.75 mg kg-1), corre-

sponding to the high-yielding cluster 1 and low-yielding cluster 2, respectively (Fig. 6).

With P as the primary splitting variable, 32 % of all points in F2 were misclassified, which

was the highest misclassification percentage compared to F3 and F4 (Fig. 6a). The ‘‘high

P’’ points were generally localized in both the uppermost basin 1 and the west-central area

of the rest of the field. About half of the points within the high-yielding cluster 1 were

misclassified as cluster 2, as they had P levels C7.75 mg kg-1 (Fig. 6). The top surrogate

for P was ECe. Points with ‘‘high ECe’’ (C0.87 dS m-1) were classified as the low-yielding

cluster 2 and had a spatial pattern similar to P (Fig. 6b). The in-field spatial distributions of

P and ECe levels are illustrated in Fig. 7.
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Fig. 3 a Interpolated yield point data (kg ha-1 at 14 % moisture content) in F2 presented using Thiessen
polygons. b Cluster classifications of interpolated yield data for two cluster sets for k = 2 in F2 presented using
Thiessen polygons. c Change in the scaled, mean yield of points belonging to each cluster classification over time
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Fig. 4 a Interpolated yield point data (kg ha-1 at 14 % moisture content) in F3 drawn using Thiessen
polygons. b Cluster classifications of interpolated yield data for k = 2 and k = 3 (from left to right).
c Change in the scaled, mean yield of points belonging to each cluster classification over time
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In F3, the optimal tree for k = 2 had 1 split with P as the primary partitioning variable

and an overall misclassification of 14 % of the total points (Fig. 8a). Points with ‘‘low P’’

(\5.95 mg kg-1) or ‘‘high P’’ (C5.95 mg kg-1) were classified as the low-yielding cluster

1 or the high-yielding cluster 2, respectively (Fig. 8a). The top competitor and surrogate

for P was pH followed by ECe (i.e. ECe C 2.595 dS m-1 was classified as the low-yielding

cluster 1). The in-field spatial distributions of P and ECe levels are illustrated in Fig. 9.

The optimal tree for k = 3 in F3 had the same initial split as k = 2, but further divided

points with ‘‘high P’’ (C5.95 mg kg-1) into those close to the inlet and those further away,

resulting in an overall 19 % misclassification of all points (Fig. 8b). The top surrogate and

k = 2
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Fig. 5 a Interpolated yield point data (kg ha-1 at 14 % moisture content) in F4 drawn using Thiessen
polygons. b Cluster classifications of interpolated yield data for k = 2. c Change in the scaled, mean yield of
points belonging to each cluster classification over time
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competitor for DIST were K and pH, respectively. Using pH instead of DIST, points with

‘‘high P and ‘‘low pH’’ (\6.99) were classified as the high-yielding cluster 2 with a mean

ECe of 1.18 dS m-1, while points with ‘‘high P’’ and ‘‘high pH’’ (C6.99) were classified as

the average-yielding cluster 3 with a mean ECe of 2.08 dS m-1 (Figs. 8c, 9). Furthermore,

the points with ‘‘low P’’, classified as the low-yielding cluster 1, had the highest mean ECe

of 3.07 dS m-1 (Figs. 8c, 9).

In F4, the optimal tree for k = 2 had 3 splits dependent on pH, N and SOC, resulting in

the lowest overall misclassification of 8.7 % compared to F1 and F3 (Fig. 10). The

Table 10 Global Moran’s I sta-
tistic and corresponding z score
quantifies the degree of spatial
autocorrelation of interpolated
yield values at grid points within
each field and year used in the
cluster analysis

** p \ 0.01, *** p \ 0.001

Field Year Moran’s I (z)

F1 2008 0.10 (0.97)

2009 0.14 (1.27)

F2 2005 0.20 (2.94)**

2006 0.33 (4.79)***

2007 0.55 (7.79)***

2008 0.19 (2.78)**

F3 2008 0.40 (3.82)***

2009 0.53 (4.91)***

F4 2007 0.26 (2.66)**

2008 0.37 (3.58)***

2009 0.49 (4.57)***

Fig. 6 a Classification tree obtained for k = 2 in F1 divides the grid points by their P concentration to
predict membership into cluster 1 or cluster 2 (indicated in the top line of the terminal nodes). Points for
which the logic statement (i.e., P \ 7.75 mg kg-1) is true go to the left node, while false points go to the
right node. Values shown below the first splitting variable (in this tree it is P) from left to right indicate the
initial number of elements within clusters 1 and 2, respectively. Similarly, at each terminal node the points
within each partitioning category are counted by their cluster identification number. For example, in the left
node, 28 points within cluster 1, and 3 points within cluster 2, have P \ 7.75 mg kg-1, and are categorized
as cluster 1. b Maps of recursive partitioning categories for the primary splitting variable, P (left), and the
top surrogate splitting variable, ECe (right), drawn for each grid point using Thiessen polygons
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majority of the points within F4 were either partitioned into points with ‘‘high pH’’

(C7.05), predicting the low-yielding cluster 1, or points with ‘‘low pH and high N’’

(N C 1.088 g kg-1), predicting the high-yielding cluster 2 (Fig. 10). Points classified as

the low-yielding cluster 1 by ‘‘high pH’’ had the highest mean ECe and lowest mean P (i.e.

1.72 dS m-1 and 4.72 mg kg-1, respectively), while points classified as the high-yielding

cluster 2 by ‘‘low pH and high N’’, had the lowest mean ECe and highest mean P (i.e. 0.91

dS m-1 and 7.02 mg kg-1, respectively) (Figs. 10, 11). These two recursive partitioning

categories each encompassed the largest spatially contiguous areas in F4 (Fig. 10b).

Among the 9 points remaining with ‘‘low pH and low N’’, those with ‘‘high SOC’’

Fig. 7 Maps of interpolated soil P and ECe grid point data in F1 from 2008 using ordinary kriging method

Fig. 8 a Classification tree for k = 2 in F3. b Classification tree for k = 3 in F3. c Recursive partitioning
categories for k = 3 using the primary splitting variable, P, and pH, the top competitor for DIST, and drawn
for each grid point using Thiessen polygons. The classification trees are interpreted the same as that of
Fig. 6a
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(C10.64 g kg-1) were classified as the low-yielding cluster 1, and points with ‘‘low SOC’’

(\10.64 g kg-1) were classified as the high-yielding cluster 2 (Fig. 10).

Discussion

For precision management to be beneficial in rice systems, substantial spatial variability

must be identified, persist temporally and its underlying causes be understood in order to be

effectively treated. Wehlan and McBratney (2000) proposed the Null Hypothesis of Pre-

cision Agriculture (NHPA) to test whether reducing the management scale of a given area

would improve a set of predefined metrics, such as net profit and nutrient recovery

Fig. 9 Maps of interpolated soil P and ECe grid point data in F3 from 2008 using ordinary kriging method

Fig. 10 a Classification tree for
k = 2 in F4 is interpreted the
same as in Fig. 6a. b Recursive
partitioning categories for k = 2
using the primary splitting
variables, pH, N and SOC, and
drawn for each point using
Thiessen polygons
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efficiency. However, for a real dataset it is not necessarily practical or even possible to use

conventional statistical methods to test this hypothesis. The data collected in this research

are observational, and are not appropriate for confirmatory statistics. Thus, in the context of

this study analyzing the NHPA is an exploratory endeavor that requires rigorous quanti-

fication and characterization of spatiotemporal variability, and subjective interpretation of

the results. As we acknowledge the risk of concluding a false positive (i.e. identifying a

pattern or trend that is not real) in such a study, we have aimed to balance that risk with the

benefit of being able to interpret how complex patterns of yield and edaphic properties

change in space and time.

Yield spatiotemporal variability

The four fields investigated exhibited varying degrees of in-field variability of yield

(Table 9). F1, F3 and F4 had the highest variation in yield among grid points (i.e. CV of

grid points in 2008 = 10.48, 10.41 and 9.69 %, respectively) compared to F2 (CV of grid

points in 2008 = 7.09 %) (Table 9). A broad range of yield variation within irrigated rice

fields has been reported, but was based on considerably smaller field sizes and higher

sampling density. For example, Dobermann (1994) reported a higher CV of 39 % based on

81 samples in a 3.6-ha rice field, while Yanai et al. (2001) observed much less variation in

yield with a CV of 5.89 % based on 100 samples in a in 0.5-ha rice field.

Based on the cluster analysis results for each field, the temporal stability of yield

patterns varied among fields, indicating that there is a spectrum of suitability of rice fields

for precision management (Figs. 2, 3, 4, 5). The inconsistency in the two possible cluster

sets for k = 2 in F2 indicates that the spatial patterns in this field have been influenced in

large part by transient exogenous factors (e.g. weeds, pests, climate) as opposed to per-

sistent endogenous factors (Fig. 3b, c). This was corroborated by the grower’s observations

that there was a poor stand in the northeast corner in 2007 relative to the rest of the field

due to deep water and weed pressure (Figs. 3b, c, Set 2). Higher weed density occurring in

Fig. 11 Maps of interpolated soil P and ECe grid point data in F4 from 2008 using ordinary kriging method
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an area with deeper water is plausible, as the water may have protected the weeds from

contact with a foliar active herbicide. Contrary to F2, which lacked a stable yield pattern,

F1, F3 and F4 exhibited a stable and spatially contiguous yield pattern in at least a portion

of each field, providing part of the evidence required to reject the NHPA (Figs 2, 4, 5).

Classification and regression tree analysis

In an observational exploratory analysis such as this, there exists a high level of multi-

collinearity among the suite of variables measured. Therefore, attention was given to the

surrogate and competitor variables in addition to the primary partitioning variables iden-

tified in the CART analysis. Subsequently, biophysically-based interpretations were made

to identify the primary factors causing yield variability in this collection of rice fields. The

key yield-limiting edaphic factors explaining the stable yield patterns found in F1, F3 and

F4 were ECe and P, which in each field were the primary splitting variables, competitor

and/or surrogate, and/or highly correlated to a splitting variable (Figs. 6, 7, 8, 9, 10, 11).

Maas and Grattan (1999) reported an ECe threshold of 3 dS m-1 for rice. However,

several lower yielding clusters within the rice fields were distinguished from higher

yielding clusters by ECe values \3 dS m-1. This may be due to variation in salinity

thresholds and tolerance levels among rice genotypes (Flowers and Yeo 1981; Rao et al.

2008), as well as an underestimation of ECe due to the timing of soil sampling prior to the

initial flood; Scardaci et al. (2002) observed increases in flood water salinity during the

water-holding periods required after herbicide applications in rice fields, which suggests

that soil samples collected prior to flooding may be less than the ECe levels during the

water holding periods. Alternatively, a variable not measured in this study may have

caused the yield variability.

Soil P content below 6 mg kg-1 is considered to be deficient in California rice fields

(Williams 2010; Linquist and Ruark 2011). Fields F3 and F4 had minimum P concen-

trations below the critical level (3.2 and 2.8 mg kg-1, respectively) (Table 4). Although

SOC, N, K and pH were in some instances correlated with the yield clusters, it is likely

they were masking the effects of P and ECe levels, which were approaching or exceeding

critical levels in the low-yielding clusters. Furthermore, the fields were adequately fertil-

ized with N, which would potentially mask deficiencies in the indigenous soil N supply.

The spatial distribution of SOC and N within rice fields may be partly due to higher crop

productivity and subsequent accumulation of organic matter, as opposed to the cause of the

observed yield patterns. Although K was correlated with some of the yield clusters, it was

not interpreted to be driving yield variability, as the minimum K concentration measured in

F1, F3 and F4 was 117 mg kg-1, which is well above the published critical level of

60 mg kg-1 in California rice soils (De Datta and Mikkelson 1985) (Table 4). However,

the movement of K down the fields by mass flow in the flood water may over time

necessitate K fertilization in the uppermost basins (Table 6).

In F1, P was unexpectedly negatively correlated with yield and surfaced as the primary

partitioning variable of the two yield clusters (Fig. 6). This anomaly can be explained by

the positive correlation among P, pH and ECe in this particular field. Subsequently, the

low-yielding areas were correlated with both high ECe and high P in this field (Figs. 2, 6,

7). Additionally, it may be the case that P has been depleted in higher-yielding areas due

greater removal of P in plant biomass. This suggests P was a masking variable in the CART

analysis in F1, and ECe, the top surrogate for P, offered the more logical explanation for

the low-yielding cluster. The tree with ECe as the partitioning variable classified the low-
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and high-yielding clusters based on ECe above or below 0.87 dS m-1, respectively

(Fig. 6).

In F3 and F4, high ECe and low P were identified as driving the division between the

low- and high-yielding clusters (Figs. 8, 9, 10, 11). In F3, the low-yielding cluster 1 for

k = 3, located in a single, spatially contiguous area and mainly within basins 3 and 4, was

elucidated by P \ 5.95 mg kg-1 in the CART analysis, which coincides with the critical

soil P content of 6 mg kg-1 in California rice fields (Williams 2010; Linquist and Ruark

2011) (Fig. 8, 9). Soil pH and ECe were the top surrogates and competitors for P in F3. In

irrigated rice soils, pH is generally not considered to limit yield due to the tendency for pH

to equilibrate close to pH of 7 in flooded conditions regardless of the initial pH of the non-

flooded soil. Therefore, attention was given to ECe as a potential surrogate or co-limiting

factor in F3 (Fig. 9b). The classification of the low- and high-yielding clusters was based

on an ECe value above or below 2.015 dS m-1, respectively. The factor underlying the two

higher yielding clusters in F3 with P ‡ 5.95 mg kg-1 was DIST, which indicated that there

was a bio-physical explanation for the difference between the clusters that was related to

the proximity to the inlet. The top competitor for DIST was K, but all K levels throughout

the field were well above the critical level of 60 mg kg-1 for California rice soils (De

Datta and Mikkelson 1985) (Table 4). For comparison, pH, the next top competitor for

DIST, was highly positively correlated with ECe, which was known to be problematic in

this field (Fig. 9b). Although ECe was not a competitor or surrogate for DIST, it corre-

sponded to the difference in mean yield of the two clusters; relative to cluster 2, cluster 3

was lower yielding and the points classified as cluster 3 in the CART analysis had a higher

mean ECe of 2.08 dS m-1 compared to the points classified as cluster 2, which had a mean

ECe of 1.18 dS m-1 (Figs. 8c, 9b).

A similar interpretation of the classification tree obtained for F4 is made, as ECe was

one of the top surrogates for pH, which primarily divided the field into the low-yielding

cluster 1 based on pH ‡ 7.05, and into the high-yielding cluster 2 based on pH < 7.05

(Fig. 10). The points classified as the low-yielding cluster 1 had the highest mean ECe of

1.72 dS m-1 (Figs. 10, 11). Furthermore, the same set of points classified as cluster 1 also

had the lowest mean P (4.72 mg kg-1), which is below the critical P level of 6 mg kg-1

(Williams 2010; Linquist and Ruark 2011), while the points classified as the high-yielding

cluster 2 by ‘‘low pH and high N’’ had the lowest mean ECe (0.91 dS m-1) and highest

mean P (7.02 mg kg-1) (Figs 10, 11).

The effect of land-leveling on rice yield variability reported by Walker et al. (2003) and

Roel and Plant (2004b) was not observed, as the CART analysis did not indicate soil depth

was driving the spatial yield patterns in any of the fields (Figs. 6, 8, 10). Possible reasons

for lack of an apparent relationship between the initial land-leveling event and yield

variability are that the field equilibrated to the climate and management practices over the

considerable amount of time (i.e. C35 years) since the field was first land leveled (Eck

1987) (Table 2). For example, the spatial distribution of ECe levels in F1, F3 and F4 may

actually be the result of saline sub-soil that was exposed by the initial land-leveling

process, but the ECe patterns may no longer be correlated with soil depth (Figs. 7, 9, 11).

Role of water management in spatial variability of soil properties and yield

Unlike other studies (Roel et al. 2005; Raney et al. 1957), we did not observe a significant

effect of cold water temperature on rice yield variability (Table 5). Despite periods of

water temperature below the reported threshold of 20 �C for rice (Roel et al. 2005), the
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mean hourly water temperature across the entire growing season at all locations was above

20 �C (data not shown).

Similar to the findings of Scardaci et al. (2002) wherein salinity was significantly higher

in lowermost basins of various rice fields relative to the uppermost basins nearest the inlets,

valuable soil nutrients (i.e. N and K), as well as DOC and salts in general (i.e. ECw), were

redistributed via mass flow in irrigation water down the fields and subsequently deposited

in the lowermost basins or in areas with low lateral water movement by evapoconcen-

tration (Fig. 1; Tables 6, 7, 8). Nutrient loss in the uppermost basins due to water

movement has not yet affected yield based on the interpretations of the cluster and CART

analyses in relation to the spatial orientation of the basins and water management practices.

However, the redistribution of soil nutrients down a field may in the long-term reduce yield

potential in the uppermost basins, and in areas where water movement is restricted, reduce

yield due to the accumulation of salts. Indeed, low-flow areas corresponded in general to

low-yielding clusters in F1, F3 and F4, which were differentiated from high-yielding

clusters partly by elevated ECe (Figs. 1, 7b, 9b, 11b). Thus, yield variability may already

be affected and/or exacerbated by water management. For example, the relatively high ECe

areas located in the west side of basins 3 and 4 in F1 belong to the low-yielding cluster 1,

which may be influenced by water management; the dominant water flow patterns were

down the east side of F1 with minimal water flow through the west side of the field,

favoring salt accumulation on the west side of the field (Figs. 1, 7b). The low-yielding

areas in F3 and F4, explained partly by high ECe in the CART analysis, may primarily be

due to pre-existing soil conditions. However, historical water management practices in F3

and F4 favored water flow down the east and west sides of the fields, respectively, which

would have exacerbated the yield-limiting salinity problems observed in these fields

(Figs. 1, 9b, 11b).

Conclusions

Analyzing the in-field spatial yield patterns, their stability and underlying causes is a

critical first step in evaluating the appropriateness of precision management relative to

field-scale (i.e. uniform) management in flood-irrigated rice systems. This study demon-

strated that the suitability of California rice fields for precision management must be

evaluated on a case-by-case basis due to high temporal variability of spatial yield patterns

observed in some rice fields (i.e. F2) and stable yield patterns with identifiable causes (i.e.

ECe and P) observed in other fields (i.e. F1, F3 and F4). The latter scenario may benefit

from precision management, as well as adjustments in water management.

The redistribution of N and K by flood water movement down the rice fields was a

commonality observed across all fields, which has important long-term implications for

development of plant nutrient deficiencies in the uppermost basins. Although this redis-

tribution is not affecting yield yet, uppermost basins may become separate management

zones in the future. While it is uncertain whether the spatial ECe patterns observed in F1,

F3 and F4 were due to the transport and subsequent accumulation of salts in low-flow

areas, or due to pre-existing soil properties, it is certain that the historical water man-

agement practices that favored water flow down a single side of the field exacerbated the

problem. Water management that promotes flushing salts out of a field (e.g. allowing

irrigation water to flow down both sides of the field, alternating flow patterns inter-

annually, and/or flooding fields in the winter) may help ameliorate the salinity problems

associated with the low-yielding zones.
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More traditional precision management practices that may increase profitability of

irrigated rice fields with spatially and temporally stable yield patterns associated with high

ECe and/or low P, are the reduction of N fertilizer in salt-affected zones and increase in P

fertilizer once salinity issues are mitigated. Further studies are needed to test which pre-

cision management action will optimize net profitability in flood-irrigated rice systems in

an environmentally sustainable manner.
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