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Automated partial differential equation identification

Ruixian Liu,1,a) Michael J. Bianco,2 and Peter Gerstoft2,b)
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2Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, USA

ABSTRACT:
Inspired by recent developments in data-driven methods for partial differential equation (PDE) estimation, we use

sparse modeling techniques to automatically estimate PDEs from data. A dictionary consisting of hypothetical PDE

terms is constructed using numerical differentiation. Given data, PDE terms are selected assuming a parsimonious

representation, which is enforced using a sparsity constraint. Unlike previous PDE identification schemes, we make

no assumptions about which PDE terms are responsible for a given field. The approach is demonstrated on synthetic

and real video data, with physical phenomena governed by wave, Burgers, and Helmholtz equations. Codes are

available at https://github.com/NoiseLab-RLiu/Automate-PDE-identification. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Partial differential equations (PDEs) govern many natu-

ral dynamical phenomena. Traditional methods for model-

ing dynamical systems with PDEs are typically based on

physical principles, and analytically determining the correct

PDE terms can be difficult.1 Thus, the more applicable data-

driven PDE identification methods are the subject of inten-

sive research.

There has been significant development in data-driven

PDE extraction theory thanks to the advancements in physics-

informed machine learning.1–10 Our exploration is inspired by

recent work in sparse modeling.1,2 Sparse modeling11,12

assumes a parsimonious data representation13,14 that scales

well to big data problems and has obtained compelling results

in many related fields.15,16 Early applications of sparse, data-

driven PDE estimation to real data have appeared.17–19

Often, we have a priori assumptions for the PDE and

then retrieve relevant terms. In previous PDE-discovery devel-

opments, one or more active PDE terms (e.g., the first order

time derivative term1,2 or multiple PDE terms4) are assumed a
priori for the PDE. The other contributing terms together with

their coefficients are then derived from this prior information.

Thus, only parts of the PDE are found by data-driven

approaches. This can be problematic when the assumed exist-

ing term is not obvious, e.g., to identify the governing PDE

for a surface wave that may either be an inviscid Burgers

equation or a non-attenuating wave equation that share no

PDE terms in common, one must specify the correct existing

term according to sufficient prior knowledge.

To alleviate the data-driven PDE identification method’s

reliance on the prior information, the proposed approach can

automatically identify all contributing terms constituting the

PDE for the dynamics shown by the data. The method com-

putes a dictionary of hypothetical PDE terms from data using

finite difference (FD) and pseudo-spectral (PS) methods and

selects the contributing terms using sparsity and resampling.

We show that the wave, Burgers, and Helmholtz equations

are well-identified from data.

II. THEORY

From a given observed field, the inverse problem solves

the background parameters generating the field. Often, the

inverse problem is solved under strong assumptions as only

source locations are unknown, or it is a wave guide problem.

The PDE generating the field has been assumed known. We

relax this assumption and solve for the PDE that could have

generated the observations.

A. Background

Consider a field Uðx; y; tÞ across spatial x, y and tempo-

ral t coordinates. Let it be governed by a PDE N½Uðx; y; tÞ�
with f ðx; y; tÞ the source term,

N Uðx; y; tÞ½ � ¼ f ðx; y; tÞ; (1)

with corresponding spatial and temporal boundary condi-

tions. We are here concerned with discovering the homoge-

neous PDE N½Uðx; y; tÞ� ¼ 0, thus f ðx; y; tÞ ¼ 0.

Examples of N½U� with the typical 2–3 terms include

N U½ � ¼ @
2U

@t2
þ a

@U

@t
� c2r2U ðwave equationÞ; (2)

N U½ � ¼ x2U þ c2r2U ðHelmholtz equationÞ; (3)
a)Electronic mail: rul188@ucsd.edu, ORCID: 0000-0001-6344-5419.
b)ORCID: 0000-0002-0471-062X.
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N U½ � ¼ @U

@t
þ U

@U

@x
� � @

2U

@x2

ðBurgers equation in one dimensionÞ: (4)

In many physical environments, the exact form of NðUÞ is

unknown. Consider the general form with D terms,

N U½ � ¼ a1

@U

@x
þ a2

@U

@y
þ a3

@U

@t
þ a4

@2U

@t2
þ � � � : (5)

Often, up to second order is assumed, but fourth order is not

uncommon. Non-linear terms like Uð@U=@xÞ can appear

(4), and the time derivative might be absent (3).

Consider the data of the form U 2 C
Nx�Ny�Nt for Nx

horizontal, Ny vertical, and Nt temporal points, with step

size Dx, Dy, and Dt. The field is generated by a physical

source or perturbed initial condition and propagates through

the media. We identify PDEs governing the field from the

region of interest (ROI), which is U excluding the near-field

for potentially existing sources and the spatial-temporal

boundary regions where derivatives are not defined.

B. Building a dictionary

From Uðix; iy; itÞ we obtain hypothetical PDE terms by

evaluating derivatives at all points in the ROI. The deriva-

tives are estimated using numerical methods including finite

difference20 and the PS approach.21 At every point, the

homogeneous PDE like (5) is satisfied as

a1Uxðix; iy; itÞ þ a2Uyðix; iy; itÞ þ � � � ¼ 0: (6)

In vector notation, (6) becomes

uTðix; iy; itÞa ¼ 0 ; a ¼ a1…aD½ �T;

uTðix; iy; itÞ ¼ Uxðix; iy; itÞUyðix; iy; itÞ � � �
� �

: (7)

For all points in the ROI, we obtain

Ua ¼ 0; U ¼
uTð1x; 1y; 1tÞ

..

.

uTððNÞx; ðNÞy; ðNÞtÞ

2
664

3
775 2 C

N�D; (8)

with N < NxNyNt; uðix; iy; itÞ all hypothetical PDE terms

evaluated at ðix; iy; itÞ and a 2 C
D

the PDE term coefficients.

ðNÞx is ix when row index i¼N.

Each column of U contains values for one PDE term

evaluated at every point in the ROI. Denote the dth column

as /d; from (8), we rewrite U having D¼ 14 terms used for

our experiments with indices shown in superscripts as

U ¼ /1 � � �/D½ �

¼ ½ 1
1

ut
2

utt
3

u
4

ux
5

uy
6

u �7 ux u �8 uy

uxx
9

uxy
10

uyy
11

u �12
uxx u �13

uxy u �14
uyy�; (9)

with u ¼ vecðUÞ 2 C
N , subscripts indicating numerical dif-

ferentiation, 1 as the all-ones vector, and � as the Hadamard

(element-wise) product. U contains common terms for mul-

tiple PDEs possibly governing U in ROI including spatial,

temporal derivatives of various orders and non-linear terms.

Only a few of these are in the true PDE, i.e., kak0 � D with

k � k0 the number of non-zero entries.

To calculate U, the second order FD we use for first

and second order derivatives is computed by approximating

analytical derivatives using truncated Taylor series. With

step Dx, its truncation error is OðDx2Þ.20 For FD, the first

and last pixels in each dimension are not considered as ROI.

The PS method21,22 is typically more accurate than

finite difference, as it is the limit of finite difference approxi-

mations when the order tends to infinity.23 The PS is based

on Fourier transform. Denote some discrete signal along the

x axis for fixed y, t as uðxÞ ¼ Uð:; y; tÞ in C
Nx , with its spec-

tral coefficients ~ur obtained by ~ur ¼ ð1=NxÞPNx�1
j¼0 uðxjÞe�2pijr=Nx ; i ¼

ffiffiffiffiffiffiffi
�1
p

; the pth order derivative is

@ðpÞx uðxjÞ ¼
XNx=2

r¼�Nx=2þ1

ðikrÞp ~ure
ikrxj ; j ¼ 0;…;Nx � 1;

(10)

where the wavenumber kr ¼ ð2p=DxÞðr=NxÞ. To avoid

issues at the spatial boundaries, Tukey windowing is used to

preserve most parts of the signal. In all experiments, for

each dimension, 40% of the signal is tapered and excluded

from the ROI, with 20% at either end.

C. Identifying PDE terms

Beyond the assumption that the representation is parsi-

monious, we assume no prior intuition of which PDE terms

in the library should be relevant to a given problem. The

approach is data-driven as we rely on cross-validation to

obtain coefficients, which is a commonly used technique in

machine learning to avoid fitting noise due to redundant

terms. The proposed method, which is non-recursive and

free of the assumption for independently and identically dis-

tributed (i.i.d.) Gaussian noise, forms an intuitive alternative

to the threshold sparse Bayesian learning approach10 and is

summarized in Algorithm 1 with details in the following.

ALGORITHM 1. PDE identification.

Input: U ¼ ½/1 � � �/D� 2 C
N�D; k

Output: a ¼ ½a1 � � � aD�T 2 C
D

�U ¼ ½�/1 � � � �/D�, where �/d ¼ /d=k/dk2; 8d
for j ¼ 1 : D do

for T ¼ 0 : D� 1 do

LjðTÞ ¼ CrossValidðj;TÞ // Eq. (13)

T̂ j ¼ argminTLjðTÞ þ kLjðD� 1ÞT
�̂a j ¼ argmin�a j

k �U�a jk2; s:t: �aj ¼ 1; k�a jk0 ¼ T̂ j þ 1

ErrðjÞ ¼ k �U �̂a jk2=k�̂a jk2

ĵ ¼ argminjErrðjÞ // Choose assumed term

â ¼ argminakUak2; s:t: aĵ ¼ 1; kak0 ¼ T̂ ĵ þ 1

Because of noise introduced by derivative computing

and measurements, the equality in (8) may not hold. To

enforce parsimony and avoid the trivial a ¼ 0, we assume
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there is one term /j in U included in the PDE and search for

T other terms, thus estimating a by

fâ; ĵ; T̂g ¼ arg min
a;j;T
kUak2;

s:t: aj ¼ 1; kak0 ¼ Tþ 1; T ¼ arg min
T0

wjðT0Þ:
(11)

For a given j, kak0 is chosen from sparsity-penalized cross-

validation error, defined by wj (14), as described next. Since

D is small (�101), we cycle through all D columns for j in

(11) and optimize a; T in every case. Then â is selected by

minimizing a normalized fitting error [defined in (15), to be

discussed] over all cases.

Specifically, let �U ¼ ½�/1 � � � �/D� with �/d ¼ /d=
k/dk2; 8d be the normalized U. Under the assumption aj¼ 1

for an arbitrary j 2 f1;…;Dg, we solve �aj ¼ ½�a1;…; �aD� as

�̂a j ¼ arg min
�a j

k�U�ajjj22; s:t: k�ajk0 ¼ Tj þ 1; �aj ¼ 1:

(12)

The Tj, i.e., the number of non-zero entries other than

�aj in �aj, is chosen using K-fold cross-validation24 with an

additional sparsity penalty. For cross-validation, we evenly

divide the rows of �U into K folds. The kth fold �Uk
is the val-

idation data including the jth column �/
k
j val 2 C

N=K
and the

other columns denoted by �U
k
�j val 2 C

ðN=KÞ�ðD�1Þ
. All other

folds are concatenated as training data including the jth col-

umn �/
k
j tr 2 C

½ðK�1Þ=K�N
and the other columns in

�Uk
�j tr 2 C

½ðK�1Þ=K�N�ðD�1Þ. For each fold k, we calculate the

coefficient �̂a
k

�j trðTÞ with T non-zero entries minimizing

k�/k
j tr þ �Uk

�j tr
�ak
�j trk

2
2. To solve this least squares objective

using limited columns of �U
k
�j tr, we choose the columns

contributing most in the least squares solution, resulting in a

threshold least squares (TLS) scheme (detailed in Appendix

B). The TLS selects locations for non-zero values in �ak
�j tr

using the entries with T largest magnitudes in the least

squares solution for fitting �/
k
j tr using all columns in �Uk

�j tr.

Compared to a classic basis selection method, orthogonal

matching pursuit (OMP),25 it is non-iterative and can work

better when the column in �Uk
�j tr most correlated to �/

k
j tr is

not active, with an example given in Sec. III C. The loss for

cross-validation is (here K¼ 5)

LjðTÞ ¼
1

K

XK

k¼1

����/
k
j val þ �Uk

�j val
�̂a

k

�j trðTÞ
����

2

2

: (13)

Minimizing (13) might not give the correct sparsity due to

two reasons: (i) columns in �U are often coherent since they are

computed from the same U. A newly incorporated column

might be well-fitted by linearly combined existing columns

and thus cause LjðTÞ to plateau. For example, consider

non-dispersive attenuating waves U ¼ Reðe�iðkðxþ2yÞ�xtÞ

þe�2iðkð2xþyÞ�xtÞÞ governed by (2) whose complex wave-

number k 	 ðx=cÞ½1� ðia=2xÞ�; when a=2c 	 0, we have

Ut 	 �ðc=3ÞðUx þ UyÞ [see Eqs. (A4) and (A10) in Appendix

A], causing Utt ¼ �aUt þ c2ðUxx þ UyyÞ 	 �aðmUt þ nðUx

þUyÞÞ þ c2ðUxx þ UyyÞ for some non-zero m and n, i.e.,

L3ð3Þ 	 L3ð5Þ. (ii) After all the relevant terms are recognized,

the incorporated irrelevant columns with small coefficients can

fit the noise in �/j introduced by numerical differentiation and

thus decrease LjðTÞ when T already exceeds the correct

sparsity.

To exclude redundant atoms, we incorporate a sparsity

penalty term26 and select the optimal sparsity as

T̂j ¼ arg min
T

wjðTÞ; wjðTÞ ¼ LjðTÞ þ kLjðD� 1ÞT;

(14)

with k¼ 1 chosen empirically working well for our data.

The LjðD� 1Þ is the average fitting error (13) for all folds

with all terms used.

With �̂a j in (12) solved by TLS using Tj ¼ T̂j, the nor-

malized fitting error with the range ½0; 1� is

ErrðjÞ ¼ k�U �̂a jk2=k�̂a jk2; (15)

where ErrðjÞ ¼ 1 indicates T̂j ¼ 0 and thus �/j cannot be fit-

ted properly by other columns of �U. Repeat all the above

procedures to calculate ErrðjÞ for 8 j ¼ 1, …, D and then

choose ĵ ¼ argminj ErrðjÞ. Setting j ¼ ĵ, T ¼ T̂ ĵ , and letting

aj¼ 1 in (11) provides â.

We verify this PDE identification approach by both

simulation and real data experiments as will be described in

Secs. III and IV.

III. SYNTHETIC EXPERIMENTS

Three sets of experiments are carried out, i.e., identi-

fying (i) wave equations from three-dimensional (3D)

spatial-temporal areas, (ii) Helmholtz equations from two-

dimensional (2D) spatial areas, and (iii) Burgers equa-

tions from 2D spatial-temporal areas. Datasets used for

(ii) are from the frequency components of wavefields

used for (i).

A. Wave equation

The PDE identification is tested with videos U sampled

from continuous wavefields generated by the wave equation

(2). Cylindrical propagation is assumed, since we are model-

ing a plate. For a source f at (fx, fy) and field at (x0, y0) with a

Euclidean distance d to the source, Uðx0; y0; tÞ ¼ A½eImðkÞd=ffiffiffi
d
p
� f ½t� ðd=cÞ�, where k is wavenumber, c phase speed,

and A amplitude. The ImðkÞ is determined by (2) (see

Appendix A).

We simulate propagation similar to the metal plate in

the real data. Three videos with Nx, Ny, Nt set to 100, and

Dx ¼ Dy ¼ 0:001 m and Dt ¼ 10�6 s are generated with free

boundaries. The source f(t) is at the center ð50:5Dx; 50:5DyÞ
and formed by summing five sinusoidals, 30, 40, 50, 60, and

2366 J. Acoust. Soc. Am. 150 (4), October 2021 Liu et al.
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70 kHz, with unit magnitude and zero phase at t¼ 0. Each

video shows a specific wavefield, (1) non-dispersive non-

attenuated wave, (2) dispersive non-attenuated wave, and

(3) non-dispersive attenuated wave. The 50th frame for each

of them is in Fig. 1(a).

The field fðix; iy; itÞj46 
 ix 
 55; 46 
 iy 
 55; 8itg
near the source is dropped when extracting the PDE. We

extract the PDEs for the waves at each frequency provided

by a bank of ideal bandpass filters. Since utt 	 �k2u with a

constant k always holds for narrowband signals (j�/T

3
�/4j

> 0:99 in our experiments), we do not consider u in (9).

For the non-dispersive non-attenuated waves, all the

waves propagate at c ¼ 500 m=s, with a¼ 0. For the disper-

sive non-attenuated waves, the waves at 30, 40, 50, 60, and

70 kHz are with phase speeds at c¼ 300, 400, 500, 600, and

700 m/s, respectively, and a¼ 0 also holds. For the non-

dispersive attenuated waves, c ¼ 500 m=s and a ¼ 2� 104

are for all frequencies.

For all the datasets with derivatives based on both FD

and PS, minimizing ErrðjÞ in (15) gives a3 ¼ 1, which is for

utt. For non-attenuated waves, T ¼ 2 is selected by (14)

with a9 and a11 non-zero; for attenuated waves, T ¼ 3 is

chosen with the non-zero entries at a2, a9, and a11. The

results are detailed in Table I, with all entries in a being 0

except a2, a3, a9, and a11. The wave equations are discov-

ered since a2, a9, and a11 are the coefficients for ut, uxx, and

uyy. The estimated speed ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðja9j þ ja11jÞ=2

p
. Figure 2(a)

shows ErrðjÞ based on PS, and Figs. 2(b) and 2(d) where

â ¼ a2 suggest the method works well as the correctly cho-

sen PDE terms are with errors less than 5% (majority

<2:5%). For a given dataset, using the PS based dictionary

always provides a smaller error than using the FD based dic-

tionary. The relation between errors and frequencies in Figs.

2(b) and 2(d) is explained as follows.

(i) The spatial-temporal differentiation works as high-

pass filtering in the wavenumber-frequency domain.

For PS, which computes derivatives in the

wavenumber-frequency domain, an input signal of a

higher frequency or wavenumber indicates a larger

ratio between the derivative of the signal and the

noise (from numerical differentiation), which benefits

the identification. As the frequency increases, the

wavenumber increases linearly for non-dispersive

waves and is a constant in our dispersive waves

(100 m�1). The identified coefficients have smaller

errors in both cases, and the performance improve-

ment is larger for the non-dispersive case.

(ii) The FD computes derivatives in the spatial-temporal

domain. As the period or wavelength decreases, the

identification suffers from insufficient sampling. For

our non-dispersive cases, both the wavelength and

the period decrease for higher frequencies; the insuf-

ficient sampling is significant and leads to increasing

errors. For the dispersive case, only period decreases

while the wavelength is constant for larger frequen-

cies; the benefit described in (i) is significant and

results in decreasing coefficient errors.

Comparing (i) and (ii), the PS is more robust to insuffi-

cient sampling. This is due to its computing the derivatives

FIG. 1. (Color online) (a) Frame 50 for

the synthetic wave equation. (b)

Frequency components of 70 kHz for

the synthetic Helmholtz equation.

Pixels inside the red square are not

considered.
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in the wavenumber-frequency domain, implying an implicit

trigonometric interpolation in the spatial-temporal domain

before numerical differentiation.27

The proposed approach can also identify the PDE from a

summation of its multiple solutions. We show this by experi-

ments using the two unfiltered non-dispersive wavefields

(attenuated and non-attenuated). Each of them is a summation

of five solutions (one solution for one frequency) of one wave

equation (2), with c ¼ 500 m=s and a¼ 0 or 2� 104.

Using the dictionary constructed by PS, the identified

PDE for the non-attenuated waves is

Utt � 2:50� 105ðUxx þ UyyÞ ¼ 0; (16)

and that for the attenuated waves is

Uttþ2:00�104Ut�2:50�105ðUxxþUyyÞ¼ 0: (17)

Thus, the recovered ĉ 	 500 m=s for both waves,

â 	 2� 104 for the attenuating wave. For the dictionary

based on FD, they are

Utt�2:56�105ðUxxþUyyÞ¼ 0;

Uttþ2:06�104Ut�2:56�105ðUxxþUyyÞ¼ 0 (18)

for the non-attenuated and attenuated waves, respectively.

Thus, the recovered ĉ 	 506 m=s for both waves, and

â 	 2� 104 for the attenuating wave.

B. Helmholtz equation

Fourier transforming the U governed by wave equation (2)

with a¼ 0 at each spatial location over time, we obtain the fre-

quency components U 2 C
Nx�Ny�Nf , Nf ¼Nt. Data in each spa-

tial frame of U satisfy Helmholtz equation (3). We thus use

frequency components of the previous non-attenuated waves as

datasets for Helmholtz equation identification.

The first spatial frame of U is for DC, and Df ¼ ð1=
DtÞ=Nf ¼ 10 kHz between neighboring frames. Thus, we

have 10 datasets used for Helmholtz equation identification,

with each dataset being one frame among the fourth to

eighth frames in two spectra U, which are for non-

attenuated (i) non-dispersive and (ii) dispersive waves.

Figure 1(b) shows the eighth frame for both U. The ROI on

each frame excludes region fðix; iyÞj46 
 ix 
 55; 46 
 iy


 55g near the source. Using the same symbol U to denote

U and constructing U as (9), since each equation is identi-

fied from a 2D frame in the frequency domain, ut and utt are

not included.

Minimizing ErrðjÞ; a4 ¼ 1 is selected, and thus u is

chosen. From (14), T ¼ 2 is chosen for all experiments with

a9 and a11 non-zero, the coefficients for uxx and uyy. The

results are detailed in Table II, with all entries in a being 0

except a4, a9, and a11. The PDE (3) is scaled by 1=x2 with

a4 ¼ 1; thus, the estimated speed ĉ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðja9j þ ja11jÞ=2

p
[see Fig. 2(c)]. ErrðjÞ for the 70 kHz component from dis-

persive waves is in Fig. 2(a). The relation between errors

and frequencies in Fig. 2(c) is explained as follows.T
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(i) For Helmholtz equations, no temporal derivatives are

involved, and thus the benefit for higher frequencies

due to the differentiation’s working as a high-pass fil-

ter disappears. But for larger wavenumbers, this ben-

efit from differentiation still exists. This explains the

decreasing errors for non-dispersive waves and the

constant error for dispersive waves (whose wavenum-

ber is a constant 100 m�1) for higher frequencies

using PS based dictionaries.

(ii) For the FD cases, the wavenumber (thus wavelength)

is constant for all frequencies in the dispersive waves.

So the same sampling sufficiency leads to a constant

error. The non-dispersive waves have shorter wave-

lengths for higher frequencies, and the insufficient

sampling issue outweighs the benefit from larger

wavenumbers, causing an increasing error.

Comparing it with the errors for dispersive waves

(FD) in Fig. 2(b), decreasing samples spatially is

more influential than decreasing samples temporally.

This is because for our data the temporal sampling is

more sufficient, e.g., for the 50 kHz wave propagat-

ing at 500 m/s, there are ten spatial samples in one

wavelength and 20 temporal samples in one period.

C. Burgers equation

The Burgers equation (4) with viscosity � can describe

shock wave formation. We consider a one-dimensional (1D)

Burgers equation on the field U 2 R500�500 with Dx
¼ 0:04 m and Dt ¼ 0:01 s. Three fields with a same initial

condition (a perturbation shaped as a Gaussian distribution

PDF) governed by (4) with �¼ 0.025, 0.05, and 0.1 are gen-

erated by fourth order Runge–Kutta method.28 Figure 3

shows the common initial state and the waveforms at t ¼ 5 s

for various �. For a larger �, the shock at t ¼ 5 s becomes

FIG. 2. (Color online) (a) ErrðjÞ vs

atom index j in U with derivatives

based on PS, including wave equations

for attenuated and dispersive non-

attenuated waves at 70 kHz, Helmholtz

equation for the dispersive wave at

70 kHz, and Burgers equation. (b) and

(c) jc� ĉj=c for wave equations and

Helmholtz equations. (d) ja� âj=a of

attenuated waves.
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smoother due to the increased diffusion. No source is

included.

In the 1D case, terms in (9) involving derivatives along

y are meaningless and thus excluded. With derivatives based

on both FD and PS, a7 ¼ 1 is selected by minimizing (15)

for all experiments, and thus u � ux is identified [see Fig.

2(a)]. T ¼ 2 is found by minimizing (14), with non-zero

entries a2; a9 being 1:01; 1:00; 1:00 and �0:024;�0:05;
�0:10 for the three cases of � based on PS. For FD, recov-

ered a2, a9 are the same except that a2 ¼ 1:00; a9 ¼ �0:025

when � ¼ 0:025. It works better because the spatial deriva-

tives used for implementing the Runge–Kutta method are

FD based.

If we use OMP instead of the TLS for the cross-

validation and the final coefficient recovery, it will provide

incorrect PDEs. Because under the assumption uxx is active

(a9 ¼ 1), the utt is its most correlated term and will be

selected in the first iteration by OMP. The utt is correlated

with all other terms in the dictionary, and thus incorporating

utt into the set of the terms to fit uxx will introduce the compo-

nents of some irrelevant terms. This causes L9ðTÞ to become

plateaued and thus w9ðTÞ to be minimized at a sparsity larger

than the correct value. With a larger T̂9 selected, the ErrðjÞ in

(15) for j¼ 9 is smaller than for the other correct assumptions

(j¼ 2 or 7) that have the correct T̂j, because of more involved

terms. For the Burgers equations, the T̂9 ¼ 7; 7; 6 using PS

and 3, 6, 6 using FD for � ¼ 0:025; 0:05; 0:1 [Fig. 4 shows

the L9ðTÞ; w9ðTÞ for � ¼ 0:025 with PS], and j¼ 9 always

minimizes (15). After a9 ¼ 1 is assumed, since the T̂9 is

incorrect [which is supposed to be 2; see (4)], the Burgers

equations cannot be identified.

Fundamentally, the OMP’s only considering the most

correlated atom without utilizing the relationship among all

atoms in the dictionary in its first iteration leads to its fail-

ure. Unlike OMP, for j¼ 9, the TLS selects T atoms contrib-

uting most to the orthogonal projection of uxx in the

subspace spanned by all the D – 1 terms in �Uk
�9 tr. This

orthogonal projection is a vector sum and is influenced by

the relationship (correlation) among all vectors in the dictio-

nary. A linear combination of ut and u � ux forms the major-

ity of the projection, and thus they are identified when

T ¼ 2. With all the true active terms selected, the other non-

zero entries in �ak
�9 tr are found by fitting small noise in the

training data, so they are of small magnitudes and work

poorly in the validation data, causing L9ðTÞ to plateau and

T̂9 ¼ 2 to be selected (see an example as a comparison to

OMP using the same dataset in Fig. 4). So (15) is not mini-

mized at j¼ 9 by involved irrelevant terms. In fact,

Errð2Þ 	 Errð7Þ 	 Errð9Þ, and either of the assumptions for

j¼ 2, 7, or 9 leads to the correct PDE.

IV. APPLICATION TO REAL VIDEO

Our approach is demonstrated on a video of aluminum

plate vibrations29 (see Fig. 5). One period of this video con-

sidered is U 2 R100�100�100 with Dx and Dy 1 mm and sam-

pled at 300 kHz. Vibrations contained in U are impulse

responses for a delta function in the past; thus, no source is

within the selected time.

Since aluminum plate waves are dispersive,30 the signal

is bandpass filtered to isolate wave equations for each fre-

quency. We explore frequency bins centered from 20 to

FIG. 3. (Color online) The initial state and the waveforms at t¼ 5 s corresponding to Burgers equations with various �.

TABLE II. Results for synthetic Helmholtz equation recovery experiments. For entries in the last three columns of each dataset, the top value is the result

based on FD and the bottom is based on PS. x ¼ 2p� Freq.

Frequency (kHz) True c (m/s) x2a9 ð�105Þ x2a11 ð�105Þ ĉ (m/s) True c (m/s) x2a9 ð�105Þ x2a11 ð�105Þ ĉ ðm=sÞ
Non-dispersive wave case Dispersive wave case

30 500 FD: 2.53 2.53 503 300 FD: 0.92 0.92 304

PS: 2.51 2.51 501 PS: 0.90 0.90 300

40 — FD: 2.54 2.54 504 400 FD: 1.64 1.64 405

PS: 2.51 2.51 501 PS: 1.60 1.60 400

50 — FD: 2.56 2.56 506 500 FD: 2.56 2.56 506

PS: 2.50 2.50 500 PS: 2.50 2.50 500

60 — FD: 2.58 2.58 508 600 FD: 3.68 3.68 607

PS: 2.50 2.50 500 PS: 3.60 3.60 600

70 — FD: 2.61 2.61 511 700 FD: 5.02 5.02 708

PS: 2.50 2.50 500 PS: 4.91 4.91 700
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70 kHz, with 5 kHz steps. Each bin has 1 kHz width. As in

synthetic experiments, u is not considered for these filtered

narrowband signals. a3 ¼ 1 minimizes (15) for all frequen-

cies, with some shown in Fig. 6, and T ¼ 2 with non-zero

entries at a9, a11 is always chosen by (14), as detailed in

Table III. Wave equations on the plate are discovered, with

ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðja9j þ ja11jÞ=2

p
shown in Fig. 7.

The proposed approach is compared to a classic phase

speed estimation based on Fourier transform.31,32 The method

estimates phase speeds ĉcl by finding the primary wavenum-

ber k̂ for each frequency f and ĉcl ¼ f=k̂. Due to the isotropic

property of the wave propagation on the plate, from the

wavenumber-frequency spectrum K of U, for frequency f0,

k̂ ¼ argmaxk

Pk
kx¼0 jKðkx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x

p
; f0Þj, which finds the

radius of a quarter ring with the maximal power of K.

The underestimation by FD for high frequencies (see

Fig. 7) arises from insufficient sampling along time. The PS

FIG. 4. (Color online) The comparison

of atoms selection using TLS (right)

and OMP (left) for Burgers equation

identification with � ¼ 0:025, assum-

ing uxx existing (i.e., j¼ 9). For a given

method and a sparsity T, the selected

atoms are the same for every fold in

the cross-validation, and they are indi-

cated around w9ðTÞ when T is 1 or 2.

The red asterisk shows the minimizer

of w9ðTÞ.

FIG. 5. (Color online) The vibrating

plate: (a) the first and last selected

frames, with magnitudes normalized;

(b) the traces for locations at

x ¼ 50 mm. The selected time period

is between the red lines.
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does trigonometric polynomial interpolation,27 and @
ðpÞ
t uðtjÞ

[which is calculated in the same way as @ðpÞx uðxjÞ in (10)] is

evaluated at tj (the point) sampled from the interpolated sig-

nal. Thus, the high frequencies producing derivatives with

large magnitudes are preserved. But FD evaluates @
ðpÞ
t uðtjÞ

based on slopes of the line segments connecting uðtjÞ with

uðtj�1Þ and uðtjþ1Þ, respectively. When Dt is not sufficiently

small, these slopes can be far from the slope of the tangent

line passing uðtjÞ, causing significant bias.

V. CONCLUSION

We formulated a data-driven approach to extract PDEs

without assumed terms and tested it on synthetic data and a

real vibrating aluminum plate video. A dictionary contain-

ing hypothetical PDE terms is built, and correct terms are

extracted by sparse modeling using cross-validation with a

sparsity penalty.

APPENDIX A: WAVENUMBER DETERMINED BY WAVE
EQUATIONS WITH ATTENUATION

The term c2r2u in the wave equation indicates an iso-

tropic propagation nature of the waves with a phase speed c.

For the part of the wave that propagates along direction r in

a circular wave, the simplified equation

utt ¼ �aut þ c2urr þ f (A1)

can depict its dynamics without the effect of decay due to

the increasing area encompassed by the wave front. For

FIG. 7. (Color online) Phase speeds recovered from identified PDEs and

wavenumber extraction.

TABLE III. Results for wave equation recovery on a real vibrating plate. In

the columns �a9, �a11, and ĉ, the top value in each entry is the result based

on FD and the bottom is based on PS.

Frequency (kHz) �a9 (�105) �a11 (�105) ĉ (m/s) ĉcl (m/s)

20 FD: 1.25 1.36 361 377

PS: 1.21 1.32 355

25 FD: 1.84 1.68 419 431

PS: 1.92 1.65 422

30 FD: 2.16 2.13 463 476

PS: 2.22 2.18 469

35 FD: 2.40 2.44 492 500

PS: 2.40 2.49 494

40 FD: 2.81 2.83 531 556

PS: 2.88 3.01 543

45 FD: 3.13 3.13 559 570

PS: 3.32 3.19 571

50 FD: 3.46 3.43 587 610

PS: 3.69 3.59 603

55 FD: 3.73 3.75 612 640

PS: 4.04 4.06 637

60 FD: 4.04 3.94 632 667

PS: 4.40 4.37 662

65 FD: 4.23 4.27 652 691

PS: 4.74 4.81 691

70 FD: 4.45 4.48 668 722

PS: 5.06 5.17 715

FIG. 6. (Color online) ErrðjÞ vs atom

index j in U for three frequency bins

of vibrating plate signal, with deriva-

tives based on (a) FD and (b) PS.
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f¼ 0 and a wave at frequency x having propagated a dis-

tance r along r, the complex solution

uc ¼ e�iðkr�xtÞ (A2)

can satisfy (A1). Plugging (A2) into (A1) yields

�x2uc þ iaxuc þ c2k2uc ¼ 0;
�x2 þ iaxþ c2k2 ¼ 0;

(A3)

so

k2 ¼ 1

c2
ðx2 � iaxÞ ¼ x2

c2
1� i

a
x

� �
;

k ¼ x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

a
x

r
	 x

c
1� ia

2x

� �
:

(A4)

We can rewrite ucðr; tÞ as

ucðr; tÞ ¼ aðr; tÞ þ ibðr; tÞ; (A5)

where

aðr; tÞ ¼ Reðucðr; tÞÞ 2 R;
bðr; tÞ ¼ Imðucðr; tÞÞ 2 R:

(A6)

In the following equations, we abbreviate aðr; tÞ; bðr; tÞ as a,

b, respectively.

Plug (A5) into (A1) (assume f¼ 0); we have

@2ðaþ ibÞ
@t2

þ a
@ðaþ ibÞ

@t
� c2 @

2ðaþ ibÞ
@r2

¼ 0; (A7)

thus

@2a

@t2
þ a

@a

@t
� c2 @

2a

@r2

� �
þ i

@2b

@t2
þ a

@b

@t
� c2 @

2b

@r2

� �
¼ 0;

(A8)

and thus

@2a

@t2
þa

@a

@t
�c2@

2a

@r2
¼0;

@2b

@t2
þa

@b

@t
�c2@

2b

@r2
¼0; (A9)

so a(r, t) and b(r, t) are both solutions for (A1).

Since the displacement field is real, we use a(r, t),
which is Reðucðr; tÞÞ, where k is determined in (A4).

Plug (A4) into (A2); a(r, t) is

aðr; tÞ 	 Reðe�i ðx=cÞð1�ðia=2xÞÞr�xt½ �Þ

¼ e�ðar=2cÞ cos
x
c

r � xt

� �
: (A10)

If ar=2c is small across the domain, the attenuation does not

contribute much to the derivatives of a(r, t), causing

@a=@t 	 �cð@a=@rÞ.

APPENDIX B: TLS

The TLS finds the coefficients a ¼ ½a1 � � � aD�T 2 C
D

,

which selects T other columns in U 2 C
N�D

to fit its jth col-

umn. The notations here may not refer to the same variables

as in the main text, for example, when in the training stage

of the K-fold cross-validation, we use the K – 1

concatenated �Uk
defined in the text as the “U” here and thus

the “N” is assigned as ½ðK � 1Þ=K�N.

First, we normalize each column of U by its l2 norm

and denote the normalized dictionary as �U 2 C
N�D. For a

given j, use �U�j 2 C
N�ðD�1Þ to denote �U dropping its jth

column �/j, and similarly use U�j 2 C
N�ðD�1Þ

to denote U
dropping its jth column /j. Correspondingly, we set aj¼ 1

and store the other entries of a in a�j 2 C
D�1. The TLS is

employed to compute a�j such that /j 	 �U�ja�j (since

kUak2 	 0) subject to ka�jk0 ¼ T.

Algorithm 2 outlines the TLS, with “†” for pseudo-

inverse, “diag” for constructing a diagonal matrix from a

vector, and “�” for element-wise division (Hadamard divi-

sion). Within Algorithm 2, the X ¼ fXð1Þ;…;XðTÞg
denotes the set of T selected indices, e.g., if T ¼ 3 and the

three entries with maximal magnitudes in �als
�j have indices

2, 5, 7, then X ¼ fXð1Þ;Xð2Þ;Xð3Þg ¼ f2; 5; 7g.

APPENDIX C: COMPARISON WITH SINDY

In the previous data-driven PDE identification method

SINDy,1 the authors used sequential threshold ridge regres-

sion (STRidge) to select active PDE terms in a normalized

dictionary �U�j 2 C
N�ðD�1Þ

(all columns have unit l2 norm)

to fit a given PDE term /j.

The STRidge is a recursive method, where a ridge

regression is implemented and the columns corresponding

to small coefficients are dropped in each recursion, as illus-

trated in Algorithm 2. After the active terms are selected,

the final coefficients are acquired by least squares regressing

the assumed term /j onto the identified terms in the original

dictionary (without normalization) U�j.

If the correct PDE term /j is assumed, given proper k
and s, the STRidge can work on our dataset. For example,

the STRidge can recover the correct terms Uxx and Uyy for

all frequencies in the Helmholtz equation dataset for disper-

sive waves given the correct assumption that U is an active

term and k¼ 1, s ¼ 0:1.

ALGORITHM 2. TLS.

Input: U�j ¼ ½/1 � � �/j�1 /jþ1 � � �/D� 2 C
N�ðD�1Þ; /j; T

Output: a�j

w�j ¼ fjj/d jj2j8d; d 6¼ jg 2 C
D�1// Column norms of U except its jth

column
�U�j ¼ U�jdiag�1ðw�jÞ // The normalized U�j with its dth column

denoted by �/d

�a ls
�j ¼ �U

†

�j/j// Least squares

X ¼ fXð1Þ…XðTÞg ¼ fIndices of entries in �a ls
�j with T maximal

magnitudesg
// Thresholding

�U th

�j ¼ f�/d j8d; d 2 Xg 2 C
N�T // Columns kept

�a th
�j ¼ ½�a th

1 � � � �a th
T �

T ¼ �Uth†

�j /j // Least squares

�a�j ¼ ½�a1 � � � �aD�1�T ¼ 0 // Initialize for a�j

�aXðiÞ ¼ ��a th
i ; 8i ¼ 1;…;T // Assign non-zero values to selected entries

â�j ¼ �a�j�w�j // Scaling by Hadamard division
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If the incorrect assumed term is chosen, the SINDy can-

not recognize it and will return incorrect PDE. For the same

Helmholtz equation dataset, if the assumed term is Ux, then

only Uxx is identified to be active in the dictionary.
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ALGORITHM 3. Sequential threshold ridge regression (STRidge) (Ref. 1).

Input: �U�j; /j; k; s; iters

Output: �a whose ith entry is denoted by �ai

�̂a ¼ argmin�a jj �U�j�a � /jjj22 þ kjj�ajj22
bigcoeffs ¼ fi : j�̂a ij � sg
�̂a ½� bigcoeffs� ¼ 0 // Threshold

�̂a ½bigcoeffs� ¼ STRidgeð �U�j½:; bigcoeffs�,
/j; k; s; iters� 1Þ // recursive call
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