
UCLA
UCLA Previously Published Works

Title
Individualized doxorubicin sensitivity testing of undifferentiated soft tissue sarcoma 
(USTS) in a patient-derived orthotopic xenograft (PDOX) model demonstrates large 
differences between patients

Permalink
https://escholarship.org/uc/item/61c623p3

Journal
Cell Cycle, 17(5)

ISSN
1538-4101

Authors
Kawaguchi, Kei
Igarashi, Kentaro
Kiyuna, Tasuku
et al.

Publication Date
2018-03-04

DOI
10.1080/15384101.2017.1421876
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/61c623p3
https://escholarship.org/uc/item/61c623p3#author
https://escholarship.org
http://www.cdlib.org/


REPORT

Individualized doxorubicin sensitivity testing of undifferentiated soft tissue sarcoma
(USTS) in a patient-derived orthotopic xenograft (PDOX) model demonstrates large
differences between patients

Kei Kawaguchia,b,c, Kentaro Igarashia,b, Tasuku Kiyunaa,b, Kentaro Miyakea,b, Masuyo Miyakea,b, Takashi Murakamia,b,
Bartosz Chmielowski d, Scott D. Nelsone, Tara A. Russell f, Sarah M. Drye, Yunfeng Lie, Arun S. Singhd, Michiaki Unnoc,
Fritz C. Eilber f and Robert M. Hoffmana,b

aAntiCancer, Inc., San Diego, CA, USA; bDepartment of Surgery, University of California, San Diego, CA, USA; cDepartment of Surgery, Graduate School
of Medicine, Tohoku University, Sendai, Japan; dDivision of Hematology-Oncology, University of California, Los Angeles, CA, USA; eDepartment of
Pathology, University of California, Los Angeles, CA, USA; fDivision of Surgical Oncology, University of California, Los Angeles, CA, USA

ARTICLE HISTORY
Received 10 October 2017
Revised 8 December 2017
Accepted 20 December 2017

ABSTRACT
Doxorubicin (DOX) is often first-line treatment of undifferentiated/unclassified soft tissue sarcoma (USTS).
However, the DOX response rate for USTS patients is low. Individualized precision-medicine technology
that could identify DOX responders as well as non-responders would be of high value to cancer patients.
In the present study, we established 5 patient-derived orthotopic xenograft (PDOX) nude mouse models
from 5 USTS patients and evaluated the efficacy of DOX in each PDOX model. USTS’s were grown
orthotopically in the right thigh of nude mice to establish the PDOX models. Two weeks after
implantation, the mouse models were randomized into two groups of 8 mice each: untreated control; and
DOX (3 mg/kg, i.p., once a week for 2 weeks). DOX showed significant growth inhibition in only 2 USTS
PDOX models out of 5 (p = 0.0054, p = 0.0055, respectively) on day 14 after initiation. DOX was ineffective
in the other 3 PDOX models. However, even in the DOX-sensitive cases, DOX could not regress the PDOX
tumors responding to treatment. The present study has important implications since this is the first in vivo
study to compare the DOX sensitivity for USTS on multiple patient tumors. We showed that only two of
five USTS were responsive to DOX, despite DOX being first line chemotherapy for USTS. The 3 resistant
cases should not be treated with DOX clinically, in order to spare the patients’ unnecessary toxicity. This
PDOX model is useful for precise individualized drug sensitivity testing, especially for rare heterogeneous
recalcitrant sarcomas such as USTS.
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Introduction

Soft tissue sarcoma (STS) is a heterogeneous group of neo-
plasms comprising more than 50 subtypes. Undifferentiated/
unclassified soft-tissue sarcoma (USTS) is described in the
fourth edition of the World Health Organization (WHO)
Classification of Tumors of Soft Tissue and Bone in 2013
[1]. USTS is the most common type of STS observed in
adults [2–4].

Surgical resection remains the only curative option for USTS
which often metastasizes and then is not a candidate for sur-
gery [5–7]. Anthracycline-based chemotherapy, including
doxorubicin (DOX), is first-line treatment of USTS, but the
DOX response rate for USTS patients is low [8,9]. The use of
DOX for USTS is controversial since the disease is heteroge-
neous. Therefore, novel more effective individualized and pre-
cision treatment is necessary for USTS.

Toward this goal, our laboratory pioneered the patient-
derived orthotopic xenograft (PDOX) nude mouse model with

the technique of surgical orthotopic implantation (SOI),
including breast [10], ovarian [11], lung [12], cervical [13,14],
colon [15–17], stomach [18], pancreatic [19–23], melanoma
[24–28], and sarcoma [29–38]. The PDOX model, developed
by our laboratory over the past 30 years, has many advantages
over subcutaneous-transplant models which are growing ectop-
ically under the skin [39].

In the present study, we established PDOX nude-mouse
models with USTS from 5 patients and evaluated DOX efficacy
for each patient.

Results and discussion

USTS PDOX nude mouse models were established from 5
patients. Patient characteristics from 5 patients are shown in
Table 1. The median age was 60 years (range 56–65). Three
male and 2 female patients were included. Tumor presentation
was 3 primary and 2 recurrent cases.
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DOX showed significant growth inhibition in only 2 PDOX
models (p = 0.0054, p = 0.0055, respectively) and resistance in
3 on day 14 after treatment initiation (Figures 1 and 2).

The body weight on day 14, compared with day 0, did not
significantly differ between control and treatment group in
each PDOX model (Figure 3). There were no animal deaths in
any group.

Histologically, untreated control tumors comprised mostly
viable cells. In DOX-sensitive tumor No. 1 described in Table 1,

some necrosis and fibrosis were observed after DOX treatment
(Figure 4A). In contrast, in DOX-resistant tumor No. 4, there
were no notable changes after DOX treatment compared to the
control (Figure 4B).

In the present study, DOX could inhibit tumor growth in
only 2 of 5 PDOX models. The other 3 PDOX models were
resistant. In addition, even in the sensitive cases, there was no
tumor regression. In such cases, a second drug to effectively
combine with DOX could possibly be identified. Future experi-
ments will focus on this goal. The present results demonstrate
the urgent need for individualized, precision treatment of
USTS. The DOX-resistant PDOX cases should not receive
DOX therapy in the clinic. The probable result would be
toxicity without efficacy. In the current study, recurrent
tumors were both DOX-sensitive and- resistant. Therefore,
the PDOX model can be used for precise individualized

Table 1. Patients characteristics.

No. Age Sex Tumor origin site Primary or recurrence

1 65 M Right thigh Primary
2 62 F Left upper extremity Recurrence
3 56 M Right shoulder Primary
4 59 F Left thigh Recurrence
5 60 M Right thigh Primary

Figure 1. DOX sensitivity of 5 different USTS PDOX models. Bar graphs show relative tumor volume at post-treatment relative to pre-treatment tumor volume. Error
bars: § SD.
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drug-sensitivity testing, especially for rare recalcitrant het-
erogeneous sarcomas [29–38].

DOX resistance has been reportedly due to a number of dif-
ferent cellular changes including: overexpression of efflux
transporters, reduction of a topoisomerase II (TOP2A) [40,41],
p53 mutation [42], activation of NF-kB [43], elevated FOXO3
[44], activation of the PI3K/Akt pathway [45], activation of the
MEK/ERK pathway [46], as well as other possible mechanisms,
including DNA repair.

Previously-developed concepts and strategies of highly-
selective tumor targeting can take advantage of molecular tar-
geting of tumors, including tissue-selective therapy which
focuses on unique differences between normal and tumor tis-
sues [47–52].

Conclusion

The present study has demonstrated significant differences of
DOX sensitivity of 5 different USTS PDOX models. These
results demonstrate the powerful potential of the PDOX model
for precision oncology and suggest that patients with failed

DOX therapy could possibly benefit from drugs shown to be
active against PDOX models of their tumor.

Materials and methods

Mice

Athymic nu/nu nude mice (AntiCancer Inc., San Diego, CA),
4–6 weeks old, were used in this study. Animals were housed in
a barrier facility on a high efficacy particulate arrestance
(HEPA)-filtered rack under standard conditions of 12-hour
light/dark cycles. The animals were fed an autoclaved laboratory
rodent diet. All mouse surgical procedures and imaging were
performed with the animals anesthetized by subcutaneous injec-
tion of a ketamine mixture (0.02 ml solution of 20 mg/kg keta-
mine, 15.2 mg/kg xylazine, and 0.48 mg/kg acepromazine
maleate). The response of animals during surgery was monitored
to ensure adequate depth of anesthesia. The animals were
observed on a daily basis and humanely sacrificed by CO2 inha-
lation if they met the following humane endpoint criteria: severe
tumor burden (more than 20 mm in diameter), prostration, sig-
nificant body weight loss, difficulty breathing, rotational motion
and body temperature drop. All animal studies were conducted
in accordance with the principles and procedures outlined in the
National Institutes of Health Guide for the Care and Use of Ani-
mals under Assurance Number A3873-1.

Patient-derived tumors

The tumors diagnosed with USTS were resected in the Depart-
ment of Surgery, University of California, Los Angeles (UCLA).
Undifferentiated soft tissue sarcomas include those that show
no specific identifiable line of differentiation by currently-
available methods including immunohistochemistry, special
stains, and cytogenetic or molecular-pathology techniques.
Written informed consent was provided by each patient. The
Institutional Review Board (IRB) of UCLA approved this
experiment [25,26]. Of the 2 relapsed patients, one failed adju-
vant chemotherapy and the other was untreated. Patient no. 2,
who relapsed, previously failed pazopanib, then received gemci-
tabine and docetaxel, where the patient’s disease was stabilized,
then underwent tumor resection which was used to construct
the PDOX model. Patient no. 4 received DOX, ifosfamide and
MESNA, followed by radiation. However, the tumor continued
to grow and the patient underwent tumor resection from which
her PDOX was constructed. The patient subsequently suc-
cumbed to her disease.

Establishment of PDOX models of USTS by surgical
orthotopic implantation (SOI)

Fresh samples of the USTS of the patients were obtained and
transported immediately to the laboratory at AntiCancer, Inc.,
on wet ice. The samples were cut into 5-mm fragments and
implanted subcutaneously in nude mice. After the subcutane-
ously-implanted tumors grew to more than 10 mm in diameter,
the tumors were then harvested and cut into small fragments
(3 mm3). After nude mice were anesthetized with the ketamine
solution described above, a 5-mm skin incision was made on

Figure 2. Treated and untreated PDOX tumors. Tumors from USTS PDOX models
of patients 1 and 4 are shown before and after treatment with DOX. Scale bar:
5 mm.
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the right high thigh, then the biceps femoris was split to make
space. A single tumor fragment was implanted orthotopically
into the space to establish the PDOX model. The wound was
closed with a 6-0 nylon suture (Ethilon, Ethicon, Inc., NJ,
USA).

Treatment study design in the USTS PDOX model

PDOX mouse models were randomized into two groups of
8 mice each: untreated control (n = 8); and DOX (3 mg/kg,
i.p., once a week for 2 weeks, n = 8). Tumor length and width
were measured both pre- and post-treatment. Tumor volume
was calculated with the following formula: Tumor volume
(mm3) = length (mm) £ width (mm) £ width (mm) £ 1/2.
Data are presented as mean § SD. The tumor volume ratio is

defined as the tumor volume at post-treatment point relative
to pre-treatment tumor volume.

Histological examination

Fresh tumor samples were fixed in 10% formalin and embed-
ded in paraffin before sectioning and staining. Tissue sections
(5 mm) were deparaffinized in xylene and rehydrated in an eth-
anol series. Hematoxylin and eosin (H&E) staining was per-
formed according to standard protocols. Histological
examination was performed with a BHS System Microscope
(Olympus Corporation, Tokyo, Japan). Images were acquired
with INFINITY ANALYZE software (Lumenera Corporation,
Ottawa, Canada) [25,26].

Figure 3. Effect of each treatment on mouse body weight. Bar graphs shows mouse body weight in each mouse at pre- and post-treatment.
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Statistical analysis

JMP version 11.0 was used for all statistical analyses. Significant
differences for continuous variables were determined using the
Mann-Whitney U test. Bar graphs expressed average values
and error bar showed SD. A probability value of P � 0.05 was
considered statistically significant.
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