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ABSTRACT: Janus kinases (JAK), a group of proteins in the
nonreceptor tyrosine kinase (NRTKs) family, play a crucial role in
growth, survival, and angiogenesis. They are activated by cytokines
through the Janus kinase−signal transducer and activator of a
transcription (JAK-STAT) signaling pathway. JAK-STAT signaling
pathways have significant roles in the regulation of cell division,
apoptosis, and immunity. Identification of the V617F mutation in
the Janus homology 2 (JH2) domain of JAK2 leading to
myeloproliferative disorders has stimulated great interest in the
drug discovery community to develop JAK2-specific inhibitors.
However, such inhibitors should be selective toward JAK2 over
other JAKs and display an extended residence time. Recently, novel
JAK2/STAT5 axis inhibitors (N-(1H-pyrazol-3-yl)pyrimidin-2-
amino derivatives) have displayed extended residence times
(hours or longer) on target and adequate selectivity excluding JAK3. To facilitate a deeper understanding of the kinase−inhibitor
interactions and advance the development of such inhibitors, we utilize a multiscale Markovian milestoning with Voronoi
tessellations (MMVT) approach within the Simulation-Enabled Estimation of Kinetic Rates v.2 (SEEKR2) program to rank order
these inhibitors based on their kinetic properties and further explain the selectivity of JAK2 inhibitors over JAK3. Our approach
investigates the kinetic and thermodynamic properties of JAK−inhibitor complexes in a user-friendly, fast, efficient, and accurate
manner compared to other brute force and hybrid-enhanced sampling approaches.

1. INTRODUCTION
Tyrosine kinases (TKs), a family of proteins, catalyze the
transfer of phosphate groups from adenosine triphosphate
(ATP) molecules to tyrosine residues of the target protein.1,2

The TKs can be broadly divided into receptor and nonreceptor
tyrosine kinases. The receptor tyrosine kinases (RTKs) are
membrane bound and pass the extracellular signal to the inside
of cells, while nonreceptor tyrosine kinases (nRTKs) are
mainly cytosolic and bind to ligands to activate downstream
signaling.3−5 nRTKs are involved in cell signaling, differ-
entiation, proliferation, and apoptosis. Janus kinase (JAK)
proteins are nRTK receptors involved in activating tran-
scription and production of cytokines to recruit immune cells
at the site of infections. The JAK family comprises Janus kinase
1 (JAK1), Janus kinase 2 (JAK2), Janus kinase 3 (JAK3), and
tyrosine kinase 2 (TYK2).6,7 JAKs regulate downstream
signaling by activating signal transducer and activator of
transcription (STAT) proteins propagating the signal from the
membrane to the nucleus, also known as the JAK-STAT
pathway.7−9 The JAK-STAT pathway regulates cytokines and
growth hormones which are crucial for cellular processes, such
as hematopoiesis, lactation, immune system development, and
immune response.10 The abnormalities and mutations in JAK
proteins lead to neurological and immune system defects,

including, but not limited to, rheumatoid arthritis (RA),
inflammatory bowel diseases (IBD), multiple sclerosis (MS),
and cancer.11,12 Mutations in JAK1 and JAK3 are especially
known to cause severe combined immune deficiency (SCID)
diseases.13

The JAK proteins are constitutively expressed, with the
exception of JAK3 proteins, which are expressed upon immune
activation. JAK proteins contain seven conserved homology
domains (JH1−JH7).14,15 The JH1 domain at the carboxyl-
terminal shows a classical tyrosine kinase activity, while the
JH2 domains are pseudokinase domains that assist the JH1
domain for catalysis. JH3−JH7 domains are known to be
involved in receptor binding and the regulation of kinase
activity. Inhibition of JAK proteins may prove to be effective
against diseases, including neurological disorders and different
types of cancer. The similarity and structural conservation in
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JAK proteins create challenges to designing selective inhibitors
against them.16,17 Although both the JAK2 and JAK3 proteins
have highly conserved domains and are structurally very
similar, one of the significant differences between them are the
interactions of these proteins with different types of receptors.
While JAK2 primarily mediates signals from glycoprotein 130
(gp130)-related cytokines, granulocyte macrophage-colony
stimulating factor (GM-CSF) receptors, and type II cytokine
receptors, JAK3 mediates signaling from type I receptors
containing the common gamma chain (γc).18−21 JAK
inhibitors have shown promise as potential treatments for a
variety of diseases, including certain types of cancer, auto-
immune disorders, and inflammatory conditions.22−27 Tofaci-
tinib and baricitinib are the two first-generation drugs that the
U.S. Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) have approved for the treatment of
RA.28−30 Tofacitinib targets JAK1, JAK2, and JAK3, while
baricitinib targets JAK1 and JAK2 proteins. However, selective
inhibition of JAK proteins is crucial for tuning the signaling
pathway and the underlying downstream processes. Structural
understanding of selective inhibition is crucial to optimize their
activities and design better selective inhibitors.31

Molecular dynamics (MD) simulations have been effective
in studying the binding and unbinding dynamics of protein−-
inhibitor complexes and can be used for kinetic estimates.32−43

Understanding the receptor−ligand binding and unbinding
process can be useful for drug discovery and development,
especially in accelerating lead optimization efforts and lowering
drug attrition rates.44−46 The bimolecular association rate
constant (kon) and the dissociation rate constant (koff) are
required to describe the kinetic profile of a potential
noncovalent inhibitor or a drug molecule. Recently, drug−
target residence time (1/koff), or the time spent by the drug in
the binding pocket of the protein, has received significant
attention as drugs with a higher residence time are shown to
have greater in vivo efficacy as compared to thermodynamic
parameters such as free energy.47−50 It is possible for drugs
with similar binding free energies (ΔGbind) to have different
binding and unbinding kinetic rates. Several factors contribute

to ligand binding and unbinding kinetics. These include, but
are not limited to, the size and flexibility of ligands, forces
within the molecular system, large-scale receptor conforma-
tional rearrangements, and ligand-induced conformational
changes in the receptor.51−57 One of the major limitations of
MD simulations is the immense amount of computation time
required to observe rare biologically relevant events.
Simulations often get stuck in metastable regions. Enhanced
sampling methods including and not limited to metadynam-
ics,58−62 adaptive biasing force (ABF),63−65 and umbrella
sampling66,67 are employed to overcome such limitations
where the applied bias potential steers the system to overcome
deep energy wells. The bias potential for these methods is a
function of collective variables (CVs), which are predefined
and often require an in-depth understanding of the biological
systems of interest.
Gaussian accelerated molecular dynamics (GaMD) is an

enhanced sampling method where a harmonic boost potential
is added to the total potential energy of the system, leading to
reduced energy barriers.68,69 An implementation of GaMD for
receptor−ligand complexes is Ligand GaMD (LiGaMD),
where a potential energy boost is applied to the ligand
nonbonded interaction potential energy while another boost is
applied to the remaining potential energy of the entire system,
thus facilitating accelerated ligand binding and unbinding
events.70,71 Random acceleration molecular dynamics
(RAMD) is another method used to rank inhibitors by
residence time for a particular receptor.40,72 Scaled MD is an
unbiased sampling approach that can be used to predict
protein−ligand unbinding kinetics.36 Other methods, including
free energy perturbation, can be used to obtain thermody-
namic, but not kinetic, predictions for receptor−ligand
binding.73−76 A number of enhanced sampling methods exist
to predict the kinetics and thermodynamics of binding and
unbinding and have been summarized in recent litera-
ture.43,77−82 A study using MM-GBSA was recently performed
on a similar kinase for inhibitors bound to the ATP binding
site.83 In contrast to biasing potential methods, for the JAK
systems examined in this study, Simulation-Enabled Estimation

Figure 1. JAK2−inhibitor 9 complex with interacting residues within a cutoff distance of 2.5 Å (center). The inhibitors with large residence times
for JAK2 proteins are displayed.
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of Kinetic Rates v.2 (SEEKR2) employs a reasonably simple
and uniform CV definition for receptor−ligand complexes and
requires a minimal a priori understanding of these complexes.
N-(1H-Pyrazol-3-yl)pyrimidin-2-amino derivatives are anal-

ogous to ATP molecules and have been shown to selectively
inhibit JAK2 proteins with a high residence time in the binding
pocket of JAK2 as compared to JAK3 proteins (Figure 1).84

We, therefore, aim to rank these inhibitors in comparison to
their experimentally reported residence times in the JAK
complexes by employing a milestoning simulation method and
explain the differences in residence times by providing
complete kinetic and thermodynamic profiles of receptor−
ligand pairs. The SEEKR2 software is user friendly, fast,
efficient, and accurate as compared to other brute force
methods and hybrid approaches.68,70,85−90 The Markovian
milestoning with Voronoi tesselation (MMVT) method
implemented in the SEEKR2 program is described in the
Methods section followed by a detailed description of the
calculation of residence times and kinetic and thermodynamic
profiles of the protein−inhibitor complexes.

2. METHODS
2.1. Simulation-Enabled Estimation of Kinetic Rates

v.2 (SEEKR2). 2.1.1. Markovian Milestoning with Voronoi
Tessellations. A Voronoi tessellation is a subdivision of space
into n regions or “Voronoi cells”.91,92 From a given set of
points a = {a1, a2, a3, .···, an} and a set of Voronoi cells V = {V1,
V2, V3, .···, Vn}, such that a1 ∈ V1, a2 ∈ V2, a3 ∈ V3, .···, an ∈ Vn
(Figure 2), let us define a distance metric, d(a, b), that

estimates the distance between the two points, a and b.
According to the definition of a Voronoi tessellation, a point α
will belong to cell V1 if and only if d(a1, α) < d(ai, α) for i ∈
{2, 3, .···, n}. Let there be N boundaries (milestones) between
adjacent Voronoi cells.
SEEKR2 is an open-source software that automates the

process of preparation, initiation, running, and analysis of
milestoning calculations utilizing MD and Brownian dynamics
(BD) simulations to estimate the kinetics and thermodynamics
of receptor−ligand binding and unbinding.93−95 MD simu-
lations are run using the OpenMM simulation engine, while
BD simulations are run using the Browndye software.96 In the
SEEKR2 multiscale milestoning approach, the phase space of
the receptor−ligand complex is split into two regions, i.e., the
MD and the BD region. This partition is based on a predefined
CV, i.e., the distance between the center of mass (COM) of

the ligand and the COM of the receptor’s binding site. In the
region closer to the binding site, solvent effects and molecular
flexibility must be included for describing molecular inter-
actions; therefore, MD simulations are employed. The MD
region is further partitioned into several Voronoi cells. Steered
molecular dynamics (SMD) simulations are run to generate
starting structures for SEEKR2 simulations.97 SMD simula-
tions pull the ligand slowly out of the binding pocket with a
moving harmonic restraint, and a snapshot of the trajectory is
saved for every Voronoi cell as it passes through them. Fully
atomistic, flexible, and parallel MD simulations are performed
in each Voronoi cell with reflective boundary conditions. When
the ligand is further away from the binding site, i.e., in the BD
region, rigid body BD simulations are adequate to describe the
diffusional encounter of the ligand and the receptor.
The MMVT-SEEKR2 approach has been shown to estimate

binding and unbinding kinetic and thermodynamic properties
for less complex receptor−ligand systems with high accuracy,
especially the model host−guest systems, i.e., β-cyclodextrin
with guest ligands and the model protein system, i.e., the
trypsin−benzamidine complex.95 We thereby extend our
efforts in exploring the capabilities of SEEKR2 in estimating
kinetic and thermodynamic properties for more complex
systems, specifically ligands which are strong binders and have
large residence times.

2.1.2. Estimating Residence Times and Binding Free
Energies. According to the MMVT approach, the system
evolves according to a continuous-time Markov jump between
Voronoi cells.98,99 Let the rate matrix associated with the
evolution be Q, Nij be the number of transitions between
milestones, i and j, and Ri be the time spent by the trajectory
having last touched milestone i. The diagonal and the off-
diagonal elements of the transition matrix, Q, are represented
by eqs 1 and 2, respectively.
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MD simulations are run within the Voronoi cells until
convergence is reached. Reflective boundary conditions are
employed at the boundaries to confine trajectories within the
Voronoi cells. Consequently, velocities of the trajectories are
reversed as they touch the edges of the adjacent Voronoi cells.
For a Voronoi cell α, let Nij be the number of trajectory
collisions with an jth milestone after having last touched the ith
milestone within anchor α, let Ri be the simulation time
having last touched the ith milestone within anchor α, let Tα be
the total simulation time in cell α, let Nα,β be the total number
of collisions within Voronoi cell α, with the boundary shared
with Voronoi cell β, and let T be the reciprocal sum of time
spent in all the cells as described by eq 3, then Nij and Ri are
represented by eqs 4 and 5, respectively. The equilibrium
probability, π, is obtained by solving eqs 6 and 7.
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Figure 2. A representative Voronoi diagram where V1, V2, V3, .···, Vn
represent the Voronoi cells, and a1 ∈ V1, a2 ∈ V2, a3 ∈ V3, .···, an ∈ Vn.
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With Q as the N − 1 by N − 1 matrix obtained from the upper
left corner of Q, one can compute the mean first passage time
(MFPT) or residence time for each milestone described by
vector TN by solving eq 8.

Q T 1N = (8)

where 1 is a vector of ones. Stationary probabilities obtained
from the milestoning simulations are used to construct the free
energy profile of unbinding of the receptor−inhibitor
complexes with the bound-state milestone as a reference.
Stationary probabilities, p, are found by solving the eigenvalue
eq 9.

Qp p= (9)

Let kB be Boltzmann’s constant, T be the temperature, pi be the
stationary probability of the ith milestone, and pref be the
stationary probability of the bound state or the reference
milestone. The expression for estimating the free energy profile
of the ith milestone, i.e., ΔGi, is given by eq 10.
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2.1.3. Ranking JAK−Inhibitor Complexes with SEEKR2. N-
(1H-Pyrazol-3-yl)pyrimidin-2-amino derivatives are ATP-com-
petitive inhibitors of the JAK2-STAT5 pathway that are
reported to display prolonged residence times on JAK2 and
sufficient selectivity against JAK3, both at biochemical and
cellular levels.84,100 The residence times of four inhibitors with
the JAK2 and JAK3 kinase were experimentally determined
using a rapid dilution enzymatic assay.101 We present a
relatively computationally inexpensive and efficient application
of the SEEKR2 program to predict and rank order the
residence times of the JAK2 and JAK3 inhibitors.

System Preparation. To estimate the residence times of the
four inhibitors in the two JAK proteins, an all-atomistic MD
simulation is performed in SEEKR2. The X-ray crystal
structure of the JAK2−JH1 domain in complex with inhibitor
6 (PDB ID: 3ZMM) is used as the reference structure for
JAK2 SEEKR2 simulations.84 For the preparation of the JAK2
complex with inhibitors 5, 7, and 9 (Figure 1), the X-ray crystal
structure of the JAK2 domain in complex with inhibitor 6
(PDB ID: 3ZMM) is used as a reference structure. Inhibitor 6
is modified to 5, 7, and 9 using the Maestro module of the
Schrödinger software suite (Figure 1).102 Once inhibitor 6 is
modified to either inhibitor 5, 7, or 9, the JAK−inhibitor
complex is subjected to the removal of water molecules beyond
3 Å of the protein and with fewer than three hydrogen bonds
to the neighboring residues. It is followed by hydrogen bond

optimization of the receptor−ligand complex with protonation
states of residues at pH 7.4. Finally, a restrained minimization
of the complex is performed with a complete relaxation of the
H-bond network while keeping the heavy atoms restrained.
The AMBER ff14SB force field is used to parametrize the
protein, while the inhibitor is parametrized using the
Antechamber module with the general Amber force field
(GAFF) with the AM1-BCC charge model.103−106 The
protein−inhibitor complex is then explicitly solvated with the
TIP4P-Ew water model and a salt (Na+/Cl−) concentration
of 150 mM in a truncated octahedral periodic box with a 10 Å
water buffer.107 The OpenMM MD engine is used to run the
simulation at 300 K with a 2 fs time step and a nonbonded
cutoff radius of 9 Å.108,109 The system is systematically heated
from 0 to 300 K in steps of 3 K of 20 ps each, followed by 20 ns
each of NPT and NVT equilibration simulations.
The X-ray crystal structure of the JAK3−JH1 domain in

complex with an indazole substituted pyrrolopyrazine (PDB
ID: 3ZC6) is used as the reference structure for the JAK3
SEEKR2 simulations.110 The inhibitor complexed with JAK3 is
removed, and the structure is aligned to the JAK2 complexed
with inhibitor 6. Inhibitor 6 is then placed at the ATP binding
site of the JAK3 protein. Inhibitor 6 is modified to 5, 7, and 9
using the Maestro module of the Schrödinger software suite,
and the same protocol is followed for JAK3 systems as
performed for the JAK2 complexes for system preparation,
solvation, and equilibration. It is important to note that only
one crystal structure of JAK2 is used to prepare all four JAK2−
inhibitor complexes, and the same holds true for the JAK3−
inhibitor complexes.

Steered Molecular Dynamics and Voronoi Cell Definition.
To define Voronoi cells, we described the CV as the distance
between the COM of the inhibitor and the COM of α-carbons
of the binding site111 (Table S1). The cutoff distance for the
binding site of the inhibitor is defined as all residues within 3 Å
of any atoms of the inhibitor in its original position. All the α-
carbon atoms of the surrounding residues of the JAK protein
within the cutoff distance of any of the atoms of the inhibitor
are defined as the binding site for the receptor−inhibitor
complex. Table S1 displays the residues of each JAK−inhibitor
complex selected for the COM calculation of the binding site.
For JAK2−inhibitor complexes, CV-based milestones are
defined as concentric spheres and are located at distances of
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5,
10.0, 11.0, 12.0, 13.0, 14.0, 15.0, and 16.0 Å, respectively, from
the COM of the binding site. Similarly, for the JAK3−inhibitor
complexes, CV-based milestones are defined as concentric
spheres and are located at distances of 3.0, 3.5, 4.0, 4.5, 5.0,
5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 11.0, 12.0, 13.0,
14.0, 15.0, and 16.0 Å, respectively, from the COM of the
binding site. In the case of JAK3−inhibitor complexes, none of
the residues of the JAK3 protein interacted with the inhibitor
within the 2.5 Å radius, leading to the choice of the first
milestone at 3.0 Å. This choice should not be problematic
since the milestoning procedure would not be significantly
sensitive to the choice of the number of milestones as long as
each state and pathway are adequately represented in each
milestoning model, and the results are sufficiently converged.
SMD simulations are employed to generate starting structures
within each Voronoi cell where the ligand bound to the
complex is slowly pulled out of the binding site in such a way
that there is no significant stress to the system, and it stays in
the local equilibrium. To generate starting structures for
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MMVT simulations, the ligand is slowly pulled from the bound
state to the outermost Voronoi cell with a moving harmonic
restraint of 50,000 kJ mol−1 nm−2 over the course of 1 μs.

SEEKR2 Molecular Dynamics Simulations. With the
starting structures of each Voronoi cell obtained by SMD,
MMVT simulations are employed with the same force field
parameter files used during equilibration simulations. No
harmonic restraint is applied during these simulations.
Reflective boundary conditions are employed to retain the
trajectories within individual Voronoi cells. A total of 400 ns of
MD simulations is run within each Voronoi cell. To improve
the sampling and account for stochasticity, three replicas of
SEEKR2 simulations are run for each JAK−inhibitor complex.
In short, three replicas of 21 independent and parallel MD
simulations of 400 ns are run for each of the JAK2−inhibitor
complexes, totaling a simulation time of 25.2 μs. Similarly,
three replicas of 20 independent and parallel MD simulations
of 400 ns within each Voronoi cell are run for each of the
JAK3−inhibitor complexes, totaling a simulation time of 24 μs.
For the JAK2−inhibitor and JAK3−inhibitor complexes, 21
and 20 parallel simulations, respectively, for 400 ns each were
carried out on one NVIDIA V100 GPU on the Popeye
computing cluster at San Diego Supercomputer Center
(SDSC), which aggregated approximately 220 ns/day; i.e.,
the entire SEEKR2 simulations for each complex required
approximately 44 h of computing time on parallel GPUs (21
and 20 parallel GPUs for JAK2−inhibitor and JAK3−inhibitor
complexes, respectively). Therefore, SEEKR2 is a powerful
tool for rank-ordering the ligands and characterizing the ligand
binding and unbinding kinetics and thermodynamics in
receptor−ligand complexes in a user-friendly and computa-
tionally efficient manner, thus facilitating computer-aided drug
design.

3. RESULTS AND DISCUSSION
Estimating thermodynamic and kinetic parameters, such as the
residence time and free energy of binding and unbinding, is
challenging in cases of receptor−inhibitor complexes with
extended residence times.112,113 A minor change in the
structures of inhibitors sometimes leads to an enormous
change in the residence times in the binding pockets of
proteins. We estimated the residence times of four inhibitors in
the binding pocket of JAK2 and JAK3 proteins. We showed
that the trend of the residence time predicted by the SEEKR2
milestoning approach captures that of experimental methods.
We showed that the trend of the residence time predicted by
the SEEKR2 milestoning approach reproduces the exper-
imental findings. Inhibitors 5 and 9 displayed the lowest and
the highest residence times for the JAK2 protein, respectively.
Similarly, inhibitors 6 and 9 displayed the lowest and the
highest residence times for the JAK3 protein, respectively
(Table S2). Long time scale MD simulations are performed to
study the structural aspects of protein−ligand interactions,
primarily focusing on these particular inhibitors to explain the
discrepancy in their respective residence times.
3.1. Determination of Kinetic and Thermodynamic

Parameters from SEEKR2 Simulations. Simulations in the
majority of the Voronoi cells converged after 400 ns. The
MFPT or residence time is calculated using eq 8. The
residence times reported in Figure 3a and b are the means of
the residence times obtained from three independent SEEKR2
simulations for each of the JAK−inhibitor complexes (Table
S2). Residence times for the novel series of inhibitors for JAK2

and JAK3 estimated by the SEEKR2 program are in close
agreement with the experimental studies (Figure 3a and b).
SEEKR2 not only predicted the residence times correctly but
also preserved the rank ordering of residence times for
inhibitors in both the JAK2 and JAK3 complexes. It can be
seen from Figure 3a and b that inhibitors 6 and 9 display
extended residence times in the ATP-binding sites of the JAK2
complexes.

ΔGi is calculated for each of the milestones using eq 10. In
the case of the JAK2−inhibitor 5 complex, two energy barriers
exist as the inhibitor dissociates with the receptor, one at
milestone 4 and the other at milestone 11 (Figure 4a). The
COM-COM distance between the inhibitor and the alpha-
carbon (α-C) atoms of the binding site for the first transition
state (TS 1) is 4.50 Å, while the second transition state (TS 2)
is at a COM-COM distance of 8.00 Å from the binding site.
Similarly, two energy barriers exist for the JAK2−inhibitor 9
complex, one at milestone 5 and the other at milestone 13

Figure 3. Residence times of JAK2 and JAK3 inhibitors as obtained
from the experiments and the SEEKR2 milestoning method. The
values of the residence times and the error bars for each JAK−
inhibitor complex is the average of the three independent SEEKR2
calculations. (a) Residence times of the inhibitors for the JAK2
protein and (b) residence times of the inhibitors for the JAK3 protein
are displayed. Error bars are present for the SEEKR2 residence time
data, but they are sometimes too small be visible. An unpaired t test is
carried out to measure the statistical significance of the difference
between the experimentally determined residence times of JAK2 and
JAK3 inhibitors and the SEEKR2-calculated residence times. The p-
values obtained from the t test determined that there is no significant
difference between the mean of the SEEKR2-calculated residence
times and the experimentally determined residence times (Table S3).
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(Figure 4a). TS 1 is at a COM-COM distance of 5.00 Å, while
TS 2 is at a COM-COM distance of 9.00 Å from the binding
site. The energy barriers for inhibitor 9 for both transitions are
higher than that of inhibitor 5, indicating that inhibitor 9 is a
stronger binder with a higher residence time. For the JAK3−
inhibitor 6 complex, two energy barriers exist as the inhibitor
dissociates with the receptor, one at milestone 7 and the other
at milestone 12 (Figure 4b). The COM-COM distance
between the inhibitor and the α-C atoms of the binding site
for TS 1 is 6.50 Å, while TS 2 is at a COM-COM distance of
9.00 Å. Similarly, two energy barriers exist for the JAK3−
inhibitor 9 complex, one at milestone 5 and the other at
milestone 11 (Figure 4b). TS 1 is at a COM-COM distance of
5.00 Å, while TS 2 is at a COM-COM distance of 8.50 Å from
the binding site. The energy barrier for inhibitor 9 for TS 1 is

higher than that of inhibitor 6, indicating that inhibitor 9 is a
stronger binder with a higher residence time.
With SEEKR2 simulations, we hold the advantage of

predicting a possible ligand unbinding pathway since this
methodology enables the receptor−ligand complex to undergo
parallel simulations with the ligand at increasing distances from
the binding site. MD trajectories within the milestones located
at these transition barriers are analyzed to identify important
ligand−residue interactions. For the JAK2−inhibitor 9 and
JAK3−inhibitor 9 complexes, hydrogen bond (H-bond)
analysis is conducted for the two identified transition states
using the CPPTRAJ module of the Amber 22 package.114−116

In the case of the JAK2−inhibitor 9 complex, for TS 1, Gly935,
Tyr931, and Asp939 interacted significantly with inhibitor 9 as
H-bond acceptors, while Ser936, Leu932, and Tyr931 residues
were H-bond donors to inhibitor 9 (Figures 5a and 6a). On
the contrary, for TS 2, interactions between the residues and
inhibitor 9 decreased significantly, where the residues closer to
the terminals interacted as the inhibitor gradually unbinds from
the binding site (Figures 5b and 6b). In the case of the JAK3−
inhibitor 9 complex, for TS 1, Tyr904 and Leu905 interacted
with inhibitor 9 as H-bond acceptors and donors simulta-
neously (Figure 5c). For TS 2, interactions between the
residues and inhibitor 9 were still significant, including Leu828
and Gly908 as major donor residues (Figure 5d). Interestingly,
more residues were involved in the H-bond interactions at TS
1 for the JAK2−inhibitor 9 complex compared to the JAK3−
inhibitor 9 complex. This observation can be attributed to the
selectivity of inhibitor 9 toward the JAK2 protein.
SEEKR2 is able to provide kinetic and thermodynamic

estimates of receptor−ligand binding and unbinding, such as
residence time and free energy of binding. Selectivity of
inhibitors toward JAK2/JAK3 is a complex and multifaceted
concept that cannot be reduced to a single physical quantity
like residence time or free energy. Instead, it encapsulates the
desirable outcome that the inhibitor more preferentially binds
one potential target over another, which is influenced by
numerous factors, including structural differences, conforma-
tional changes, off-target effects, cellular context, and
pharmacokinetics.117−120 In this study, we focus on kinetic
selectivity showing that SEEKR2 can discern a significant
difference in residence times for the same set of inhibitors in
JAK2 and JAK3. Recent literature studies show that
thermodynamic and kinetic selectivities play the most
important roles for targets of differing vulnerability, i.e., targets
that require certain amounts of engagement with an inhibitor
for the desired effect to be observed.120−122 Whether a target is
high or low vulnerability depends, of course, on the desired
effect. The actual mechanism of that selectivity is beyond the
scope of the current study. Unfortunately, SEEKR2 alone is
not able to discern the selectivity mechanisms, and additional
analyses must be performed, as were performed in this study
with the principal component analysis (PCA) and quantum
mechanical calculations.
3.2. Long Time Scale Molecular Dynamics Simula-

tions. To understand and analyze critical aspects of binding
and unbinding of the inhibitors at the ATP binding sites of
JAK2 and JAK3 and to explain the discrepancy in the residence
times of inhibitors and selectivity toward JAK2 over JAK3,
three independent 2 μs MD simulations are run for each JAK−
inhibitor complex. The starting structures in the first Voronoi
cell for each receptor−inhibitor complex served as the starting
structures for the long time scale MD simulations. We used the

Figure 4. Free energy profile (ΔGi) obtained from the SEEKR2
milestoning method for the JAK proteins complexed with the
inhibitors. Also shown are the dominant poses of inhibitor 9 as it
unbinds from the ATP binding site of JAK complexes. These poses
are obtained from the SEEKR2 trajectories for milestones with the
local maximum values of ΔGi. ΔGi values obtained for each JAK−
inhibitor complex is the average of the three independent SEEKR2
calculations. The additional X-axis at the bottom of the graph denotes
the distance between the center of masses of the inhibitor and the α
carbon atoms of the binding site for each milestone. (a) ΔGi values
for the JAK2 protein complexed with inhibitor 5 and inhibitor 9 along
with (i) JAK2−inhibitor 9 complex at TS 1, (ii) JAK2−inhibitor 9
complex at TS 2 (pose 1), and (iii) JAK2−inhibitor 9 complex at TS
2 (pose 2). (b) ΔGi values for the JAK3 protein complexed with
inhibitor 6 and inhibitor 9 along with (i) JAK3−inhibitor 9 complex
at TS 1, (ii) JAK3−inhibitor 9 complex at TS 2 (pose 1), and (iii)
JAK3−inhibitor 9 complex at TS 2 (pose 2).
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same force field parameter files for the complexes as used in
the SEEKR2 simulations. For each of the receptor−inhibitor
complexes, a total of 6 μs of MD simulations are run at 300 K
with a 2 fs time step and a nonbonded cutoff radius of 9 Å
using the OpenMM MD engine. Simulation trajectories are
analyzed using the CPPTRAJ module of the Amber 22

package.114−116 Analyses including and not limited to ligand-
binding site distance analysis, minimum average distance
analysis, principal component analysis (PCA), and root mean
squared fluctuation (RMSF) analysis are performed to gain a
deeper understanding of the binding behavior of these
inhibitors.

3.2.1. Discrepancy in Residence Times: Structure of
Inhibitors and Their Interactions with JAKs. The inhibitors,
namely 5, 6, 7, and 9, constitute a pyrazol-3-yl amine ring, a
heteroaryl C-ring, and a morpholine ring (Figure 7a). Different
inhibitors are synthesized by substitutions at the heteroaryl C-
ring. The pyrazol-3-yl amine ring forms multiple hydrogen
bonds with the ATP binding pocket of the JAKs (Figure 8a
and b), and these contacts are consistent with all the inhibitors.
The solvent-exposed morpholine ring does not interact much
with the residues in the binding region. Interestingly, a single
substitution at the heteroaryl C-ring of the inhibitor leads to a
significant difference in their residence times (Figure 8c). In
the case of inhibitor 9 with respect to inhibitor 5, one of the
nitrogen atoms in the heteroaryl C-ring is substituted by a
−CF group (Figure 8c), leading to a 5-fold increase in the
residence time of inhibitor 9.
Inhibitor 9 displayed the highest residence time in both the

JAK2 and JAK3 proteins. To investigate further the

Figure 5. (a, b) Major hydrogen bond interactions formed during SEEKR2 simulations at transition states for the JAK2−inhibitor 9 complex
displaying (a) TS 1 H-bond donor−acceptor pairs and (b) TS 2 H-bond donor−acceptor pairs. (c, d) Major hydrogen bond interactions formed
during SEEKR2 simulations at transition states for the JAK3−inhibitor 9 complex displaying (c) TS 1 H-bond donor−acceptor pairs and (d) TS 2
H-bond donor−acceptor pairs.

Figure 6. Major hydrogen bond interactions formed during SEEKR2
simulations for the JAK2−inhibitor 9 complex at (a) TS 1 displaying
H-bond acceptor residues (yellow), H-bond donor residues (green),
and H-bond donor/acceptor residues (red) and (b) TS 2 displaying
H-bond acceptor residues (yellow) and H-bond donor residues
(green).
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contributions of the heteroaryl C-ring toward the increased
residence time and determine the donor−acceptor capabilities
of the inhibitor, quantum mechanical (QM) calculations are
run for inhibitor 5 and inhibitor 9 to determine the highest
occupied molecular orbitals (HOMO) and lowest unoccupied
molecular orbitals (LUMO). The Gaussian 16 suite of
programs is used to carry out geometry optimization using
Becke’s three-parameter functional in combination with the
Lee−Yang−Parr correlation functional (B3LYP) and 6-31G-
(d,p) basis set.123−126 It is observed that the heteroaryl C-ring
constitutes the LUMO (Figure 7b) for all the inhibitors. The
presence of an extra fluorine atom in inhibitor 9 causes extra
stabilization of the bound state since the substituted fluorine
atom in the heteroaryl C-ring interacts with the hydrogen of
the β-carbon of the serine residue (Ser936), maintaining an
average distance of 2.64 Å with a minimum distance of 2 Å
(Figure 8b). In contrast, for inhibitor 5, this interaction is
missing (Figure 8a). Further evidence is provided by the
HOMO−LUMO energy calculations obtained from the QM
calculations. It is observed that the HOMO−LUMO energy
difference for inhibitor 9 (3.77 eV) is higher than that of
inhibitor 5 (3.40 eV). The HUMO energies for inhibitors 5
and 9 are nearly identical, but the LUMO energy for inhibitor
9 is higher than that for inhibitor 5. A higher energy LUMO
suggests a more electron-deficient character of the heteroaryl
C-ring leading to stabilization interaction with the serine
(Ser936) residue of JAK2. In short, the electronegativity of F
leads to the electrostatic pull of the hydrogen atom in the
serine residue and is responsible for a higher residence time for
inhibitor 9 than other inhibitors.
To gain additional insights into the dynamics of the

receptor−inhibitor complex and to explain the discrepancy in
residence times of inhibitor 5 and inhibitor 9 for the JAK2−
inhibitor complex, PCA is implemented to the 3D positional
coordinates obtained from the MD trajectories.127−129 PCA
explains the variance in the data set by transforming the MD
trajectories into a set of orthogonal vectors or principal
components representing characteristic molecular internal
motions. The first PC shows the maximum variance in the
data, followed by the second PC and so on. Although the first
PC is extremely useful in gaining insights into the system

dynamics, the actual motion of the system is the combination
of all the PCs. Figure 9a and b shows the first PC obtained for
the JAK2−inhibitor 5 and JAK2−inhibitor 9 complex,
respectively. Figure 9a shows a greater domain movement
around the binding region of the JAK2−inhibitor 5 complex.
This motion may be attributed to a region of high instability
around the binding site for inhibitor 5, leading to a lower
residence time than inhibitor 9.

3.2.2. Selectivity of Inhibitors toward JAK2 over JAK3. The
inhibitors at the binding site of the JAK2 protein display higher
residence times than the same series of inhibitors for the JAK3
protein. To corroborate these experimental findings, minimum
average distance analysis is performed to obtain a detailed
description of the binding pocket of the JAK−inhibitor
complex. The minimum distance between any two atoms of
the amino acid and the inhibitor averaged over the course of
the 2 μs trajectory for all the residues is calculated for the
JAK−inhibitor complexes. Figure 10a represents the binding
pocket of JAK2−inhibitor 9 complex, while Figure 10b
represents the binding pocket of JAK3−inhibitor 9 complex.
Interacting residues described in the figure are chosen with a
cutoff distance of 4 Å. Table S4 shows the list of interacting
residues for inhibitor 9 in complex with JAK2 and JAK3
proteins. It is evident from Figure 10a and b that inhibitor 9
interacts with more residues of JAK2 over JAK3. It is also
observed that the binding site occupies a larger volume, and
the inhibitor is placed deeper in the binding pocket of JAK2,
explaining the selectivity of the same toward JAK2 over JAK3.
Interestingly for JAK3, it has been observed that the
substituted fluorine atom in the heteroaryl C-ring in inhibitor
9 does not interact with the hydrogen of the β-carbon or any
other heavy atom of the serine residue (Ser907).
Root mean square fluctuations (RMSF) calculations are

performed to identify important residues and domains
associated with inhibitor binding and unbinding.130 A root
mean squared (RMS) fit to the average structure is performed
to obtain the fluctuations without rotations and translations,
and a mass-weighted averaging of atomic fluctuations for each
residue is carried out for the entire simulation trajectory. As
demonstrated in Figure 11a, the binding site flanking residues
for JAK2, namely, Gly856, Lys857, Phe860, Gly861, Ser887,

Figure 7. (a) Composition of inhibitor 9 and (b) molecular orbitals of inhibitor 9.
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Glu889, Asp894, Arg897, Glu898, and Arg922, have lower
RMSF values and stabilize upon inhibitor 9 binding as
compared to inhibitor 5, suggesting their roles in stabilizing
the receptor−inhibitor complex. Similarly, in JAK3 proteins,
however, residue fluctuations are mostly similar, though only a
few of the binding site flanking residues, such as Phe833,
Gly834, Gln858, Gly861, Pro862, Asp863, Gln864, and
Phe868, show a significant difference in fluctuations upon
inhibitor 9 binding as compared to inhibitor 6 (Figure 11b). A
higher number of residues in JAK2 contributing to the low
fluctuations at the binding site may contribute to the selectivity
of inhibitor 9 toward JAK2 over JAK3.
The binding pocket volumes of the JAKs are a direct

consequence of residues interacting with the inhibitor at the
ATP binding site. These pocket volumes are complementary to
the shape of the inhibitors as well. To compare the binding
pockets of different inhibitors in JAK2 and JAK3 proteins,
POVME, a tool to analyze binding pocket volumes, was

utilized.131,132 POVME provides a grid-based pocket repre-
sentation of the inhibitor binding site. The pocket volumes are
calculated with a grid spacing of 0.1 Å and a distance cutoff of
1.09 Å. Deep pocket volumes are observed for the JAK2
inhibitors where these inhibitors are tightly bound to the
interacting residues. Figure S1 shows a distinct difference in
the binding pocket volumes for JAK2 vs JAK3 proteins, where
the volumes associated with inhibitors in the binding domain
of JAK2 are significantly higher than those of JAK3.
Inhibitor-binding site distance analysis is performed for each

receptor−inhibitor complex averaged over three independent
MD simulation trajectories of 2 μs each. From the starting
structure of the zeroth milestone of each JAK−inhibitor
complex, residues encompassing the inhibitor within a cutoff
radius of 4 Å defined the binding site. The distance between
the center of masses of the inhibitors and the α-C atoms of the
binding site are used to calculate the inhibitor-binding site
distance. It has been observed for all four inhibitors that the

Figure 8. (a, b) Binding site of inhibitors for JAK2 complex showing important interactions with surrounding residues: (a) JAK2−inhibitor 5
complex and (b) JAK2−inhibitor 9 complex. (c) 2D formulas schemes for the JAK inhibitors indicating the location of modifications. In inhibitor
9, the substituted fluorine atom in the heteroaryl C-ring leads to the electrostatic pull of the hydrogen atom in the nearby serine residue, which
contributes to the higher residence time in the kinase domain.
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inhibitor-binding site distance in the case of JAK2−inhibitor
complexes is less than that of the JAK3−inhibitor complexes

(Figure S2), suggesting strong binding of the inhibitors to the
JAK2 protein.
JAK inhibitors target the JAK family of kinases and bind to

the ATP-binding site of the kinase domain, thereby preventing
the phosphorylation of downstream signaling proteins. In the
case of JAK2 proteins, the backbone amide and carbonyl
groups (Leu855, Met929, and Leu932) interact with the
phosphate groups of the ATP, forming multiple hydrogen
bonds.133,134 These interactions at the hinge region are of
particular interest as they are conserved in the case of JAK2−
inhibitor interactions (Figure 1). The inhibitors contain a
heterocyclic core that mimics the adenine ring of the ATP to
retain such interactions. Additionally, other interactions of
these inhibitors with the kinase domain lead to the selectivity
of these inhibitors over other kinases (Figure 8a and b).

4. CONCLUSION

The SEEKR2 milestoning method proved efficient in
estimating the experimental residence times for different
JAK−inhibitor complexes. The trend in residence times for
the set of inhibitors for the JAK2 and JAK3 proteins is also
conserved. It becomes evident from the SEEKR2 milestoning
approach and the experiments that the series of inhibitors
display an extended residence time and bind stronger to JAK2
than to JAK3. Among the inhibitors, inhibitor 9 displayed the
highest residence time in the JAK2 protein. The results are
further supported by MD simulations where important binding
residues have lower distances from the inhibitor and less
fluctuation in the JAK2−inhibitor 9 complex. In addition, the
QM calculations show a higher electron density on the fluorine
groups in the heteroaryl C-ring of inhibitor 9, strengthening
the binding with JAK2 and JAK3 proteins resulting in the
highest residence time among all the inhibitors. SEEKR2
thereby proves to be a valuable tool to predict the kinetics and
thermodynamics of receptor−ligand binding and unbinding as
it is user friendly, requires minimum structural information on
the system, is embarrassingly parallel, and requires a
comparatively short simulation time to reach converged kinetic
rates.

Figure 9. Principal component analysis for JAK2−inhibitor complexes
from 2 μs of MD simulation trajectory: (a) First normal mode for
JAK2−inhibitor 5 complex (47% of accounted variance). (b) First
normal mode for JAK2−inhibitor 9 complex (46% of accounted
variance).

Figure 10. Binding site (green mesh) obtained from minimum
average inhibitor−residue distances from three independent 2 μs of
MD simulation trajectories: (a) JAK2−inhibitor 9 complex and (b)
JAK3−inhibitor 9 complex.

Figure 11. Residue fluctuation analysis for JAK2 and JAK3−inhibitor complexes obtained from three independent 2 μs of MD simulation
trajectories: (a) JAK2−inhibitor 5 vs JAK2−inhibitor 9 complex and (b) JAK3−inhibitor 6 vs JAK3−inhibitor 9 complex
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