Title
Synthesis and Crystallographic Characterization of the Tetravalent Actinide-DOTA Complexes [AnIV(κ8-DOTA)(DMSO)] (An = Th, U)

Permalink
https://escholarship.org/uc/item/61d063j1

Journal
Inorganic Chemistry, 58(13)

ISSN
0020-1669

Authors
Kent, Greggory T
Wu, Guang
Hayton, Trevor W

Publication Date
2019-07-01

DOI
10.1021/acs.inorgchem.9b00736

Peer reviewed
We report the synthesis and crystallographic characterization of \([\text{An}^{IV}(\kappa^8\text{-DOTA})(\text{DMSO})]\) (An = Th, U).

Scheme 1. Synthesis of Complexes 1 and 2.

Addition of one equiv of \(\text{H}_4\text{DOTA}\) and 6 equiv of \(\text{NEt}_3\) to a lime-green DMSO solution of \(\text{UCl}_4\) results in a gradual color change to turquoise over the course of 1 h (Scheme 1). Work-up of the reaction mixture, followed by crystallization from DMSO/toluene results in isolation of \([\text{U}^{IV}(\kappa^8\text{-DOTA})(\text{DMSO})]\) (1, An = Th) and \([\text{Th}^{IV}(\kappa^8\text{-DOTA})(\text{DMSO})]\) (2) as green-blue blocks in 47% yield. The rapid complexation of \(\text{An}^{IV}\) by \(\text{H}_4\text{DOTA}\) under anhydrous conditions is a bi-metallic aquo complex: \([\text{Th(O}_2\text{O})_{10}(\kappa^4\text{-H}_2\text{DOTA})_2][\text{NO}_3]_2\), while just two DOTA-containing uranium complexes are known: the \(\text{U}^{IV}\) cluster, \([\text{U}_6(\mu-\text{OH})_6(\text{H}_2\text{O})_6(\text{HDOTA})_6]\), and the 2D uranyl-coordination polymer, \([\text{UO}_2\text{H}_2\text{DOTA}]_2(\text{C}_2\text{O}_4)(\text{H}_2\text{O})_2\). Notably, in all three of these examples, the DOTA ligand does not bind to the metal ion via all eight of its donor atoms. In fact, to our knowledge, there are no structurally characterized actinide complexes where DOTA coordinates in its \(\kappa^8\) binding mode. Critically, the structural characterization of more \(\text{An}^{IV}\) (DOTA) complexes would allow us to evaluate the suitability of DOTA (and its variants) for use as a chelator in targeted alpha therapy.

Herein, we report the synthesis and crystallographic characterization of \([\text{An}^{IV}(\kappa^8\text{-DOTA})(\text{DMSO})]\) (An = U, Th).

Supporting Information Placeholder

ABSTRACT:

The reaction of \(\text{UCl}_4\) or \(\text{ThCl}_4(\text{DME})_2\) with \(1,4,7,10\text{-tetraazacyclododecane-1,4,7,10-tetraacetic acid (H}_4\text{DOTA)\text{,}}\) and 6 equiv of trimethylamine, in DMSO results in the formation of \([\text{An}^{IV}(\kappa^8\text{-DOTA})(\text{DMSO})]\) (1, An = U; 2, An = Th), which can be isolated in moderate yields after work-up. Complexes 1 and 2 are the first structurally characterized actinide DOTA complexes to feature the \(\kappa^8\) binding mode for the DOTA ligand. In addition, we isolated a few crystals of \([\text{U}(\kappa^4\text{-H}_2\text{DOTA})(\text{DMSO})_4][\text{Cl}]_2\) (3). Crystallographic characterization of this material reveals that the \((\text{H}_2\text{DOTA})_2^2-\) ligand in 3 is only coordinated to \(\text{U}^{IV}\) by its four carboxylate arms, generating an overall \(\kappa^4\) binding mode. Similar complexes have been previously proposed as intermediates of \(\text{H}_4\text{DOTA}\) complexation pathway, but this intermediate had not been structurally characterized until now.

H}_4\text{DOTA} (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and its derivatives form strong chelate interactions with the f elements. The resulting complexes have been used for a wide variety of applications, including MRI imaging and nuclear medicine. While lanthanide DOTA chemistry has been studied for decades, the synthesis and characterization of actinide DOTA complexes is not well established. \(\text{H}_4\text{DOTA}\) has previously been explored as a chelator for \(^{225}\text{Ac}\), specifically for the generation of an alpha-particle therapeutic. The resulting complex was characterized by ITLC-GC and its stability was probed in vitro. In addition, the chelation of \(\text{An}^{III}\) by \(\text{H}_4\text{DOTA}\) has been probed by ESI-MS (An = Pu, Am), as well as UV-vis spectroscopy and EXAFS (An = Pu, Am). The binding constants of \(\text{H}_4\text{DOTA}\) with Am and Cm have also been measured, and the \(^1\text{H NMR spectrum of [Th(DOTA)] has been recorded. For example, only one structurally characterized Th(DOTA) complex is known, a bi-metallic aquo complex: [Th}_2(\text{H}_2\text{O})_{10}(\kappa^4\text{-H}_2\text{DOTA})_2][\text{NO}_3]_2, while just two DOTA-containing uranium complexes are known: the U(IV) cluster, [U}_6(\mu-\text{OH})_6(\text{H}_2\text{O})_6(\text{HDOTA})_6], and the 2D uranyl-coordination polymer, [(UO}_2\text{H}_2\text{DOTA}]_2(\text{C}_2\text{O}_4)(\text{H}_2\text{O})_2]. Notably, in all three of these examples, the DOTA ligand does not bind to the metal ion via all eight of its donor atoms. In fact, to our knowledge, there are no structurally characterized actinide complexes where DOTA coordinates in its \(\kappa^8\) binding mode. Critically, the structural characterization of more \(\text{An}^{IV}\) (DOTA) complexes would allow us to evaluate the suitability of DOTA (and its variants) for use as a chelator in targeted alpha therapy.

Herein, we report the synthesis and crystallographic characterization of \([\text{An}^{IV}(\kappa^8\text{-DOTA})(\text{DMSO})]\) (An = U, Th). We also report the crystallographic characterization of \([\text{U}(\kappa^4\text{-H}_2\text{DOTA})(\text{DMSO})_4][\text{Cl}]_2\), which is an intermediate formed along the \(\text{H}_4\text{DOTA}\) complexation pathway.

Scheme 1. Synthesis of Complexes 1 and 2.
notable. In acidic aqueous solutions, by contrast, complexation of Ln$^{3+}$ by H$_2$DOTA can take days to weeks.\cite{22} The successful isolation of 1 and 2 requires that the DMSO and H$_2$DOTA be relatively dry. If the H$_2$DOTA contains occluded water, we have found that the reaction results in formation of a sticky, intractable solid, which is presumably a hydroxide-bridged coordination polymer.

The synthesis of the related U(IV) complex, [U(DO3A)(DMSO)$_2$][Br] (DO3A = [4,7,10-tris-carboxymethyl-1,4,7,10-tetraazaacyclodec-1-yl]-acetic acid) also requires water-free conditions.\cite{24}

Complexes 1 and 2 are air- and water-stable. Complex 1 is soluble in DMSO and DMF, and modestly soluble in H$_2$O, while complex 2 is only sparingly soluble in DMSO, but modestly soluble in H$_2$O. They are both insoluble in CH$_2$Cl$_2$, THF, pyridine, alkanes, and aromatic solvents. Their insolubility in CH$_2$Cl$_2$ is beneficial because it permits the removal of any residual [NEt$_3$H][Cl], should it present in the isolated material.

The room temperature 1H NMR spectrum of 1 in D$_2$O exhibits six paramagnetically shifted proton environments between 38.54 and -55.61 ppm (Figure S1 in the supporting information). The sharp singlets at 21.74 and -55.61 ppm are assigned to the two acetate proton environments. These assignments were made by comparison with the NMR spectral data reported for [Eu(DOTA)(H$_2$O)].\cite{25}

The four remaining peaks are assignable to the four unique proton environments of the cyclen ring. Three of these peaks, at 38.54, 19.32, and 5.76 ppm, are doublets with J_{III} = 15 Hz, while the fourth (0.76 ppm) is a singlet. The presence of six peaks of equal intensity makes it appear that complex 1 is in the slow-exchange regime at this temperature.\cite{6} Inspection of the 1H NMR spectrum of [Zr(DOTA)] suggests that it is also in the slow-exchange regime.\cite{24}

The room temperature 1H NMR spectrum of 2 in D$_2$O exhibits five very broad resonances, ranging from 3.87 ppm to 2.84 ppm, suggestive of a fluxional system. Consistent with this hypothesis, upon heating this sample to 65 °C, the five resonances transform into three broad resonances, at 4.23, 3.77, and 3.33 ppm. These values are in good agreement with those previously reported for [Th(k5-DOTA)(H$_2$O)] generated in situ.\cite{19} Similar behavior was observed for [La(DOTA)(H$_2$O)], and was explained by invoking the inversion of the cyclen ring.\cite{6}

The 13C(1H) NMR spectra of 2 also features evidence of fluxionality. At room temperature, its 13C(1H) NMR spectrum features resonances at 55.22 and 57.09 ppm, which are assignable to two unique cyclen methylene environments (Figure S4 in the supporting information). Upon warming to 45 °C, the two methylene resonances coalesce into a single peak (Figure S5 in the supporting information). Using the two-site exchange approximation, the

Table 1. Selected Metrical Parameters for 1 and 2 (Å).

<table>
<thead>
<tr>
<th>Complex</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>av. An−O</td>
<td>2.30</td>
<td>2.36</td>
</tr>
<tr>
<td>av. An−N</td>
<td>2.72</td>
<td>2.75</td>
</tr>
<tr>
<td>An−O$_{\text{DMSO}}$</td>
<td>2.38(2), 2.39(2)</td>
<td>2.40(2), 2.39(2)</td>
</tr>
<tr>
<td>An−O$_{\text{plane}}$</td>
<td>0.565(7)</td>
<td>0.555(8)</td>
</tr>
<tr>
<td>An−N$_{\text{plane}}$</td>
<td>1.72(1)</td>
<td>1.75(1)</td>
</tr>
<tr>
<td>Twist angle (°)</td>
<td>40(1)</td>
<td>38(1)</td>
</tr>
</tbody>
</table>

The average An−O$_{\text{carboxylate}}$ distances for 1 and 2 are 2.30 Å (range = 2.27(2) to 2.33(2) Å) and 2.36 Å (range = 2.33(2) to 2.38(2) Å), respectively. The average An−N$_{\text{DMSO}}$ distances for 1 and 2 are 2.72 Å (range = 2.67(2) to 2.74(2) Å) and 2.75 Å (range = 2.73(2) to 2.78(2) Å), respectively (Table 1). While no An(k8-DOTA) complexes have been characterized by X-ray crystallography, [An(k8-DOTA)(H$_2$O)]$^+$ (An = Pu, Am) has been characterized by EXAFS.\cite{17}
activation barrier (ΔG^\ddagger_c) for ring inversion was calculated to be 61 kJ/mol.26 For comparison, $\Delta G^\ddagger_c = 61 \text{ kJ/mol}$ and 64 kJ/mol for cyclen ring inversion in [La(DOTA)(H$_2$O)] and [Eu(DOTA)(H$_2$O)], respectively.25, 27

![Scan rate dependent cyclic voltamogram of complex 1 (vs. Fc/Fc'). Measured in DMSO with 0.1 M [NBu$_4$][BPh$_4$] as the supporting electrolyte.](image1)

We also recorded the cyclic voltammogram of complex 1 in DMSO at a variety of scan rates, using either [NBu$_4$][PF$_6$] or [NBu$_4$][BPh$_4$] as supporting electrolyte. The cyclic voltammogram (with [NBu$_4$][BPh$_4$] as supporting electrolyte) features a reversible redox feature with $E_{1/2} = -2.26 \text{ V (vs. Fc/Fc^+)}$ (Figure 2). We have assigned this feature to a U(IV)/U(III) reduction event. Not surprisingly, this value is much decreased from the reported reduction potential of -0.58 V (vs. SHE) for U$^4+$ in solution.28, 29 Highlighting the ability of strongly chelating macrocyclic ligands to stabilize the An$^4+$ state.30 Using [NBu$_4$][PF$_6$] as supporting electrolyte, we observe the presence of a quasi-reversible feature at +0.44 V (vs. Fc/Fc') (Figure S9 in the supporting information). This feature becomes increasingly reversible with increasing scan rates and has been assigned as a U(IV)/U(V) oxidation event.29

![ORTEP diagrams of [U(κ4-H$_2$DOTA)(DMSO)$_4$][Cl]$_2$ (3-5DMSO), with 50% probability ellipsoids. Hydrogen atoms, chloride counterions, and solvent molecules have been omitted for clarity. Selected bond distances (Å): U1–O1 = 2.39(1), U1–O2 = 2.27(1), U1–O3 = 2.36(1), U1–O4 = 2.29(1), av. U–O$_\text{DMSO} = 2.37$.](image2)

In one instance, during an attempt to crystallize 1 we grew a few green-brown blocks. An X-ray crystallographic analysis of these crystals revealed them to be [U(κ4-H$_2$DOTA)(DMSO)$_4$][Cl]$_2$ (3). Complex 3 crystallizes in the orthorhombic P2$_1$2$_1$2 space group as a DMSO solvate, 3-5DMSO, and its solid-state structure is shown in Figure 3. Complex 3 features a square antiprismatic geometry with a twist angle of 44.5(3)$^\circ$ between the DMSO and DOTA O$_4$ planes. The [H$_2$DOTA]$^2^-$ ligand is coordinated in a κ4 fashion via all four carboxylate arms. Four DMSO ligands are also coordinated to the uranium center. Two outer sphere Cl$^-$ ions, required to maintain charge balance, are also found in the structure. The average U-O$_\text{carboxylate}$ distance is 2.33 Å (range: 2.27(1) - 2.39(1) Å) and the average U-O$_\text{DMSO}$ distance is 2.37 Å (range: 2.32(1) to 2.42(1) Å). While the two labile DOTA protons could not be located in the difference Fourier map, in the calculated structures of the related complexes, [M(κ4-H$_2$DOTA)(H$_2$O)$_5$]$^+$ (M = Nd, Pu, Am), the four carboxylate arms are deprotonated and two nitrogen atoms are protonated.17 Significantly, the κ4 binding mode observed for the DOTA fragment in 3 has been proposed as an intermediate binding mode along the DOTA complexation pathway.31-34 This binding mode has been detected by a variety of spectroscopies,25 but the observation of 3 represents the first time that it has been characterized by X-ray crystallography. That said, it should be noted that this binding mode has been observed for a handful of DOTA derivatives, including 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetakis[methylene(2-carboxy-ethyl)phosphinic acid] (DOTPI) and 1,4,7,10-tetraakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (DOTAM).35, 36

In summary, we have synthesized and structurally characterized the first AnIV(DOTA) complexes that feature a κ8 binding mode of the DOTA ligand. Moreover, isolation and characterization of 3 represents the first crystallographic confirmation of the previously proposed κ4 intermediate formed during DOTA complexation. The lack of any other crystallographically-characterized κ8-bound actinide DOTA complexes is surprising, given the long element history of this ligand. In this regard, we attribute our success to use of non-aqueous reaction and crystallization conditions, which results in fast metal complexation and the inhibition of hydrolysis. Ultimately, we believe this work will accelerate the development of potent An$^{4+}$ chelators, which will be required for a variety of applications, including targeted alpha therapy.14, 37, 38

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website.

Crystallographic details for 1–3 (CIF)

Experimental procedures and spectral data for complexes 1–3 (PDF)

AUTHOR INFORMATION

Corresponding Author
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, under Contract DE-SC-0001861. We also thank Prof. Lior Sepunaru for his assistance in the collection and interpretation of the electrochemical data.

REFERENCES

7. Spirlet, M. R.; Rebizant, J.; Desreux, J. F.; Loncin, M. F.; Kuan, K.-T.; Spiller, M., Synthesis and characterization of the macrocyclic ligand DOTA.

18. Thakur, P.; Conca, J. L.; Choppin, G. R., Complexation studies of Cm(III), Am(III), and Eu(III) with linear and cyclic carboxylates and polyniminocarboxylates. J. Coord. Chem. 2011, 64, 3214-3236.

[AnIV(κ8-DOTA)(DMSO)] (An = Th, U) are the first structurally characterized actinide DOTA complexes to feature the κ⁸ binding mode for the DOTA ligand.