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Introduction
Acute kidney injury (AKI) is a complex disorder associated with 
increased risk of morbidity and mortality. AKI has long been 
believed to be a fully reversible condition. However, recent studies 
have shown that patients who survive an episode of AKI may experi-
ence persistent subclinical kidney injury, placing them at higher risk 
for progression to chronic kidney disease (CKD), end-stage-renal 
disease (ESRD), and death (1–3). The principal response to kidney 
injury is the development of inflammation, which can lead to renal 
fibrosis. Depending on the extent and duration of injury, inflamma-
tion and fibrosis can either lead to ESRD or stabilize with little loss 
of kidney function (4). Biomarkers associated with renal inflamma-
tion and repair may be helpful in distinguishing patients at risk for 
kidney failure from those who are likely to recover function.

YKL-40, also known as chitinase 3–like 1 (CHI3L1) and encod-
ed by the Chi3l1 gene, and monocyte chemoattractant protein 1 
(MCP-1), also referred to as chemokine C-C ligand 2 (CCL2) and 
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RESULTS. Higher MCP-1 and YKL-40 levels were associated with greater eGFR decline and increased incidence of the 
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of the composite kidney outcome. A multimarker score increased prognostic accuracy and reclassification compared with 
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nature, biomarker levels during hospitalization may not accu-
rately indicate the risk for long-term disease progression and 
may be challenging to incorporate into clinical practice. There-
fore, we conducted a prospective, multicenter cohort study to 
assess whether elevations of urinary biomarkers of inflamma-
tion and repair at 3 months after hospitalization could identify 
which patients would have long-term glomerular filtration rate 
(GFR) decline, CKD progression, ESRD, and death after hospi-
talization with or without clinical AKI. We paired these clinical 
studies with investigations of 2 separate murine models of renal 
atrophy and renal repair, respectively, to better understand the 
molecular basis of these biomarkers in the progression of CKD.

Results
Baseline characteristics of the population stratified by clinical AKI 
status at the time of index hospitalization are presented in Table 
1. By design, among the 1538 participants in the study, 769 (50%) 
had clinical AKI (as defined by rise in serum creatinine) at the 

encoded by the Ccl2 gene, are emerging biomarkers in kidney 
disease. Urine YKL-40 and MCP-1 have been shown to be indi-
cators of structural kidney damage and inflammation in experi-
mental and clinical settings (5–11). While these proteins are pro-
duced in response to ischemic and toxic kidney injury, uromodulin 
(UMOD), encoded by the Umod gene, is a mucoprotein primarily 
synthesized by the thick ascending limb of the loop of Henle (TAL) 
associated with improved tubular function in the general popula-
tion and lower risk of AKI in patients after cardiac surgery (12, 13).

Although many studies have investigated biomarkers in the 
early detection of AKI and for predicting short-term outcomes, 
few studies have examined their ability to predict long-term kid-
ney function. Furthermore, previous studies have largely relied 
on biomarker measurements taken in hospitalized patients 
during an episode of AKI. However, individual biomarkers have 
been observed to have intricate and dynamic levels in this set-
ting due to acute changes in cellular metabolism, vascular func-
tion, and inflammation. Consequently, due to their dynamic 

Table 1. Characteristics of participants by AKI status at index hospitalization

Overall
(n = 1538)

No AKI
(n = 769)

AKI
(n = 769)

P value

Age, years 64.6 (12.7) 65.4 (12.6) 63.7 (12.8) 0.003
Gender Female 574 (37%) 324 (42%) 250 (33%) <0.001

Male 964 (63%) 445 (58%) 519 (67%)
Race American Indian/Alaskan Native 12 (1%) 4 (1%) 8 (1%) 0.03

Asian 31 (2%) 14 (2%) 17 (2%)
Black/African American 204 (13%) 81 (11%) 123 (16%)
White 1259 (82%) 653 (85%) 606 (79%)
Native Hawaiian/Pacific Islander 10 (1%) 6 (1%) 4 (1%)
Multiracial 22 (1%) 11 (1%) 11 (1%)

Ethnicity Hispanic/Latino 38 (2%) 17 (2%) 21 (3%) 0.511
Not Hispanic/Latino 1500 (98%) 752 (98%) 748 (97%)

Smoker Current Smoker 202 (13%) 90 (12%) 112 (15%) 0.308
Ex-Smoker 689 (45%) 345 (45%) 344 (45%)
Non-Smoker 634 (41%) 326 (42%) 308 (40%)
Unknown 13 (1%) 8 (1%) 5 (1%)

CVD 693 (45%) 321 (42%) 372 (48%) 0.026
COPD 335 (22%) 152 (20%) 183 (24%) 0.141
Diabetes 658 (43%) 271 (35%) 387 (50%) <0.001
Sepsis 144 (9%) 26 (3%) 118 (15%) <0.001
ACE inhibitors 514 (33%) 240 (31%) 274 (36%) 0.066
ARBs 247 (16%) 125 (16%) 122 (16%) 0.835
Statins 881 (57%) 430 (56%) 451 (59%) 0.279
NSAIDs 80 (5%) 42 (5%) 38 (5%) 0.646
BMI (at 3-month follow-up) 31.1 (7.7) 30.5 (7.0) 31.6 (8.3) 0.070
Urine creatinine, mg/dL 100.3 (72.8) 101.2 (78.0) 99.4 (67.1) 0.446
Urine albumin, mg/dL 220.4 (889.4) 117.9 (520.4) 322.9 (1136.4) <0.001
Urine protein, g/L 0.4 (1.2) 0.2 (0.7) 0.5 (1.5) <0.001
Urine MCP-1, pg/mL 243 (103–502) 207 (82–450) 274 (129–547) <0.001
Urine YKL-40, pg/mL 497 (209–1142) 447 (193–948) 560 (233–1309) <0.001
Urine UMOD, pg/mL 2564 (1519–3984) 2737 (1697–4120) 2347 (1383–3789) <0.001
eGFR (at 3-month follow-up) 69.2 (25.8) 72.7 (24.2) 65.7 (26.9) <0.001 

Values reported are mean (SD), median (IQR), or n (%). AKI, acute kidney injury; CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease; 
ACE, angiotensin-converting enzyme; ARBs, angiotensin II receptor blockers; NSAIDs, nonsteroidal antiinflammatory drugs; BMI, body mass index; eGFR, 
estimated glomerular filtration rate.
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the lowest quartile of UMOD, as compared with 9.9% (95% CI, 
9.0–10.9) in the highest quartile (Supplemental Table 3).

Composite kidney outcome. Of the 1538 patients in the study, 
300 (20%) reached the composite kidney outcome (CKD inci-
dence, CKD progression, or development of ESRD) during fol-
low-up. We examined whether urinary biomarkers at baseline 
were associated with the composite kidney outcome. In adjusted 
analyses, MCP-1 (HR, 1.32 for each doubling; 95% CI, 1.18–1.46) 
and YKL-40 (HR, 1.15 for each doubling; 95% CI, 1.09–1.22) 
were positively associated with the composite kidney outcome. 
In contrast, UMOD was associated with decreased rates of the 
composite kidney outcome (HR, 0.85 for each doubling; 95% CI, 
0.74–0.97) (Table 2). The association of urine biomarkers with 
the time to reach the composite kidney outcome are displayed 
using Kaplan-Meier curves in Figure 2. Because the interaction 
of clinical AKI status with the associations between urine MCP-
1 and YKL-40 and the composite kidney outcome showed trends 
toward significance, we also provided stratified analyses for these 
biomarkers by AKI status. In adjusted analyses, MCP-1 and YKL-
40 were positively associated with the composite kidney outcome 
in patients with and without AKI (Supplemental Table 4).

time of index hospitalization and 769 (50%) did not. In the overall 
cohort, the median MCP-1 level was 243 pg/mL (IQR, 103–502), 
YKL-40 was 497 pg/mL (IQR, 209–1142), and UMOD was 2564 
pg/mL (IQR, 1519–3984) at the in-person baseline study visit 3 
months after discharge (Table 1).

Correlation coefficients and effect modification. The correlation 
between urinary YKL-40 and MCP-1 was moderate in strength (r 
= 0.62; P < 0.001), whereas urinary UMOD had little to no cor-
relation (r < 0.05) with the other biomarkers (Supplemental Table 
1; supplemental material available online with this article; https://
doi.org/10.1172/JCI139927DS1). There was no statistically signif-
icant effect modification by clinical AKI status on the association 
between urine biomarkers and the composite kidney outcome or 
mortality. In other words, urine biomarkers were associated with 
kidney disease progression and mortality similarly in those with 
and without a history of clinical AKI during hospitalization (Sup-
plemental Table 2).

Relationship between biomarker levels and change in eGFR 
during follow-up. We determined the relationship between the 
urine biomarker levels at baseline and long-term change in esti-
mated GFR (eGFR). The decline in eGFR was greater in partic-
ipants with higher baseline levels of urine 
MCP-1 and YKL-40, whereas there was a 
lesser decline in eGFR among participants 
with higher baseline levels of urine UMOD 
(Figure 1). Participants in the highest MCP-1 
and YKL-40 quartile had significantly great-
er decline in eGFR than those in the lowest 
biomarker quartile in adjusted analyses. Over 
a period of 4 years, the decline in eGFR was 
8.0% (95% CI, 7.1–9.0) in the lowest quartile 
of MCP-1, as compared with 17.8% (95% CI, 
16.7–18.8) in the highest quartile. The decline 
in eGFR was 7.9% (95% CI, 7.0–8.9) in the 
lowest quartile versus 21.7% (95% CI, 20.6–
22.7) in the highest quartile for YKL-40. In 
contrast, over a period of 4 years, the decline 
in eGFR was 19.8% (95% CI, 18.8–20.8) in 

Figure 1. Levels of biomarkers and change in eGFR from baseline study visit 3 months after discharge. Adjusted for AKI and CKD status at index hos-
pitalization, gender, black race, Hispanic ethnicity, smoking status, diabetes, sepsis during index hospitalization, body mass index at 3-month in-person 
visit, log2-transformed urine creatinine and albumin at the 3-month in-person visit, and eGFR determined at 3-month in-person visit.

Table 2. Associations between biomarkers and the composite kidney outcome  
and mortality

Biomarker Composite Kidney Outcome Death
(Log2 transformed) HR (95% CI)A HR (95% CI)A

Unadjusted AdjustedB Unadjusted AdjustedB

MCP-1 1.23 (1.14–1.33) 1.32 (1.18–1.46) 1.16 (1.09–1.25) 1.32 (1.20–1.45)
UMOD 0.68 (0.60–0.77) 0.85 (0.74–0.97) 0.97 (0.86–1.08) 1.07 (0.94–1.22)
YKL-40 1.27 (1.20–1.34) 1.15 (1.09–1.22) 1.11 (1.06–1.17) 1.09 (1.03–1.15)

HR, hazard ratio; MCP-1, monocyte chemoattractant protein-1; UMOD, uromodulin. APer unit 
increase in log2-transformed urine biomarker concentrations. BAdjusted for AKI and CKD status 
at index hospitalization, gender, black race, Hispanic ethnicity, smoking status, diabetes, sepsis 
during index hospitalization, body mass index at 3-month in-person visit, log2-transformed urine 
creatinine and albumin at the 3-month in-person visit, eGFR determined at 3-month in-person visit.
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event rate, compared with the lowest score, after adjusting for clin-
ical variables (Supplemental Table 6). The association between 
biomarker score and the composite kidney outcome is displayed 
using a Kaplan-Meier curve in Supplemental Figure 1. Adding the 
biomarker score to the clinical model incrementally increased the 
AUC to 0.835 (95% CI, 0.799–0.871) compared with the clinical 
model alone (P < 0.01). Combining the biomarker score and clin-
ical model also significantly enhanced reclassification compared 
with the clinical model alone; the net reclassification improve-
ment (NRI) was 0.078 (95% CI, 0.002–0.122) (Table 3).

We evaluated the effect that screening patients for an elevated 
biomarker score would have on the total sample size of a clinical 
trial for an intervention intended to prevent CKD. Our hypotheti-
cal clinical trial included a 12-month accrual period and 36-month 
follow-up; it specified 90% power to detect an HR of 0.8 using 
2-sided testing and α equal to 0.05. Supplemental Table 7 illus-
trates how the total sample size would be reduced if only patients 

Mortality. During follow-up, 320 (21%) participants died. 
Each urine biomarker was assessed as a predictor of mortality. The 
association between biomarkers and mortality is shown in Figure 
3. In adjusted analyses, MCP-1 (HR, 1.32 for each doubling; 95% 
CI, 1.20–1.45) and YKL-40 (HR, 1.09 for each doubling; 95% CI, 
1.03–1.15) were associated with mortality. However, there was no 
significant association between urine UMOD and mortality (HR, 
1.07 for each doubling; 95% CI, 0.94–1.22) (Table 2).

Biomarker score. A biomarker score was constructed by assign-
ing integer values to each biomarker quartile. The biomarker score 
had a range of 0–9 and was calculated for each patient by sum-
ming the integer values assigned for the 3 biomarker levels for that 
patient (Supplemental Table 5).

The mean event rate per 1000 patient-years increased from 
21.3 (95% CI, 10.6–42.5) in patients with a biomarker score of 0 to 
100.8 (95% CI, 10.2–1000.0) in patients with a biomarker score of 
8–9. Patients with the highest score had an over 4-fold increase in 

Figure 2. Kaplan-Meier curves of the proportion of patients reaching the composite kidney outcome relative to time from baseline by biomarker quartiles.

Figure 3. Kaplan-Meier curves of the proportion of patients surviving relative to time from baseline by biomarker quartiles.

https://www.jci.org
https://doi.org/10.1172/JCI139927
https://www.jci.org/articles/view/139927#sd
https://www.jci.org/articles/view/139927#sd
https://www.jci.org/articles/view/139927#sd
https://www.jci.org/articles/view/139927#sd


The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

5J Clin Invest. 2021;131(3):e139927  https://doi.org/10.1172/JCI139927

and all-cause mortality. In contrast, we identified a significant 
association between higher urinary UMOD and a smaller eGFR 
decline over time and fewer renal outcomes. To understand the 
renal parenchymal implications of changes in these biomarkers, 
we performed molecular and histological characterization of 2 
separate murine models of IRI followed by repair and atrophy, 
respectively. scRNA-seq analysis of these 2 complementary mouse 
models showed that Ccl2, Chi3l1, and Umod were expressed by 
the infiltrating macrophages, neutrophils, and TAL/DCT cells, 
respectively. In our mouse model of renal atrophy, there was 
greater expression of Ccl2 and Chi3l1 mRNA and evidence of myo-
fibroblast accumulation and progressive renal fibrosis compared 
with the repair model, whereas the repair model showed greater 
expression of Umod and correspondingly less myofibroblast accu-
mulation and fibrosis.

The primary response to kidney injury is the simultaneous 
initiation of injury and repair mechanisms. Basile and colleagues 
divide the clinical course of kidney injury into 3 phases: the devel-
opment phase, extension phase, and resolution phase (17). The 
development phase represents the immediate effects of the insult. 
Depending on the extent and duration of injury and underly-
ing renal reserve, the initial insult may manifest with little or no 
change in kidney function (as measured through serum creati-
nine) and may only be detected through sensitive kidney-specific 
biomarkers. At this point, mild injury may resolve, or if the injury 
is severe enough, may extend and result in increased renal impair-
ment. The resolution phase represents the final net result of inju-
ry and repair mechanisms. If repair mechanisms keep pace with 
injury, there may be functional resolution over time; however, if 
ongoing injury surpasses the kidney’s repair mechanisms, the end 
result is fibrosis and durable reduction in renal function.

Previous literature shows that persistent renal inflammation is 
the main driver of the extension phase (18, 19). In particular, the 
inflammatory process is characterized by recruitment and activa-
tion of leukocytes including macrophages, neutrophils, and T cells, 
which in turn can result in the production of profibrotic cytokines 
and growth factors. Together, these profibrotic factors can pro-
mote myofibroblast activation and pathogenic collagen deposition 
(20). Our mouse models of renal atrophy and repair build on these 
findings, showing that Ccl2 and Chi3l1 were expressed predomi-
nantly by infiltrating macrophages and neutrophils, respectively, 
and were associated with myofibroblast accumulation and inter-
stitial kidney fibrosis, the histopathological hallmarks of CKD.

In our large, multicenter cohort study, these biomarkers were 
present in the urine of many patients 3 months after hospitalization. 
This finding may indicate ongoing inflammation, tubular injury, and 
fibrosis extending beyond hospitalization. The association between 
elevations in these biomarkers and progressive renal decline in 
adjusted analyses suggests these maladaptive repair processes may 
play an important role in the development of CKD. In addition, the 
association between increased biomarkers and renal decline was 
observed across all hospitalized patients regardless of AKI status at 
enrollment, suggesting that renal decline was not limited to those 
with clinical AKI (as measured through serum creatinine), but that 
even those with subclinical kidney injury (an increase in biomark-
ers of tissue injury without a simultaneous increase in creatinine) 
may progress to CKD. Elevated injury biomarkers after hospital-

above a specific biomarker score were enrolled. If only patients 
with a biomarker score of 8–9 were enrolled, it would allow inves-
tigators to observe a treatment effect in only 2605 patients, while a 
study without prognostic enrichment would require 8027 patients.

Ccl2, Chi3l1, and Umod mRNA levels correlate with atrophy and 
renal fibrosis in a mouse model of kidney injury. To understand the 
renal parenchymal implications of changes in urinary MCP-1, YKL-
40, and UMOD, we assessed mRNA expression of the correspond-
ing genes (Ccl2, Chi3l1, and Umod, respectively) in 2 mouse models 
in which ischemia/reperfusion injury (IRI) is followed by repair or 
atrophy, as previously described (14–16). Consistent with previous 
studies, the atrophy model resulted in a significant increase in PDG-
FRβ-positive myofibroblast accumulation and renal interstitial fibro-
sis and a decrease in outer medullary thickness 30 days after surgery 
compared with the repair model (Figure 4, A–E) (14–16). As shown 
in Figure 4F, there was increased gene expression of major fibrotic 
components including collagen α-1(I), fibronectin, and PDGFRβ 
(Pdgfrb, myofibroblast marker) in the atrophy model compared with 
the repair model. Consistent with the MCP-1, YKL-40, and UMOD 
levels in human urine, quantitative PCR of whole-kidney mRNA 
revealed that both Ccl2 and Chi3l1 were significantly higher in the 
setting of progressive kidney fibrosis and atrophy, whereas Umod 
levels were higher in the setting of kidney repair (Figure 4G and Sup-
plemental Table 8). Single-cell RNA sequencing (scRNA-seq) analy-
sis of these 2 models 14 days after IRI showed that Ccl2, Chi3l1, and 
Umod were expressed by the infiltrating macrophages, neutrophils, 
and TAL/distal convoluted tubule (DCT) cells, respectively, and 
that expression of Ccl2 and Chi3l1 was greater in the atrophy model, 
whereas expression of Umod was greater in the repair model (Figure 
5). Pearson analysis of Ccl2, Chi3l1, and Umod and fibrosis-related 
genes showed a strong correlation between Ccl2 and all 3 fibrosis-re-
lated genes analyzed and a moderate correlation between Chi3l1 and 
all 3 fibrosis-related genes analyzed (Supplemental Table 9).

Discussion
In this prospective cohort study, we evaluated the association of 
3 kidney biomarkers measured at 3 months after hospitalization 
with the change in eGFR over time, a composite kidney outcome 
(CKD incidence, CKD progression, or ESRD), and death. We iden-
tified strong associations between higher urinary MCP-1 and YKL-
40 and eGFR decline over time, the composite kidney outcome, 

Table 3. Discrimination and reclassification  
for composite kidney outcome

AUC (95% CI) NRI (95% CI)
Clinical ModelA 0.815 (0.762–0.850)
Clinical ModelA + Biomarker Score 0.835 (0.799–0.871)

P < 0.01
0.078 (0.002–0.122)

AUC, area under the curve; NRI, net reclassification improvement. 
AIncluded AKI and CKD status at index hospitalization, gender, black 
race, Hispanic ethnicity, smoking status, diabetes, sepsis during index 
hospitalization, body mass index at 3-month in-person visit, log2-
transformed urine creatinine and albumin at the 3-month in-person visit, 
eGFR determined at 3-month in-person visit.
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Figure 4. Kidney fibrosis and atrophy are preceded by upregulation of Ccl2 and Chi3l1. Wild-type mice were subjected to 27 minutes of unilateral IRI 
with contralateral kidney intact (atrophy model) or unilateral IRI with contralateral nephrectomy (repair model). The mice were sacrificed on days 1, 7, 14, 
and 30 after injury. Contralateral, atrophy, and repair kidneys were harvested at 30 days after injury, and kidney sections were stained with Picrosirius red 
to detect collagen deposition and immunostained with anti-PDGFRβ antibody to detect interstitial myofibroblasts. (A and B) Representative images of 
kidney sections. Scale bars: 500 μm. (C–E) Quantification of cortical and medullary thickness, Picrosirius red area, and PDGFRβ-positive area, respectively. 
n = 10 kidneys/model. P < 0.0001 among group means and ***P < 0.001, ****P < 0.0001 by 2-way ANOVA in the indicated subgroup analyses. (F and G) 
Quantitative RT-PCR analysis for Col1a1, Fn1, Pdgfrb, Ccl2, Chi3l1, and Umod was performed on whole-kidney RNA harvested on days 0, 1, 7, 14, and 30 after 
injury. n = 10 kidneys/time point/model. Two-way ANOVA summarized in Supplemental Table 5. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 at the 
indicated time point. NS, not significant.

https://www.jci.org
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ization could trigger further diagnostic work-up and allow for 
targeted lifestyle interventions and medical optimization.

UMOD, a mucoprotein synthesized by the TAL, has been shown 
to be a marker of renal reserve and play a key role in the innate 
immunity of the kidney (13, 21). Animal studies have shown that 
UMOD-knockout mice have an increased susceptibility to urinary 
tract infection (22). In addition, recent genome-wide association 
studies have linked polymorphisms in UMOD with an increased 
risk of CKD and diabetic nephropathy (23, 24). In our study, high-
er levels of UMOD were independently associated with a smaller 
decline in eGFR and reduced risk of long-term renal outcomes. 
Consistent with these clinical findings, Umod expression was signifi-
cantly higher in cells of the TAL/DCT in our mouse model of kidney 
repair. Our findings, taken together with the literature, corroborate 
UMOD’s role as an important protective factor in maintaining kid-
ney function and that UMOD may be indicative of adaptive tubular 
repair. Decreased levels of UMOD after hospitalization could help 
identify patients at risk for decreased renal function.

When added to the clinical model, our biomarker score 
increased prognostic accuracy by improving the AUC and NRI. 
Our results reinforce the concept that multiple biomarkers may 
be useful to assess the risk that results from the complex interplay 
between renal repair and atrophy. In future studies, we hope to 
identify and measure biomarkers in additional independent dis-
ease pathways to further refine our biomarker score.

Drug development is a lengthy and expensive process. For many 
diseases, including CKD, efficiently testing drugs has been a major 
challenge. Accordingly, the US Food and Drug Administration (FDA) 
has recently released final guidance documents on enrichment strat-
egies for clinical trials (25). By using prognostic biomarkers to select 
patients at high risk for a disease-related endpoint, it is possible to 
considerably reduce the sample size needed to adequately power 
a study to detect a drug’s effectiveness. These strategies have suc-
cessfully been employed in cardiovascular and oncology trials (25). 
However, no prognostic biomarkers have been used as enrollment 
criteria in clinical trials of CKD. In a hypothetical clinical trial for an 
intervention intended to prevent CKD, we show that, by enrolling 
only patients above a specific biomarker level, it may be possible to 
observe significant treatment effects in much smaller clinical trials.

Major strengths of our study include its large, multicenter, 
prospective design as well as systematic, long-term follow-up for 
relevant outcomes. Previous studies have been limited by small 
sample sizes and retrospective designs, which have hampered 
their ability to determine the independent association between 
biomarkers and long-term outcomes. Furthermore, previous stud-
ies have relied on biomarker measurements taken during index 
hospitalization. However, individual biomarker levels have been 
observed to vary considerably in this setting, limiting their abili-
ty to accurately predict long-term disease progression. Our study 
measures biomarkers after the acute phase, during outpatient fol-
low-up, allowing them to predict long-term outcomes. Moreover, 
this is a highly clinically relevant time point, as physicians may fol-
low patients in the outpatient setting at this time after a recent hos-
pitalization. Therefore, biomarker measurements during outpa-
tient follow-up can serve as a useful screening tool for physicians.

Our study also has several limitations worth considering. Our 
study did not differentiate the various etiologies of AKI. In addition, 
we only included centers in North America, and therefore our results 
may not be generalizable to all hospitalized patients. Although we 
adjusted for multiple patient characteristics, we cannot rule out resid-
ual confounding. Finally, the study did not collect biopsy samples 
from patients due to the invasiveness of the procedure and potential 
risks for complications. Therefore, we were not able to assess the asso-
ciation of these inflammatory biomarkers in human biopsy specimens 
with long-term outcomes. However, prior studies from kidney trans-
plant patients (a related population that often receives surveillance 
biopsies) demonstrates that numbers of inflammatory cells present 
on posttransplant biopsies correlated with progression of fibrosis and 
long-term eGFR decline (26–28). Future studies will be needed to 
assess these markers in biopsy tissue in patients after hospitalization.

In conclusion, CKD currently affects 15% of the US population 
and is expected to become more prevalent in decades to come, 
underscoring the need to implement effective screening and pre-
vention strategies (29). Monitoring biomarker levels after hospi-
talization could help identify subgroups of patients at risk for pro-
gressive decline in kidney function. Further studies will be needed 
to assess whether closer follow-up and targeted interventions can 
improve outcomes in this population.

Figure 5. Single-cell RNA sequencing analysis of kidneys from atrophy and repair models for biomarker gene expression. Atrophy and repair kidneys 
were harvested at 14 days after injury for cell isolation followed by single-cell RNA sequencing analysis. Cell clustering and data analysis were performed 
using Seurat v3.1.5 R package. Relevant biomarker gene expression is shown as a dot plot. PT, proximal tubule; TAL, thick ascending limb of the loop of 
Henle; DCT, distal convoluted tubule; CD, collecting duct; DC, dendritic cells. 
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was measured at the Yale George M. O’Brien Kidney Center. The mice 
were sacrificed on days 1, 7, 14, and 30 after surgery (n = 10 per time 
point for each model). Control mice were sacrificed and are represent-
ed as day 0 (n = 10).

Histology and IHC. Kidneys were fixed in 10% neutral buffered 
formalin and embedded in paraffin. For detection of collagen, dep-
araffinized kidney sections (5 μm) were rehydrated and stained with 
Picrosirius red in 1.3% picric acid for 1 hour. PDGFRβ-positive cells 
were detected by IHC using primary monoclonal antibodies against 
PDGFRβ (3169, Cell Signaling Technology) as described previously 
(14). Six independent fields in the cortex and 4 independent fields 
in the outer medulla were analyzed per kidney. The percentage area 
of Picrosirius red staining and PDGFRβ-positive myofibroblasts, as a 
measure of fibrosis, and the thickness of the cortex and outer medulla 
were quantified using ImageJ software (NIH).

Quantitative PCR analysis. Whole-kidney RNA was extracted 
with an RNeasy Mini kit (Qiagen) and reverse transcribed using the 
iScript cDNA Synthesis Kit (Bio-Rad Laboratories). Gene expression 
was determined by quantitative real-time PCR using an iCycler iQ 
(Bio-Rad Laboratories) and normalized to hypoxanthine–guanine 
phosphoribosyltransferase (Hprt). Primers used included previously 
published primers for Ccl2, Chi3l1, Col1a1, Fn1, Pdgfrb, and Hprt, as 
well as Umod forward (TGCAATCTGGCTTACTGCAC) and reverse 
(TGAAGCCTGAGCATTGTCTG) (14, 15). The data are expressed 
using the comparative threshold cycle (ΔCT) method, and the mRNA 
ratios are given by 2–ΔCT.

scRNA-seq analysis. Kidneys from the atrophy and repair models 
were harvested at 14 days after injury for cell isolation followed by 
scRNA-seq. The scRNA-seq library construction and sequencing were 
performed at the Yale Center for Genome Analysis (YCGA). Cell Rang-
er version 3.0.0 was used to process Chromium single-cell 3′ RNA-
seq output and align the Read to the mouse reference transcriptome 
(mm9). Cell clustering and data analysis were performed using Seurat 
v3.1.0 R package (34, 35). Red blood cells, cells with transcriptome 
below 200 (likely cell fragments) or greater than 3,500 (potentially 
cell doublets), and cells with mitochondrial gene percentage greater 
than 50% were excluded. Principle component analysis (PCA) was 
performed on the scaled data. The top 30 principal components were 
chosen for unsupervised cell clustering. Each cluster was screened 
for marker genes by differential expression analysis based on the 
nonparametric Wilcoxon rank sum test for all the clusters with genes 
expressed in at least 25% of cells either inside or outside of a cluster. 
Cell identity was assigned based on kidney cell– and immune cell lin-
eage–specific marker expression: Lrp2, Slc27a2, and Kap for proximal 
tubule; Slc12a1, Umod, Slc12a3, and Calb1 for TAL/DCT; Atp6v1g3 and 
Atp6v0d2 for collecting duct; Plvap and Kdr for vasculature; Acta2, 
Col1a1, and Fn1 for myofibroblasts; C1qa and C1qc for resident mac-
rophages; C1qa, C1qc, Cx3cr1, and Ccr2 for infiltrating macrophages; 
Itgax for dendritic cells; S100a8 and S100a9 for neutrophils; Cd3e and 
Cd3g for T cells; and Cd79a and Cd79b for B cells. The scRNA-seq data 
reported in this paper are available in the NCBI’s Gene Expression 
Omnibus database (GEO GSE161758).

Statistics. Descriptive statistics are reported as mean (±SD) or 
median (IQR) for continuous variables, and as frequency (percent-
age) for categorical variables. For the patient cohort, we compared 
differences in characteristics between those who did and those who 
did not experience an episode of AKI during index hospitalization. 

Methods
Study population. The Assessment, Serial Evaluation, and Subsequent 
Sequelae of Acute Kidney Injury (ASSESS-AKI) Study is a prospec-
tive, matched cohort study of hospitalized patients who did or did not 
experience an episode of AKI and survived to complete an in-person 
baseline study visit 3 months after discharge. This first outpatient visit 
is referred to as “baseline” throughout the manuscript. Study details 
have been described previously (30). Briefly, hospitalized adults were 
enrolled between December 2009 and February 2015 at 4 clinical cen-
ters in North America. The cohort comprised 769 hospitalized patients 
with AKI and 769 matched patients without AKI at the index hospi-
talization (Supplemental Figure 2). AKI was defined as an increase of 
50% or greater or 0.3 mg/dL or greater in serum creatinine above the 
most recent outpatient, non–emergency department serum creatinine 
obtained within 7 to 365 days prior to index hospitalization.

Collection of study data. The 1538 ASSESS-AKI study participants 
had an in-person baseline study visit 3 months after discharge, during 
which clinical data were systematically collected (31). In addition, we 
collected blood and urine samples at the visit. Participants returned 
for in-patient follow-up visits 12 months after discharge and annual-
ly thereafter, and were contacted by telephone at 6-month intervals 
between clinic visits. Medical history, medication use, and study 
events were updated at each in-person visit or phone contact; blood 
and urine samples were collected at each in-person visit and eGFR 
was quantified using the CKD-EPI equation (32). Vital status was 
determined at each study contact through medical record review and 
contact with the participant’s healthcare proxy.

The primary kidney outcome was a composite of CKD inci-
dence, CKD progression, and development of ESRD. In participants 
without preexisting CKD at index hospitalization (eGFR ≥ 60 mL/
min/1.73 m2), CKD incidence was defined as the combination of 
25% or greater reduction in eGFR (compared with the most recent 
preadmission measurement) and achieving CKD stage 3 or worse. 
In participants with preexisting CKD at the index hospitalization 
(eGFR < 60 mL/min/1.73 m2), CKD progression was defined as 
experiencing 50% or greater reduction in eGFR (compared with the 
most recent preadmission measurement) or progressing to stage 5 
CKD. ESRD was defined as dialysis treatment at least once a week 
for at least 12 consecutive weeks, receipt of kidney transplant, or 
death while receiving dialysis.

Biomarker measurement. Samples were aliquoted and stored at 
–80°C until biomarker measurements. We measured serum and urine 
samples for creatinine concentration using the Roche enzymatic meth-
od (Roche Diagnostics). We measured urine samples for MCP-1 and 
YKL-40 using a multiplex assay, and urine samples for UMOD were 
measured on a separate assay (Meso Scale Diagnostics), the methods 
of which have been described previously (33). All investigators mea-
suring biomarkers were blinded to clinical outcomes.

Animal surgery and experimental protocol. C57BL/6 (Envigo) wild-
type mice (age 9–11 weeks) were used in this work. To establish the 
unilateral IRI (atrophy) model, warm renal ischemia was induced 
using a nontraumatic microaneurysm clip (FST Micro Clamps) on 
the left renal pedicle for 27 minutes, leaving the right kidney intact. 
To establish the unilateral ischemia/reperfusion with contralateral 
nephrectomy (repair) model, the right kidney was surgically removed 
at the time of left kidney ischemia, as we have previously described 
(14, 15). Blood was obtained 1 day after the surgery. Serum creatinine 
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accrual period and 36-month follow-up; it specified 90% power to 
detect an HR of 0.8 using 2-sided testing and α equal to 0.05.

For our mouse model, multigroup comparison was performed by 
1-way analysis of variance (ANOVA) for group mean comparison fol-
lowed by Tukey’s multiple-comparison test for subgroup comparison. 
Two-model time-course comparison was performed by 2-way ANOVA 
to test whether there was a difference between the models and in the 
time course, followed by Bonferroni’s post hoc test for subgroup com-
parison at each time point. Correlation of gene expression was deter-
mined by Pearson’s correlation coefficient.

Analyses were conducted using SAS software, version 9.4, Prism 
8 (GraphPad Software), and R version 4.0.2. All tests of significance 
were 2-sided, with P less than 0.05 considered significant.

Study approval. The study was approved by the institutional 
review boards of all participating institutions, and written informed 
consent was obtained from all participants. All animal protocols were 
approved by the Yale University Animal Care and Use Committee.
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For continuous variables, we used either the Student’s t test or the 
Wilcoxon rank sum test, and for categorical variables, we used the χ2 
test. Correlation between urine biomarkers was assessed with Spear-
man’s correlation coefficients.

We used Cox regression models to estimate the associations 
between urine biomarkers and the primary composite kidney out-
come. Biomarker concentrations were modeled as log2-transformed 
continuous variables or quartiles. The model was adjusted for the 
following prespecified variables: AKI and CKD status at index hos-
pitalization, gender, black race, Hispanic ethnicity, smoking status, 
diabetes, sepsis during index hospitalization, and body mass index. 
They were further adjusted for log2-transformed urine creatinine and 
albumin at the 3-month in-person visit as well as eGFR determined 
at the aforementioned visit. In addition, we display the association 
of urine biomarkers with the composite kidney outcome and mortal-
ity using Kaplan-Meier curves. For analyses of the composite kidney 
outcome and mortality, we fit 2 separate models according to clinical 
AKI status and performed tests for effect modification between each 
biomarker and clinical AKI status on the composite kidney outcome 
and mortality, respectively.

We examined the association between biomarker levels and the 
change in eGFR over time using methods described previously (36). 
Briefly, we used linear mixed-effects modeling with a random par-
ticipant-specific intercept and a random time effect, by regressing 
log(eGFR) against biomarker quartiles, follow-up time (months since 
baseline), biomarker quartiles × follow-up time, and baseline eGFR, in 
addition to the aforementioned covariates.

We subsequently generated a combined biomarker score, using 
methods described previously (37). The biomarker score was con-
structed by assigning integer values to each biomarker quartile. The 
biomarker score had a range of 0–9 and was calculated for each patient 
by summing the integer values assigned for the 3 biomarker levels for 
that patient. The prognostic accuracy of the biomarker score and clin-
ical model was determined using the area under the curve (38). The 
ability of the biomarker risk score to correctly reclassify patients was 
additionally tested with the NRI (39).

Using methods described previously, we evaluated the effect that 
screening patients for an elevated biomarker score would have on the 
total sample size of a clinical trial for an intervention intended to pre-
vent CKD (40). Our hypothetical clinical trial included a 12-month 
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