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ABSTRACT 

The eikonal theory of wave propagation is developed by means of a 

Lorentz-covariant variational principle, involving functions defined on the 

natural eight-dimensional phase space of rays. The wave field is a 

four-vector representing the electromagnetic potential, while the medium is 

represented by an anisotropic, dispersive nonuniform dielectric tensor 

DPU(k,x). The eikonal expansion yields, to lowest order, the Hamiltonian ray 

equations, which define the Lagrangian manifold k(x), and the wave-action 

conservation law, which determines the wave-amplitude transport along the 

rays. The first-order contribution to the variational principle yields a 

concise expression for the transport of the polarization phase. The symmetry 

between k-space and x-space allows for a simple implementation of the Maslov 

transform, which avoids the difficulties of caustic singularities. 

*Supported by U.S. DOE Contract n DE-AC03-76SF00098. 
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Wave propagation in various media is often well represented by the eikonal 

theory. also known as ray optics. geometrical optics. and WKB [1]. In this 

paper. we present a variational approach. leading to some new results. as well 

as concise expressions for old results. While our immediate motivation is 

electromagnetic wave propagation in magnetized plasma [2]. we expect that our 

methods are applicable to other media. such as elastic waves [3]. 

OUr emphasis here is on the vector character of the wave field [4], which 

propagates through an anisotropic medium. We also emphasize the phase-space 

concept. as a way of avoiding the singularities of caustics. 

In addition. it is convenient to utilize a covariant formulation [5]. 

treating space and time on an equal footing; this is the key to conciseness. 

We represent the electromagnetic wave field by the four-potential A (x). with 
lJ 

A = (A.-~). and x = (~.t). (We set c = 1). 
lJ 

The wave equation for linear dissipationless propagation can be expressed 

as an integral equation of the form 

(1) 

Here olJu(x'.x") represents the (in general) anisotropic dispersion tensor of 

the medium. as a two-point kernel. We consider it as given; methods for its 

derivation are discussed in Ref. [6]. The variational equation below requires 

that it be symmetric: UlJ lJU o (x',x") = 0 (x",x'); asymmetry represents 

dissipation, which must be treated by other methods. Nonlinearity can also be 

included, by allowing the medium to respond "ponderomotively" to the wave [6]. 
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We introduce the quadratic action functional: 

(2) 

The requirement that S be stationary with respect to arbitrary variations of 

the four-potential field is equivalent to Eq. (1). It is advantageous to 

introduce the phase-space concept as early as possible. We define the 

dispersion tensor as a function on phase space (k,x): 

(3) 

It is thus the Fourier transform of D~v(x"x") with respect to the two-point 

separation s=x'-x··. The wave four vector k = q~,-c.», together with x = (~, t), 

coordinatizes the eight-dimensional phase space (k,x) of the rays. 

Analogously, we introduce the bilinear Wigner tensor: 

2 A (k,x) = 
~v· 

Id·s A (x+s/2)A (x-s/2)exp(-ik·s), 
~ v 

which likewise lives. on the phase space. In terms of these, ·the action 

functional reads 

where 

SeA) = % II D~v(k,x} A (k,x), 
v~ 

(4) 

(5) 

We see that k-space and x-space enter' (5) on an equal footing. At each 

point (k,x) in this space, we represent the tensor D~v in terms of its local 

(orthonormal) eigenvectors e and (real) eigenvalues 0 
~ ~ 
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lJ V* = t D (k,x)e (k,x)e (k,x), 
~ ~ ~ ~ 

(6) 

where 

and 

(We assume that the eigenvalues are non-degenerate [7).) Substituting (6) 

into (5), we obtain 

SeA) ~ t II 
:z 

(7) = D (k,x)A (k,x). 
~ 

Q; ~. 

where 

2 v* 2 lJ (8) A (k,x) = e (k,x)A (k,x)e (k,x) 
~ ~ VlJ Q; 

is the projection of the Wigner tensor on the local polarization e (k,x), and 
~ 

D (k,x) is the scalar dispersion function. 
~ 

We now assume that the wave field A (x) can be expressed in eikonal form: 
lJ 

A (x) =0 a (x) exp ie(x) + c.c., 
lJ lJ 

(9) 

where the phase e(x) is real and has slowly varying first-derivative 

k (x) = ae(x)/axlJ , while the amplitude a (x) is complex and is slowly varying. 
lJ lJ 
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When we substitute (9) into (4), we obtain, to lowest order in the eikonal 

parameter, 

2 A (k,x) 
11" 

4 4 * 4 * = (211') [IS (k-3e/3x)a (x)a (x) + IS (k+3e/3x)a (x)a (x»), 
11 " l' " 

(10) 

where we have discarded rapidly oscillating terms - exp2iS(x), which vanish 

upon x-integration in (5). 

substituting (10) into (8), and performing the k-integration of (7), we 

obtain the action functional SeA) = Id4x L(x) in terms of a Lagrangian 

density: 

where 

2 
L(x) = I D (k=3S/3x, x)la I (x), 

o. 0& 
(11) 

(12) 

is the scalar projection of the amplitude on the polarization direction e . 
0& 

The variation of the action S is now taken with respect to the amplitude 

a (x) and the phase Sex). The former variation yields 
\.I 

D (k=3S/3x, x)a (x) = 0, 
0& 0& 

for each 0&. For a non-trivial solution,. we require D = 0 for Qlli!. 
0& 

(13) 

polarization, denoted I, and allow a = 0 for the other polarizations 0& + I. 
0& 
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Thus we obtain the eikonal equation 

with the amplitude expressed as 

The polarization 

a (x) 
l' 

I 
e (x) = 

11 

I e (k=ae/ax, x) 
11 

(14) 

(15) 

(16) 

can absorb the complex phase of the amplitude vector field a (x), allowing the 
11 

scalar amplitude ~(x) to be real and positive. 

The eikonal equation (14) is solved by Hamilton's method. In eight-

dimensional phase space, the ray equations are 

dxl1 = 
dCJ 

dk" = aDI ~ +-­
dCJ 

(17) 

These Hamiltonian equations yield the family of ray orbits [k(CJ) , x(CJ)]. With 

appropriate initial conditions, the rays generate a four-dimensional 

"Lagrangian submanifold" k(x) [8]. The phase e(x). is then obtained by 

integrating k(CJ) along a ray x(CJ). 

On varying S with respect to the phase e(x), we obtain the conservation 

law 

(18) 
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for the wave-action four-flux JP(x) [9], defined as 

= - aL/ak 
P 

The temporal component of JP(x) is the familiar wave-action density: 

J(~; t) 

while the spatial part of JP(x) is the wave-action flux density (aw/a~)J. 

Thus (18) reads 

aJ(~;t)/at = - V • (J aw/a~); 

(19) 

this conservation low reflects the invariance of the action functional under a 

uniform phase shift e(x) ~ e(x) + c. 

On substituting expression (19) for JP(x) into the conservation law (18), 

.we obtain the amplitude transport equation: 

d 2 
Qa ln a1 = + (20) 

ak ak 
P v 

The first term on the right represents the medium nonuniformity, while the 

second represents the divergence (or convergence) of a. ray bundle. 

The latter quantity is determined, in turn, by its transport relation: 

d a2e a20 a20 a2e a20 a2e 
= I + I + I 

QCi 
axPaxv axPaxv axPak a:?axv axvak a:?axP 

p p 

- 7 -

(21) 



obtained by differentiating (14) twice with respect to x. This nonlinear 

equation for the ray divergence leads in general to a singularity in a finite 

distance, Le., to a caustic. To avoid that singularity, we may use the 

Kaslov transform [8]. i\ 

Inserting (15) into (9), we have A (x) = el(x) aI(x) exp is(x) + C.c., 
lA lA 

with Sex) determined by (17), aI(x) determined by (20), and elA(x) determined 

by (16) up to a complex phase factor. That is, the replacement elA(k,x) ~ 
~ 

ell(k,x)exp i1jl(x) leaves (6) invariant, so that the polarization phase is not 
a. 

as yet determined. 

For the polarization phase, it is necessary to expand the action 

functional to first order in the eikonal parameter. After some algebra, and 

using the zero-order equations, we find the first order Lagrangian to be 

L' (x) 

where {,} represents the canonical Poisson bracket: 

{f,g} = ll.. iL - ll.. h 
axlA a~ ak"t axlA 

On taking the variation of the action functional with respect to the 

amplitude, we now obtain the additional equation L' = 0, which yields the 

desired polarization phase transport: 

* del lL OlAv{ I e • --- = - n e , 
I dC1 v 

Note that this transport relation lives in phase space; i.e., it is not 

necessary to project onto x-space. On the other hand. the ray divergence 

equation (21) definitely refers to x-space. 
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We now proceed to the elimination of caustic singularities. Let us again 

substitute the Wigner tensor (10) into (8), obtaining the scalar field: 

2 4 2 4 4 AI(k,x) = (2~) aI (x)[6 (k - ae/ax) + 6 (k + ae/ax)] (24) 

Integrating over an element of phase-space volume [see (7)], we have 

442 4 
d x d k AI(k,x)/(2~) (25) 

We see that ~(k,X) is the wave density in phase space, while a~(x) is the 

density in x-space. From (24), we see that ~ is supported on the Lagrangian 

1 
manifold k = k(x) = ae(x)/ax, Le., kl = ae(x)/ax , and so on. At a 

caustic, k(x) becomes double-valued, so that the x-representation of the 

eikonal breaks down. 

The Maslov procedure [8] is a simple way to avoid the caustic 

singUlarity. One Fourier transforms the field A (x) from (x 1 2 3 x
4

) , X , X , 
l.I 

(k 2 3 x4
) space, where the 1 is chosen space, to 

l' 
x , X , (x ,k ) pair to 

1 

represent the Singular direction • 2 a l.Ia " 1n a el x x. One can now make the eikonal 

assumption (9) in the ~ space, and the whole procedure outlined above 

carries through in the same way. Space does not premit a fuller discussion 

here. The Maslov transform is a special case of a more general approach, 

recently developed by Littlejohn [lO~12·]. His method involves a continuous 

transformation of coordinates in phase space, and is based on the wave-packet 

approximation. 

The variational method discussed here allows for a treatment of wave 

angular momentum [13] transport, and its consequences. This work is in 
• 

progress. Applications of the present formalism are under way. 
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