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Geometric quantum mechanics, through its differential-geometric underpinning, provides additional
tools of analysis and interpretation that bring quantum mechanics closer to classical mechanics: state
spaces in both are continuous and equipped with symplectic geometry. This opens the door to revisiting
foundational questions and issues, such as the nature of quantum entropy, from a geometric perspective.
Central to this is the concept of a geometric quantum state—the probability measure on a system’s space of
pure states. This space’s continuity leads us to introduce two analysis tools, inspired by Renyi’s approach
to information theory of continuous variables, to characterize and quantify fundamental properties of geo-
metric quantum states: the quantum information dimension, which is the rate of geometric quantum state
compression, and the dimensional geometric entropy that monitors information stored in quantum states.
We recount their classical definitions, information-theoretic interpretations, and adapt them to quantum
systems via the geometric approach. We then explicitly compute them in various examples and classes
of quantum system. We conclude commenting on future directions for information in geometric quantum
mechanics.
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I. INTRODUCTION

When connecting theory to experiment both classical
and quantum mechanics (CM and QM) must cope with
the emergence of randomness and uncertainty. However,
the nature of randomness, and its dynamical emergence,
can differ. Building on previous results [1,2] that exploit
geometric parallels between classical and quantum state
spaces (both with state spaces equipped with symplectic
manifolds), we extend several tools for analyzing out-of-
equilibrium classical systems to the quantum domain. This
strengthens the parallels and provides a novel paradigm for
investigating far-from-equilibrium open quantum systems.

Specifically, following Kolmogorov and Sinai’s use of
Shannon’s information theory [3] to quantify degrees of
deterministic chaos [4–9], we show that the parallels go
even deeper and lead to new descriptive and quantitative
tools. This is done using geometric quantum mechan-
ics (GQM), an approach to quantum mechanics based on
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differential geometry that removes physical redundancies
in quantum states intrinsic to the standard, linear-algebra
approach.

QM, in point of fact, is grounded in a formalism in
which the states of a discrete system are vectors in a
complex Hilbert space H of generic finite dimension D.
However, it is well known that such a formulation is redun-
dant: vectors differing only in normalization and global
phase are physically equivalent. Implementing this equiva-
lence relation leads to the space where quantum states live:
the complex projective Hilbert space P(H) ∼ CPD−1.
This is GQM’s starting point [10–27].

It is important to stress that, while the mathematical
formulation differs, the phenomena addressed are pre-
cisely the same as standard quantum mechanics. Nonethe-
less, the geometric approach has proven (i) to be a rich
source of fundamental insights into the nature of quan-
tum phenomena and (ii) to lead to powerful analysis tools.
Our goal is to advance this perspective to investigate
the out-of-equilibrium phenomenology of open quantum
systems.

GQM works with probability measures on P(H). These
are interpreted using ensemble theory, as noninteract-
ing copies of pure states for the same quantum system,
distributed according to some measure. This leads to
the concept of a geometric quantum state (GQS) as an
ensemble of pure states. (For an extensive analysis, we
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recommend Ref. [19].) This is a more fundamental notion
of a quantum state than the density matrix, as the lat-
ter can be computed from the former, but not vice
versa.

Recent work provided a constructive procedure to com-
pute the GQS of an open, finite-dimensional, quantum
system interacting with another one of arbitrary (finite or
infinite) dimension [1]. This revealed why the GQS pro-
vides a more accurate description than available with a
density matrix: the GQS retains the details about how a
specific ensemble of pure states emerges from the structure
of correlations between the system and its surroundings.

Starting from this foundation, the following introduces
two information-theoretic concepts to characterize geo-
metric quantum states. The first is the quantum informa-
tion dimension. This borrows from Renyi’s notion of the
effective dimension of a continuous probability distribu-
tion, developed in the setting of efficiently transmitting
continuous variables over noisy communication channels.
Interestingly, for classical variables, there are distributions
for which the dimension is not an integer—these are the
well-known fractals [28]. It also has an operational inter-
pretation within communication theory, as the upper bound
on the lossless compression rate for transmitting GQSs.
The second GQS characterization uses the (related) con-
cept of dimensional geometric entropy. Accounting for
GQS dimension, this entropy quantifies the information a
GQS stores about a quantum system.

The development unfolds as follows. Section II gives
a brief summary of geometric quantum mechanics and the
notion of a geometric quantum state. Section III defines the
quantum information dimension, while Sec. V introduces
the dimensional geometric entropy. Sections VI A to VI E
then analyze several examples, evaluating these quantities
exactly. The first is an open quantum system interacting
with a finite-dimensional environment. The second is an
open quantum system interacting with another with an
infinite-dimensional Hilbert space (continuous degrees of
freedom). The third shows how to evaluate these quantities
for discrete-time chaotic quantum dynamics. The fourth
shows how to evaluate these quantities in the thermody-
namic limit for a condensed-matter system in its ground
state. Finally, Sec. VII discusses the results and Sec. VIII
draws forward-looking conclusions.

II. GEOMETRIC QUANTUM MECHANICS

References [10–27] lay out the mathematical physics of
GQM. Here, we simply recall the aspects most relevant
for our purposes. Throughout, we only address quantum
systems with a Hilbert space H of finite dimension D.
In GQM, the pure states of such systems are points Z in
the complex projective space P(H) ∼ CPD−1. Given an
arbitrary basis {|bα〉}α of H, the pure state Z has the vector

representation

|Z〉 :=
D−1∑

α=0

Zα |bα〉 ∈ H,

where Zα ∈ C and Z ∼ λZ, with λ ∈ C, giving Z ∈
CPD−1. This space has a rich geometric structure
[29]. In particular, there is a well-defined metric—the
Fubini-Study metric, gFS—and a related notion of vol-
ume, dVFS—the Fubini-Study volume element. These are
directly connected, up to an overall positive multiplicative
scalar, by dVFS = √

det gFSdZdZ, where the overbar is the
complex conjugate and dZ is the Lebesgue measure. While
a full explication is beyond our current scope, we simply
give its form in a particular coordinate system, specified by
Zα = √

pαeiφα : dVFS = ∏D−1
α=1 (dpαdφα/2).

On P(H), one considers ensembles distributed accord-
ing to a probability density function or, more generally, a
probability measure μ. The simplest example is the basic
definition of the uniform measure, dνFS := dVFS/VD−1,
where the total Fubini-Study volume of P(H) is VD−1 =
πD−1/(D − 1)!. This determines the basic notion of uni-
form measure on P(H). Calling A an element of P(H)’s
Borel σ -algebra and adopting De Finetti notation, we have

νFS(A) := 1
VD−1

∫

A
dVFS.

In general cases, the measure μ is not uniform and one has

μ(A) =
∫

A
μ(dνFS).

Looking at the measure-theoretic definition, if μ is abso-
lutely continuous with respect to νFS then there is a
probability density function q(Z = z) such that

μq(A) =
∫

A
q(z)dνFS.

This is interpreted by saying that μq(dνz
FS) = q(z)dνz

FS
is the infinitesimal probability of a realization z—i.e., a
system pure state—belonging to an infinitesimal volume
dνz

FS centered at z ∈ P(H). Thus, we can think about the
pure state of a quantum system as a realization z of a
random variable Z with sample space P(H). Here, z is
distributed on P(H) according to its geometric quantum
state q(z) or μ. Through an abuse of language, we often
refer to both the measure μ and the density q (when it
exists) as geometric quantum states. This is acceptable as
they convey the same kind of information. Together, the
triple (P(H), Z,μ) defines a random variable, in the clas-
sical sense, in which the sample space is continuous and
encodes the underlying quantumness of the physical sys-
tem we aim to describe. We call this a random quantum
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x = cos(f)

y = sin(f)

z = 1–2p

FIG. 1. Geometric quantum state q(Z) = ∑29

k=1 pkδ[Z − Zk]
on CP1, with coordinates (θ ,φ). It is a finite sum of 29

Dirac measures. Each point is a possible pure state |Zk〉 =
cos θk/2 |0〉 + sin θk/2eiφk |1〉 in which the system can be, with
probability pk. The specific value of each pk is encoded in a
point’s color; see the legend.

variable (RQV). Following standard notation, if Z is a
RQV, we denote a realization with a lowercase correspond-
ing letter z. (This is not to be confused with the notation Zα,
with a Greek label, that refers to the αth component of the
vector |Z〉 ∈ H.)

To aid intuition, Fig. 1 displays an example of a geomet-
ric quantum state of a qubit, using the (θ ,φ) coordinates to
represent P(H) as the familiar Bloch sphere.

III. QUANTUM INFORMATION DIMENSION

One GQM advantage we exploit is that it allows the
use of classical measure theory. The price paid is working
with an underlying manifold of nontrivial geometry, as just
noted. Intuitively, GQM directly encodes “quantumness”
in the underlying geometry of the sampling space. Build-
ing on this, we now formalize the dimension of a geometric
quantum state, extending Renyi’s information theory [30]
to the quantum domain.

Given P(H) and a measure μ on it, we uniformly
discretize the manifold and coarse grain μ to obtain a dis-
crete distribution. This is accomplished as follows, using
“probability + phase” coordinates: Zα = √

pαeiφα . In this,
{pα}D−1

α=0 lives in a probability simplex 
D, while the phase
coordinates {φα}D−1

α=1 live on a (D − 1)-dimensional torus
TD−1.

Given this coordinate set, we partition both 
D and
TD−1 separately, in a uniform fashion. More accurately,
this is a partitioning of the σ -algebra on P(H) into
a finite and discrete collection of sets. Since both 
D
and TD−1 are manifolds of real dimension D − 1, this

generates a uniform partition {Q( �j , �k)}�j ,�k of P(H) with
a total number of LD−1 × LD−1 cells. This means that⋃L

j1,...,jD−1=1
⋃L

k1,...,kD−1=1 Q( �j , �k) = P(H), with Q( �j , �k) ∩
Q(�i, �m) = δ�j ,�iδ�k, �mQ(�i, �m). Here, �j = ( j1, . . . , jD−1) is the
multi-index label that runs over the discretization
{
D( �j )}�j of
D with jα = 1, . . . , L and �k = (k1, . . . , kD−1)

is the multi-index label that runs over the discretization
{TD−1(�k)}�k of TD−1 with kα = 1, . . . , L.

The reason to partition P(H) using this coordinate
system is the resulting factorization of dνFS in “dp × dφ”:

dνFS = dP(
D)dQ(TD−1).

Here dP(
D) = (D − 1)! δ(
∑D−1

α=0 pα − 1)dp0 · · · dpD−1 is
the flat measure on 
D and dQ(TD−1) is the flat mea-
sure on TD−1. This allows us to separately discretize the
probability simplex and the high-dimensional torus, while
also resulting in cells Q( �j , �k) with uniform Fubini-Study
volume:

VD−1(ε) := νFS(Q( �j , �k))

= 1
L2(D−1)

= ε−2(D−1) (1)

with ε setting the scale of the partition elements. Note
that, despite the discretization’s specific coordinate sys-
tem, the value of VD−1(ε) does not depend on the coor-
dinate system, thanks to the invariance of dνFS. Therefore,
{Q( �j , �k)}�j ,�k defines a good uniform partition of P(H).

Calling z�j ,�k a generic point in Q( �j , �k), we can now
perform the coarse-graining procedure to get a discrete
random variable Zε for Z ∈ CPD−1, i.e.,

Z ∈ Q( �j , �k) =⇒ Zε = z�j ,�k,

where the probability p�j ,�k of Zε ∈ Q(�j , �k) is defined via
coarse-graining:

Pr(Z ∈ Q(�j , �k)) := p�j ,�k

= μ(Q(�j , �k))
= q(z�j ,�k)VD−1(ε). (2)

Here (only) in the last equality we assumed the existence of
a density q(Z) and, in that case, z�j ,�k is a point inside Q( �j , �k)
defined implicitly by q(z�j ,�k) = μ(Q( �j , �k))/VD−1(ε). For
explorations in discretizing continuous random variables,
see the lectures in Ref. [31] and the relevant developments
in Refs. [32,33].
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Given that Zε is a discrete random variable, we can now
use Shannon’s functional to evaluate its entropy:

H(Zε) = −
∑

�j ,�k
p�j ,�k log p�j ,�k. (3)

Substituting Eq. (1) into Eq. (2) and calling D the real
dimension of the submanifold of P(H) on which μ has
nonzero support, then, as ε → 0, it follows that H(Zε) is
linear in − log ε [30]:

H(Zε) ∼ε→0 −D log ε + h.

Note that μ can also have support on the whole mani-
fold, in which case D = 2(D − 1)—the real dimension of
P(H). Thus, D’s value in this scaling is the information
dimension while, as we show shortly, the offset H provides
a workable definition of differential entropy that accounts
for the dimension of μ’s support.

With this in mind, we are now ready to define a
geometric quantum state’s quantum information
dimension.

Definition 1 (Quantum information dimension). Given
a finite-dimensional quantum system with state space
P(H) ∼ CPD−1 and geometric quantum state μ, the lat-
ter’s quantum information dimension D is

D := lim
ε→0

H(Zε)
− log ε

. (4)

While alternative definitions are possible (see Ref. [34]
and the references therein), they all aim to rigorously
ground the same idea. And, the alternatives often provide
identical values, assuming the validity of some regularity
conditions. The key point is that the essence and the result
of the development do not change under these alternatives.
For a detailed explication of information dimension, see
Refs. [30,34,35].

Note that there are useful theorems for explicitly cal-
culating the information dimension. We use these, and
develop some other ones, in the upcoming sections. Before
proceeding to the geometric dimensional quantum entropy,
though, we briefly discuss a connection between D and
analog information theory, where D’s classical counterpart
has a direct interpretation.

IV. INFORMATION-THEORETIC
UNDERPINNING of D

Quantum information theory takes inspiration from the
information theory of classical discrete sources. However,
it is well known that quantum states need real numbers
to be faithfully represented. In fact, they require several
complex numbers or, equivalently, elements of R2n. So, an

approach inspired by information theory is appropriate
[36] if we can identify a natural extension to situations
where the random variables at hand have a continuous
sample space. As such, one can also appeal to analog or
continuous information theory. An example, relevant for
our purposes, of a result from analog information theory is
the quasilossless compression theorem. Loosely speaking,
this answers the question “How much can we compress
the information emitted by a continuous source, using
continuous variables?”

Rather than giving the full result—for which, see Ref.
[34]—we simply discuss the essential point. Consider a
source emitting realizations �x ∈ X of a continuous random
variable X . We desire to compress its information. The
dimension of X is arbitrary, but we assume that X ⊆ Rn

for some n.
Compression can be achieved using (N , K) codes—a

pair of encoder-decoder functions. The encoder func-
tion f : X N → YK converts the continuous message into
appropriate discrete symbols, belonging to the space Y .
The decoder function g : YK → X N performs the inverse.

Take the probability of making an error as δ =
Pr[g(f (�x)) �= �x]. Call R(ε) the infimum of R ≥ 0 such that
the (N , RN�) code has δ ≤ ε error. Assuming a linear
form for the encoder and decoder, one establishes that there
is a fundamental limit to the amount of quasilossless (up to
ε) compression one can reach. This limit is achievable and
it is given by the source’s classical information dimension:
R(ε) ≤ D(X ).

Here, with a slight abuse of notation, we use the same
symbol D to also identify the classical information dimen-
sion. We also stress that this is only a brief and simpli-
fied summary of the comprehensive analysis performed in
Ref. [34]. What is relevant for our purposes is the fact that,
despite its simplicity, it is directly applicable to quantum
systems. In particular, it addresses encoding a quantum
source emitting pure states Z ∈ P(H) with a classical
continuous distribution given by the geometric quantum
state μ.

Moreover, as quantum states themselves are points on
a manifold described by continuous variables, it can also
be applied to the inverse problem of representing a con-
tinuous classical source with quantum states. While this
begs further exploration before making rigorous state-
ments, we believe it hints at the fact that there is an
alternative way, inspired by analog information theory,
of conceptualizing quantum computing and information
theory.

Before finally moving to dimensional quantum entropy,
we highlight a point about D. While the understanding
based on encoding and communication theory strength-
ens the argument for relevance, D’s general role in
investigating properties of geometric quantum states
stands on its own, as it is independently and rigorously
defined.
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V. DIMENSIONAL QUANTUM ENTROPY

For a given geometric quantum state, D gives a notion
of effective dimension. It is therefore natural that its value
affects the definition of entropy one assigns to a geometric
quantum state.

The standard example comes from comparing discrete
and continuous probability distributions. In the discrete
setting there is a unique entropy definition, given by
Shannon’s functional:

Hdiscrete = −
∑

i

pi log pi. (5)

Its extension to the continuous domain, however, is not
unique and its construction, use, and interpretation require
care. On the one hand, Shannon’s original definition of
differential entropy for a continuous variable X with
probability distribution p(x) provides a meaningful and
interpretable quantity [3]:

Hcontinuous = −
∫

p(x) log p(x)dx. (6)

On the other, it is well known that it presents its own chal-
lenges and that alternatives are possible. For example, it
is well known to be sensitive to rescaling of the measure.
When dx → kdx, we have Hcontinuous → Hcontinuous + log k.

Thus, when a physical measure is defined up to an over-
all scale factor, this quantity is defined up to an overall
additive factor. This is an issue that can often be dis-
regarded as it does not carry physical consequences, in
analogy with the classical notion of energy, defined up
to a constant. Practically, this can be bypassed by fixing
the zero point of the entropy to be given by the uniform
distribution. This is realized by taking the measure to be
the normalized volume of the space. In this way, a uni-
form density simply has constant value equal to 1, giving
a differential entropy Hunif = log 1 = 0.

Note, too, that Hcontinuous can be negative, as − log p(x)
can be negative when p(x) is a density. This is not a con-
cern, since correctly interpreting this quantity relies on the
asymptotic equipartition property, which holds for both
discrete and continuous random variables, irrespective of
Hcontinuous’s sign; see Chapter 8 of Ref. [36].

Moreover and finally, the differential entropy is appro-
priate only when the distribution has integer topological
dimension. This is not true, for example, in nonlinear
dynamics, in which time-asymptotic statistical states often
live on fractals due, for example, to chaotic behavior.
These objects do not have integer dimension. However, it
is possible to define an entropy that takes this rich phe-
nomenology into account. Again, for the classical result,
we refer the reader to Refs. [30,34]. Here, we extend this
into the quantum domain as follows.

Definition 2 (Dimensional quantum entropy). Given
a finite-dimensional quantum system with state space
CPD−1, geometric quantum state μ with quantum infor-
mation dimension D, we define μ’s dimensional quantum
entropy HD[μ] as

HD[μ] := lim
ε→0

(H(Zε)+ D log ε). (7)

Note that this entropy is parametrized by the quantum
information dimension. To provide intuition, consider two
simple cases. In Secs. VI A to VI E we present a series
of examples, with detailed calculations. First, if D = 0,
we see that H0[μ] is simply the continuum limit of Zε’s
entropy H(Zε). Second, imagine we are looking at the uni-
form distribution over Bloch sphere CP1. As this is an
absolutely continuous distribution, it has quantum infor-
mation dimension D = 2 and, therefore, the appropriate
notion of entropy should take that into account.

We also find that, when D = 2(D − 1), HD=2(D−1)[Z] is
equal to the notion of geometric quantum entropy intro-
duced, as far as we know, by Ref. [37]. See also Refs.
[1,19,37–42]. In the simple case of a qubit with continuous
geometric quantum state q(Z) this is

H2[Z] = lim
ε→0

(H(Zε)+ 2 log ε)

= −
∫

CP1
dνZ

FSq(Z) log q(Z)

= − 1
2π

∫ 1

0
dp

∫ 2π

0
dφ q(p ,φ) log q(p ,φ).

We now discuss the information-theoretic interpretation of
the geometric entropy.

Information-theoretic interpretation of HD

Even in the classical setting, there is no unique definition
of entropy for continuous variables [43,44]. From a
resource-theoretic perspective, one can argue that vari-
ous definitions address slightly different resources. Thus,
indirectly, their interpretation can be given by identifying
appropriate operational meanings.

In our quantum setting, if q is absolutely continu-
ous then D = 2(D − 1) and HD[Z] provides the most
straightforward definition: the differential entropy func-
tional (see Ref. [36]). This is essentially Shannon’s func-
tional, Eq. (5), adapted to apply to a probability density,
in which the sum changes into an integral. This can be
proven directly from its definition in Eq. (7), using the
assumption that q is absolutely continuous. In this case we
have p�j ,�k = μq(Q(�j , �k)) = q(Z�j ,�k)VD−1(ε) for some Z�j ,�k ∈
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Q( �j , �k). Therefore,

H2(D−1)[Z]

= − lim
L→∞

( ∑

�j ,�k
p�j ,�k log p�j ,�k − 2(D − 1) log L

)

= − lim
L→∞

1
L2(D−1)

∑

�j ,�k
q(Z�j ,�k) log q(Z�j ,�k)

= −
∫

CPD−1
dνFS q(Z) log q(Z). (8)

While the integral extends to the whole of CPD−1, since
limx→0 x log x = 0, only q(Z)’s actual support contributes
in a nontrivial way. As with classical continuous variables,
the information-theoretic interpretation of HD[Z] hinges
on the asymptotic equipartition property (AEP) and on
the fact that it characterizes the “size”—probability decay
rate—of the stochastic process’ typical set.

In short, the geometric formalism facilitates importing,
mutatis mutandis, the tools of analog information the-
ory (continuous variables) into the quantum domain. This
holds since we can use classical measure theory to discuss
the information-theoretic aspects of quantum states.

The price paid is that the arena where this occurs,
which is usually an arbitrary sample space, is a mani-
fold with geometric rules dictated by quantum physics.
However, from the geometric standpoint, there is nothing
special or uniquely challenging about complex projective
spaces. Thus, one can appeal to standard results, simply by
providing the correct setup.

We now argue in more detail that this holds for the inde-
pendent and identically distributed (IID) random variables
we consider. While somewhat restrictive, the AEP for IID
random variables is a fundamental result—one that lays
strong and rigorous foundations for more advanced inves-
tigations. For present purposes, a geometric version of the
quantum AEP gives the information-theoretic interpreta-
tion of HD[Z]. Results on the classical differential entropy
are found in Ref. [36]. Here, we provide the proper setup
and discuss the results for geometric quantum states.

First, we examine more closely the IID assumption. The
projective space of quantum states of identical systems is
not the tensor product of the projective spaces:

P(H⊗N
D ) �= P(HD)

⊗N .

Here H⊗N
D is the Hilbert space of N qudits, D = dimHD

and P(HD)
⊗N is the manifold of tensor product states of

N qudits. This is directly seen since P(H⊗N
D ) ∼ CPDN −1

while P(HD)
⊗N ∼ (CPD−1)⊗N .

Second, and the key point, the IID assumption guar-
antees that a geometric quantum state on P(H⊗N

D ) is
the product of N identical geometric quantum states

on P(HD). More precisely, given homogeneous coordi-
nates Zα1,...,αN on P(H⊗N

D ), the submanifold of N IID
quantum states is described by N homogeneous coordi-
nates {Xαi}N

i=1, with Xαi on the ith element P(H), such
that Zα1,...,αN = ∏N

i=1 Xαi . Together with the IID assump-
tion, this implies that q(Zα1,...,αN ) = ∏N

i=1 q(Xαi). Geomet-
rically, then, IID processes live on tensor products of the
Segre variety embedded in P(H⊗N

D ).
In this way, using the tools of classical continuous-

variable information theory, one can easily prove the weak
law of large numbers. The details are not particularly
insightful, in that they simply reproduce a particular proof
of the weak law of large numbers, and so are given
in Appendix A. In turn, this guarantees that the follow-
ing geometric asymptotic equipartition property holds for
random quantum variables.

Theorem 1 (Geometric AEP for IID quantum processes).
Let Z1, . . . , ZN be a sequence of IID random quantum
variables drawn from CPD−1 according to q(Z); then

HD[Z] = − lim
N→∞

1
N

N∑

k=1

log q(zk).

The limit converges weakly in probability; see the proof
in Appendix A. The net result establishes that HD is a well-
defined quantum information-theoretic entropy, with clear
operational meaning, directly imported from continuous
information theory.

Moreover, it is a tool of practical use as an IID sam-
pling of the quantum state space produces an ergodic pro-
cess. Hence, state-space averages can be evaluated using
sequential time averages and vice versa. Here, we do not
dwell more on this matter. However, we mention that a
deeper and more comprehensive analysis of the use of geo-
metric quantum mechanics to describe quantum stochastic
processes is possible and will be reported elsewhere.

VI. EXAMPLES

This concludes our technical development of the quan-
tum information dimension and geometric entropy. The
next four subsections show how to compute them in
several concrete physical cases, using a combination of
analytical and numerical techniques:

(i) a quantum system in contact with a finite environ-
ment;

(ii) an electron in a two-dimensional box;
(iii) chaotic quantum dynamics and quantum frac-

tals—Baker’s and standard maps; and
(iv) the thermodynamic limit.

Before moving to the actual analysis, to appropriately pic-
ture the quantum state space, Fig. 2 gives a visual aid—the

020355-6



QUANTUM INFORMATION DIMENSION. . . PRX QUANTUM 3, 020355 (2022)

FIG. 2. Quantum state space of a qutrit. Left: a finite-
dimensional quantum system with D = 3 represented in two
dimensions. Section III noted that canonically conjugated coordi-
nates allow considering the full quantum state space as a classical
two simplex
2, which represents the space of classical probabil-
ity distributions (1 − p1 − p2, p1, p2). Right: a two-torus T2 that
accounts for the nontrivial phases (φ1,φ2).

representation of the full quantum state space of a qutrit,
i.e., D = 3.

A. Case 1: finite environment

As a first example, consider a system S that is part of
a larger system SE of finite dimension. In this setting S
develops correlations with a finite-dimensional environ-
ment E. Let dE and dS denote the dimensions of the Hilbert
spaces HE and HS of E and S, respectively. Also, assume
the overall system SE to be in a pure state |ψ〉 ∈ HS ⊗ HE .

If {|ai〉}dS
i=1 is a basis of HS and {|eα〉}dE

α=1 a basis within
HE , we can always write [1]

|ψ〉 =
dS∑

i=1

dE∑

α=1

ψiα |ai〉 |eα〉

=
dE∑

α=1

√
pE
α

∣∣χS
α

〉 |eα〉 . (9)

Let {�E
α = IS ⊗ |eα〉 〈eα|}dE

α=1 be an arbitrary set of pro-
jective measurements on E. Then pE

α = 〈ψ |�E
α |ψ〉 is the

probability of finding the environment in |eα〉. And, the
|χα〉 are the system’s postmeasurement states, upon finding
the environment in state |eα〉.

This implies that we can always write the system’s
reduced density matrix ρS := TrE |ψ〉〈ψ | as

ρS =
dE∑

α=1

pE
α

∣∣χS
α

〉 〈
χS
α

∣∣ . (10)

One can interpret Eq. (9) as a Schmidt-like decomposition
in which the sum runs from 1 to dE—the dimension of the
larger of the two systems. Note that states

∣∣χS
α

〉
do not gen-

erally form an orthogonal set. This environment-induced

decomposition of the globally pure state |ψ〉 provides a
geometric quantum state

μS =
dE∑

α=1

pE
α δχα , (11)

where δχα is the Dirac measure with support on χα—the
element of P(H) corresponding to |χα〉.

From this we can extract two general results for when a
system interacts with a finite-dimensional, albeit arbitrarily
large, environment.

Theorem 2. Given a finite-dimensional quantum system S
interacting with a finite-dimensional quantum environment
E, S’s quantum information dimension D = 0.

This is easily seen from Eq. (11), which is a finite sum
of Dirac measures, thus having support on a finite number
of points, which has dimension zero. This is always true
for a system interacting with a finite environment. We can
then draw a general result about the dimensional quantum
entropy.

Theorem 3. Given a finite-dimensional quantum system S
interacting with a finite-dimensional quantum environment
E, S’s dimensional quantum entropy is

H0[qS] = −
dE∑

α=1

pE
α log pE

α ,

where pE
α = 〈ψ |�E

α |ψ〉 is the probability of finding the
environment in state |eα〉.

Three comments are in order. First, the dimensional
quantum entropy is invariant under unitary transforma-
tions operating on the system. This is easily seen as it
depends only on pE

α , which has the required behavior. Sec-
ond, H0[qS] in general does (but does not have to) scale
with the size of the environment:

H0[qS] ≤ log dE ,

While counterintuitive, this dependence is physically con-
sistent. Indeed, here we are addressing how the state of a
quantum system of size NS = log dS results from its cor-
relations with the state of an environment of size NE =
log dE . Since (i) there are dE = 2NE distinct environmental
states (say, |eα〉) and (ii) via Eqs. (9), (10), and (11) each
specifies a pure state S, the geometric entropy of S scales,
at most, with the environment’s size.

Third, we can also extract a lower bound, provided by
ρS’s von Neumann entropy. Indeed, among all the geomet-
ric quantum states with a given ρS there is one correspond-
ing to its spectral decomposition ρS = ∑

j λj
∣∣λj

〉 〈
λj

∣∣.
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Therefore,

H0[q] ≥ SvN[ρS(q)] = −
∑

j

λj log λj ,

where we emphasize the dependence of ρS on q, given by
[ρS(q)]ij = Eq[ZiZj ].

The choice of |eα〉 reflects physical information about
the specific problem being analyzed. For example, in a
thermodynamic setting with Hamiltonian H = H0 + Hint,
with H0 = HS + HE , we can choose |eα〉 to be the eigen-
states of HE while the |ai〉 are the eigenstates of HS. In this
case, if the interaction is weak, the environment acts as
a thermal bath. It settles on a distribution pE

α quite close
to a thermal equilibrium distribution pE

α ∝ e−βeα , where
eα is the eigenvalue of HE corresponding to the eigenvec-
tor |eα〉: HE|eα〉 = eα|eα〉. In a quantum computation, in
which the environment performs nontrivial operations on
the system of interest, |eα〉 can be chosen to be given by
the computational basis.

This first example of calculating the quantum informa-
tion dimension and dimensional quantum entropy provides
basic intuition about what these quantities convey about
a system’s overall behavior resulting from its correlations
with an environment.

B. Case 2: electron in a 2D box

Let us now consider a second case in which a finite
quantum system interacts with a quantum system with
continuous variables. A concrete example is an electron
confined to move in a 2D rectangular box R2D = [x0, x1] ×
[y0, y1], where the position and spin degrees of freedom
are assumed to be entangled. The scenario we have in
mind is that of an electron confined to a certain region in
which there is a nonhomogeneous magnetic field �B(x, y)
generating an interaction potential V(x, y) = (μBgs/�)�S ·
�B(x, y).

We follow the treatment of Ref. [1]. Let {|x, y〉}x,y be
the eigenbasis of the position degrees of freedom and
{|0〉, |1〉} a basis for the spin degree of freedom. Anza and
Crutchfield [1] showed that a generic state can be written
as

|ψ〉 =
∫ x1

x0

dx
∫ y1

y0

dyf (x, y) |x, y〉 |v(x, y)〉

with
∫

dxdy|f (x, y)|2 = 1,

|v(x, y)〉 =
√

p0(x, y)eiφ0(x,y) |0〉 +
√

p1(x, y)eiφ1(x,y) |1〉 ,

p0 + p1 = 1,

and (φ0,φ1) ∼ (0,φ1 − φ0).

Thus, the spin degree of freedom is described by f (x, y)
and {ps(x, y),φs(x, y)}s=0,1.

The partial trace over the position degrees of freedom,
for a generic |ψ〉, gives rise to a continuous geomet-
ric quantum state q(p ,φ) implicitly parameterized by the
mapping between the coordinates (x, y) and (p ,φ), whose
density matrix is:

ρS =
∫

dxdy|f (x, y)|2 |v(x, y)〉 〈v(x, y)|

=
∫

dν(p ,φ)
FS q(p ,φ) |p ,φ〉 〈p ,φ|

with |p ,φ〉 = √
1 − p |0〉 + √

peiφ |1〉. The second equal-
ity above implicitly defines a distribution on the qubit’s
projective Hilbert space. Anza and Crutchfield [1] detailed
the procedure. The following simply summarizes the final
result.

Given an operator O, acting only on the Hilbert space of
the spin, we have

〈O〉 =
∫ x1

x0

dx
∫ y1

y0

dy|f (x, y)|2O(v(x, y))

=
∫

dν(p ,φ)
FS q(p ,φ)O(p ,φ), (12)

where q is a geometric quantum state that depends on
f and dν(p ,φ)

FS = dpdφ/2π indicates the uniform Fubini-
Study measure with coordinates (p ,φ). The details of
how q depends on f and on the Fubini-Study metric are
not immediately relevant, but can be found in Ref. [1].
Here, though, we provide an explicit example to illustrate
computing D[q] and HD[q].

To be concrete, let p1(x, y) = (x − x0)/(x1 − x0), φ1
(x, y) = 2π(y − y0)/(y1 − y0), and f (x, y) = √

G(x, y),
where G(x, y) is a 2D Gaussian on R2D:

G(x, y)=

⎧
⎪⎨

⎪⎩

e−[(x−μx)/σx]2/2

Nx

e−[(y−μy )/σy ]2/2

Ny
, (x, y) ∈ R2D,

0, otherwise.

Here (μx, σx) and (μy , σy) are the average and variance
along the x and y axes, respectively; Nx and Ny are
normalization factors.

This constructs a geometric quantum state that is abso-
lutely continuous with respect to νFS and therefore express-
ible via a probability density q(p ,φ). With the choices
made, we obtain
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q(p ,φ) = 2π
exp{−[(p − μp)/σp ]2/2}

Np

exp{−[(φ − μφ)/σφ]2/2}
Nφ

,

with

Np :=
∫ 1

0
dpe−[(p−μp )/σp ]2/2

and

Nφ :=
∫ 2π

0
dφe−[(φ−μφ)/σφ ]2/2.

Moreover,μp := (μx − x0)/(x0 − x1), σp := σx/(x1 − x0),
μφ := 2π(μy − y0)/(y0 − y1), and σφ := σy2π/(y1 − y0).

What is the quantum information dimension and the
dimensional geometric entropy of q(p ,φ)? Since this is
an absolutely continuous density function, with support on
the whole of P(H), one can directly compute the limit
in Eq. (4), obtaining D = 2. Moreover, H2[Z] assumes a
particularly simple form due to the Gaussian character of
q(p ,φ):

H2[Z] = 1
2
E

[(
p − μp

σp

)2]
+ 1

2
E

[(
φ − μφ

σφ

)2]

+ logNp + logNφ − log 2π

= logNp + logNφ + log
e

2π
.

Thus, again, D = 2 correctly addresses the dimensional-
ity of the underlying geometric quantum state and H2[Z]
appropriately quantifies its entropy.

C. Case 3: chaotic dynamics and quantum fractals

While the examples above clarify the meaning of, and
the technology behind, information dimension, its strength
resides in estimating the dimension of complex probabil-
ity distributions, especially those whose support is fractal
[28,45,46]. These objects have interesting features, such as
structural self-similarity and spontaneous statistical fluc-
tuations, and they often arise as asymptotic invariant
distributions of the dynamics of complex systems.

The geometric formalism allows us to show how exam-
ples imported from the classical theory of dynamical sys-
tems, leading up to fractal invariant sets, are part and parcel
of the phenomenology of quantum systems. In particular,
by exploiting the fact that the Fubini-Study uniform mea-
sure on CP1 in (p ,φ) coordinates is proportional to the
Lebesgue measure on the square [0, 1] × [0, 2π ], we look
at two well-known examples of chaotic dynamical systems
with chaotic attractors with fractal support—the extended
Baker’s map [35] and the Chirikov standard map [47]. We
show how to directly implement them in quantum systems
by leveraging geometric quantum mechanics.

1. Baker’s map

First, we look at the extended Baker’s map (EBM) that,
despite the chaotic behaviors it generates, can be analyti-
cally solved. For a detailed discussion about its properties,
especially those related to the information dimension, we
refer the reader to Ref. [35].

This map is directly implemented on CP1 via the fol-
lowing unitary transformations. Let B denote the extended
Baker’s map: each iteration of B maps a quantum state
(p ,φ) ∈ CP1 to one and only one quantum state (p ′,φ′).

Definition 1 (Extended Baker’s map). We have

(p ′,φ′) =

⎧
⎪⎪⎨

⎪⎪⎩

(
λap , 2π

φ

β

)
if φ ≤ β,

(
1
2

+ λbp , 2π
φ − β

2π − β

)
if φ > β.

Here, we use λa ≤ λb ≤ 1/2 and β ≤ π . Note that the
original extended Baker’s map, as in Ref. [35], is defined
on the unit square (x, y) ∈ [0, 1] × [0, 1]. The above adapts
it to the Bloch square via (p → x,φ/2π → y). As a result,
β is renormalized by a factor 2π with respect to the one α
found in Ref. [35]: α → β = 2πα.

Since there is a one-to-one correspondence between
points of the Bloch square and points in CP1, the action
B[(p ,φ)] = (p ′,φ′) can be implemented on H as a uni-
tary transformation between an arbitrary pair of input
(p ,φ) and output (p ′,φ′) states, as follows. First, on
the qubit Hilbert space, given any |ψ〉, there is one and
only one orthogonal state

∣∣ψ⊥〉
, up to normalization and

phase. Thus, a unitary transformation that maps a generic
|ψ〉 onto |φ〉 can be directly written as U = |φ〉 〈ψ | +∣∣φ⊥〉 〈

ψ⊥∣∣. Second, embedding of CP1 with (p ,φ) coor-
dinates onto the qubit Hilbert space is given by

(p ,φ) ∈ CP1 → |p ,φ〉 =
√

1 − p |0〉 + √
peiφ |1〉 ∈ H.

With this, given a point (p ,φ), the state orthogonal
to |p ,φ〉 is simply |1 − p ,φ + π〉. This means that
〈p ,φ|1 − p ,φ + π〉 = 0 for all (p ,φ). Hence, this results
in the unitary U := U(B) that implements B on the Hilbert
space:

U(p ′,φ′; p ,φ) = ∣∣p ′,φ′〉 〈p ,φ|
+ ∣∣1 − p ′,φ′ + π)

〉 〈1 − p ,φ + π)| .

As a result, iterates of U implement the EBM on CP1.
Calling (pn,φn) the state after n iterations and Un+1 the
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FIG. 3. Geometric quantum states visited along a single trajectory generated by the extended Baker’s map with parameters λa =
λb = 0.2, β = 4π/10, and initial condition (p0,φ0) = (0.328 65, 0.988 86). We plot N = 107 time steps on the Bloch square (p ,φ) ∈
[0, 1] × [0, 2π ]. Over time, due to the map’s chaotic nature, even a single trajectory covers a (strange) attractor, with self-similar
(fractal) structure. More specifically, vertically, the attractor has a uniform structure. Horizontally, it has a self-similar, fractal structure,
equivalent to a generalized Cantor set. This is demonstrated, going from the left panel to the right, via successively magnifying small
subsets of states.

unitary implementing the nth iteration, we have Un �= Uk
for n �= m. Thus, while the definition is the same, at each
iteration it is represented by a different unitary operator
Un = U(pn+1,φn+1; pn,φn). Assuming that each iteration
of the map takes a finite amount of time, the appropriate
way to interpret this mapping is that it is an inhomoge-
neous (in state space) vector field on CP1 or, analogously,
on H.

Farmer et al. [35] provided a detailed discussion of the
map’s dynamic properties. Here, we simply recall that,
given an arbitrary initial point (p0,φ0), as a result of the
dynamics, the point moves on a subset of the entire state
space. The natural measure, resulting from the dynamics
over infinite time, is a fractal object. More accurately, the
attractor has a uniform distribution over φ while it has
the structure of an extended Cantor set with respect to p .
See Fig. 3 for a plot of 107 map iterates, illustrating the
attractor’s self-similar (fractal) structure.

Moreover, its information dimension dI is known ana-
lytically:

dI (α, λa, λb) = 1 + −α logα − (1 − α) log(1 − α)

|α log λa + (1 − α) log λb| (13)

with α = β/2π . This gives a quantum information dimen-
sion D ≈ 1.31 and it allows us to benchmark the algo-
rithmic procedure we use to numerically compute the
information dimension, a necessary reference for cases in
which D is not known. To extract the dimensional entropy,
we look at the estimated zero point of the curve H(Zε) as a
function of − log ε. The linear fit gives HD ≈ 0.25 ± 0.15.
See Fig. 4.

D. Standard map

Let us shift attention to the dynamically richer stan-
dard map (SM). While its original definition is given on
the square of side 2π , it is easily modified to operate

FIG. 4. Extended Baker’s map information dimension dI : the
estimation incrementally decreases the coarse-graining scale ε
and, at each step, calculates H(Zε). Then, excluding initial points
to avoid saturation, it performs a least-square fit to extract the
growth rate of H(Zε) as a function of log(1/ε). We estimate dI =
1.31 ± 0.01. This is fully consistent with the analytical prediction
of dI = 1.31, plotted in red. See Eq. (13) and Ref. [35] for the
analytical estimate.
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FIG. 5. Standard map on the Bloch square: quantum states (p ,φ) ∈ [0, 1] × [0, 2π ] iterated at K = 1.15 over a uniform grid of
initial conditions. Left: initial distribution n = 0: homogeneous distribution with 302 points (p ( j )

0 ,φ(k)0 ) = ( j /30, 2πk/30), with j , k =
0, . . . , 29 running over all initial conditions, each distinctly colored. Middle: after only n = 25 iterations the points begin to mix,
according to whether they lie in regions of periodic, quasiperiodic, or chaotic behavior. Right: the long-term distribution, after n = 1000
iterations. The full range of behaviors is evident.

on the Bloch square [0, 1] × [0, 2π ]; i.e., CP1 in (p ,φ)
coordinates.

Definition 2 (Standard map). We have

p ′ = p + K
2π

sinφ,

φ′ = φ + 2πp ,

where p is taken modulo 1, φ modulo 2π , and (p0,φ0) ∈
[0, 1] × [0, 2π ]. Here K is a non-negative parameter that
determines the map’s degree of nonlinearity. Its value
is renormalized by 2π due to the fact that in its origi-
nal definition the standard map operates on the square
[0, 2π ] × [0, 2π ], while here we work in (p ,φ) ∈ [0, 1] ×
[0, 2π ].

The transformation can be implemented with a set of
unitary transformations {Sn}, using the same construction
just described in Sec. VI C for the EBM.

For K = 0, only periodic and quasiperiodic orbits are
possible. For K > 0, the map generates both regions of
chaotic behavior and periodic orbits. Increasing K , the
extent of periodic orbits decreases, yielding to larger areas
of chaotic behavior. Figure 5 shows the behavior at K =
1.15.

As a consequence of the mixed behavior across the state
space, the information dimension of the natural measure,
computed over a single trajectory, depends on the initial
condition. If initial conditions lead to chaotic orbits then
we expect D = 2 while, for periodic orbits, D = 1. We
numerically verify this using the same algorithm exploited
in the previous section to estimate EBM’s information

dimension. Figures 6 and 7 plot the results, consistent with
the expected values.

Analogously, for the dimensional entropy, there are two
different situations, depending on whether the initial con-
dition leads to periodic or chaotic behavior. Since in the
chaotic case we simply have a 2D integral, here we look
more closely at the second case, in which D = 1, where
the following treatment can be applied.

Referring to Fig. 8, a generic quasiperiodic orbit cov-
ers a one-dimensional line, which is identified by a generic
equation f (φ, p) = 0, whose solutions are parametrized
by a curve γ : [0, 1] → CP1, or a set of them {γi}, as in
the case of Fig. 6. In the following, assume that the set
of curves γi is bijective, so that given a point Z on any
curve, there is one and only one curve containing the point;

FIG. 6. Left: quasiperiodic orbit with dynamic generated by
the standard map at K = 2 and initial conditions (p0,φ0) =
(0.2,π). Right: numerical estimation of the information dimen-
sion, obtained by extracting the growth rate of H(ε), shorthand
for H(Zε), as a function of log(1/ε). The estimated value is
consistent, up to two significant digits, with the expected D = 1.
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FIG. 7. Left: chaotic orbit with dynamic generated by the stan-
dard map at K = 2 and initial conditions (p0,φ0) = (0.1, 4π/10).
Right: numerical estimation of the information dimension, as
above. Again, the estimated value is consistent, up to two
significant digits, with the expected one of D = 2.

thus, the functions γi(s) admit inverse γ−1
i : CP1 → [0, 1].

While at first this appears to be a restrictive assumption,
one can always use this construction in cases in which there
are overlapping curves, simply by decomposing them into
nonoverlapping subparts.

Proceed in this way by analyzing each separately
and, since the treatment is formally the same for each,
we examine one of them and drop the index i. The

FIG. 8. Dimensional quantum entropy of a qubit: geometric
construction for quasiperiodic behavior. The construction gives
rise to a natural measure of dimension D = 1. The measure’s
characteristics on CP1 transfer to a random variable on the unit
interval in a way that does not deform the distribution: it keeps
intact the ratios νγ (γi)/νγ (γj ) = μγ (Ii)/μγ (Ij ) ≈ n(γi)/n(γj ).
This holds thanks to the fact that D = 1 and therefore the sup-
port of the measure is a curve γ on CP1 that can always be
parametrized by γ (s) with s ∈ [0, 1]. The green area represents
a fictitious probability density on γ mapped onto [0, 1].

function γ is the nonvanishing support of the distribution
whose entropy we are evaluating. On γ the proper notion
of invariant measure is provided by the Fubini-Study
infinitesimal length element: dlγFS := ||γ̇ ||FSds. Here, γ̇ =
(dp/ds, dφ/ds), ||v||FS =

√
gFS

ab v
avb is the Fubini-Study

norm of a vector v in the tangent space, and gFS is the
Fubini-Study metric. Thus, γ ’s Fubini-Study length pro-
vides a notion of measure on [0, 1] that is invariant under
changes of coordinates and by unitary transformations in
CP1, via μγs (ds) := dlγFS = ||γ̇ (s)||FSds. This provides the
proper notion of integration on [0, 1] to respect all the nec-
essary invariance properties inherited by the fact that the
points on γ belong to CP1.

In this way, given a measure νγ on CP1 with support
on γ and density dνγ = ν(dlγFS) = f (s)dlγFS, the limit in
Eq. (7) can be carried out to give

H1[νγ ] := −
∫ 1

0
f (s) log f (s)dμγs (ds),

where f (s) is the density or, more appropriately, the Radon-
Nikodym derivative, of νγ with respect to μγ .

For example, one can verify that this procedure gives
the expected results in the case of a uniform distribution.
Calling L[γ ] the Fubini-Study length of curve γ , we have
funif(s) = 1/L[γ ] and entropy log L[γ ].

It is worth noting that a most important property of this
procedure is that it facilitates computing the entropy of a
1D distribution on γ ∈ CP1 by mapping it to the entropy
of a continuous density on [0, 1]. This amounts to defin-
ing f as the continuous density that satisfies the following
consistency constraint. For any arbitrary finite partition-
ing [0, 1] = ⋃

i Ii that generates a partition of γ into a set
γ = ⋃

i γi of N adjacent curves γi = γ (Ii), the density f
is defined via the chain of equalities

νγ (γi) = lim
N→∞

nN (γi)

N

=
∫

Ii

f (s)μγ (ds)

= μγ (Ii)

for any i and where nN (γi) is the number of points belong-
ing to γi in a finite (size N ) sample of the density on γ .

This provides a constructive method to analytically
compute H1, provided one has the form of γ and f (s). It
also gives a direct way to numerically estimate H1 via the
sampling provided by the dynamics: nN (γi)/N ≈ νγ (Ii)

when N � 1.

E. Case 4: thermodynamic limit

Finally, let us shift to explore dimensions for an overtly
physical setting: a finite quantum system without sym-
metry that interacts with a finite, but arbitrarily large,
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FIG. 9. Support of the geometric quantum state |GS(NE)〉 for the ground state of the Heisenberg defect Hamiltonian with environ-
ment size N = 22. The GQS has two separate islands with internal structure that is self-similar. In the left, middle, and right panels we
progressively magnify the region around each part of the support to reveal the distribution’s self-similar support. In the thermodynamic
limit its information dimension is estimated to be D ≈ 0.83 ± 0.02.

environment. The goal is to infer properties in the ther-
modynamic limit. The generic procedure to investigate
the thermodynamic limit in geometric quantum mechanics
was established and made explicit in Ref. [1]. The follow-
ing adopts that procedure and investigates the geometric
quantum state of the ground state of an open-boundary
1D spin-1/2 Heisenberg chain with a broken translational
symmetry: a defect, realized by removing the local mag-
netic field in the last qubit. Let �τ be the system’s spin
operator and �σj the environment’s spin operators. The total
Hamiltonian is

H = HS + HE(NE)+ Hint(NE),

where NE is the size of the environment, HS = �B · �τ , and

HE(N ) =
NE−1∑

k=1

�σk · �σk+1 + �B · �σk,

Hint = �τ · �σ1.

(14)

The defect-bearing Hamiltonian breaks translational sym-
metry, creating a rich geometric quantum state—one that
exhibits self-similarity and fractal structure. To illustrate
the latter, we used Bz = 0.5 and N ∈ [10, 22]. As we will
see, the choice is supported by the numerical analysis.

At each size N we used the Lanczos algorithm, avail-
able in PYTHON via SciPy [48], to extract the ground state
|GS(N )〉 and obtain the associated geometric quantum
state qGS

N (Z). Figure 9 plots the support of qGS
N for N = 22.

Direct inspection of qGS
N (Z) suggests that the support of

qGS
∞ has a fractal structure with D∞ ∈ (0, 1). Thus, we are

interested in qGS
∞ (Z) = limN→∞ qGS

N (Z). And so, for each
N , we estimate the information dimension via the numeri-
cal procedure used and benchmarked in previous sections.
This provides 13 different datasets to estimate the value of
the information dimension in the thermodynamic limit.

Accurately estimating D∞—the QID of qGS
∞ (Z)—is

nontrivial since, in principle, it involves evaluating two
limits: ε → 0 and N → ∞. The limits can be singular,
meaning that the result might depend on the order in which
they are performed. This is indeed what happens when try-
ing to directly estimate D∞ in a naive fashion. Namely,
by Theorem 2, at each finite N , DN = 0. This leads one to
conclude that D∞ = 0. This is not correct. The reason a
vanishing dimension appears when first computing DN is
that the environment is finite and, since HN [Zε] ≤ N log 2,
the curve HN (− log ε) levels off after the expected linear
increase in − log ε; see Fig. 10. That is, vanishing dimen-
sion arises from evaluating the limits in the wrong order:
ε → 0 at fixed N first and then N → ∞. Instead, we are
interested in the converse: thermodynamic limit first to
obtain qGS

∞ and then ε → 0 to extract D∞.
Vanishing dimension does not occur when performing

the thermodynamic limit first as this effectively removes
the upper bound. If the analytical form of the ground
state in the thermodynamic limit is known, one can pro-
ceed without further ado. This, however, is a rare case
and, numerically, these effects are expected to be present.
To cope with this, one must correctly identify, for each
N , a region of consistent linear growth where HN [Zε] ≈
−D∞ log ε for all ε ∈ [ε0(N ), ε1(N )]. Verifying that the
estimate is robust against increasing the size of the envi-
ronment yields a reliable estimate of D∞. A sketch, of an
idealized situation, to provide visual support to the abstract
intuition, is given in Fig. 10.

The estimation is performed by numerically extracting
the curves HN [Zε] via a direct box-counting algorithm:
fix the value of ε and build a grid; recall Sec. III. Then,
using the numerical representation of qGS

N , we evaluated
the probability mass in each cell and computed this distri-
bution’s Shannon entropy. This gives a progressively finer
coarse graining of the state space. The scaling curves are
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FIG. 10. Schematic depiction of numerically extracting D∞
by examining systems with progressively larger system size N ,
while at each size we estimate two scaling curves. At their
overlap a linear increase with − log ε is present. This permits
estimating D∞ with the slope of the tangent there. In this ideal
case, this is exactly identical to D∞ for each N . In reality, finite-
size effects mean that the data are noisy and the estimation is
harder; cf. Fig. 11.

then analyzed in two separate ways, yielding compatible
results.

First, a linear fit is performed by identifying a com-
mon region of linearity for all the 13 curves HN [Zε] ∝
D(1)

N (− log ε) analyzed. Then, from the 13 averages we
estimated the information dimension (and its error) from
the average and standard deviation. The results yield
D(1)

∞ = 0.83 ± 0.02 and are summarized in Fig. 11.
Second, we collapsed all the data onto a unique straight

line by removing their estimated vertical offset—setting
the intercept equal to 0. We removed a single outlier, to
reduce the error, and checked that this did not appreciably
change the estimate. We then performed linear regression
on the aggregated data points. The result, summarized in
Fig. 12, yields D(2)

∞ = 0.84 ± 0.01. Altogether, the results
support the intuition that the thermodynamic limit is wit-
ness to highly nontrivial geometric quantum states with
fractal support. Increasing the environment’s size, the sys-
tem converges to a self-similar distribution, with a nonin-
teger information dimension D∞ ≈ 0.83 ± 0.02. The state
support, shown in Fig. 9, is reminiscent of the Cantor set
or, more appropriately, one of its generalizations, e.g., the
EBM’s invariant distribution in the x direction.

The estimation of the dimensional geometric entropy
is somewhat easier. Indeed, while its value diverges, it

FIG. 11. Information dimension of the geometric quantum
state of a qubit interacting with a 1D environment with a defec-
tive (i.e., nontranslation invariant) Heisenberg model of pro-
gressively increasing size; see Eq. (14). The entire system is
in its ground state |GS(N )〉, where the environment size is N ∈
[10, 22]. Each N yields a geometric quantum state whose infor-
mation dimension we estimate using the box-counting algorithm
explained in the text, extracting the slope using a linear fit for
HN [Zε]. Inset: a collection of all the data, together with the lin-
ear fits. Overall: the collection of horizontal lines displays all
M = 13 estimates and extracts the average and standard devi-
ation. The result yields D(1)

∞ = 0.83 ± 0.02. The shaded areas in
green, red, and blue correspond to the areas covered by fluctu-
ations around the average of sizes σ , 2σ , and 3σ , respectively,
where σ = 0.02 is the standard deviation of the sample of slopes.

does so in a controlled fashion, which is at most linear
in the environment size NE . We thus extract the entropy
rate by direct inspection of its definition, given explicitly
in Theorem 3, and estimate its linear asymptote, giving the
entropy rate h∞ in the thermodynamic limit as

h∞ := lim
NE→∞

H(NE)

NE

= lim
NE→∞

H(NE)− H(NE − 1).

Since convergence to linear scaling occurred rather
rapidly, an accurate estimate of h∞ is obtained directly
from the data, up to two significant digits: h∞ ≈ hest =
0.66 ≈ 95% log 2. Figure 13 gives both the data and the
results of the linear fit.

This concludes our survey of informational properties of
geometric quantum states. Table I summarizes the results.
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FIG. 12. Information dimension of the same geometric quan-
tum state, estimated using aggregated data. To extract the infor-
mation dimension in the thermodynamic limit, we do not distin-
guish between points belonging to different environment sizes.
Aggregating them, we performed linear regression to extract a
prediction, with associated error, of the curve’s slope. The result
yields D(2) = 0.84 ± 0.01.

The results leave several questions and points of discus-
sion, to which we now turn. After which we draw several
conclusions.

VII. DISCUSSION

It has been over a half century since Kolmogorov and
followers showed that Shannon’s information theory [3]
provides essential dynamical invariants for chaotic physi-
cal systems [4–9]. Today, practically, we know that infor-
mation theory readily applies to physical systems that
evolve in discrete time with either a discrete state space or
tractable symbolic dynamics [49]. Applying the Shannon
entropy functional, this involves quantities that capture
informational features with physical relevance—such as
a system’s randomness and structure. This approach has
successfully described the behavior of both Hamiltonian
and dissipative classical systems. That said, the situation
is decidedly less straightforward for physical systems with
an inherently continuous sample space that lack a straight-
forward symbolic dynamics. Relying on analog informa-
tion theory, informational descriptions are markedly more
challenging to define and calculate.

Quantum systems belong to this category, as the space
P(H) of pure states has continuous nature. Geomet-
ric quantum mechanics brings this particular aspect of

FIG. 13. Dimensional quantum entropy H [NE] scaling in the
geometric quantum state q as a function of environment size NE .
The estimated linear growth H [NE] ∼ 0.66NE and so the state
has entropy rate of hest = 0.66.

quantum systems to the fore, describing their states as
probability measures on P(H)—that is, in terms of geo-
metric quantum states. Thus, the geometric approach
directly leads one to adapt the tools from analog informa-
tion theory to the quantum domain.

In this spirit, our development focused on informa-
tion dimension and differential entropy, initially proposed
by Renyi within the context of analog information the-
ory. We showed that these tools provide a synthetic view
of a system’s geometric quantum state: the information
dimension D determines the dimensionality of the state’s

TABLE I. Quantum information dimensions and dimensional
quantum entropies for the geometric quantum states analyzed in
Secs. VI A–VI E.

D HD

Case 1 (finite
environment)

0 −∑
α pα log pα

Case 2 (e− box) 2 logNp + logNφ

+ log(e/2π)
Case 3 (Baker’s

map)
1.31 ± 0.01 0.25 ± 0.15

Case 3 (SM
periodic)

1 − ∫ 1
0 f (s) log f (s)μγ (ds)

Case 3 (SM chaotic) 2 − ∫
CP1 dνFSq(Z) log q(Z)

Case 4
(thermodynamic
limit)

0.83 0.66NE

020355-15



FABIO ANZA and JAMES P. CRUTCHFIELD PRX QUANTUM 3, 020355 (2022)

support, while the dimensional geometric entropy HD

gives an appropriate differential entropy for a geomet-
ric quantum state with information dimension D. Once
defined and properly interpreted, we explicitly computed
their values in several examples: a finite-dimensional
quantum system interacting with finite and infinite envi-
ronments; a qubit evolving with quantum implementa-
tions of nonlinear maps—the extended Baker’s map and
the standard map—and finally a qubit in a progressively
larger environment, where we extracted properties in the
thermodynamic limit.

The interest in these investigations is twofold. On the
one hand, extending the tools of dynamical systems theory
to the quantum domain is a topic of broad and long-lived
interest. In point of fact, dynamical systems theory has
led to successful modeling and quantitative understand-
ing of the structures and behaviors generated by large
classes of synthetic and natural systems—from nonlin-
ear dynamics to the modeling of population dynamics to
tackling the underlying dynamics of information occur-
ring in a computer running classical algorithms. On the
other hand, the phenomenology of open quantum sys-
tems, in equilibrium and far from equilibrium, is a topic
of both fundamental and applied relevance. Indeed, in
the past half decade, the rise of the quantum computing
paradigm made concrete several theoretical investigations
focused on the information-theoretic properties embedded
in the dynamics of open quantum systems and the ther-
modynamic resources necessary for quantum information
processors to run smoothly and efficiently.

We believe that the geometric approach is well suited to
these goals for the following reasons. The notion of geo-
metric quantum state of a system [1] encodes not only the
statistics of all measurement outcomes one can perform on
the system, as with the density matrix, but also the detailed
structure of the system-environment quantum correlations
that determine said measurement statistics. Hence, deter-
mining the information-theoretic properties of geometric
quantum states gives a novel way to understand the phe-
nomenology of open quantum systems, whose behavior
and structure result from exchanging information-theoretic
and energetic resources with an environment. We believe
that this will eventually lead to new analytical tools of
power sufficient to deepen our understanding of the phe-
nomenology of open quantum systems, both in and out of
equilibrium.

VIII. CONCLUSIONS

The development’s overtly mathematical nature sug-
gests concluding with three forward-looking comments.
First, simple examples of geometric quantum states yield
an integer value for D. At least in the measure theory of
classical processes, though, it is well known that this is
not typical. There are very interesting objects that exhibit

noninteger information dimension: the self-similar or Can-
tor sets, now shorthanded as fractals. Indeed, these struc-
tures are critical to the operation of Maxwellian demons
[50] and their modern realizations—information engines
[51]. Comparing classical and quantum domains, it stands
to reason that the geometric quantum formalism provides
an interesting arena in which to develop a theory of quan-
tum fractals. Efforts in this direction are currently ongoing
and will be reported elsewhere. The informational quanti-
ties introduced here play a central role in this endeavor.

Second, while here we focused exclusively on D and
HD, it is straightforward to appreciate that the geo-
metric approach allows for a richer cross-pollination
between analog information theory and quantum infor-
mation theory. For example, alternative definitions for
core quantities of quantum information theory, based on
the geometric approach and inspired by analog informa-
tion theory, suggest themselves as parallels of entropy,
relative entropy, mutual information, Kolmogorov-Sinai
entropy rate, excess entropy, bound information, sta-
tistical complexity, and many others. Investigating the
relations with their standard quantum counterparts—von
Neumann entropy, quantum mutual information, and the
like—presents interesting challenges. The solutions, we
believe, are destined to enrich both quantum information
science and analog information theory.

Third, the geometric approach provides a powerful way
to study ensembles of pure states, with a rich phenomenol-
ogy to uncover [52–56]. This is particularly so given
the recent emergence of quantum information theory and
the advances in quantum computing. These reinforce the
need for more advanced tools to study ensembles of pure
states [57–59]. Indeed, modern quantum simulators allow
extracting ensembles of pure states, like the geometric
quantum state, in systems with a controlled environment.
This strengthens the case for the tools developed here and
for the geometric approach more generally.
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APPENDIX A: WEAK LAW OF LARGE NUMBERS
FOR GEOMETRIC QUANTUM STATES

The following provides a direct proof of the weak law of
large numbers for real functions on P(H). First, let us set
up the problem, focusing on quantum systems with Hilbert
space H of arbitrary dimension D. The projective space
of pure states is P(H), with dimension D − 1. A random
quantum variable Z is a triple (P(H),B,μZ), where P(H)
is the projective Hilbert space of pure states, B is its Borel
σ -algebra, and μZ is a measure on P(H) such that

μ(Z) =
∫

S
μZ(dνFS),

where dνFS is the normalized Fubini-Study measure

νFS(S) =
∫

S
dνFS

= 1
Vol(P(H))

∫

S
dVFS

= Vol(S)
Vol(P(H)) .

Now, if μZ is absolutely continuous with respect to dνFS,
we have a probability density function dμZ = q(z)dνFS.

Let {Zk}N
k=1 be a series of N random quantum vari-

ables. We are interested in the case in which the Zk are all
independent and identically distributed. Take a measurable
function f : P(H) → R. Call Xk := f (Zk). This is a ran-
dom variable with values on R with a law we call νk. The
Xk with measures νk are also IID. Thus, taking x := E[Xk]
and σ 2 = E[(Xk−x)

2], we can define

Yk := Xk − x
σ

and YN :=
N∑

k=1

Yk√
N

.

Now, let φX (t) := E[eitX ]. We have

φYN (t) =
N∏

k=1

φYk

(
t√
N

)

=
[
φYk

(
t√
N

)]N

.

Since we are interested in the limit N → ∞, we expand to
see that

φYN (t) =
[
φYk

(
t√
N

)]N

=
[

1 − t2

2N
+ o

(
t2

N

)]N

means that

φYN (t) → φY(t) ∝ e−t2/2.

This is a uniform convergence between characteristic func-
tions that, by means of the Levy continuity theorem,
becomes weak convergence between random variables:
YN → Y. Here Y ∼ N (0, 1) since the standardized nor-
mal distribution is the only one with characteristic function
∝ e−t2/2. In turn, this means that

X N := 1
N

N∑

k=1

Xk

= 1
N

N∑

k=1

f (Zk)

implies that

X N ∼ N (x, σN ),

where σN := σ/
√

N .
Since σN → 0, we denote this convergence X N → x,

where x = E[Xk] = E[f (Zk)] and fluctuations are of the
order σ/

√
N . In other words,

1
N

N∑

k=1

f (Zk)

converges to

E[f (Z1)] =
∫

P(H)
f (z)q(z)dνFS.

Thus, for example, one can use f (Z) = − log q(Z), which
is measurable as long as the geometric entropy is finite. In
this way, one finds that

lim
N→∞

1
N

N∑

k=1

− log q(Zk) = E[− log q(Z)]

= −
∫

P(H)
q(Z) log q(Z)

= HD[Z].

This establishes the weak law of large numbers for a real
measurable function f on P(H) and, in turn, provides a
direct proof for the quantum AEP.
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APPENDIX B: ELECTRON IN A 2D BOX

The following lays out the detailed calculations for the
geometric quantum state in Sec. VI B: an electron in a 2D
rectangular box. The Hilbert space is given by P(Hx ⊗
Hs), where Hx is the infinite-dimensional Hilbert space of
a quantum particle in a 2D box, with basis {|x, y〉}x,y and
x ∈ [x0, x1], y ∈ [y0, y1]. Here Hs is a qubit Hilbert space
describing the spin-1/2 degree of freedom with reference
basis {|0〉, |1〉}.

Thus, the discrete degrees of freedom of the system—
simply spin 1/2 in this case—are described by f (x, y) and
{ps(x, y),φs(x, y)}s=0,1. Then, Eq. (12) becomes

〈O〉 =
∫ x1

x0

dx
∫ y1

y0

dy|f (x, y)|2O(v(x, y))

= 1
2

∫ 1

0
dp

∫ 2π

0
dφ q(p ,φ)O(p ,φ),

where p0(x, y) = 1 − p1(x, y), p1(x, y) = p(x, y),
φ0(x, y) = 0, and φ1(x, y) = φ(x, y).

To be concrete take, p(x, y) = (x − x0)/(x1 − x0),
φ(x, y) = 2π(y − y0)/(y1 − y0), and f (x, y) = √

G(x, y),
where G(x, y) is a 2D Gaussian on R2D:

G(x, y) =

⎧
⎪⎨

⎪⎩

e−[(x−μx)/σx]2/2

Nx

e−[(y−μy )/σy ]2/2

Ny
, (x, y)∈R2D,

0, otherwise,

where (μx, σx) and (μy , σy) are the average and variance
along the x and y axes, respectively, and Nx and Ny are
normalization factors.

Using the definitions of the embedding functions, we
obtain the following set of spin vectors, parametrized

by �x = (x, y):

|v(x, y)〉 =
√

x1 − x
x1 − x0

|0〉 +
√

x − x0

x1 − x0
ei2π(y−y0)/(y1−y0) |1〉 .

In turn, this gives

O(v(x, y)) = 〈v(x, y)|O |v(x, y)〉

= x1 − x
x1 − x0

O00 + x − x0

x1 − x0
O11

+
√

x1 − x
x1 − x0

x − x0

x1 − x0

×
(
O01ei2π(y−y0)/(y1−y0)

+ x − x0

x1 − x0
e−i2π(y−y0)/(y1−y0)O10

)
.

The determinant of the Jacobian matrix between the
coordinates (x, y) on R2D and (p ,φ) ∈ [0, 1] × [0, 2π ]
parametrizing P(H2

1) ∼ CP1 is extracted by inverting the
functions p(x, y) and φ(x, y):

x(p ,φ) = x0 + p(x1 − x0)

and y(p ,φ) = y0 + φ

2π
(y1 − y0).

This gives D�(Z) = (x1 − x0)(y1 − y0)/2π , which in this
case is a constant. Then, we have, as expected,

O(v(x, y)) = O(v(x(p ,φ), y(p ,φ)))

= (1 − p)O00 + pO11 +
√

p(1 − p)(O01eiφ

+ O10e−iφ)

and

G(x(p ,φ), y(p ,φ)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
Nx

exp
[
−1

2

(
x0 + p(x1 − x0)− μx

σx

)2]

× 1
Ny

exp
[
−1

2

(
y0 + φ(y1 − y0)/(2π)− μy

σy

)2]
, (p ,φ) ∈ [0, 1] × [0, 2π ],

0, otherwise.

Eventually, using dVCP1

FS = 1
2 dpdφ, we can see that√

det gFS(p ,φ) = 1
2 . Calling G(x(p ,φ), y(p ,φ)) = G̃(p ,φ),

the geometric quantum state is

q(p ,φ) = (x1 − x0)(y1 − y0)

2π
× 2 × G̃(p ,φ)

= (x1 − x0)(y1 − y0)

π
G̃(p ,φ).

This can be written as

q(p ,φ) = 2
1
Np

exp
[
−1

2

(
μp − p
σp

)2]

× 1
Nφ

exp
[
−1

2

(
φ − μφ

σφ

)2]
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with (p ,φ) ∈ [0, 1] × [0, 2π ],Np := ∫ 1
0 dpe−[(p−μp )/σp ]2/2,

andNφ := ∫ 2π
0 dφe−[(φ−μφ)/σφ ]2/2. Moreover,μp := (μx −

x0)/(x0 − x1), σp := σx/(x1 − x0), μφ := 2π(μy − y0)/

(y0 − y1), and σφ := σy2π/(y1 − y0).
The probability density q(p ,φ) is positive and one

straightforwardly verifies that it is normalized. Recall in
(p ,φ) coordinates that dV(p ,φ)

FS = dpdφ/2 and so

∫

P(H2
1)

dVFS q(p ,φ)

= 2
1
2

∫ 1

0
dp

1
Np

e−[(p−μp )/σp ]2/2
∫ 2π

0
dφ

e−[(φ−μφ)/σφ ]2/2

Nφ

= Np

Np

Nφ

Nφ

= 1.
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