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with model exchange-correlation kernels
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USA
2)Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118,
USA

(Dated: 16 January 2024)

Time-dependent density functional theory (TDDFT) within the linear response regime provides a solid math-
ematical framework to capture excitations. The accuracy of the theory, however, largely depends on the
approximations for the exchange-correlation (xc) kernels. Away from the long-wavelength (or q = 0 short
wave-vector) and zero-frequency (ω = 0) limit, the correlation contribution to the kernel becomes more rel-
evant and dominant over exchange. The dielectric function in principle can encompass xc effects relevant
to describe low-density physics. Furthermore, besides collective plasmon excitations, the dielectric function
can reveal collective electron-hole excitations, often dubbed “ghost excitons.” Beside collective excitons, the
physics in the low-density regime is rich, as exemplified by a static charge-density wave that was recently
found for rs > 69, and was shown to be associated with softening of the plasmon mode. These excitations are
seen to be present in much higher density 2D HEGs, of rs ≳ 4. In this work we perform a thorough analysis
with xc model kernels for excitations of various nature. The uniform electron gas, as a useful model of real
metallic systems, is used as a platform for our analysis. We highlight the relevance of exact constraints as we
display and explain screening and excitations in the low-density region.

I. INTRODUCTION

The homogeneous electron gas (HEG)1 underlies
practical approximations in density functional theory
(DFT)2,3 and is a useful model of metallic systems. Den-
sity functional approximations built upon the constraint
of the HEG limit have predictive power to capture a
wide range of electronic phenomena. The same predictive
power transfers to excitations in the HEG from time-
dependent DFT (TDDFT)4–6. The interacting HEG,
sometimes called jellium, is an important model because
it has a Hamiltonian with Coulomb repulsion between
electrons, but with an external potential that arises from
a uniform positive-charge background. The HEG to-
tal energy minimizes at Wigner-Seitz radius rs ≈ 4
bohr, mimicking the valence electron density of metal-
lic sodium.

In linear response TDDFT7–9, the exact linear density-
density response function χ(r, r′, ω) of an electronic sys-
tem in its ground state to a weak, frequency or ω-
dependent external scalar potential δv(r′, ω) delivers the
exact excited-state energies ℏω0 of the system when
χ−1(r, r′, ω0) = 0. The interacting density-density re-
sponse function χ contains the poles of the real system,
while the non-interacting or Kohn-Sham response func-
tion χKS contains the poles of the fictitious Kohn-Sham
system. For the HEG, χKS is the Lindhard function10.

To boost the accuracy of χKS, xc effects can be added
to the bare Coulomb interaction vc(q) = 4π/q2 in the
form of xc kernels fxc(q, ω). Kernels in principle are rig-
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orous derivatives of the xc potential, and are often mod-
eled by satisfying exact constraints9,11. xc effects then
screen χKS

χ(q, ω) = χKS(q, ω)ϵ̃
−1(q, ω), (1)

through the wave-vector q and frequency ω-dependent
dielectric function

ϵ̃(q, ω) = 1− [vc(q) + fxc(q, ω)]χKS(q, ω). (2)

Plasmons or collective electronic excitations in the in-
teracting HEG12,13 are defined by those complex frequen-
cies where |ϵ̃| = 0. However, since long-range screening is
assumed to be perfect in metals, excitons are not usually
expected in metals1,14, including the HEG.

More accuracy is guaranteed when xc kernels are mod-
eled by satisfying mathematical constraints in the same
spirit as some xc density functional approximations are
designed for the xc energy Exc[n]. Unlike ultra-nonlocal
kernels, which diverge as limq→0 fxc ∼ 1/q2,15–18, short-
range kernels of the HEG19–24, where limq→0 fxc →
const, do not yield bound excitons25.

The simplest xc kernel is the adiabatic local density
approximation (ALDA)2,3 and is built upon the HEG
paradigm. It is spatially local, but at q → 0, it satisfies
the compressibility sum rule,

lim
q→0

[
lim
ω→0

fxc(q, ω)
]
=

d2

dn2
(nεHEG

xc )

∣∣∣∣
n=n(r)

, (3)

where εHEG
xc is the exchange-correlation energy per elec-

tron in a spin-unpolarized HEG. ALDA is not expected
to accurately reproduce excitations in the HEG, but it
forms a basis for more sophisticated approximations to
fxc. That approach was taken in the work by Corradini
et al.20.
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II. STATIC SCREENING AND THE LOW-DENSITY
REGIME OF THE HEG

Screening is fundamental to understanding excitations
in the HEG and real materials1,14,26–29. While screening
is positive at high densities, the low-density regime of
the HEG can feature negative screening which alters the
nature of its collective excitations30–32. Mathematically,
negative screening reflects poles of the dielectric function
ϵ on the imaginary frequency axis33.

Within this work, we discuss (i) the improved descrip-
tion of screening, and (ii) predicted excitations in the low-
density regime of the HEG found from recently-developed
xc kernels within TDDFT22–24. These model kernels help
us highlight the role of exact mathematical constraints
for the low density HEG, or in general for metals. Neg-
ative screening due to imaginary-frequency poles of the
dielectric function are associated with collective “ghost
excitonic” modes33.

The zeroth-order approach in TDDFT is the random
phase approximation (RPA)34,35, which sets fRPA

xc = 0.
Since the region of collective excitations below a critical
wave-vector is dominated by the Coulomb interaction,
the RPA yields reasonable plasmon dispersion36. RPA
is known for not yielding bound excitons in semicon-
ductors and insulators25. Koskelo, Reining, and Gatti32
recently demonstrated that excitons can exist even in
metals. This fact may not be surprising given imper-
fect screening in metals at short range. As shown in real
space, RPA can potentially capture excitons with a short
electron-hole distance. With the RPA input dielectric
function, the many-body GW-BSE (Bethe-Salpeter equa-
tion) should in principle exhibit excitons in metals37,38.
However, this is not the case for plasmon excitations be-
cause BSE inconsistently treats the input and output di-
electric functions32. Although many-body approxima-
tions are often not matched in accuracy by TDDFT, the
inconsistency between the electron-hole interaction and
self-energy in the former theory is often a bottleneck to-
ward further improvement.

In this work, we motivate the use of approximate,
physically-constrained kernels in TDDFT for exploring
excitonic behavior in real materials. Such an approach
is computationally advantageous over GW-BSE. To cap-
ture more than just qualitative physics at low density,
one needs to go beyond ALDA. The static HEG ker-
nel fxc(q, ω = 0), calculated via quantum Monte Carlo
(QMC)19,39 and parameterized in Refs. 20 and 24, al-
ready improves upon the ALDA.

The authors have recently co-developed various
increasingly-more accurate versions of a family of
spatially- and temporally-non-local kernels called
MCP07. The MCP07 kernel22 is a constraint-based
model of fxc(q, ω) that interpolates between the static
limit of a modified Constantin-Pitarke 2007 (CP07)21
fxc(q, ω = 0), and the Gross-Kohn-Iwamoto5,40 dynamic
LDA fxc(q = 0, ω). The changes in the static MCP07
kernel relative to CP07 affect both its q → 0 and q → ∞

limits. Frequency-dependence is introduced to the static
MCP07 kernel on a length scale that also controls the
approach to the fxc(q → ∞, ω = 0) limit. MCP07 has
a broad range of successes from accurate correlation
energies per electron for the HEG22,23, finite lifetimes
for plasmons22 of small non-zero wavevector, to the right
low-density behavior in which a static charge-density
wave22,41,42 arises from a softening of the plasmon mode.

The static properties of MCP07 are superseded by the
recently-developed Kaplan-Kukkonen kernel (AKCK)24.
AKCK analytically models both the static density
G+(rs, q, ω = 0) and spin G−(rs, q, ω = 0) local field fac-
tors for the HEG, with free parameters determined by a
fit to small-q QMC data39. The density local-field factor
is related to the xc kernel as G+ = −q2fxc/(4π).

The revised MPCP07 (rMCP07) kernel23 keeps all ex-
act constraints satisfied by MCP07 while improving its
frequency dependence to better reproduce HEG correla-
tion energies at densities lower than are typical of bulk
metals. Thus rMCP07 and MCP07 differ only for non-
zero frequencies. We assume that the rMCP07 frequency
dependence can be further improved, such as by address-
ing the order-of-limits issue43:

lim
q→0

[
lim
ω→0

fxc(q, ω)
]
̸= lim

ω→0

[
lim
q→0

fxc(q, ω)

]
. (4)

Qian and Vignale43 noted the relevance of the viscos-
ity term in Im fxc(q = 0, ω)44 at high density. The au-
thors have also demonstrated consequences of the order-
of-limits problem in prior work23.

The screened Coulomb interaction’s form is

W (q, ω) = vc(q)ϵ
−1(q, ω), (5)

where both sides can have a positive or negative sign.
The potential seen by a test charge is

δvscreen(q) = δvext(q) + vc(q)δn(q), (6)

with δvext(q) the change in the external potential seen
by a test electron. With the change in the electronic
density δn(q) = χ(q)δvext(q), the test-charge–test-charge
(TCTC) dielectric function ϵ is given by

ϵ−1(q) = 1 + vc(q)χ(q). (7)

When Eq. (7) is used in W , it yields that effective inter-
action which expresses the classical electrostatic potential
induced by the density response.

The stability of the HEG1 requires χ(q) < 0 and
ϵ−1(q) < 1. The Kohn-Sham potential created by a test
charge is

δvKS(q) = δvext(q) + [vc(q) + fxc(q)]χ(q)δvext(q). (8)

The test-charge–test-electron (TCTE) dielectric function
is then given by

ϵ̃−1(q) = 1 + [vc(q) + fxc(q)]χ(q). (9)
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(a) ε−1(q, 0) = 2,
anti-screening

(b) ε−1(q, 0) = 1,
no screening

(c) ε−1(q, 0) = 0,
perfect screening

(d) ε−1(q, 0) = −1,
over-screening

FIG. 1. Simple examples of screening in solids. In all panels,
the external potential is modeled as a sine curve δvext(q) =
v0 sin(q/kF) and plotted as the solid blue curve. The screened
interaction W is plotted as the dashed orange curve. Panel (a)
plots anti-screening, whereby electronic correlation enhances
the amplitude of the perturbation; (b) plots no screening; (c)
plots perfect screening, as in a classical metal; and (d) plots
over-screening, whereby the screened interaction is 1800 out-
of-phase with δvext.

It should be noted that the response function χ(q) enter-
ing Eqs. (7) and (9) is the static limit of the interacting
response function in Eq. (1).

Different prototypes of screening are illustrated
schematically in Fig. 1. These examples include anti-
screening, where the electronic response enhances δvext;
perfect screening whereby W = 0, as in a classical metal;
and over-screening, where the electronic response is 1800
out of phase with δvext.

When χ(q) ≤ 0 and fxc(q) ≤ 0, ϵ̃−1 ≥ ϵ−1 by Eqs. (7)
and (9). At a certain critical density, the TCTC ϵ−1 can
become negative31, although a negative ϵ−1 does not nec-
essarily indicate an instability in an infinite HEG. A neg-
ative TCTC dielectric function (equivalently, a negative
compressibility) makes the screened Coulomb interaction
among like test charges attractive at some separations.

III. STATIC SCREENING: RESULTS AND DISCUSSION

The dielectric function46 is key to capturing correct
low-density physics47. Therefore, we begin our discus-
sion by comparing ϵ−1(q) and ϵ̃−1(q). Figure 2 compares
these dielectric functions for two characteristic densities:
rs = 4, which is nearly the equilibrium density of the
HEG, and typical of the valence electron density of bulk

Na; and rs = 22, which Ref. 31 identified as featuring
a ghost exciton. For rs = 4, both ϵ−1(q) and ϵ̃−1(q)
are non-negative. At rs = 22, the RPA dielectric func-
tion (which neglects all xc effects) remains non-negative
at all q, but inclusion of xc effects yields a sharp dip in
ϵ−1(q ≈ 2kF) towards negative values. kF = (3π2n)1/3 is
the Fermi wave-vector. This behavior is consistent across
the ALDA, Corradini et al.20 (CDOP), AKCK24, and
MCP0722 static kernels, although it appears that ALDA
largely overestimates xc effects. Including wave-vector
dependence in the AKCK, MCP07, and CDOP kernels
reduces the over-screening tendency of ALDA, in that or-
der. All three kernels obey the same physical constraints,
but the more rapid transition to large-q asymptotic be-
havior in AKCK yields markedly larger over-screening
than do MCP07 or CDOP.

Figure 2 shows that both ϵ−1 and ϵ̃−1 vanish quadrat-
ically as q → 0. For small-q,

lim
q→0

χKS(q, ω = 0) = −kF
π2

[
1− x2

12
+O

(
x4

)]
, (10)

where x ≡ q/kF. For any reasonable approximation to
the HEG kernel,

fxc(q) = fxc(0) +Dxc(rs)q
2 +O(q4). (11)

Thus

ϵ̃(q) =
k2s
q2

[
1 +

(
k2Ffxc(0)

4π
− 1

12
+
k2F
k2s

)
x2 +O(x4)

]
,

(12)
where ks ≡ (4kF/π)

1/2 is the Thomas-Fermi screening
length. Thus one can see that the coefficient of q2 in the
expansion ϵ̃−1(q)

ϵ̃−1(q) ≈
(
q

ks

)2

+

[
4

3π2k2s
− 1− k2s fxc(0)

4π

](
q

ks

)4

(13)

is always positive. After much simplification,

ϵ−1(q) ≈
[
1 +

k2s fxc(0)

4π

](
q

ks

)2

, (14)

which is strictly positive for RPA. When fxc(0) = fALDA
xc ,

this coefficient changes continuously from positive to neg-
ative as rs passes through the critical rs ≈ 5.25 where the
HEG total compressibility becomes negative.

The similarity of the peak is supported by the den-
sity dependence in CDOP, AKCK, and the static MCP07
kernels. Furthermore, the dip at q ≈ 2kF is easily ex-
plained by the 2kF “hump” phenomenon24,48,49. The
AKCK kernel’s improved fit to QMC data24,39 suggests
greater reliability than CDOP. The dip is potentially rel-
evant to phonon dispersion and superconductivity in real
materials50,51.
ϵ−1(q) and ϵ̃−1(q) are important starting points for

our analysis, but a greater understanding is achieved via
the effective interaction W (q). Here, we plot W in both
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(c) rs = 22
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ε̃−

1 (
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FIG. 2. The TCTC ϵ−1 [panels (a) and (c)] and TCTE ϵ̃−1 [(b) and (d)] dielectric functions, for rs = 4 [panels (a)-(b)] and
22 [(c)-(d)]. The kernels used are the RPA (solid black), ALDA (dotted gray), Corradini et al.20 (CDOP, solid dark blue),
AKCK24 (dash-dotted light blue), and MCP0722 (dashed yellow). The ALDA uses the Perdew-Wang45 parameterization of the
HEG xc energy density. While the TCTE dielectric functions are qualitatively similar at such different densities, the TCTC
dielectric functions differ markedly. As shown in Eq. (13), ϵ̃−1 ≈ q2/k2

s , where ks = (4kF/π)
1/2 is the Thomas-Fermi screening

wave-vector. Thus the dielectric functions are scaled by k2
s . As q/kF → ∞, both ϵ̃−1, ϵ−1 → 1.

Fourier and real space. Within TDDFT, W represents
how the bare Coulomb interaction is screened. In BSE,
W does not have a similarly simple interpretation. The
negativity of ALDA as shown in Fig. 2 suggests that
the RPA-level ϵ−1(q) may lead to an improved W within
BSE32.

The shortcomings of both RPA and ALDA ϵ−1(q), and
the necessity of using ϵ̃−1(q) in W rather than ϵ−1, were
pointed out in Ref. 32. Our Figs. 3–4, and Appendix
Fig. 8, confirm this observation while adding more in-
sight with our recent models. WTCTC is the effective
interaction at the linear response level between external
point charges of charge +1 and −1, andWTCTE is the cor-
responding effective interaction of Kohn-Sham potential
seen by an electron in the presence of an external point
charge of charge +1. The most correct results are from
MCP07 and AKCK. Note that only WTCTC shows strong
over-screening, and then only at low density (rs = 22).
WTCTE at rs = 22 exhibits the q ≈ 2kF peak emphasized
by Overhauser48, suggesting an attractive electron-hole
interaction.

Appendix B computes the dielectric function and
screened interaction (in both reciprocal and real space)
for the 2D HEG using the RPA, the ALDA, and a static
kernel (DPGT)52 constructed for the HEG. For the 2D
HEG, the ALDA screened interaction is attractive for
kFr ≤ 1 at much higher densities, rs ≈ 4, compared to
the corresponding rs for the 3D HEG. These values of rs
for the 2D HEG are experimentally accessible. More, the
static DPGT kernel predicts slightly enhanceed screening
over the ALDA. Further details are provided in Appendix
B.

IV. DYNAMIC SCREENING, EXCITATIONS, AND
QUASI-EXCITATIONS

Equations (1) and (2) include frequency dependence.
The frequency-dependent analogs of Eqs. (7) and (9) are

ϵ−1(q, ω) = 1 + vc(q)χ(q, ω), (15)

ϵ̃−1(q, ω) = 1 + [vc(q) + fxc(q, ω)]χ(q, ω). (16)



5

1 2 3 4 5
−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0
−

k2 s
W

TC
TC

(q
)/

(4
π

)
(a)

1 2 3 4 5

q/kF

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−
k2 s

W
TC

TE
(q

)/
(4

π
)

(b)

rs = 4
Bare Coulomb
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Static MCP07

FIG. 3. Screened interactions (a) WTCTC(q) = vc(q)ϵ
−1(q)

and (b) WTCTE(q) = vc(q)ϵ̃
−1(q) for a rs = 4 HEG. The

color scheme is the same as used previously, while the bare
Coulomb interaction vc(q) = 4π/q2 is the solid orange curve.
Eq. (13) suggests that WTCTE(q) ≈ 4π/k2

s at small-q, thus
we scale W by −k2

s /(4π).

At non-zero frequency, the quantities χKS(q, ω), χ(q, ω),
fxc(q, ω), and the dielectric functions can be complex.
When fxc is set to zero, we obtain the RPA ϵ−1 = ϵ̃−1 =
ϵ−1
RPA. From Eqs. (1), (2), (15), and (16), we find

ϵ−1(q, ω) = ϵ̃−1(q, ω) [1− fxc(q, ω)χKS(q, ω)] . (17)

Another view of low-density regimes is afforded by
plasmon dispersion1,53. Plasmon dispersion relations are
typically plotted until the wave-vector region where plas-
mons can decay into single-particle excitations54, the
particle-hole continuum. The poles of the interacting re-
sponse function numerically deliver plasmon dispersion
relations36: ωp(q) is found by fixing a real wave-vector
q and searching over complex frequencies ω for the one
that zeros-out ϵ̃(q, ω). MCP07 and rMCP07 are complex,
dynamic xc kernels, but an approximate plasmon disper-
sion can be produced by the zeros of ϵ̃(q, ω) for static
kernels. The particle-hole continuum is bounded by the
curves q2/2 ± kFq. MCP07 and rMCP07 produce finite
plasmon lifetimes for q < kF, indicating multiple-decay

1 2 3 4 5
−10

−5

0

5
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−
k2 s

W
TC

TC
(q
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(4

π
)

(a)

1 2 3 4 5

q/kF

−10

−5

0

5

10

−
k2 s

W
TC

TE
(q
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(4

π
)

(b)
rs = 22

Bare Coulomb
RPA
ALDA

CDOP
AKCK
Static MCP07

FIG. 4. Screened interactions (a) WTCTC(q) = vc(q)ϵ
−1(q)

and (b) WTCTE(q) = vc(q)ϵ̃
−1(q) for a rs = 22 HEG.

channels outside the particle-hole continuum region. Ref.
22 found a positive plasmon dispersion at rs = 4 and a
negative dispersion at rs = 69, where a plasmon-like den-
sity fluctuation drops to zero frequency42.

The authors of Ref.32 have defined a “collective mode
at real frequency ωc(q)” by solving a somewhat dif-
ferent problem: finding the real frequency that makes
Re ϵ̃(q, ω) = 0 (again for real-valued q). This delivers
the true plasmon dispersion only at very small q. Our
Fig. 6 shows this plasmon-like dispersion, indicating pos-
itive “dispersion” for rs = 4, and negative “dispersion” for
rs = 22, as expected. The curves are cut off when they
enter the particle-hole continuum region.

In Fig. 6, all model kernels make the q → 0 limit exact,
but the xc effects appear strongly in the model kernels
and ALDA. This is only observable for larger q/kF where
the dispersion curves meet the particle-hole continuum
cutoff. However nearly all models predict qualitatively
similar shapes for ωc(q). This is especially relevant for
the dynamic LDA of Qian and Vignale (QV)43, which
does not reduce to the ALDA, and which attempts to
approximate two-particle excitations.

The final point of our analysis regards excitations in
the low-density regime. To do so, we use the spectral
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FIG. 5. Screened interactions (a) WTCTC(r) and (b)
WTCTE(r) for a rs = 22 HEG obtained through a numeric
Fourier transform. The bare Coulomb interaction 1/r is the
solid orange curve. A real-space analog of Fig. 3 is given in
Appendix Fig. 8.

function S(q, ω) = Imχ(q, ω)/(πn)1. We follow the defi-
nitions of the average frequency of a density fluctuation,

⟨ω(q)⟩ =
[∫ ∞

0

S(q, ω)dω

]−1 [∫ ∞

0

ωS(q, ω)dω

]
, (18)

and variance of a density fluctuation,

⟨ω2(q)⟩ =
[∫ ∞

0

S(q, ω)dω

]−1 [∫ ∞

0

ω2S(q, ω)dω

]
,

(19)
presented in Ref. 42. The standard deviation of a density
fluctuation is then

∆ω(q) =
[
⟨ω2(q)⟩ − ⟨ω(q)⟩2

]1/2
. (20)

Figure 7 (for rs = 22) and Appendix Figs. 9 and 10 (for
rs = 4 and 69, respectively), present these quantities for a
wide range of q. At rs = 69 (Appendix Fig. 10), a charge-
density wave is observed42 as ⟨ω⟩ dropping towards zero
frequency near q = 2kF.

In Fig. 7, the solid blue curve is ⟨ω(q)⟩ from MCP07,
and the light-blue shaded region is bounded by ⟨ω(q)⟩ ±
∆ω(q). The orange curve and shaded regions are iden-
tical quantities computed with AKCK. The green curves
are the bounds of the particle-hole continuum (PHC),
ω
(±)
PHCq

2/2 ± kFq. The negative plasmon dispersion is

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.8

1.0

1.2

1.4

1.6

ω
c(

q)
/

ω
p
(0

)

(a) rs = 4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

q/kF

0.8

1.0

1.2

1.4

1.6

ω
c(

q)
/

ω
p
(0

)

(b) rs = 22

RPA
ALDA
CDOP

AKCK
Static MCP07
QV spline

MCP07
rMCP07

FIG. 6. The plasmon-like dispersion ωc(q) (as defined in the
text) computed from the RPA (solid black), ALDA (dotted
black), CDOP20 (solid dark blue), AKCK24 (dash-dotted light
blue), static MCP07 (dashed yellow) and dynamic MCP07
(solid yellow), rMCP0724 (dotted yellow), and Qian-Vignale
dynamic LDA43 (QV, dash-dotted green) TCTE dielectric
functions. ωc is scaled by the bulk plasmon frequency ωp(0) =

(4πn)1/2. Positive dispersion for rs = 4 is shown in panel
(a), and negative dispersion for rs = 22 in panel (b). The
curves are plotted only until they enter the upper bound of
the particle-hole continuum region, bounded from above by
q2/2 + qkF.
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FIG. 7. The average frequency of density fluctuation, ⟨ω⟩ of
Eq. (18) (solid blue curve for MCP07 and orange for AKCK),
and ⟨ω(q)⟩±∆ω(q) (light blue or orange shaded regions) for an
rs = 22 HEG. The standard deviation of a density fluctuation,
∆ω(q), is defined in Eq. (20). The boundaries of the particle-
hole continuum, ω(±)

PHC = q2/2± qkF, are plotted as the green
curves (solid for ω

(+)
PHC) and dashed for ω

(−)
PHC))

. For analogous plots at rs = 4, 69, see Appendix Figs. 9
and 10.



7

clearly evident at rs = 22 with MCP07, and at rs = 69
for AKCK and MCP07. ∆ω is an indicator of collective
excitations, as we discuss below. While it is not sur-
prising that, for ⟨ω(q)⟩ > q2/2 + qkF, ∆ω < ⟨ω(q)⟩, it
is surprising that this inequality holds even when ⟨ω(q)⟩
enters the particle-hole continuum. We conclude that
any density fluctuation within the particle-hole contin-
uum gains some collective nature, and resembles plasmon
excitations of the bound electron-hole pairs. This is not
a true excitation [i.e., a pole of χ(q, ω)], so we call it a
quasi-excitation.

The lifetime of a collective excitation can be estimated
by the full-width at half-maximum (FWHM) of the spec-
tral function55. Appendix Fig. 11 plots the MCP07
spectral function at rs = 69, showing the positions of
ω
(±)
PHC and the FWHM. For q ≲ 1.5kF, ω(+)

PHC lies below
the FWHM frequencies. This is entirely consistent with
Appendix Fig. 10, where ⟨ω(q)⟩ and ω

(+)
PHC cross, and

indicates a plasmon of finite lifetime. For q ≈ 2kF, the
spectral function diverges for ω → 0, and no FWHM can
be identified. This indicates an excitation of extremely
long lifetime, as suggested by ⟨ω⟩ tending to zero there.
For q ≳ 2.5kF, a FWHM can again be identified, but
the excitations again lie within the PHC, consistent with
⟨ω(q)⟩ − ⟨∆ω(q)⟩ crossing ω(−)

PHC there. The approximate
MCP07 spectral function FWHM and ⟨∆ω⟩ are plotted
for rs = 22 and 69 in Appendix Fig. 12; the two appear
to be generally uncorrelated.

However, when the spectral function, at fixed q, can
be globally approximated as a Gaussian, both ⟨ω(q)⟩ and
⟨∆ω(q)⟩ can be analytically related to the functional form
of the Gaussian, as shown in Appendix C. Such expres-
sions allow one to trivially relate the plasmon lifetime
(FWHM) to ⟨∆ω⟩. Appendix C shows that the plasmon
lifetime varies between roughly (2.355)⟨∆ω⟩ when S(q, ω)
is almost constant in ω, and (3.906)⟨∆ω⟩ when S(q, ω) is
very sharply peaked.

Ghost excitations are thus also quasi-excitations. They
are poles of the screened response function χscr(q, ω)

33

that gives the linear response of the density to the
screened interaction (the sum of the external perturbing
field and the Hartree potential it induces). Since

χ(q, ω) = χscr(q, ω) [1− vc(q)χscr(q, ω)]
−1
, (21)

a pole of χscr is not necessarily a pole of χ.

V. CONCLUSIONS

We have extensively explored the physics of low densi-
ties with beyond-RPA approximations in linear response
TDDFT. Exchange-correlation (xc) effects play a rele-
vant role in the low-density regime, as they are exempli-
fied through the screened Coulomb interaction, plasmon
dispersion, and quasi-excitations. Real metallic materi-
als can be modeled by the HEG, as we do in this pa-
per. Apart from the simplest ALDA kernel, we have

used the CDOP20, AKCK24, MCP0722, rMCP0723, and
QV43 kernels, so that both static and dynamic kernels
are represented. All code used in this work is publicly
accessible56.

The effective interaction at low densities displays nega-
tive screening from our static xc kernels, as a consequence
of the small-q expansion of fxc. The effective interaction
WTCTE in real space shows attraction between particles
and holes below r = 1/kF for all xc models, confirm-
ing the possible existence of excitons in metals at short
range.

The densities needed to observe excitons in 3D metals,
rs ≳ 20, are likely experimentally inaccessible. However,
Appendix B demonstrates that the screened interaction
becomes attractive at experimentally accessible densities,
rs ≳ 4 in the 2D HEG.

TCTE plasmon-like dispersion undoubtedly reveals the
discrepancy between RPA and beyond-RPA approxima-
tions. Model xc kernels make the plasmon dispersion
negative even for small q/kF, while xc effects strengthen
near the particle-hole continuum.

We also performed an analysis regarding the nature of
excitations in the plasmon and particle-hole continuum
regions. The spectral function was used to plot the aver-
age frequency and variance in the frequency of a density
fluctuation at wave-vector q. These latter quantities are
constituents of the standard deviation of the average fre-
quency ∆ω that we used to study quasi-excitations in the
particle-hole continuum. From ∆ω, we find that the den-
sity fluctuation within the particle-hole continuum gains
some collective nature and resembles collective plasmon
excitations of the bound electron-hole pairs.

Our model kernels indicate that the physics of the
low-density regime is rich. Moreover, these physically-
constrained xc kernels can be useful tools to study
emergent phenomena in the low-density regime of real
materials57–60.
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Appendix A: Additional Figures

Figure 8 is the real-space analog of Fig. 3, and thus
plots W (r) for an rs = 4 HEG. Figures 9 and 10 plot
the average frequency and standard deviation of a den-
sity fluctuation in rs = 4 and 69 HEGs, analogous to
Fig. 7. Figure 11 plots the MCP07 spectral function at
rs = 69 as a function of real frequency, indicating the
positions of the particle-hole continuum frequencies, and
full width at half maximum. Approximate plasmon life-
times estimated from the spectral function full width at
half maximum and from ⟨∆ω⟩ are plotted in Fig. 12.
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FIG. 8. Screened interactions (a) WTCTC(r) and (b)
WTCTE(r) for a rs = 4 HEG obtained through a numeric
Fourier transform. The bare Coulomb interaction 1/r is the
solid orange curve.

Appendix B: Two dimensional electron gas

In d dimensions, the adiabatic local density approxi-
mation (ALDA) for the exchange-correlation kernel takes
the form

fxc(rs) =
ud
d2
rd+1
s

[
rs
∂2εxc
∂r2s

− (d− 1)
∂εxc
∂rs

,

]
(B1)

where εxc(rs) is the exchange-correlation energy per elec-
tron in a d-dimensional HEG. ud is a constant which gives
the volume Vd of a ball (solid sphere) in d dimensions,

Vd(R) = udR
d, (B2)

thus u2 = π and u3 = 4π/3. In two dimensions,

εx(rs) = − 25/2

3πrs
. (B3)

To express the correlation energy per electron, we use the
parameterization of Ref. 61, which is fitted to fixed-node
diffusion Monte-Carlo simulations,

εc(rs, ζ = 0) = A+
(
Brs + Cr2s +Dr3s

)
(B4)

× ln

[
1 +

1

Ers + Fr
3/2
s +Gr2s +Hr3s

]
,
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FIG. 9. The average frequency of density fluctuation, ⟨ω⟩ of
Eq. (18) (solid blue curve for MCP07 and orange for AKCK),
and ⟨ω(q)⟩ ± ∆ω(q) (light blue shaded region) for an rs = 4
HEG. The standard deviation of a density fluctuation, ∆ω(q),
is defined in Eq. (20). The boundaries of the particle-hole
continuum, ω

(±)
PHC) = q2/2 ± qkF, are plotted as the green

curves (solid for ω
(+)
PHC) and dashed for ω

(−)
PHC)).
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FIG. 10. Analogous to Fig. 9, but for an rs = 69 HEG.

where ζ is the relative spin polarization, A = −0.1925,
B = 0.0863136, C = 0.0572384, D = −AH, E = 1.0022,
F = −0.02069, G = 0.33997, and H = 0.01747. The
Lindhard function in two dimensions is62

Reχ0(q, ω) =
1

2πz
[ϕ(z − u) + ϕ(z + u)− 2z] , (B5)

Imχ0(q, ω) =
1

2πz
[ψ(z + u)− ψ(z − u)] , (B6)

ϕ(x) = sign(x)Θ(|x| − 1)(|x|2 − 1)1/2, (B7)

ψ(x) = Θ(1− |x|)(1− |x|2)1/2, (B8)
z = q/(2kF), (B9)
u = ω/(qkF). (B10)

To compare the screened electronic response, we also
include the static kernel due to Davoudi, Polini, Giu-
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FIG. 11. The MCP07 spectral function, or dynamic structure
factor S(q, ω) = −Imχ(q, ω)/(πn) for a few values of q. The
stars indicate the frequencies ω

(±)
PHC = q2/2± qkF of particle-

hole continuum (PHC) excitations, and the squares indicate
the approximate position of the half-width of the spectral
function at half maximum (HWHM). The full-width at half
maximum (FWHM) of the spectral function can be used to
estimate the lifetime of a collective excitation.
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FIG. 12. Excitation lifetime, in units of the bulk plasmon fre-
quency ωp(0) = (4πn)1/2, for rs = 22 (yellow) and 69 (black)
using MCP07. The solid lines compute the full width at half-
maximum of the spectral function S(q, ω) when a maximum
can be identified. For 1.8 ≲ q/kF ≲ 2.5, the rs = 69 spectral
function diverges as ω → 0, yielding a static charge density
wave, as discussed in the text. The FWHM is computed via
spline fit of S(q, ω) at fixed q; no fit to a lineshape is used. The
dotted lines estimate the lifetime from the statistical ⟨∆ω(q)⟩.

liani, and Tosi (DPGT)52. The DPGT kernel is posed in
much the same way as the AKCK kernel, as a smooth in-
terpolation between known asymptotics of the 2D HEG

exchange-correlation kernel52,

lim
q→0

fxc(rs, q, ω = 0) = fALDA
xc (rs), (B11)

lim
q/kF≫1

fxc(rs, q, ω = 0) = −2π

kF

[
C

(2D)
+ +B

(2D)
+

kF
q

]
,

(B12)

C
(2D)
+ = − rs

21/2

[
εc + rs

∂εc
∂rs

]
, (B13)

B
(2D)
+ = 1− g(2D)(0). (B14)

The 2D HEG on-top pair distribution function is reason-
ably well-approximated by63

g(2D)(0) =
1

2 [1 + (1.372)rs + (0.0830)r2s ]
. (B15)

Figure 13 shows the TCTC and TCTE inverse dielec-
tric functions for the 2D HEG at rs = 1. Unlike the 3D
case, the TCTC dielectric function becomes negative at
much smaller rs, as seen in Fig. 14 for rs = 4. Also un-
like the 3D case, the static DPGT kernel predicts slightly
enhanced screening over the ALDA, however both are
comparable. Similar trends are observed for the screened
interactions plotted in Figs. 15 and 16 for rs = 1 and
4 2D HEGs, respectively. Rigorously, the RPA TCTC
screened interaction and all TCTE screened interactions
tend to −π as q → 0.

Last, we plot the real-space screened interactions W (r)
for an rs = 1 and 4 2D HEG in Figs. 17 and 18, re-
spectively. The real-space interaction is obtained by fast
Hankel transform. Even at rs = 1, the screened interac-
tion from ALDA is weakly attractive, and even more so
at rs = 4.
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the parameterization of Ref.61 (black, dotted), and the static
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Appendix C: Physical interpretations of the statistical
variables

For a fixed value of q, suppose the spectral function
can be approximated as a Gaussian:

S(q, ω) ≈ S0(q) exp

[
−
(
ω − ω0

∆ω

)2
]

(C1)

We choose a Gaussian as a Lorentzian has undefined mo-
ments. This approximation is relevant for estimating the
lifetime of an excitation near a maximum S0(q) of the
spectral function, which occurs at frequency ω0. The full
width at half maximum (FWHM) of the approximate
spectral function, which gives the lifetime of an excita-
tion, is

FWHM = 2(∆ω)(ln 2)1/2. (C2)

Our aim now is to make contact with the statistical quan-
tities of Eqs. (18–20), which use the following frequency
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FIG. 14. Same as Fig. 13 but for an rs = 4 2D HEG.

moments,

Mp =

∫ ∞

0

ωpS(q, ω)dω. (C3)

One can show that

M0 =

√
πS0(q)∆ω

2

[
1 + erf

( ω0

∆ω

)]
, (C4)

M1

M0
= ω0 +∆ω

exp
[
− (ω0/∆ω)

2
]

√
π [1 + erf (ω0/∆ω)]

, (C5)

M2

M0
= ω2

0 +
(∆ω)2

2
+ ω0∆ω

exp
[
− (ω0/∆ω)

2
]

√
π [1 + erf (ω0/∆ω)]

.

(C6)

Equation (C5) is equivalent to ⟨ω(q)⟩ of Eq. (18), the
average frequency of a density fluctuation. The standard
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FIG. 15. (a) TCTC and (b) TCTE screened interactions W/π
for an rs = 1 2D HEG using the RPA (black, solid), ALDA in
the parameterization of Ref.61 (black, dotted), and the static
DPGT kernel52 (yellow, solid).

deviation in a density fluctuation of Eq. (20) is then

⟨∆ω(q)⟩ =
[
M2

M0
−
(
M1

M0

)2
]1/2

, (C7)

= ∆ω





1

2
−

exp
[
−2 (ω0/∆ω)

2
]

π
[
1 + erf

(
ω0

∆ω

)]2

− ω0

∆ω

exp
[
− (ω0/∆ω)

2
]

√
π [1 + erf (ω0/∆ω)]





1/2

. (C8)

Thus we can relate the plasmon lifetime (spectral func-
tion FWHM) to the standard deviation in a density fluc-
tuation for an approximately Gaussian spectral function
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FIG. 16. Same as Fig. 15 but for an rs = 4 2D HEG.

as

FWHM =2(ln 2)1/2⟨∆ω(q)⟩





1

2
−

exp
[
−2 (ω0/∆ω)

2
]

π [1 + erf (ω0/∆ω)]
2

− ω0

∆ω

exp
[
− (ω0/∆ω)

2
]

√
π [1 + erf (ω0/∆ω)]





−1/2

. (C9)

For positive-valued ω0 and ∆ω, this function has extreme
limits

lim
ω0/∆ω→0

FWHM = 2

[
2π ln 2

π − 2

]1/2
⟨∆ω(q)⟩ (C10)

≈ (3.906)⟨∆ω(q)⟩,
lim

ω0/∆ω→∞
FWHM = 2(2 ln 2)1/2⟨∆ω(q)⟩ (C11)

≈ (2.355)⟨∆ω(q)⟩.
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FIG. 17. Real-space screened interaction W (r) for an rs =
1 2D HEG, using the RPA (black, solid), ALDA61 (black,
dotted), and the static DPGT kernel52 (yellow, solid). The
real-space interaction is obtained by fast Hankel transform.
Panel (a) plots the TCTC screened interaction, and panel (b)
plots the TCTE screened interaction.
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FIG. 18. Same as Fig. 17, but for an rs = 4 2D HEG.




