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Abstract

Much research in cognitive neuroscience supports prediction as a canonical computation of 

cognition across domains. Is such predictive coding implemented by feedback from higher-order 

domain-general circuits, or is it locally implemented in domain-specific circuits? What 

information sources are used to generate these predictions? This study addresses these two 

questions in the context of language processing. We present fMRI evidence from a naturalistic 

comprehension paradigm (1) that predictive coding in the brain’s response to language is domain-

specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and 

to hierarchical structure. Using a recently developed continuous-time deconvolutional regression 
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technique that supports data-driven hemodynamic response function discovery from continuous 

BOLD signal fluctuations in response to naturalistic stimuli, we found effects of prediction 

measures in the language network but not in the domain-general multiple-demand network, which 

supports executive control processes and has been previously implicated in language 

comprehension. Moreover, within the language network, surface-level and structural prediction 

effects were separable. The predictability effects in the language network were substantial, with 

the model capturing over 37% of explainable variance on held-out data. These findings indicate 

that human sentence processing mechanisms generate predictions about upcoming words using 

cognitive processes that are sensitive to hierarchical structure and specialized for language 

processing, rather than via feedback from high-level executive control mechanisms.

Keywords

language; predictive coding; multiple demand network; naturalistic; fMRI; sentence processing; 
syntactic structure; surprisal

Introduction

The human brain is an efficient prediction engine (James, 1890). Facilitation in processing 

expected information, as well as processing costs of violated expectations, have been 

reported in many domains. In the domain of language comprehension, various results show 

that listeners and readers actively predict upcoming words and structures (e.g., Kutas & 

Hillyard, 1984; MacDonald et al., 1994; Tanenhaus et al., 1995; Rayner et al., 2004; Frank 

& Bod, 2011; Smith & Levy, 2011, 2013; Staub & Benetar, 2013; Frank et al., 2015; 

Kuperberg & Jaeger, 2016). However, the cognitive and neural mechanisms that support 

predictive language processing are not well understood. Under one widely held view, 

predictive language processing is implemented by domain-general executive (inhibitory 

control and working memory) resources. This perspective receives support from numerous 

studies showing that prediction effects during language comprehension are absent or less 

pronounced for populations with reduced executive resources, such as children, older 

individuals, and non-native speakers (e.g., Federmeier et al., 2002; Federmeier & Kutas, 

2005; Dagerman, et al., 2006; Federmeier et al., 2010; Mani & Huettig, 2012; Wlotko & 

Federmeier, 2012; Martin et al., 2013; Kaan, 2014; Mitsugi & Macwhinney, 2016; Gambi et 

al., 2018; Payne & Federmeier, 2018; cf. Dave et al., 2018; Havron et al., 2019). 

Furthermore, several neuroimaging studies have reported sensitivity to linguistic 

manipulations in what appear to be cortical regions thought to support domain-general 

executive function (e.g., Kaan & Swaab; 2002; Kuperberg et al., 2003; Novick et al., 2005; 

Rodd et al., 2005; Novais-Santos, 2007; January et al., 2009; Peelle et al., 2010; Rogalsky & 

Hickok, 2011; Nieuwland et al., 2012; Wild et al., 2012; McMillan et al., 2012, 2013), 

suggesting that such regions may also be implicated in language processing, including 

perhaps prediction. These results have led some to conclude that predictive coding for 

language is implemented by domain-general executive control resources (Linck et al., 2014; 

Huettig & Mani, 2016; Pickering & Gambi, 2018; Strijkers et al., 2019).
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However, this interpretation is subject to several objections. First, most prior work on 

linguistic prediction has relied on behavioral and electrophysiological measures which are 

well suited for identifying global response patterns but cannot spatially localize the source of 

these effects in the brain to a certain functional region or network (e.g., Mather et al., 2013). 

Second, the (alleged) between-population differences in prediction noted above are 

consistent with accounts that do not directly invoke executive resources, including (1) 

possible qualitative differences between populations in the kind of information that is being 

predicted and the consequent need for population-specific norms to detect prediction effects, 

or (2) differences in how often predictions are correct, which may modulate the likelihood of 

engaging in predictive behavior (see Ryskin et al., this issue, for discussion). And third, past 

studies that did employ neuroimaging tools with high spatial resolution and consequently 

reported linguistic prediction responses – typically neural response increases for violations 

of linguistic structure – localized to executive control regions (e.g., Newman et al., 2001; 

Kuperberg et al., 2003; Nieuwland et al., 2012; Schuster et al., 2016) may have been 

influenced by task artifacts; indeed, some have argued that artificially constructed laboratory 

stimuli and tasks increase general cognitive load in comparison to naturalistic language 

comprehension (e.g., Blanco-Elorietta & Pylkkänen, 2017; Blank & Fedorenko, 2017; 

Campbell & Tyler, 2018; Wehbe et al., submitted; Diachek et al., 2019). To ensure that 

findings from the laboratory paradigms truly reflect the cognitive phenomenon of interest, it 

is important to validate them in more naturalistic experimental settings that better 

approximate the typical conditions of human sentence comprehension (Hasson & Honey, 

2012; Hasson et al., 2018).

Despite the growing number of fMRI studies of naturalistic language comprehension (e.g., 

Speer et al., 2007; Yarkoni et al., 2008; Speer et al., 2009; Whitney et al., 2009; Wehbe et 

al., 2014; Hale et al., 2015; Henderson et al., 2015, 2016; Huth et al., 2016; Sood & Sereno, 

2016; Brennan, 2016; Desai et al., 2016; de Heer et al., 2017, Dehghani et al., 2017; 

Bhattasali et al., 2018), only a handful have directly investigated effects of word 

predictability (Willems et al., 2015; Brennan et al., 2016; Henderson et al., 2016; Lopopolo 

et al., 2017; see Table 1 for summary), a well-established predictor of behavioral measures 

in naturalistic language comprehension (Demberg & Keller, 2008; Frank & Bod, 2011; 

Smith & Levy, 2013; van Schijndel & Schuler, 2015). These previous naturalistic studies of 

linguistic prediction effects in the brain – using estimates of prediction effort such as 

surprisal (Hale, 2001; Levy, 2008), the negative log probability of a word given its context, 

or entropy (Hale, 2006), an information-theoretic measure of the degree of constraint placed 

by the context on upcoming words – have yielded mixed results on the existence, type, and 

functional location of such effects. For example, of the lexicalized and unlexicalized (part-

of-speech) bigram and trigram models of word surprisal explored in Brennan et al. (2016), 

only part-of-speech bigrams positively modulated neural responses in most regions of the 

functionally localized language network. Lexicalized bi- and trigrams and part-of-speech 

trigrams yielded generally null or negative results (16 out of 18 comparisons). By contrast, 

Willems et al. (2015) found lexicalized trigram effects in regions typically associated with 

language processing (e.g., anterior and posterior temporal lobe). In addition, Willems et al. 

(2015) and Lopopolo et al. (2017) found prediction effects in regions that are unlikely to be 

specialized for language processing, including (aggregating across both studies) the brain 
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stem, amygdala, putamen, and hippocampus, as well as in superior frontal areas more 

typically associated with domain-general executive functions like self-awareness and 

coordination of the sensory system (Goldberg et al., 2006). It is therefore not yet clear 

whether predictive coding for language relies on domain-general mechanisms in addition to, 

or instead of, language-specific ones, especially in naturalistic contexts.

In addition to questions about the functional localization of linguistic prediction, substantial 

prior work has also investigated the structure of the predictive model, seeking to shed light 

on the nature of linguistic representations in the mind. If effects from theoretical constructs 

like hierarchical natural language syntax can be detected in online processing measures, this 

would constitute evidence that such constructs are present in human mental representations 

and used to comprehend language. This position is widely supported by behavioral and 

electrophysiological experiments using constructed stimuli (see Lewis & Phillips, 2015 for 

review) and by some behavioral (Roark et al., 2009; Fossum & Levy, 2012; van Schijndel & 

Schuler, 2015; Shain et al., 2016), electrophysiological (Brennan & Hale, 2019) and 

neuroimaging (Brennan et al., 2016) experiments using naturalistic stimuli. However, other 

naturalistic studies reported null or negative syntactic effects (Frank & Bod, 2011; van 

Schijndel & Schuler, 2013; Shain & Schuler, 2018 contra Shain et al., 2016), or mixed 

syntactic results within the same set of experiments (Demberg & Keller, 2008; Henderson et 

al, 2016), leading some to argue that the representations used for language comprehension 

(in the absence of task artifacts from constructed stimuli) contain little hierarchical structure 

(Frank & Christiansen, 2018). Furthermore, the few naturalistic fMRI studies that have 

explored structural prediction effects have yielded inconsistent localization of these effects. 

For example, Brennan et al. (2016) found context-free grammar surprisal effects throughout 

the functional language network except in inferior frontal gyrus, whereas inferior frontal 

gyrus is the only region in which Henderson et al. (2016) found such effects.

The current study used fMRI to determine whether a signature of predictive coding during 

language comprehension – increased response to less predictable words, i.e. surprisal (e.g., 

Smith & Levy, 2013) – is primarily evident during naturalistic sentence processing in (1) the 

domain-specific, fronto-temporal language (LANG) network (Fedorenko et al., 2011), or (2) 

the domain-general, fronto-parietal multiple demand (MD) network (Duncan, 2010). The 

MD network supports executive functions (e.g., inhibitory control, attentional selection, 

conflict resolution, maintenance and manipulation of task sets) across both linguistic and 

non-linguistic tasks (e.g., Duncan & Owen, 2000; Fedorenko et al., 2013; Hughdahl et al., 

2015; for discussion, see: Fedorenko, 2014) and has been shown to be sensitive to surprising 

events (Corbetta & Shulman, 2002).

On the one hand, given that the language network plausibly stores linguistic knowledge, 

including the statistics of language input, it might directly carry out predictive processing. 

Such a result would align with a growing body of cognitive neuroscience research 

supporting prediction as a “canonical computation” (Keller & Mrsic-Flogel, 2018) locally 

implemented in domain-specific circuits (Montague et al, 1996; Rao & Ballard, 1999; Alink 

et al., 2010; Bubic et al., 2010; Bastos et al., 2012; Wacogne et al., 2011, 2012; Singer et al., 

2018). This hypothesis is also supported by prior findings of linguistic prediction effects in 
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portions of the language network (Bonhage et al., 2015; Willems et al., 2015; Brennan et al., 

2016; Henderson et al., 2016; Lopopolo et al., 2017; Matchin et al., 2018).

On the other hand, given that the MD network has been argued to encode predictive signals 

across domains and relay them as feedback to other regions (Strange et al., 2005; Cristescu 

et al., 2006; Egner et al., 2008; Wacogne et al., 2011; Chao et al., 2018), it might be 

recruited to predict upcoming words and structures in language. There is an extensive 

literature on neural signatures of prediction, such as activity associated with prediction 

errors, in brain regions that appear to belong to the MD network, including bilateral areas in 

the dorsolateral pre-frontal cortex, the inferior frontal gyrus, the anterior cingulate cortex, 

and the parietal lobe (for a review, see Dehaene et al., 2015; for a meta-analysis, see 

D’Astolfo & Rief, 2017). These areas are sensitive to rule violations in non-linguistic 

sequences, including hierarchically structured ones, in different sensory domains (e.g., 

auditory and visual; Bekinschtein et al., 2009; Ahlheim et al., 2014; Uhrug et al., 2014; 

Wang et al., 2015; Wang et al., 2017; Chao et al., 2018). In addition, they are recruited 

during learning of structured sequences in the motor domain (Bischoff-Grethe et al., 2004; 

Eickhoff et al., 2010). Beyond representing deterministic rules, such regions are also 

engaged in probabilistic predictions (Strange et al., 2005; Meyniel & Dehaene, 2017). Such 

predictions can be based on either inferring a generative model underlying the input 

sequence (Gläscher et al., 2010; Schapiro et al., 2013) or on reward contingencies (Koch et 

al., 2008; Zarr & Brown, 2016; Alexander & Brown, 2018; for a review, see: Rushworth & 

Behrens, 2008).

There are two main hypotheses in the contemporary literature that link predictive processing 

in the MD network with increased activity to more surprising words. First, the MD network 

might provide additional resources (“cognitive juice”) to various cognitive processes, 

including language. Under this scenario, MD regions might “come to the rescue” of the 

language network when processing demands are increased, which would be the case when 

surprisal is higher. Indeed, prior work suggests that the MD network could be recruited when 

language processing becomes effortful, e.g., under acoustic (Adank, 2012; Hervais-Adelman 

et al., 2012; Wild et al., 2012; Scott & McGettigan, 2013; Vaden et al., 2013) or syntactic 

(Kuperberg et al., 2003; Nieuwland et al., 2013) noise; in healthy aging (for reviews, see 

Wingfield & Grossman, 2006; Shafto & Tyler, 2014); during recovery from aphasia 

(Brownsett et al., 2014; Geranmayeh et al., 2014, 2016, 2017; Meier et al., 2016; Sims et al., 

2016; Hartwigsen, 2018); and in L2 processing and multi-lingual control (e.g., Wartenburger 

et al., 2003; Rüschemeyer et al., 2005; Yokoyama et al., 2006; de Bruin et al., 2014; Grant, 

Fang, & Li, 2015; Kim et al., 2016; for reviews, see Perani & Abutalebi, 2005; Sakai, 2005; 

Abutalebi, 2008; Kotz, 2009; Hervais-Adelman, Moser-Mercer, Golestani, 2011; Pliatsikas 

& Luk, 2016). Second, the MD network, especially in the prefrontal cortex, may construct 

abstract representations of context, which serve as working memory for guiding behavior 

(Alexander & Brown, 2018). The main goal of such representations is to minimize 

prediction errors in other brain regions, so these representations are communicated in a top-

down manner to the language network or other domain-specific networks (e.g., sensory 

areas). Such high-level, abstract predictive signals are potentially useful because they could 

perhaps “explain away” some more local prediction errors computed in the language 

network (e.g., in a sentence like “the cat that the dog chased on the balcony escaped”, the 
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verb “escaped” might be unexpected based on the local context of the previous few words, 

but its occurrence could be explained away by a more global and abstract representation that 

looks farther into the past and predicts a verb for “the cat” in the main clause). In essence, 

then, signals from the MD network could bias representations in the language network in 

favor of the features that are most relevant in a given context (for a similar reasoning for 

sensory cortices, see Miller & Cohen, 2001; Sreenivasan et al., 2014; D’Esposito & Postle, 

2015). However, these higher-level predictions are still sometimes incorrect, and when errors 

propagate back to the MD network, its regions would be triggered to adjust their predictive 

model in order to minimize future errors. This “model revision” process may register as 

increased neural processing (Chao et al., 2018).

Prior fMRI studies using hand-constructed sentences to probe effects of linguistic 

expectation have not yielded a clear answer as to the mechanisms – language-specific vs. 

domain-general – that support linguistic prediction. Numerous such studies have observed 

responses in areas of the language network to manipulations of word predictability 

(Kuperberg et al., 2000; Baumgaertner et al., 2002; Kiehl et al., 2002; Friederici et al., 2003; 

Gold et al., 2006; Obleser et al., 2007; Dien et al., 2008; Obleser et al., 2009; Bonhage et al., 

2015; Schuster et al., 2016; Hartwigsen et al., 2017; Matchin et al., 2018; Schuster et al., 

2019). However, many studies have also reported linguistic prediction effects in frontal, 

parietal, and cingulate cortical regions typically associated with the MD network (Kuperberg 

et al., 2000; Baumgaertner et al., 2002; Gold et al., 2006; Bonhage et al., 2015; Hartwigsen 

et al., 2017), as well as in other parts of the brain like the fusiform gyrus (Kuperberg et al., 

2000; Gold et al., 2006) and the cerebellum (Lesage et al., 2017). Although it is certainly 

possible that predictive coding for language is carried out by both the LANG and the MD 

networks, with additional contributions from other brain areas, it is important to ensure that 

the foregoing results are not due to task artifacts induced by the use of artificially 

constructed stimuli (see Discussion), through validation of these findings in more 

naturalistic comprehension conditions (Hasson et al., 2018).

To distinguish the hypotheses above in a naturalistic comprehension paradigm, we searched 

for neural responses in LANG vs. MD regions to the contextual predictability of words as 

estimated by two model implementations of surprisal: a surface-level 5-gram model and a 

hierarchical probabilistic context-free grammar (PCFG) model. N-gram surprisal estimates 

are sensitive to word co-occurrence patterns but are limited in their ability to model 

hierarchical natural language syntax, since they contain no explicit representation of 

grammatical categories or syntactic composition and have limited memory for preceding 

words in the sentence (in our case, up to four preceding words). PCFG surprisal estimates, 

by contrast, are based on structured syntactic representations of the unfolding sentence but 

do not directly encode surface-level word co-occurrence patterns. Correlations between each 

of these measures and human neural responses would shed light on the relative importance 

assigned to these two information sources (word co-occurrences and syntactic structures) in 

computing predictions about upcoming words. Although surprisal is not the only extant 

measure of linguistic prediction (others include PCFG entropy, Roark et al., 2009; entropy 

reduction, Hale, 2006; and successor surprisal, Kliegl et al., 2006), surprisal has received 

extensive consideration in the experimental literature (e.g., Demberg and Keller, 2008; Frank 

& Bod, 2011; Fossum & Levy, 2012; Frank et al, 2015; van Schijndel and Schuler, 2015; 
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Brennan et al., 2016; Henderson et al., 2016; Brennan & Hale, 2019; Shain, 2019). We did 

not consider these related measures in order to avoid excessive statistical comparisons.

Note that by estimating prediction effects using surprisal, we are implicitly assuming a 

notion of linguistic prediction as a distributed pre-activation process, following e.g. 

Kuperberg & Jaeger (2016), rather than as an all-or-nothing commitment to a specific 

upcoming word. Thus, we are investigating the degree to which the statistics of the local 

lexical (n-gram) and structural (PCFG) linguistic context modulate the sentence processing 

response, and where in the brain this modulation occurs. We leave aside questions about the 

underlying mechanisms by which these effects arise: e.g. the extent to which they are 

“active” or “passive”, or the extent to which integrative structure-building operations (e.g. 

composing words into syntactic constituents, constructing dependencies, etc.) underlie the 

observed facilitation effects (Altmann, 1998; Hale, 2014). See Discussion for elaboration on 

this point.

To avoid the problem of reverse inference from anatomy to function (Poldrack 2006, 2011; 

Figure 1), we functionally defined the LANG and MD networks in each individual 

participant using an independent “localizer” task (Saxe et al., 2006; Fedorenko et al., 2010), 

and then examined the response of those functional regions to each estimate of surprisal. 

Our results show significant independent effects of 5-gram and PCFG surprisal in LANG, 

but no such effects in MD, as well as significant differences in surprisal effect sizes between 

the two networks. This finding supports the hypothesis that predictive coding for language is 

primarily carried out by language-specialized rather than domain-general cortical circuits 

and exploits both surface-level and structural cues.

Materials and Methods

General Approach

Several features set the current study apart from prior cognitive neuroscience investigations 

of linguistic prediction in naturalistic stimuli.

First, we used naturalistic language stimuli rather than controlled stimuli constructed for a 

particular experimental goal. Naturalistic stimuli improve ecological validity compared to 

isolated constructed stimuli, which may introduce task artifacts that do not generalize to 

everyday cognition (Demberg & Keller, 2008; Hasson & Honey, 2012; Richlan et al., 2013; 

Schuster et al., 2016; Campbell & Tyler, 2018), and prior work indicates that naturalistic 

stimuli yield more reliable BOLD signals than artificial tasks (Hasson et al., 2010). 

Minimizing such artifacts is crucial in studies of the MD network, which is highly sensitive 

to task variables (Miller & Cohen, 2001; Sreenivasan et al., 2014; D’Esposito & Postle, 

2015; Diachek et al., 2019).

Second, we used participant-specific functional localization to identify regions of interest 

constituting the LANG and MD networks (Fedorenko et al., 2010). This approach is crucial 

because many functional regions do not exhibit a consistent mapping onto macro-anatomical 

landmarks (Frost & Goebel, 2012), especially in the frontal (Amunts et al., 1999; Tomaiuolo 

et al., 1999), temporal (Jones and Powell, 1970; Gloor, 1997; Wise et al., 2001) and parietal 
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(Caspers et al., 2006; Caspers et al., 2008; Scheperjans et al., 2008) lobes, which house the 

language and MD networks. Due to this inconsistent functional-to-anatomical mapping, a 

given stereotactic coordinate might belong to the language network in some participants but 

to the MD network in others, as is indeed the case in our sample (Figure 1) (see also 

Fedorenko et al., 2012a; Blank et al., 2017; Fedorenko & Blank, submitted). Such inter-

individual variability severely compromises the validity of both anatomical localization 

(Juch et al., 2005; Poldrack, 2006; Fischl et al., 2007; Frost and Goebel, 2012; Tahmasebi et 

al., 2012) and group-based functional localization (Saxe et al., 2006; Fedorenko and 

Kanwisher, 2009): these approaches risk both decreased sensitivity (i.e. failing to identify a 

functional region due to insufficient spatial alignment across participants) and decreased 

functional resolution (i.e. mistaking two functionally distinct regions for a single region due 

to apparent spatial overlap across the sample). In contrast, participant-specific functional 

localization allows us to pool data from a given functional region across participants even in 

the absence of perfect anatomical alignment and is therefore better suited for the kind of 

questions we study here (Nieto-Castañón & Fedorenko, 2012). Both networks we probe here 

have been extensively functionally characterized in prior work, so responses to linguistic 

surprisal therein can be taken to index the engagement of linguistic processing mechanisms 

vs. domain-general executive mechanisms (e.g., Mather et al., 2013).

Third, we analyzed the BOLD times-series using a recently developed statistical framework 

– continuous-time deconvolutional regression (CDR; Shain & Schuler, 2018, 2019) – that is 

designed to overcome problems in hemodynamic response modeling that are presented by 

naturalistic experiments. The variable spacing of words in naturalistic language prevents 

direct application of discrete-time, data-driven techniques for hemodynamic response 

function (HRF) discovery, such as finite impulse response modeling (FIR) or vector 

autoregression. Because CDR is a parametric continuous-time deconvolutional method, it 

can infer the hemodynamic response directly from naturalistic time series, without 

distortionary preprocessing steps such as predictor interpolation (cf. Huth et al., 2016). Thus, 

unlike prior naturalistic fMRI studies of prediction effects in language processing (Table 1), 

we do not assume the shape of the HRF.

Fourth, unlike studies in Table 1, we evaluated hypotheses using non-parametric statistical 

tests of model fit to held-out (out-of-sample) data, an approach which builds external 

validity directly into the statistical test and should thereby improve replicability (e.g., 

Demšar, 2006).

Finally, to our knowledge, this is the largest fMRI investigation to date (78 subjects) of 

prediction effects in naturalistic language comprehension.

Experimental Design

Participants

Seventy-eight native English speakers (30 males), aged 18–60 (M±SD = 25.8±9, Med±SIQR 
= 23±3), from MIT and the surrounding Boston community participated for payment. Each 

participant completed a passive story comprehension task (the critical experiment) and a 

functional localizer task designed to identify the language and MD networks.
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Sixty-nine participants (88%) were right-handed, as determined by either the Edinburgh 

handedness inventory (n=66) (Oldfield, 1971) or self-report (n=11) (handedness data were 

not collected for one participant). Eight participants were left-handed, but seven of these 

showed typical left-lateralized language activations, as determined by examining their 

activation patterns for the language localizer task (see below); the remaining participant had 

a right-lateralized language network. We chose to include the latter participant’s data in the 

analyses, to err on the conservative side, and to be able to generalize the results to the 

population at large (see Willems et al., 2014, for discussion).

All participants gave informed consent in accordance with the requirements of MIT’s 

Committee on the Use of Humans as Experimental Subjects (COUHES).

Stimuli and procedure

The localizer task and critical (story comprehension) experiment were run either in the same 

scanning session (67 participants) or in two separate sessions (11 participants, who have 

performed the localizer task while participating in other studies; see Mahowald & 

Fedorenko, 2016, for evidence of high stability of language localizer activations across 

sessions). For the critical experiment, each participant listened to one or more stories (one 

story: n=34; two stories: n=14; three stories: n=13; four stories: n=2; five stories: n=4; six 

stories: n=5; seven stories: n=1; or eight stories: n=5). In each session, participants 

performed a few other, unrelated tasks, with scanning sessions lasting approximately 2h.

Localizer task.—We used a single localizer task to identify functional regions of interest 

in both the language and MD networks, using opposite task contrasts across these networks 

as described below. This task, which has been described in more detail elsewhere 

(Fedorenko et al., 2010), consisted of reading sentences and lists of unconnected, 

pronounceable nonwords in a standard two-condition blocked design with a counterbalanced 

order across runs. Stimuli were presented one word / nonword at a time. The majority of 

participants (n=60) read these materials passively (and pressed a button at the end of each 

trial, to sustain alertness); for some participants (n=18), every trial ended with a memory 

probe item, and they had to indicate via a button press whether or not this probe had 

appeared in the preceding sentence / nonwords sequence. In addition, different participants 

performed versions of the task differing slightly in stimulus timing, number of blocks, etc., 

i.e. features that that do not affect the robustness of the contrast (e.g., Fedorenko et al., 2010; 

Mahowald & Fedorenko, 2016) (for experimental parameters, see Table 2). A version of this 

localizer is available at https://evlab.mit.edu/funcloc/download-paradigms.

To identify language regions, we used the contrast sentences > nonwords. This contrast 

targets higher-level aspects of language, to the exclusion of perceptual (speech / reading) and 

motor-articulatory processes (for discussion, see Fedorenko & Thompson-Schill, 2014; or 

Fedorenko, in press). Critically, this localizer has been extensively validated over the past 

decade across diverse parameters: it generalizes across task (passive reading vs. memory 

probe), presentation modality (visual vs. auditory), and materials (e.g., Fedorenko et al., 

2010; Braze et al., 2011; Vagharchakian et al., 2012), including both coarser contrasts (e.g., 

between natural speech and an acoustically degraded control: Scott et al., 2017) and 
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narrower contrasts (e.g., between lists of unconnected, real words and nonwords lists, or 

between sentences and lists of real words: Fedorenko et al., 2010; Blank et al., 2016). 

Whereas there are many potential differences (linguistic and otherwise) between the 

processing of sentences vs. nonwords, all regions localized with the sentences > nonwords 
contrast show a similar response profile: on the one hand, they exhibit sensitivity to various 

aspects of linguistic processing, including (but not limited to) lexical, phrasal, and sentence-

level semantic and syntactic processing (e.g., Fedorenko et al., 2012b, 2018; Blank et al., 

2016; Mollica et al., 2018; Blank & Fedorenko, submitted; similar patterns obtain in 

electrocorticographic data with high temporal resolution: Fedorenko et al., 2016). On the 

other hand, they show robust language-selectivity in their responses, with little or no 

response to non-linguistic tasks, including domain-general contrasts targeting, e.g., working 

memory or inhibitory control (Fedorenko et al., 2011, 2012a). In other words, the localizer 

shows both convergent construct validity with other linguistic contrasts and discriminant 

construct validity against non-linguistic contrasts. Moreover, the functional network 

identified by this contrast is internally synchronized yet strongly dissociated from other 

brain networks during naturalistic cognition (e.g., Blank et al, 2014; Paunov et al., 2019; for 

evidence from inter-individual effect-size differences, see: Mineroff et al., 2018), providing 

evidence that the localizer task is ecologically valid. Thus, a breadth of evidence 

demonstrates that the sentences > nonwords contrast identifies a network that is engaged in 

language processing and appears to be a “natural kind” in the functional architecture of the 

human brain.

To identify MD regions, we used the nonwords > sentences contrast, targeting regions that 

increase their response with the more effortful reading of nonwords compared to that of 

sentences. This “cognitive effort” contrast robustly engages the MD network and can 

reliably localize it. Moreover, it generalizes across a wide array of stimuli and tasks, both 

linguistic and non-linguistic including, critically, contrasts targeting executive functions such 

as working-memory and inhibitory control (Fedorenko et al., 2013; Mineroff et al., 2018). 

Supplementary Figures 1 and 2 demonstrate that the MD regions thus localized robustly 

respond to a difficulty (i.e. memory load) manipulation in a non-linguistic, spatial working-

memory task (administered to a subset of participants in the current dataset).

Main (story comprehension) task.—Participants listened to stories from the publicly 

available Natural Stories Corpus (Futrell et al., 2018). These stories were adapted from 

existing texts (fairy tales and short stories) to be “deceptively naturalistic”: they contained an 

over-representation of rare words and syntactic constructions embedded in otherwise natural 

linguistic context. Behavioral data indicate that these stories effectively manipulate 

predictive processing, as self-paced reading times from an independent sample show robust 

effects of surprisal (Futrell et al., 2018). Stories were recorded by two native English 

speakers (one male, one female) at a 44.1 kHz sampling rate, ranged in length from 4m46s 

to 6m29s (983–1099 words), and were played over scanner-safe headphones (Sensimetrics, 

Malden, MA).

Following each story, some participants answered six (n=29) or twelve (n=12) 

comprehension questions, presented in a two-alternative forced-choice format. For all but 4 

of these participants, accuracy was significantly above chance (binomial test for each 
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participant: all ps < 0.046, uncorrected). For the remaining participants, comprehension 

questions were not part of the experimental design (n=30), were not collected due to 

equipment malfunction (n=4), or were lost (n=3). We note that BOLD time-series show 

indistinguishable levels of stimulus-locked activity regardless of whether comprehension 

questions are administered or not, at least in the networks studied here (Blank & Fedorenko, 

2017).

Data acquisition and preprocessing

Data acquisition.—Structural and functional data were collected on a whole-body 3 Tesla 

Siemens Trio scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging 

Center at the McGovern Institute for Brain Research at MIT. T1-weighted structural images 

were collected in 176 axial slices with 1mm isotropic voxels (repetition time (TR)=2,530ms; 

echo time (TE)=3.48ms). Functional, blood oxygenation level-dependent (BOLD) data were 

acquired using an EPI (echo-planar imaging) sequence with a 90° flip angle and using 

GRAPPA (GeneRalized Autocalibrating Partial Parallel Acquisition) with an acceleration 

factor of 2; the following parameters were used: thirty-one 4.4mm thick near-axial slices 

acquired in an interleaved order (with 10% distance factor), with an in-plane resolution of 

2.1mm×2.1mm, FoV (field of view) in the phase encoding (Anterior>>Posterior) direction 

200mm and matrix size 96mm×96mm, TR=2000ms and TE=30ms. The first 10s of each run 

were excluded to allow for steady state magnetization.

Spatial preprocessing.—Data preprocessing was carried out with SPM5 and custom 

MATLAB scripts. Preprocessing of anatomical data included normalization into a common 

space (Montreal Neurological Institute (MNI) template), resampling into 2mm isotropic 

voxels, and segmentation into probabilistic maps of the gray matter, white matter (WM) and 

cerebrospinal fluid (CSF). Note that SPM was only used for preprocessing and basic first-

level modeling, aspects that have not changed much in later versions; we used an older 

version of SPM because data for this study are used across other projects spanning many 

years and hundreds of participants, and we wanted to keep the SPM version the same across 

all the participants. Preprocessing of functional data included motion correction, 

normalization, resampling into 2mm isotropic voxels, smoothing with a 4mm FWHM 

Gaussian kernel and high-pass filtering at 200s.

Temporal preprocessing.—Data from the story comprehension runs were additionally 

preprocessed using the CONN toolbox (Whitfield-Gabrieli and Nieto-Castañon, 2012) with 

default parameters, unless specified otherwise. Five temporal principal components of the 

BOLD signal time-courses from the WM were regressed out of each voxel’s time-course; 

signal originating in the CSF was similarly regressed out. Six principal components of the 

six motion parameters estimated during offline motion correction were also regressed out, as 

well as their first time derivative.

Participant-specific functional localization of the language and MD networks

Modeling localizer data.—A general linear model estimated the voxel-wise effect size of 

each condition in each experimental run of the localizer task. These effects were each 

modeled with a boxcar function (representing entire blocks/events) convolved with the 
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canonical Hemodynamic Response Function (HRF). The model also included first-order 

temporal derivatives of these effects, as well as nuisance regressors representing entire 

experimental runs and offline-estimated motion parameters. The obtained beta weights were 

then used to compute the two functional contrasts of interest: sentences > nonwords for 

identifying language regions, and nonwords > sentences for identifying MD regions. These 

contrasts were computed only for voxels whose probability of belonging to the gray matter 

was greater than 1/3, based on the segmentation of the participant’s anatomical data. All 

other voxels were not considered further.

Defining functional regions of interest (fROIs).—For each participant, functional 

ROIs were defined by combining two sources of information (Fedorenko et al., 2010; Julian 

et al., 2012): (i) the participant’s activation map for the relevant localizer contrast (converted 

from beta weights to t-scores), and (ii) group-level constraints (“masks”; available for 

download from https://evlab.mit.edu/funcloc/download-parcels). The latter demarcated brain 

areas within which most or all individuals in prior studies showed activity for the localizer 

contrasts (Fig. 2).

For the language fROIs, we used masks derived from a group-level probabilistic 

representation of the sentences > nonwords contrast in a set of 220 participants. These masks 

were similar to the masks derived from 25 participants, as originally reported in Fedorenko 

et al. (2010), and covered extensive portions of the left lateral frontal, temporal, and parietal 

cortices. In particular, six masks were used: in the inferior frontal gyrus (IFG) and its orbital 

part (IFGorb), middle frontal gyrus (MFG), anterior temporal cortex (AntTemp), posterior 

temporal cortex (PostTemp), and angular gyrus (AngG).

For the MD fROIs, we used masks derived from a group-level probabilistic representation of 

data from a previously validated MD-localizer task in a set of 197 participants. The task, 

described in detail in Fedorenko et al. (2011), contrasted hard and easy versions of a visuo-

spatial working memory task (we did not use masks based on the nonwords > sentences 
contrast in order to maintain consistency with other current projects in our lab, and because 

prior work has established the similarity of the activation landscapes for these two contrasts; 

Fedorenko et al., 2013). These masks were constrained to be bilaterally symmetric by 

averaging individual hard > easy contrast maps across the two hemispheres prior to 

generating the group-level representation (only the group-based masks, covering large 

swaths of cortex, were constrained in this way; fROIs in the current study were free to vary 

in their location across hemispheres, within the borders of these masks). The topography of 

these masks largely overlapped with anatomically based masks that we had used in previous 

work (e.g., Fedorenko et al., 2013; Blank et al., 2014; Paunov et al., 2019). In particular, 10 

masks were used in each hemisphere: in the posterior (PostPar), middle (MidPar), and 

anterior (AntPar) parietal cortex, precentral gyrus (PrecG), superior frontal gyrus (SFG), 

middle frontal gyrus (MFG) and its orbital part (MFGorb), opercular part of the inferior 

frontal gyrus (IFGop), the anterior cingulate cortex and pre-supplementary motor cortex 

(ACC/pSMA), and the insula (Insula).

These group-level masks, in the form of binary maps, were used to constrain the selection of 

participant-specific fROIs. In particular, for each participant, 6 language fROIs were created 
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by (i) intersecting each language mask with each individual participant’s unthresholded t-
map for the sentences > nonwords contrast; and then (ii) choosing the 10% of voxels with 

highest t-scores in the intersection. Similarly, 20 MD fROIs were created by intersecting 

each MD mask with each participant’s unthresholded t-map for the nonwords > sentences 
contrast and selecting the 10% of voxels with the highest t-scores within each intersection. 

This top-10% criterion balances the trade-off between choosing only voxels that respond 

robustly to the relevant contrast and having a sufficient number of voxels in each fROI of 

each participant. Moreover, this criterion guarantees fROIs of identical size across 

participants (occupying 10% of each mask). Few exceptions to this criterion were made for 

those cases where less than 10% of the voxels in a mask showed a t-score greater than 0; 

here, we only included the subset of voxels with positive t-scores in the fROI, and excluded 

those voxels showing effects in the opposite direction.

Prior to the critical statistical analyses, we ensured that all fROIs showed the expected 

functional signatures, i.e. a sentences > nonwords effect for the language fROIs, and a 

nonwords > sentences effect for the MD fROIs. To this end, the reliability of each contrast 

effect (i.e. the difference between the beta estimates of the two localizer conditions) was 

tested using a 2-fold across-run cross-validation: for each participant, fROIs were defined 

based on odd (even) run(s) and, subsequently, independent estimates of the relevant contrast 

effect were obtained from the left-out even (odd) run(s). These contrast effects were 

averaged across the two partitions (odd/even) and tested for significance across participants, 

via a dependent samples t-test (FDR-corrected for the number of fROIs within each 

network). The sentence > nonwords effect was highly reliable throughout the language 

network (for all six fROIs: t(77) > 9.5, p < 10−12 corrected; conservative effect size based on 

an independent samples test: Cohen’s d > 0.82), and the nonwords > sentences effect was 

highly reliable throughout the MD network (for all 20 fROIs: t(77) > 2.25, p < 0.05; 

conservative effect size based on an independent samples test: Cohen’s d > 0.16) (see also 

Supplementary Figures 1 and 2 for evidence of overlap with a spatial working memory 

contrast, as in Fedorenko et al., 2013).

Statistical analysis

Predictor definitions—To estimate word predictability in naturalistic data, we used an 

information-theoretic measure known as surprisal (Shannon, 1948; Hale, 2001): the negative 

log probability of a word given its context. Surprisal can be computed in many ways, 

depending on the choice of probability model. Three previous naturalistic fMRI studies 

(Willems et al., 2015; Brennan et al., 2016; Lopopolo et al., 2017) searched for surface-level 

n-gram surprisal effects, using words and/or parts of speech as the token-level 

representation. In addition, two previous naturalistic fMRI studies (Brennan et al., 2016; 

Henderson et al., 2016) probed structure-sensitive PCFG surprisal measures (Hale, 2001; 

Roark et al., 2009). As discussed in the Introduction, results from these studies failed to 

converge on a clear answer as to the nature and functional location of surprisal effects. In 

this study, we used the following surprisal estimates:

• 5-gram Surprisal:5-gram surprisal for each word in the stimulus set from a 

KenLM (Heafield et al., 2013) language model with default smoothing 

parameters trained on the Gigaword 3 corpus (Graff et al., 2007). 5-gram 
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surprisal quantifies the predictability of words as the negative log probability of a 

word given the four words preceding it in context.

• PCFG Surprisal:Lexicalized probabilistic context-free grammar surprisal 

computed using the incremental left-corner parser of van Schijndel et al. (2013) 

trained on a generalized categorial grammar (Nguyen et al., 2012) reannotation 

of Wall Street Journal sections 2 through 21 of the Penn Treebank (Marcus et al., 

1993).

Models also included the control variables Sound Power, Repetition Time (TR) Number, 
Rate, Frequency, and Network, which were operationalized as follows:

• Sound Power: Frame-by-frame root mean squared energy (RMSE) of the audio 

stimuli computed using the Librosa software library (McFee et al., 2015).

• TR Number: Integer index of the current fMRI sample within the current scan.

• Rate: Deconvolutional intercept. A vector of ones time-aligned with the word 

onsets of the audio stimuli. Rate captures influences of stimulus timing 
independently of stimulus properties (see e.g., Brennan et al., 2016; Shain & 

Schuler, 2018).

• Frequency: Corpus frequency computed using a KenLM unigram model trained 

on Gigaword 3. For ease of comparison to surprisal, frequency is represented 

here on a surprisal scale (negative log probability), such that larger values index 

less frequent words (and thus greater expected processing cost).

• Network: Numeric predictor for network ID, 0 for MD and 1 for LANG.

Models additionally included the mixed-effects random grouping factors Participant and 

fROI. Prior to regression, all predictors were rescaled by their standard deviations in the 

training set except Rate (which has no variance) and Network (which is an indicator 

variable). Reported effect sizes are therefore in standard units.

Continuous-time deconvolutional regression

Naturalistic language stimuli pose a challenge for established statistical methods in fMRI 

because the stimuli (words) (1) are variably spaced in time and (2) do not temporally align 

with response samples recorded by the scanner. Previous approaches to address this issue 

have various drawbacks. Some fMRI studies of naturalistic language processing have 

assumed a canonical shape for the hemodynamic response function (Boynton et al., 1994) 

and used it to convolve stimulus properties into response-aligned measures (Willems et al., 

2015; Brennan et al., 2016; Lopopolo et al., 2017). This approach is unable to account for 

regional variation in the shape of the hemodynamic response, even though the canonical 

HRF is known to be a poor fit to some brain regions (Handwerker et al., 2004). Discrete-

time methods for data-driven HRF identification such as finite impulse response modeling 

(FIR; Dayal et al., 1996) and vector autoregression (VAR; Sims, 1980) are widely used to 

overcome the limitations of the canonical HRF for fMRI research (e.g., Friston et al., 1994; 

Harrison et al., 2003) but are of limited use in the naturalistic setting because they assume 

(multiples of) a fixed time interval between stimuli that does not apply to words in naturally-
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occurring speech. Some studies (e.g. Huth et al., 2016) address this problem by continuously 

interpolating word properties, resampling the interpolated signal so that it temporally aligns 

with the fMRI record, and fitting FIR models using the resampled design matrix. However, 

this approach can be distortionary in that word properties (e.g., surprisal) are not temporally 

continuous.

Our study employed a recently developed continuous-time deconvolutional regression 

(CDR) technique that accurately infers parametric continuous-time impulse response 

functions – such as the HRF – from arbitrary time series (Shain & Schuler, 2018, 2019). 

Because CDR is data-driven, it can address the potential impact of poor fit in the canonical 

HRF, and because it is defined in continuous time, it eliminates the need for distortionary 

preprocessing steps like continuous interpolation. CDR models in this study used the 

following two-parameter HRF kernel based on the widely-used double-gamma canonical 

HRF (Lindquist et al., 2009):

ℎ(x; α, β) = βαxα − 1e
−x
β

Γ (α) − 1
6

βα + 10xα + 9e
−x
β

Γ (α + 10)

where α and β are initialized to the SPM defaults of 6 and 1, respectively. More complex 

kernels (e.g., that fit the amplitude of the second term, rather than fixing it at 1/6) were 

avoided because of their potential to overfit.

The parametric continuous-time nature of CDR is similar to that of models used, for 

example, by Kruggel & von Camon (1999), Kruggel et al. (2000), Miezin et al. (2000), 

Lindquist & Wager (2007), and Lindquist et al. (2009) for nonlinear estimation of gamma-

shaped HRFs. The main advantages of CDR over these approaches are that (1) it exploits the 

Tensorflow (Abadi et al., 2015) and Edward (Tran et al., 2016) libraries for optimizing large-

scale variational Bayesian computation graphs using state of the art estimation techniques 

from deep learning – this study used the Adam optimizer with Nesterov momentum 

(Kingma & Ba, 2014; Nesterov, 1983; Dozat, 2016); (2) it supports mixed effects modeling 

of effect coefficients and HRF parameters; and (3) it supports parameter tying, constraining 

the solution space by ensuring that all predictors share a common HRF shape in a given 

region (with potentially differing amplitudes). Predictors in these models were given their 

own coefficients (which rescale h above), but the parameters α and β of h were tied across 

predictors, modeling the assumption of a fixed-shape blood oxygenation response to neural 

activity in a given cortical region.

The CDR models applied in this study assumed improper uniform priors over all parameters 

in the variational posterior and were optimized using a learning rate of 0.001 and stochastic 

minibatches of size 1024. Following standard practice from linear mixed-effects regression 

(Bates et al., 2014), random effects were L2-regularized toward zero at a rate of 1.0. 

Convergence was declared when the loss was uncorrelated with training time by t-test at the 

0.5 level for at least 250 of the past 500 training epochs. For computational efficiency, 

predictor histories were truncated at 256 timesteps (words), which yields a maximum 

temporal coverage in our data of 48.34s (substantially longer than the effective influence of 

the canonical HRF). Prediction from the network used an exponential moving average of 
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parameter iterates (Polyak, 1992) with a decay rate of 0.999, and models were evaluated 

using maximum a posteriori estimates obtained by setting all parameters in the variational 

posterior to their means. This approach is valid because all parameters are independent 

Gaussian in the CDR variational posterior (Shain & Schuler, 2018).

Model specification

The following CDR model specification was fitted to responses from each of the LANG and 

MD fROIs, where italics indicate predictors convolved using the fitted HRF and bold 
indicates predictors that were ablated for hypothesis tests:

BOLD ~ TRNumber + soundPower + Rate + Frequency + 5gram + PCFG + (TRNumber + 

soundPower + Rate + Frequency + 5gram + PCFG | fROI) + (1 | Participant)

The random effect by fROI indicates that the model included zero-centered by-fROI random 

variation in response amplitude and HRF parameters for each functional region of interest. 

As shown, the model also included a random intercept by participant (the data do not appear 

to support richer by-participant random effects, e.g. including random slopes and HRF 

shapes, since such models explained no held-out variance in early analyses, indicating 

overfitting). The above model can test whether the surprisal variables help predict neural 

activation in a given cortical region. However, it cannot be used to compare the magnitudes 

of response to surprisal across networks (Nieuwenhuis et al., 2011). Therefore, we directly 

tested for a difference in influence by fitting the combined responses from both LANG and 

MD using the following model specification with the indicator variable Network:

BOLD ~ TRNumber + soundPower + Rate + Frequency + 5gram + PCFG + Network + 

TRNumber:Network + soundPower:Network + Rate:Network + Frequency:Network + 

5gram:Network + PCFG:Network + (1 | fROI) + (1 | Participant)

The random effects by fROI were simplified in comparison to that of the single-network 

models because the Network variable exactly partitions the fROIs. Thus ablated models can 

fully capture network differences as long as they have by-fROI random effects for surprisal. 

Indeed, initial tests showed virtually no difference in held-out likelihood between full and 

ablated combined models when those models included full by-fROI random effects despite 

large-magnitude estimates for the interactions with Network in the full model. Furthermore, 

the fitted parameters suggested that the by-fROI term was being appropriated in ablated 

models to capture between-network differences. In the full model, the 5-gram Surprisal 
estimates for 50% of LANG fROI and 45% of MD fROI were positive, while in the model 

with 5gram:Network ablated, 100% of LANG fROI and only 20% of MD fROI were 

positive, indicating that differences in response to 5-gram Surprisal had been pushed into the 

by-fROI random term. For this reason, we used simpler models for the combined test, 

despite their insensitivity to by-fROI variation in HRF shape or response amplitude.

In interactions between Network and convolved predictors, the interaction was computed 

following convolution but prior to rescaling with that predictor’s coefficient. Thus, the 

interaction term represents the offset in the estimated coefficient from the MD network to 

the LANG network, as is the case for binary interaction terms in linear regression models.
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Finally, exact deconvolution from continuous predictors like Sound Power is not possible, 

since such predictors do not have an analytical form that can be integrated. Instead, we 

sampled sound power at fixed intervals (100ms), in which case the event-based CDR 

procedure reduces to a Riemann sum approximation of the continuous convolution integral. 

Note that the word-aligned predictors (e.g. 5-gram Surprisal) therefore have different 

timestamps than Sound Power, and as a result the history window spans different regions of 

time (up to 128 words into the past for the word-aligned predictors and up to 100ms × 128 = 

12.8s of previous Sound Power samples).

Ablative statistical testing

In order to avoid confounds from (1) collinearity in the predictors and/or (2) overfitting to 

the training data, we followed a standard testing protocol from machine learning of 

evaluating differences in prediction performance on out-of-sample data using ablative non-

parametric paired permutation tests for significance (Demšar, 2006). This approach can be 

used to assess the presence of an effect by comparing the prediction performance of a model 

that contains the effect against that of an ablated model that does not contain it. Specifically, 

given two pre-trained nested models, we computed the out-of-sample by-item likelihoods 

from each model over the evaluation set and constructed an empirical p value for the 

likelihood difference test statistic by randomly swapping by-item likelihoods n times (where 

n=10,000) and computing the proportion of obtained likelihood differences whose 

magnitude exceeded that observed between the two models. To ensure a single degree of 

freedom for each comparison, only fixed effects were ablated, with all random effects 

retained in all models.

The data partition was created by cycling TR numbers e into different bins of the partition 

with a different phase for each subject u:

partition(e; u) = e + u
30 mod 2

assigning output 0 to the training set and 1 to the evaluation set. Since TR duration is 2s, this 

procedure splits the BOLD times series into 60 second chunks, alternating assignment of 

chunks into training and evaluation sets with a different phase for each participant. 

Partitioning in this way allowed us to (1) obtain a model of each participant, (2) cover the 

entire time series, and (3) sub-sample different parts of the time series for each participant 

during training, while at the same time suppressing correlation between the training and 

evaluation responses by using a relatively long period of alternation (30 TRs or 60s).

Accessibility

Access instructions for software and supplementary data needed to replicate these 

experiments (e.g. librosa, PyMVPA, CDR, KenLM, Gigaword 3, etc.) are given in the 

publications cited above. Post-processed fMRI timeseries are publicly available at the 

following URL: https://osf.io/eyp8q/. These experiments were not pre-registered.
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Results

The CDR-estimated mean double-gamma hemodynamic response functions (HRFs) for the 

LANG and MD networks are given in Figure 3, the estimated HRFs by fROI in LANG 

regions are shown in Figure 4, surprisal estimates and percent variance explained by region 

are given in Tables 3 and 4, and population-level effect estimates (i.e. areas under the 

estimated HRFs) are reported in Table 5. MD estimates by region are plotted in 

Supplementary Figures 3 and 4; they are of little relevance because they do not generalize 

(Tables 4 & 6). As shown, HRF shapes resemble but deviate slightly from the canonical 

HRF (Boynton et al., 1996) to varying degrees in each region, highlighting both consistency 

with HRF estimates established by prior research as well as the potential of CDR to discover 

subtle differences in HRF shape between cortical regions (Handwerker et al., 2004) in 

naturalistic data. The models find positive effects of similar strength for both 5-gram 
Surprisal and PCFG Surprisal in LANG, and smaller effects of surprisal (even negative in 

the case of 5-gram Surprisal) in MD.

At the level of individual regions, the models explained held-out variance in all but one of 

the language fROIs (the exception was the AngG fROI). In contrast, the models explained 

no held-out variance in any but one MD fROI (the left MFGorb fROI). We leave these two 

exceptions to future research, but overall, the results demonstrate that surprisal effects are 

generally present throughout the language network and generally absent throughout the MD 

network. The differences between the individual-network models are largely replicated in 

the Combined model (Table 5), where main effects represent the estimated mean response in 

MD while interactions with Network represent the estimated difference in mean response 

between LANG and MD. As shown, Combined model estimates of both 5-gram:Network 
and PCFG:Network are positive and large-magnitude, indicating that the model estimates 

these variables to yield greater increases in neural activity in LANG over MD.

Table 6 reports model percent variance explained compared to a theoretical ceiling 

computed by regressing responses against responses from the same brain region in all other 

participants exposed to that stimulus. This ceiling is designed to quantify the variance that 

can be explained based on the stimuli alone, independently of inter-participant variation. As 

shown, models explain a substantial amount of the available variance in LANG. MD models 

explain no variance on the evaluation set, suggesting that the MD model did not learn 

generalizable patterns.

Because fROIs were modeled as random effects in these analyses, pairwise statistical testing 

of between-region differences in effect amplitude is not straightforward, and systematic 

investigation of regions / subnetworks within each broader functional network is left to 

future work. However, a qualitative examination of the by-region estimates suggests 

potentially interesting functional differences within the language network (Table 3). In 

particular, the IFG, MFG, and PostTemp fROIs all responded roughly equally to both 

measures of surprisal. The IFGorb fROI responded more to PCFG than 5-gram Surprisal (an 

unexpected finding given that this is not the language region that is traditionally most 

strongly associated with syntactic processing; e.g., Friederici, 2011; Blank et al., 2016). The 

AngG fROI showed a similar pattern, but the models did not explain held-out variance for 
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this fROI. And the AntTemp fROI responded more to 5-gram than PCFG Surprisal (a 

finding which bears on debates about the functional role of this brain region in language 

processing, see Discussion). Although the differences in effect sizes between the two 

surprisals are significant in each of IFGorb, AngG, and AntTemp by Monte Carlo estimated 

credible intervals tests, such tests are anticonservative in CDR (Shain & Schuler, 2019). 

Nonetheless, they suggest that different regions of the language network might be 

differentially sensitive to surface-level vs. structural properties of language. The internal 

architecture of the language network has been long debated, and a number of proposals have 

been put forward (e.g., Friederici, 2011, 2012; Baggio and Hagoort, 2011; Tyler et al., 2011; 

Duffau et al., 2014; Ullman, 2016). However, no consensus has yet been reached about 

whether different regions support different aspects of language processing, and, if so, which 

regions support which linguistic computations (see e.g., Fedorenko et al., 2018, for 

discussion). Perhaps neural investigations of naturalistic language comprehension, combined 

with the power of the novel CDR approach and stringent statistical evaluation, can help 

inform this ongoing debate.

Tables 7–9 show the main finding of this study: fixed effects for 5-gram Surprisal and PCFG 
Surprisal significantly improve held-out likelihood in the LANG network over a model 

containing neither, as well as over one another. The difference in effect size between the 

LANG and MD networks is statistically significant, as shown by the significant likelihood 

improvements yielded by interactions of the surprisal variables with Network.

As shown in Figure 3, the effects signs for Frequency in both networks are negative. The 

lack of a positive effect of Frequency is not what would be expected if word frequency 

modulated neural activity (Staub, 2015), but it is consistent with recent naturalistic 

behavioral evidence against distinct effects of frequency and predictability (Shain, 2019), as 

well as with previous theoretical claims that apparent frequency effects are underlyingly 

effects of predictability (Levy, 2008). Negative effects like these indicate suppression of the 

BOLD response and pose a challenge for interpretation (Harel et al., 2002). Prior work has 

suggested that such negative effects can arise from increased processing load elsewhere in 

the brain through hemodynamic factors (“vascular steal”) (Lee et al., 1995; Saad et al., 2001; 

Harel et al., 2002; Kannurpattie et al., 2004) and/or neuronal ones such as inhibition by an 

attention mechanism (Smith et al., 2000; Shmuel et al., 2002; Shmuel et al., 2006). The 

means by which such mechanisms might give rise to negative frequency effects in these 

experiments are not currently clear. Since frequency effects are not central to our present 

research question, we leave targeted investigation of their existence and direction to future 

research.

Figure 7 and Table 10 assess the generalizability of surprisal effects across participants. 

Figure 7 shows most by-participant improvements clustered around a positive median, 

without strong visual indication of large-magnitude positive outliers that might exclusively 

drive the effect. This intuition is quantified in Table 10. As shown, held-out likelihood 

improves for most participants in all comparisons. Furthermore, at least 5 of the most 

responsive participants in each comparison can be removed without changing the 

significance of the effect. Participant removal is a stringent criterion not only because it 

excludes the most responsive participants from consideration but also because it reduces the 
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power of the permutation test by shrinking the evaluation set. These participant-level 

analyses demonstrate that surprisal effects in LANG are not merely driven by a small 

number of outlier participants.

Discussion

The current study examined signatures of predictive processing during naturalistic story 

comprehension in two functionally distinct cortical networks: the domain-specific language 

(LANG) network, and the domain-general multiple demand (MD) network. Specifically, we 

tested which of these networks increased their responses with lower word predictability, 

operationalized using both 5-gram and probabilistic context-free grammar (PCFG) surprisal. 

The main results, yielded by continuous-time deconvolutional regression (CDR) analysis of 

surprisal effects in the two networks, are shown in Tables 7–9: in LANG, both 5-gram 
Surprisal and PCFG Surprisal have positive effects that yield statistically significant 

improvements to held-out likelihood, both over a baseline containing neither fixed effect as 

well as over one another. By contrast, in MD, neither surprisal effect is significant in any 

comparison. A direct test for a difference in surprisal effects across the two networks (Table 

9) shows that the interactions of both surprisals with network are positive and statistically 

significant, indicating that the BOLD response to both surface-level (5-gram) and structural 

(PCFG) word predictability is larger in LANG than MD. These results are over a baseline 

that includes an effect for lexical frequency (log unigram probability), which is notable 

given the strong natural correlation between surprisal and frequency, both generally 

(Demberg & Keller, 2008) and in the current experimental materials (r = 0.78 overall). This 

finding suggests that the surprisal effects reported here are indeed driven by predictive 

coding and not merely by the cost of retrieving infrequent words. Together, these results 

demonstrate that predictive coding for upcoming words is primarily a canonical computation 

carried out by domain-specific cortical circuits, rather than by feedback from higher, 

domain-general executive control circuits, and that these predictions depend on both surface-

level and structural information sources. Our finding of a generalized effect of PCFG 
Surprisal throughout the language network aligns with prior findings of evidence for 

linguistic prediction (e.g. Kuperberg et al., 2000; Baumgaertner et al., 2002; Friederici et al., 

2003; Obleser et al., 2007) and syntactic processing (e.g., Blank et al., 2016; see Zaccarella 

et al., 2017 for review) in these regions, but suggests that prior evidence of linguistic 

prediction effects in MD (e.g. Kuperberg et al., 2000; Baumgaertner et al., 2002; Gold et al., 

2006; Bonhage et al., 2015; Hartwigsen et al., 2017) may have been influenced by the use of 

artificially constructed linguistic stimuli and/or task artifacts.

This finding bears on an ongoing discussion in cognitive neuroscience about the 

compartmentalization of language processing. Early investigations of the functional 

organization of the brain argued for the existence of neuroanatomical modules dedicated to 

specific linguistic functions, from lower-level perceptual and motor components of language 

to higher-level ones like phonological, lexical, and combinatorial syntactic and semantic 

processing (Broca, 1861; Dax, 1863; Wernicke, 1874; Fodor, 1983; Petersen et al., 1988; 

Levelt, 1989; Pinker 1994). This position has been called into question by subsequent work 

stressing the distributed nature of cognition (e.g., Mesulam, 1998; Thompson-Schill et al., 

2005; Blumstein & Amso, 2013), based on evidence both (1) that brain regions 
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conventionally believed to be language-specific are also recruited for non-linguistic tasks 

(e.g., Dehaene et al., 1999; Stanescu-Cosson et al., 2000; Maess et al., 2001; Kaan and 

Swaab, 2002; Koelsch et al., 2002; Koechlin and Jubault, 2006; Hein and Knight, 2008; 

Blumstein, 2009; January et al., 2009), and (2) that brain regions conventionally believed to 

support domain-general cognitive control are also recruited for language processing, 

especially under difficult comprehension conditions (e.g., Kaan & Swaab; 2002; Kuperberg 

et al., 2003; Novick et al., 2005; Rodd et al., 2005; Novais-Santos, 2007; January et al., 

2009; Peelle et al., 2010; Rogalsky & Hickok, 2011; Nieuwland et al., 2012; Wild et al., 

2012; McMillan et al., 2012, 2013, Hsu & Novick, 2016). Although such results might raise 

doubts about the necessity and sufficiency of the putative language network for language 

processing, they are counterbalanced by rigorous non-replications of (1) the engagement of 

language regions in arithmetic, working memory, or cognitive control tasks (Fedorenko et 

al., 2011; Monti et al., 2012; Almaric et al., 2018), and (2) the engagement of cognitive 

control (MD) regions in language processing (Blank & Fedorenko, 2017; Wehbe et al., 

submitted). Based on this evidence, some have concluded that there does indeed exist a 

functionally specific cortical language network (Fedorenko, 2014; Fedorenko & Thompson-

Schill, 2014; see also Hagoort, 2005; Friederici et al., 2011; Matchin et al., 2014; Rogalsky 

et al., 2015; Matchin, 2017, for proposals that are compatible with the idea that at least some 

of the language-responsive areas are specific to language) and that MD engagement in many 

previous studies of language processing was induced by experimental task artifacts 

(Campbell & Tyler, 2018; Wehbe et al., submitted; Diachek et al., 2019).

The aforementioned debate about the compartmentalization of language processing has 

largely focused on controlled experimental paradigms, which are prone to induce task 

artifacts that confound functional differentiation of neural structures. By showing strong 

prediction-based functional differentiation between the LANG and MD networks during 

naturalistic language comprehension, the present study provides evidence that predictive 

coding for language is primarily carried out by language-specific rather than domain-general 

mechanisms.

This finding also contributes to the growing literature on predictive coding in the 

mammalian brain, which has recently produced evidence that neurons are tuned to predict 

upcoming inputs but has also primarily focused on low-level perceptual processing (Rao & 

Ballard, 1999; Alink et al., 2010; Bubic et al. 2010; Keller & Mrsic-Flogel, 2018; Singer et 

al., 2018). The present study suggests that prediction extends to high-level cognitive 

functions like language comprehension and is similarly implemented as a domain-specific 

canonical computation in regions that plausibly store linguistic knowledge (e.g., Hagoort, 

2005; Fedorenko, 2014).

The finding that surprisal computed by marginalizing over syntactic structures (PCFG 
Surprisal) modulates the LANG response independently of surface-level n-gram surprisal is 

evidence that participants are indeed computing such structures during incremental sentence 

processing (Hale, 2001; Levy, 2008; Fossum & Levy, 2012; Rasmussen & Schuler, 2018) 

and is inconsistent with previous arguments that the human sentence processing response is 

largely insensitive to such structures (Frank & Bod, 2011; Frank et al., 2012; Frank & 

Christiansen, 2018). At the same time, the finding that 5-gram Surprisal modulates the 
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LANG response independently of PCFG Surprisal is evidence that the human sentence 

processing mechanism is sensitive to word co-occurrence patterns in ways that are not well 

captured by a strictly context-free parser. This suggests either (1) that the human parser is 

not strictly context-free (see e.g., tree-adjoining grammars, Joshi, 1985; combinatory 

categorial grammars, Steedman, 2000; and other context-sensitive grammar formalisms for 

natural language), or (2) that participants track both hierarchical structure and word co-

occurrence patterns separately and simultaneously when generating predictions, and that 

these two kinds of processes take place in overlapping brain areas. Evaluating these 

hypotheses is left to future work. The lack of structured prediction effects in MD is of 

interest given prior proposals that ground structural effects in constraints on working 

memory (Abney & Johnson, 1991; Resnik, 1992; Rasmussen & Schuler, 2018). These 

theories view the processing of hierarchical language structures as a special case of a domain 

general capacity for hierarchic sequential prediction (Botvinick, 2007), which is at least 

consistent with the hypothesis that the resources recruited for prediction are also domain 

general (see e.g. Smith & Levy, 2013). However, to the extent that the memory resources 

used for prediction are also expected to activate in response to prediction error (e.g., by 

undergoing model revision, Chao et al., 2018, see Introduction), the failure to find such a 

signal in MD suggests that these memory resources may also be specific to the functional 

language network, rather than domain general (e.g., Caplan & Waters, 1999; Matchin, 

2017).

Estimates at the fROI level shed light on results from prior naturalistic fMRI experiments 

(Willems et al., 2015; Brennan et al., 2016; Henderson et al., 2016; Lopopolo et al., 2017). 

We found strong effects of both surface-level and structural estimates of word predictability 

in roughly the union of left-hemisphere language regions for which such effects have been 

reported in prior work (e.g., temporal and inferior frontal regions). At the same time, we did 

not find clear evidence of predictive coding in regions linked with the multiple demand 

network, like superior frontal gyrus (cf. Lopopolo et al., 2017), in part because our use of 

held-out significance tests helped us avoid reporting MD surprisal effects that fail to 

generalize (e.g., left-hemisphere SFG, Table 4). The lack of held-out testing in earlier studies 

may therefore have contributed to prior findings of surprisal effects in MD regions. Finally, 

we obtained significant positive effects for surprisal implementations in language regions 

that have previously been reported null or negative (e.g., lexicalized trigrams in IFG and 

posterior temporal cortex or PCFG surprisal in IFG, per Brennan et al., 2016; PCFG 

surprisal in the temporal lobe, per Henderson et al., 2016). It is possible that the size of the 

present study increased sensitivity to these effects, since studies using less data are more 

likely to yield sign and magnitude errors (Gelman & Carlin, 2014). The picture that emerges 

more clearly from our results than from those of prior studies is of a predictive coding 

mechanism that is specific to the functional language network, generalized throughout it, 

and sensitive to both surface-level word co-occurrence patterns and hierarchical structure.

In focusing on prediction effects, we recognize that language comprehension involves a 

good deal more than simply minimizing surprise – meanings conveyed by partially-complete 

words and syntactic structures are rapidly and incrementally recognized, stored, and 

integrated into existing knowledge representations as the discourse unfolds (Tanenhaus et 

al., 1995; Altmann & Kamide, 1999). Numerous studies have probed the computations 
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involved in storage, retrieval, and integration during human sentence comprehension 

(MacDonald et al., 1992; Kluender & Kutas, 1993; Gibson & Ko, 1998; Felser et al., 2003; 

Hsiao & Gibson, 2003; Aoshima et al., 2004; Grodner & Gibson, 2005; Lewis & Vasishth, 

2005; Fiebach et al., 2005; Fedorenko et al., 2006, 2007; Rasmussen & Schuler, 2018), and 

several memory-based estimators of structural processing have been investigated across 

behavioral and cognitive neuroscience investigations, including embedding difference (Wu 

et al., 2010), the number of open nodes based on a particular parsing strategy (top-down, 

bottom-up, or left-corner; Nelson et al., 2016; Brennan & Pylkkänen, 2017), dependency 

locality costs (storage or integration cost from maintaining and retrieving syntactic 

dependencies; Gibson, 2000), and encoding or retrieval interference (i.e. processing costs in 

the ACT-R framework; Lewis and Vasishth, 2005). Effort due to memory storage and 

retrieval is plausibly distinct from effort due to reallocating resources between competing 

structural interpretations of the unfolding sentence (a standard interpretation of surprisal 

effects, e.g. Hale, 2001; Levy, 2008), and a complete account of human language processing 

will likely involve both prediction-based and integration-based computations (Levy et al., 

2013; Levy & Gibson, 2013). Although these kinds of integration effects are outside the 

scope of the present study of predictive coding, we note that some have argued that 

prediction may subserve memory retrieval and therefore interact with integrative processing 

(Altmann, 1998). Therefore, the prediction effects reported here may, to some extent, be 

amenable to interpretation as effects of integration. That is, researchers who view 

“prediction” as a conscious lexically specific activity may view these results as evidence of 

conceptual pre-activation or preparedness that eases integration once a word is observed (see 

Ferreira & Chantavarin, 2018, for an overview of this distinction). We leave to future work a 

fuller investigation of this distinction and simply note that our results indicate that any such 

pre-activation processes appear to be restricted to the LANG network, rather than invoking 

the MD network, and are strongly correlated with probabilistic measures of word 

predictability. The fMRI dataset produced by this study will hopefully support further 

investigation into the interplay of memory and expectation in the language-selective and 

domain-general networks.

Our emphasis on structural influences on prediction, rather than sensitivity to syntactic 

structure more generally, is a possible explanation for one apparent discrepancy between our 

results and those of some previous studies. In particular, we do not find evidence of PCFG 
Surprisal effects in the AntTemp language fROI (although the PCFG Surprisal estimate is 

positive, the model explains no held-out variance in AntTemp), whereas numerous previous 

studies have argued for syntactic effects in left anterior temporal cortex, both using hand-

constructed stimuli (Mazoyer et al., 1993; Stowe et al., 1998; Friederici et al., 2000; 

Vandenberghe et al., 2002; Dronkers et al., 2004; Humphries et al., 2006; Rogalsky & 

Hickok, 2009; Pallier et al., 2011; Brennan & Pylkkänen, 2012; Nelson et al., 2017) and 

naturalistic stimuli (Brennan et al., 2010; Brennan & Pylkkänen, 2017; Bhattasali et al., 

2018, 2019). The role of left anterior temporal cortex in syntactic processing has been called 

into question by an absence of syntactic deficits in patients with anterior temporal damage 

(e.g., Wilson et al., 2012), and some have argued that parts of the anterior temporal lobe 

primarily carry out lexical and semantic processing, including perhaps semantic composition 

(e.g., Bemis & Pylkkänen, 2011), rather than syntactic structure building (Visser et al., 2010; 
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Wilson et al., 2014; Lambon Ralph et al., 2017; see also Matchin et al., 2018). However, 

even granting that left anterior temporal cortex is implicated in syntactic processing, prior 

studies by and large have focused on structural measures that are arguably integrative in 

nature (syntactic node count, number of parser operations, etc.) or have used manipulations 

that are too broad to target prediction vs. integration (sentences vs. list of words or 

“Jabberwocky” sentences). Indeed, claims about syntactic processing in left anterior 

temporal cortex tend to focus on composition rather than on structured prediction. Our 

results thus do not preclude a role for left anterior temporal cortex in structure-building 

broadly construed; they simply fail to show strong evidence in this brain area of effects of 

structural context on word predictability. Prior studies of structured prediction effects in left 

anterior temporal cortex have yielded mixed results; although Brennan et al. (2016) found 

evidence of part-of-speech n-gram and PCFG surprisal in anterior temporal cortex over bi- 

and tri-gram effects, Lopopolo et al. (2017) did not find a response to part-of-speech n-gram 

surprisal, and the response to syntactic PCFG surprisal in Henderson et al. (2016) was too 

weak to achieve significance. Prediction effects based on lexical context in left anterior 

temporal cortex (i.e. lexical n-grams) are better attested (Willems et al., 2015; Lopopolo et 

al., 2017), and some have explicitly argued that left anterior temporal cortex plays a central 

role in lexical-semantic prediction (Lau et al., 2016). Our findings in the AntTemp fROI 

(large effects of 5-gram Surprisal in the AntTemp language fROI) contribute to this debate, 

suggesting that lexical prediction does occur in left anterior temporal cortex (among other 

regions) while syntactic prediction likely occurs elsewhere. Left anterior temporal cortex 

may therefore be an important object of study in teasing apart predictive vs. integrative 

processing during language comprehension, and further investigation is warranted.

In summary, our findings based on a large-scale naturalistic fMRI experiment support a view 

of linguistic prediction as implemented by domain-specific cortical circuits, sensitive to both 

surface-level and syntactic information sources, and generalized across the functional 

language network.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments:

This research was supported by NIH award R00-HD-057522 (E.F.) and by National Science Foundation grant 
#1816891 (W.S.). All views expressed are those of the authors and do not necessarily reflect the views of the 
National Science Foundation. E.F. was additionally supported by NIH awards R01-DC-016607 and R01-
DC-016950 and by a grant from the Simons Foundation via the Simons Center for the Social Brain at MIT. The 
authors would also like to acknowledge the Athinoula A. Martinos Imaging Center at the McGovern Institute for 
Brain Research at the Massachusetts Institute of Technology (MIT), and the support team (especially Steven 
Shannon and Atsushi Takahashi). The authors also thank Nancy Kanwisher and Ted Gibson for recording the 
stories, and EvLab members for help with data collection, especially Zach Mineroff and Alex Paunov.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, … Zheng X (2015). TensorFlow: Large-
Scale Machine Learning on Heterogeneous Distributed Systems. Retrieved from http://
download.tensorflow.org/paper/whitepaper2015.pdf

Shain et al. Page 24

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf


Abney SP, & Johnson M (1991). Memory Requirements and Local Ambiguities of Parsing Strategies. 
J. Psycholinguistic Research, 20(3), 233–250.

Abutalebi J (2008). Neural aspects of second language representation and language control. Acta 
Psychologica, 128(3), 466–478. [PubMed: 18479667] 

Adank P (2012). The neural bases of difficult speech comprehension and speech production: Two 
activation likelihood estimation (ALE) meta-analyses. Brain and Language, 122(1), 42–54. 
[PubMed: 22633697] 

Ahlheim C, Stadler W, & Schubotz RI (2014). Dissociating dynamic probability and predictability in 
observed actions—an fMRI study. Frontiers in Human Neuroscience, 8, 273. [PubMed: 24847235] 

Alexander WH, & Brown JW (2018). Frontal cortex function as derived from hierarchical predictive 
coding. Scientific reports, 8(1), 3843. [PubMed: 29497060] 

Alink A, Schwiedrzik CM, Kohler A, Singer W, & Muckli L (2010). Stimulus predictability reduces 
responses in primary visual cortex. Journal of Neuroscience, 30(8), 2960–2966. [PubMed: 
20181593] 

Altmann GTM, & Kamide Y (1999). Incremental interpretation at verbs: Restricting the domain of 
subsequent reference. Cognition, 73(3), 247–264. [PubMed: 10585516] 

Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, & Zilles K (1999). Broca’s region 
revisited: cytoarchitecture and intersubject variability. Journal of Comparative Neurology, 412(2), 
319–341. [PubMed: 10441759] 

Aoshima S, Phillips C, & Weinberg A (2004). Processing filler-gap dependencies in a head-final 
language. Journal of Memory and Language, 51, 23–54.

Baggio G, & Hagoort P (2011). The balance between memory and unification in semantics: A 
dynamic account of the N400. Language and Cognitive Processes, 26(9), 1338–1367.

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, & Friston KJ (2012). Canonical 
microcircuits for predictive coding. Neuron, 76(4), 695–711. [PubMed: 23177956] 

Bates D, Mächler M, Bolker B, & Walker S (2015). Fitting linear mixed-effects models using lme4. 
Journal of Statistical Software, 67(1), 1–48. 10.18637/jss.v067.i01

Baumgaertner A, Weiller C, & Büchel C (2002). Event-related fMRI reveals cortical sites involved in 
contextual sentence integration. Neuroimage, 16(3), 736–745. [PubMed: 12169257] 

Bautista A, & Wilson SM (2016). Neural responses to grammatically and lexically degraded speech. 
Language, Cognition and Neuroscience, 31(4), 567–574.

Bemis DK, & Pylkkänen L (2011). Simple composition: A magnetoencephalography investigation into 
the comprehension of minimal linguistic phrases. The Journal of Neuroscience, 31(8), 2801–2814. 
10.1523/JNEUROSCI.5003-10.2011 [PubMed: 21414902] 

Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, & Naccache L (2009). Neural signature of 
the conscious processing of auditory regularities. Proceedings of the National Academy of 
Sciences, 106(5), 1672–1677.

Bhattasali S, Hale J, Pallier C, Brennan J, Luh W-M, & Spreng RN (2018). Differentiating Phrase 
Structure Parsing and Memory Retrieval in the Brain. Proceedings of the Society for Computation 
in Linguistics (SCiL) 2018, 74–80.

Bischoff-Grethe A, Goedert KM, Willingham DT, & Grafton ST (2004). Neural substrates of response-
based sequence learning using fMRI. Journal of Cognitive Neuroscience, 16(1), 127–138. 
[PubMed: 15006042] 

Blanco-Elorrieta E, & Pylkkänen L (2017). Bilingual language switching in the laboratory versus in 
the wild: The spatiotemporal dynamics of adaptive language control. Journal of Neuroscience, 
37(37), 9022–9036. [PubMed: 28821648] 

Blank I, Balewski Z, Mahowald K, & Fedorenko E (2016). Syntactic processing is distributed across 
the language system. Neuroimage, 127, 307–323. [PubMed: 26666896] 

Blank I & Fedorenko E (2016). Different high-level language regions integrate information over the 
same time-window. Poster presented at the Society for the Neurobiology of Language 8th meeting 
London, UK.

Blank I, & Fedorenko E (2017). Domain-general brain regions do not track linguistic input as closely 
as language-selective regions. Journal of Neuroscience, 3616–3642.

Shain et al. Page 25

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Blank I, & Fedorenko E (submitted). No evidence for functional distinctions across fronto-temporal 
language regions in their temporal receptive windows. BioRxiv. 10.1101/712372

Blank I, Kanwisher N, & Fedorenko E (2014). A functional dissociation between language and 
multiple-demand systems revealed in patterns of BOLD signal fluctuations. Journal of 
Neurophysiology, 112(5), 1105–1118. [PubMed: 24872535] 

Blank IA, Kiran S, & Fedorenko E (2017). Can neuroimaging help aphasia researchers? Addressing 
generalizability, variability, and interpretability. Cognitive Neuropsychology, 34(6), 377–393. 
[PubMed: 29188746] 

Blumstein SE (2009). Auditory word recognition: Evidence from aphasia and functional 
neuroimaging. Language and Linguistics Compass, 3(4), 824–838. [PubMed: 19915692] 

Blumstein SE, & Amso D (2013). Dynamic functional organization of language: insights from 
functional neuroimaging. Perspectives on Psychological Science, 8(1), 44–48. [PubMed: 
25414726] 

Bonhage CE, Mueller JL, Friederici AD, & Fiebach CJ (2015). Combined eye tracking and fMRI 
reveals neural basis of linguistic predictions during sentence comprehension. Cortex, 68, 33–47. 
[PubMed: 26003489] 

Botvinick M (2007). Multilevel structure in behavior and in the brain: A computational model of 
Fuster’s hierarchy. Philosophical Transactions of the Royal Society, Series B: Biological Sciences, 
362, 1615–1626.

Boynton GM, Engel SA, Glover GH, & Heeger DJ (1996). Linear systems analysis of functional 
magnetic resonance imaging in human V1. Journal of Neuroscience, 16(13), 4207–4221. 
[PubMed: 8753882] 

Braze D, Mencl WE, Tabor W, Pugh KR, Constable RT, Fulbright RK, … Shankweiler DP (2011). 
Unification of sentence processing via ear and eye: An fMRI study. Cortex, 47(4), 416–431. 
[PubMed: 20117764] 

Brennan J (2016). Naturalistic sentence comprehension in the brain. Language and Linguistics 
Compass, 10(7), 299–313.

Brennan JR, & Hale JT (2019). Hierarchical structure guides rapid linguistic predictions during 
naturalistic listening. PloS One, 14(1), e0207741.

Brennan J, Stabler EP, Van Wagenen SE, Luh W-M, & Hale JT (2016). Abstract linguistic structure 
correlates with temporal activity during naturalistic comprehension. Brain and Language, 157, 81–
94. [PubMed: 27208858] 

Broca P (1861). Remarks on the seat of the faculty of articulated language, following an observation of 
aphemia (loss of speech). Bulletin de La Société Anatomique, 6, 330–357.

Brownsett SL, Warren JE, Geranmayeh F, Woodhead Z, Leech R, & Wise RJ (2014). Cognitive control 
and its impact on recovery from aphasic stroke. Brain, 137(1), 242–254. [PubMed: 24163248] 

Bubic A, Von Cramon DY, & Schubotz RI (2010). Prediction, cognition and the brain. Frontiers in 
Human Neuroscience, 4, 25. [PubMed: 20631856] 

Campbell KL, & Tyler LK (2018). Language-related domain-specific and domain-general systems in 
the human brain. Current Opinion in Behavioral Sciences, 21, 132–137. [PubMed: 30057936] 

Caplan D, & Waters GS (1999). Verbal working memory and sentence comprehension. Behavioral and 
Brain Sciences, 22(1), 77–94. [PubMed: 11301522] 

Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, & Amunts K (2008). The 
human inferior parietal lobule in stereotaxic space. Brain Structure and Function, 212(6), 481–495. 
[PubMed: 18651173] 

Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, & Zilles K (2006). The human inferior 
parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage, 33(2), 
430–448. [PubMed: 16949304] 

Chao ZC, Takaura K, Wang L, Fujii N, & Dehaene S (2018). Large-Scale Cortical Networks for 
Hierarchical Prediction and Prediction Error in the Primate Brain. Neuron.

Corbetta M, & Shulman GL (2002). Control of goal-directed and stimulus-driven attention in the brain. 
Nature Reviews Neuroscience, 3(3), 201. [PubMed: 11994752] 

Cristescu TC, Devlin JT, & Nobre AC (2006). Orienting attention to semantic categories. Neuroimage, 
33(4), 1178–1187. [PubMed: 17011212] 

Shain et al. Page 26

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dagerman KS, MacDonald MC, & Harm MW (2006). Aging and the use of context in ambiguity 
resolution: Complex changes from simple slowing. Cognitive Science, 30(2), 311–345. [PubMed: 
21702817] 

D’Astolfo L, & Rief W (2017). Learning about expectation violation from prediction error paradigms–
A meta-analysis on brain processes following a prediction error. Frontiers in Psychology, 8, 1253. 
[PubMed: 28804467] 

Dave S, Brothers TA, Traxler MJ, Ferreira F, Henderson JM, & Swaab TY (2018). 
Electrophysiological evidence for preserved primacy of lexical prediction in aging. 
Neuropsychologia, 117, 135–147. [PubMed: 29852201] 

Dax G (1863). Observations tendant à prouver la coïncidence constante des dérangements de la parole 
avec une lésion de l’hémisphère gauche du cerveau. CR Acad Sci Hebd Seances Acad Sci, 61, 
534.

Dayal BS, & MacGregor JF (1996). Identification of finite impulse response models: methods and 
robustness issues. Industrial & Engineering Chemistry Research, 35(11), 4078–4090.

de Bruin A, Roelofs A, Dijkstra T, & FitzPatrick I (2014). Domain-general inhibition areas of the brain 
are involved in language switching: FMRI evidence from trilingual speakers. NeuroImage, 90, 
348–359. [PubMed: 24384153] 

de Heer WA, Huth AG, Griffiths TL, Gallant JL, & Theunissen FE (2017). The hierarchical cortical 
organization of human speech processing. Journal of Neuroscience, 3216–3267.

Dehaene S, Meyniel F, Wacongne C, Wang L, & Pallier C (2015). The neural representation of 
sequences: From transition probabilities to algebraic patterns and linguistic trees. Neuron, 88(1), 
2–19. [PubMed: 26447569] 

Dehaene S, Spelke E, Pinel P, Stanescu R, & Tsivkin S (1999). Sources of mathematical thinking: 
Behavioral and brain-imaging evidence. Science, 284(5416), 970–974. [PubMed: 10320379] 

Dehghani M, Boghrati R, Man K, Hoover J, Gimbel SI, Vaswani A, … others. (2017). Decoding the 
neural representation of story meanings across languages. Human Brain Mapping, 38(12), 6096–
6106. [PubMed: 28940969] 

Demberg V, & Keller F (2008). Data from eye-tracking corpora as evidence for theories of syntactic 
processing complexity. Cognition, 109(2), 193–210. [PubMed: 18930455] 

Demšar J (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine 
Learning Research, 7(Jan), 1–30.

Desai RH, Choi W, Lai VT, & Henderson JM (2016). Toward semantics in the wild: activation to 
manipulable nouns in naturalistic reading. Journal of Neuroscience, 36(14), 4050–4055. [PubMed: 
27053211] 

D’Esposito M, & Postle BR (2015). The cognitive neuroscience of working memory. Annual Review 
of Psychology, 66.

Diachek E, Blank IA, Siegelman M, & Fedorenko E (2019). The domain-general multiple demand 
(MD) network does not support core aspects of language comprehension: A large-scale fMRI 
investigation.

Dien J, Franklin MS, Michelson CA, Lemen LC, Adams CL, & Kiehl KA (2008). fMRI 
characterization of the language formulation area. Brain Research, 1229, 179–192. [PubMed: 
18639536] 

Dozat T (2016). Incorporating Nesterov momentum into Adam. In ICLR Workshop.

Dronkers NF, Wilkins DP, Van Valin RD Jr, Redfern BB, & Jaeger JJ (2004). Lesion analysis of the 
brain areas involved in language comprehension. Cognition, 92(1–2), 145–177. [PubMed: 
15037129] 

Duffau H, Moritz-Gasser S, & Mandonnet E (2014). A re-examination of neural basis of language 
processing: Proposal of a dynamic hodotopical model from data provided by brain stimulation 
mapping during picture naming. Brain and Language, 131, 1–10. [PubMed: 23866901] 

Duncan J, & Owen AM (2000). Common regions of the human frontal lobe recruited by diverse 
cognitive demands. Trends in Neurosciences, 23(10), 475–483. [PubMed: 11006464] 

Egner T, Monti JMP, Trittschuh EH, Wieneke CA, Hirsch J, & Mesulam M-M (2008). Neural 
integration of top-down spatial and feature-based information in visual search. Journal of 
Neuroscience, 28(24), 6141–6151. [PubMed: 18550756] 

Shain et al. Page 27

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eickhoff SB, Pomjanski W, Jakobs O, Zilles K, & Langner R (2010). Neural correlates of developing 
and adapting behavioral biases in speeded choice reactions—an fMRI study on predictive motor 
coding. Cerebral cortex, 21(5), 1178–1191. [PubMed: 20956614] 

Federmeier KD, & Kutas M (2005). Aging in context: age-related changes in context use during 
language comprehension. Psychophysiology, 42(2), 133–141. [PubMed: 15787850] 

Federmeier KD, Kutas M, & Schul R (2010). Age-related and individual differences in the use of 
prediction during language comprehension. Brain and Language, 115(3), 149–161. [PubMed: 
20728207] 

Federmeier KD, McLennan DB, De Ochoa E, & Kutas M (2002). The impact of semantic memory 
organization and sentence context information on spoken language processing by younger and 
older adults: An ERP study. Psychophysiology, 39(2), 133–146. [PubMed: 12212662] 

Fedorenko E (2014). The role of domain-general cognitive control in language comprehension. 
Frontiers in Psychology, 5, 335. [PubMed: 24803909] 

Fedorenko E (in press). The brain network that supports high-level language processing In Gazzaniga 
M, Ivry RB, & Mangun GR (Eds.), Cognitive Neuroscience: The Biology of the Mind. New York: 
W. W. Norton and Company.

Fedorenko E, Behr MK, & Kanwisher N (2011). Functional specificity for high-level linguistic 
processing in the human brain. Proceedings of the National Academy of Sciences.

Fedorenko E, Blank I (submitted). Broca’s area is not a natural kind.

Fedorenko E, Duncan J, & Kanwisher N (2012a). Language-selective and domain-general regions lie 
side by side within Broca’s area. Current Biology, 22(21), 2059–2062. [PubMed: 23063434] 

Fedorenko E, Duncan J, & Kanwisher N (2013). Broad domain generality in focal regions of frontal 
and parietal cortex. Proceedings of the National Academy of Sciences, 201315235.

Fedorenko E, Gibson E, & Rohde D (2006). The nature of working memory capacity in sentence 
comprehension: Evidence against domain-specific working memory resources. Journal of Memory 
and Language, 54(4), 541–553.

Fedorenko E, Gibson E, & Rohde D (2007). The nature of working memory in linguistic, arithmetic 
and spatial integration processes. Journal of Memory and Language, 56(2), 246–269.

Fedorenko E, Hsieh P-J, Nieto-Castañón A, Whitfield-Gabrieli S, & Kanwisher N (2010). New method 
for fMRI investigations of language: defining ROIs functionally in individual subjects. Journal of 
Neurophysiology, 104(2), 1177–1194. [PubMed: 20410363] 

Fedorenko E, & Kanwisher N (2009). Neuroimaging of language: why hasn’t a clearer picture 
emerged? Language and Linguistics Compass, 3(4), 839–865.

Fedorenko E, Mineroff Z, Siegelman M, & Blank I (2018). Word meanings and sentence structure 
recruit the same set of fronto-temporal regions during comprehension. BioRxiv.

Fedorenko E, Nieto-Castañon A & Kanwisher N (2012b). Lexical and syntactic representations in the 
brain: An fMRI investigation with multi-voxel pattern analyses. Neuropsychologia, 50(4), 499–
513. [PubMed: 21945850] 

Fedorenko E, Scott TL, Brunner P, Coon WG, Pritchett B, Schalk G, & Kanwisher N (2016). Neural 
correlate of the construction of sentence meaning. Proceedings of the National Academy of 
Sciences, 113(41), E6256–E6262.

Fedorenko E, & Thompson-Schill SL (2014). Reworking the language network. Trends in Cognitive 
Sciences, 18(3), 120–126. [PubMed: 24440115] 

Felser C, Clahsen H, & Münte TF (2003). Storage and integration in the processing of filler-gap 
dependencies: An ERP study of topicalization and wh-movement in German. Brain and Language, 
87(3), 345–354. [PubMed: 14642537] 

Ferreira F, & Chantavarin S (2018). Integration and prediction in language processing: A synthesis of 
old and new. Current Directions in Psychological Science, 27(6), 443–448. [PubMed: 31130781] 

Fiebach CJ, Schlesewsky M, Lohmann G, Von Cramon DY, & Friederici AD (2005). Revisiting the 
role of Broca’s area in sentence processing: Syntactic integration versus syntactic working 
memory. Human Brain Mapping, 24(2), 79–91. [PubMed: 15455462] 

Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, … Zilles K (2007). Cortical folding 
patterns and predicting cytoarchitecture. Cerebral Cortex, 18(8), 1973–1980. [PubMed: 18079129] 

Shain et al. Page 28

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fodor J (1983). The modularity of mind: An essay on faculty psychology. Cambridge: MIT Press.

Fossum V, & Levy R (2012). Sequential vs. Hierarchical Syntactic Models of Human Incremental 
Sentence Processing. In Proceedings of the 3rd Workshop on Cognitive Modeling and 
Computational Linguistics. Association for Computational Linguistics.

Frank SL, & Bod R (2011). Insensitivity of the Human Sentence-Processing System to Hierarchical 
Structure. Psychological Science, 22(6), 829–834. [PubMed: 21586764] 

Frank SL, Bod R, & Christiansen MH (2012). How hierarchical is language use? Proceedings of the 
Royal Society B: Biological Sciences, 279(1747), 4522–4531.

Frank SL, & Christiansen MH (2018). Hierarchical and sequential processing of language. Language, 
Cognition and Neuroscience, 33(9), 1213–1218.

Frank SL, Otten LJ, Galli G, & Vigliocco G (2015). The ERP response to the amount of information 
conveyed by words in sentences. Brain & Language, 140, 1–11. [PubMed: 25461915] 

Friederici AD, Rueschemeyer S-A, Hahne A, & Fiebach CJ (2003). The role of left inferior frontal and 
superior temporal cortex in sentence comprehension: Localizing syntactic and semantic processes. 
Cerebral Cortex, 13(2), 170–177. [PubMed: 12507948] 

Friederici AD (2011). The brain basis of language processing: From structure to function. 
Physiological Reviews, 91(4), 1357–1392. [PubMed: 22013214] 

Friederici AD, Bahlmann J, Friedrich R, & Makuuchi M (2011). The neural basis of recursion and 
complex syntactic hierarchy. Biolinguistics, 5(1--2), 87–104.

Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, & Frackowiak RSJ (1994). Statistical 
parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4), 
189–210.

Frost MA, & Goebel R (2012). Measuring structural--functional correspondence: spatial variability of 
specialised brain regions after macro-anatomical alignment. Neuroimage, 59(2), 1369–1381. 
[PubMed: 21875671] 

Futrell R, Gibson E, Tily HJ, Blank I, Vishnevetsky A, Piantadosi S, & Fedorenko E (2018). The 
Natural Stories Corpus. In Calzolari N, Choukri K, Cieri C, Declerck T, Goggi S, Hasida K, … 
Tokunaga T (Eds.), Proceedings of the Eleventh International Conference on Language 
Resources and Evaluation (LREC 2018) Paris, France: European Language Resources 
Association (ELRA).

Gambi C, Gorrie F, Pickering MJ, & Rabagliati H (2018). The development of linguistic prediction: 
Predictions of sound and meaning in 2- to 5-year-olds. Journal of Experimental Child 
Psychology, 173, 351–370. [PubMed: 29793772] 

Gelman A, & Carlin J (2014). Beyond power calculations: Assessing type S (sign) and type M 
(magnitude) errors. Perspectives on Psychological Science, 9(6), 641–651. [PubMed: 26186114] 

Geranmayeh F, Brownsett SL, & Wise RJ (2014). Task-induced brain activity in aphasic stroke 
patients: What is driving recovery? Brain, 137(10), 2632–2648. [PubMed: 24974382] 

Geranmayeh F, Chau TW, Wise RJS, Leech R, & Hampshire A (2017). Domain-general subregions of 
the medial prefrontal cortex contribute to recovery of language after stroke. Brain, 140(7), 1947–
1958. [PubMed: 29177494] 

Geranmayeh F, Leech R, & Wise RJ (2016). Network dysfunction predicts speech production after left 
hemisphere stroke. Neurology.

Gibson E, & Ko K (1998). An integration-based theory of computational resources in sentence 
comprehension. In Fourth Architectures and Mechanisms in Language Processing Conference.

Gläscher J, Daw N, Dayan P, & O’Doherty JP (2010). States versus rewards: Dissociable neural 
prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 
66(4), 585–595. [PubMed: 20510862] 

Gloor P (1997). The temporal lobe \& limbic system. Oxford: Oxford University Press.

Gold BT, Balota DA, Jones SJ, Powell DK, Smith CD, & Andersen AH (2006). Dissociation of 
automatic and strategic lexical-semantics: Functional magnetic resonance imaging evidence for 
differing roles of multiple frontotemporal regions. Journal of Neuroscience, 26(24), 6523–6532. 
[PubMed: 16775140] 

Goldberg II, Harel M, & Malach R (2006). When the brain loses its self: prefrontal inactivation during 
sensorimotor processing. Neuron, 50(2), 329–339. [PubMed: 16630842] 

Shain et al. Page 29

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Graff D, Kong J, Chen K, & Maeda K (2007). English Gigaword Third Edition LDC2007T07. 
Philadelphia: Linguistic Data Consortium Retrieved from https://catalog.ldc.upenn.edu/
LDC2007T07

Grant AM, Fang SY, & Li P (2015). Second language lexical development and cognitive control: A 
longitudinal fMRI study. Brain and Language, 144, 35–47. [PubMed: 25899988] 

Grodner DJ, & Gibson E (2005). Consequences of the serial nature of linguistic input. Cognitive 
Science, 29, 261–291. [PubMed: 21702774] 

Hagoort P (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 
9(9), 416–423. 10.1016/j.tics.2005.07.004 [PubMed: 16054419] 

Hale J (2001). A probabilistic Earley parser as a psycholinguistic model. In Proceedings of the Second 
meeting of the North American Chapter of the Association for Computational Linguistics on 
Language technologies (pp. 1–8). 10.3115/1073336.1073357

Hale J (2006). Uncertainty about the rest of the sentence. Cognitive Science, 30(4), 643–672. 10.1207/
s15516709cog0000_64 [PubMed: 21702829] 

Hale J (2014). Automaton theories of human sentence comprehension CSLI Publications/Center for 
the Study of Language & Information.

Hale J, Lutz D, Luh W-M, & Brennan J (2015). Modeling fMRI time courses with linguistic structure 
at various grain sizes. In Proceedings of the 6th workshop on cognitive modeling and 
computational linguistics (pp. 89–97).

Handwerker DA, Ollinger JM, & D’Esposito M (2004). Variation of BOLD hemodynamic responses 
across subjects and brain regions and their effects on statistical analyses. NeuroImage, 21(4), 
1639–1651. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15050587 [PubMed: 
15050587] 

Harel N, Lee S-P, Nagaoka T, Kim D-S, & Kim S-G (2002). Origin of negative blood oxygenation 
level—dependent fMRI signals. Journal of Cerebral Blood Flow \& Metabolism, 22(8), 908–917. 
[PubMed: 12172376] 

Harrison L, Penny WD, & Friston K (2003). Multivariate autoregressive modeling of fMRI time series. 
Neuroimage, 19(4), 1477–1491. [PubMed: 12948704] 

Hartwigsen G, Henseler I, Stockert A, Wawrzyniak M, Wendt C, Klingbeil J, … Saur D (2017). 
Integration demands modulate effective connectivity in a fronto-temporal network for contextual 
sentence integration. NeuroImage, 147, 812–824. [PubMed: 27542723] 

Hartwigsen G (2018). Flexible redistribution in cognitive networks. Trends in Cognitive Sciences, 
22(8), 687–698. [PubMed: 29914734] 

Hasson U, Egidi G, Marelli M, & Willems RM (2018). Grounding the neurobiology of language in 
first principles: The necessity of non-language-centric explanations for language comprehension. 
Cognition, 180, 135–157. [PubMed: 30053570] 

Hasson U, & Honey CJ (2012). Future trends in Neuroimaging: Neural processes as expressed within 
real-life contexts. NeuroImage, 62(2), 1272–1278. [PubMed: 22348879] 

Hasson U, Malach R, & Heeger DJ (2010). Reliability of cortical activity during natural stimulation. 
Trends in Cognitive Sciences, 14(1), 40–48. [PubMed: 20004608] 

Havron N, de Carvalho A, Fiévet A-C, & Christophe A (2019). Three- to Four-Year-Old Children 
Rapidly Adapt Their Predictions and Use Them to Learn Novel Word Meanings. Child 
Development, 90(1), 82–90. 10.1111/cdev.13113 [PubMed: 30004578] 

Heafield K, Pouzyrevsky I, Clark JH, & Koehn P (2013). Scalable modified Kneser-Ney language 
model estimation. In Proceedings of the 51st Annual Meeting of the Association for 
Computational Linguistics (pp. 690–696). Sofia, Bulgaria.

Hein G, & Knight RT (2008). Superior temporal sulcus—it’s my area: or is it? Journal of Cognitive 
Neuroscience, 20(12), 2125–2136. [PubMed: 18457502] 

Henderson JM, Choi W, Lowder MW, & Ferreira F (2016). Language structure in the brain: A fixation-
related fMRI study of syntactic surprisal in reading. Neuroimage, 132, 293–300. [PubMed: 
26908322] 

Henderson JM, Choi W, Luke SG, & Desai RH (2015). Neural correlates of fixation duration in natural 
reading: evidence from fixation-related fMRI. NeuroImage, 119, 390–397. [PubMed: 26151101] 

Shain et al. Page 30

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://catalog.ldc.upenn.edu/LDC2007T07
https://catalog.ldc.upenn.edu/LDC2007T07
http://www.ncbi.nlm.nih.gov/pubmed/15050587


Hervais-Adelman AG, Carlyon RP, Johnsrude IS, & Davis MH (2012). Brain regions recruited for the 
effortful comprehension of noise-vocoded words. Language and Cognitive Processes, 27(7–8), 
1145–1166.

Hervais-Adelman AG, Moser-Mercer B, & Golestani N (2011). Executive control of language in the 
bilingual brain: Integrating the evidence from neuroimaging to neuropsychology. Frontiers in 
Psychology, 2, 234. [PubMed: 21954391] 

Huettig F, & Mani N (2016). Is prediction necessary to understand language? Probably not. Language, 
Cognition and Neuroscience, 31(1), 19–31.

Hugdahl K, Raichle ME, Mitra A, & Specht K (2015). On the existence of a generalized non-specific 
task-dependent network. Frontiers in Human Neuroscience, 9, 430. [PubMed: 26300757] 

Huth AG, de Heer WA, Griffiths TL, Theunissen FE, & Gallant JL (2016). Natural speech reveals the 
semantic maps that tile human cerebral cortex. Nature, 532(7600), 453–458. [PubMed: 
27121839] 

Hsiao F, & Gibson E (2003). Processing relative clauses in Chinese. Cognition, 90(1), 3–27. [PubMed: 
14597268] 

Hsu NS, & Novick JM (2016). Dynamic engagement of cognitive control modulates recovery from 
misinterpretation during real-time language processing. Psychological Science, 27(4), 572–582. 
[PubMed: 26957521] 

January D, Trueswell JC, & Thompson-Schill SL (2009). Co-localization of Stroop and syntactic 
ambiguity resolution in Broca’s area: Implications for the neural basis of sentence processing. 
Journal of Cognitive Neuroscience, 21(12), 2434–2444. [PubMed: 19199402] 

Jones EG, & Powell TPS (1970). An anatomical study of converging sensory pathways within the 
cerebral cortex of the monkey. Brain, 93(4), 793–820. [PubMed: 4992433] 

Joshi AK (1985). How much context sensitivity is necessary for characterizing structural descriptions: 
Tree adjoining grammars In Dowty LKD & Zwicky A (Eds.), Natural language parsing: 
Psychological, computational and theoretical perspectives (pp. 206–250). Cambridge, U.K.: 
Cambridge University Press.

Juch H, Zimine I, Seghier ML, Lazeyras F, & Fasel JHD (2005). Anatomical variability of the lateral 
frontal lobe surface: implication for intersubject variability in language neuroimaging. 
Neuroimage, 24(2), 504–514. [PubMed: 15627592] 

Julian JB, Fedorenko E, Webster J, & Kanwisher N (2012). An algorithmic method for functionally 
defining regions of interest in the ventral visual pathway. Neuroimage, 60(4), 2357–2364. 
[PubMed: 22398396] 

Kaan E (2014). Predictive sentence processing in L2 and L1: What is different? Linguistic Approaches 
to Bilingualism, 4(2), 257–282.

Kaan E, & Swaab TY (2002). The brain circuitry of syntactic comprehension. Trends in Cognitive 
Sciences, 6(8), 350–356. [PubMed: 12140086] 

Kannurpatti SS, & Biswal BB (2004). Negative functional response to sensory stimulation and its 
origins. Journal of Cerebral Blood Flow \& Metabolism, 24(6), 703–712. [PubMed: 15181378] 

Keller GB, & Mrsic-Flogel TD (2018). Predictive Processing: A Canonical Cortical Computation. 
Neuron, 100(2), 424–435. [PubMed: 30359606] 

Kiehl KA, Laurens KR, & Liddle PF (2002). Reading anomalous sentences: An event-related fMRI 
study of semantic processing. Neuroimage, 17(2), 842–850. [PubMed: 12377158] 

Kim SY, Qi T, Feng X, Ding G, Liu L, & Cao F (2016). How does language distance between L1 and 
L2 affect the L2 brain network? An fMRI study of Korean–Chinese–English trilinguals. 
NeuroImage, 129, 25–39. [PubMed: 26673115] 

Kingma DP, & Ba J (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6. 
Retrieved from http://arxiv.org/abs/1412.6980

Kliegl R, Nuthmann A, & Engbert R (2006). Tracking the mind during reading: The influence of past, 
present, and future words on fixation durations. Journal of Experimental Psychology: General, 
135(1), 12. [PubMed: 16478314] 

Kluender R, & Kutas M (1993). Bridging the gap: Evidence from ERPs on the processing of 
unbounded dependencies. Journal of Cognitive Neuroscience, 5(2), 196–214. [PubMed: 
23972154] 

Shain et al. Page 31

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1412.6980


Koch K, Schachtzabel C, Wagner G, Reichenbach JR, Sauer H, & Schlösser R (2008). The neural 
correlates of reward-related trial-and-error learning: An fMRI study with a probabilistic learning 
task. Learning & Memory, 15(10), 728–732. [PubMed: 18832559] 

Koelsch S, Gunter TC, Cramon D. Y. v, Zysset S, Lohmann G, & Friederici AD (2002). Bach speaks: a 
cortical “language-network” serves the processing of music. Neuroimage, 17(2), 956–966. 
[PubMed: 12377169] 

Kotz SA (2009). A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain and 
Language, 109(2–3), 68–74. [PubMed: 18657314] 

Kuperberg GR, Holcomb PJ, Sitnikova T, Greve D, Dale AM, & Caplan D (2003). Distinct patterns of 
neural modulation during the processing of conceptual and syntactic anomalies. Journal of 
Cognitive Neuroscience, 15(2), 272–293. [PubMed: 12676064] 

Kuperberg GR, & Jaeger TF (2016). What do we mean by prediction in language comprehension? 
Language, Cognition and Neuroscience, 31(1), 32–59.

Kuperberg GR, McGuire PK, Bullmore ET, andS. Rabehesketh B. MJ, Wright IC, Lythgoe DJ, & 
David SC R. W. A. S. (2000). Common and Distinct Neural Substrates for Pragmatic, Semantic, 
and Syntactic Processing of Spoken Sentences: An fMRI Study. Journal of Cognitive 
Neuroscience, 12(2), 321–341. [PubMed: 10771415] 

Kutas M, & Hillyard SA (1984). Brain potentials during reading reflect word expectancy and semantic 
association. Nature, 307(5947), 161–163. [PubMed: 6690995] 

Kruggel F, & von Cramon DY (1999). Temporal properties of the hemodynamic response in functional 
MRI. Human Brain Mapping, 8(4), 259–271. [PubMed: 10619419] 

Kruggel F, Wiggins CJ, Herrmann CS, & von Cramon DY (2000). Recording of the event-related 
potentials during functional MRI at 3.0 Tesla field strength. Magnetic Resonance in Medicine: 
An Official Journal of the International Society for Magnetic Resonance in Medicine, 44(2), 
277–282.

Lambon Ralph MA, Jefferies E, Patterson K, & Rogers TT (2017). The neural and computational 
bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42. [PubMed: 27881854] 

Lee AT, Glover GH, & Meyer CH (1995). Discrimination of large venous vessels in time-course spiral 
blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magnetic 
Resonance in Medicine, 33(6), 745–754. [PubMed: 7651109] 

Lesage E, Hansen PC, & Miall RC (2017). Right lateral cerebellum represents linguistic predictability. 
Journal of Neuroscience, 37(26), 6231–6241. [PubMed: 28546307] 

Levelt WJM (1989). Speaking: From Intention to Articulation. Cambridge: MIT Press.

Levy R (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–1177. [PubMed: 
17662975] 

Lewis S, & Phillips C (2015). Aligning grammatical theories and language processing models. Journal 
of Psycholinguistic Research, 44(1), 27–46. [PubMed: 25408514] 

Lewis RL, & Vasishth S (2005). An activation-based model of sentence processing as skilled memory 
retrieval. Cognitive Science, 29(3), 375–419. [PubMed: 21702779] 

Linck JA, Osthus P, Koeth JT, & Bunting MF (2014). Working memory and second language 
comprehension and production: A meta-analysis. Psychonomic Bulletin \& Review, 21(4), 861–
883. [PubMed: 24366687] 

Lindquist MA, Loh JM, Atlas LY, & Wager TD (2009). Modeling the hemodynamic response function 
in fMRI: Efficiency, bias and mis-modeling. NeuroImage, 45(1, Supplement 1), S187–S198. 
[PubMed: 19084070] 

Lindquist M, & Wager T (2007). Validity and power in hemodynamic response modeling: A 
comparison study and a new approach. Human Brain Mapping, 28, 764–784. [PubMed: 
17094118] 

Lopopolo A, Frank SL, den Bosch A, & Willems RM (2017). Using stochastic language models 
(SLM) to map lexical, syntactic, and phonological information processing in the brain. PloS One, 
12(5), e0177794. [PubMed: 28542396] 

MacDonald MC, Just MA, & Carpenter PA (1992). Working memory constraints on the processing of 
syntactic ambiguity. Cognitive Psychology, 24(1), 56–98. [PubMed: 1537232] 

Shain et al. Page 32

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MacDonald MC, Pearlmutter NJ, & Seidenberg MS (1994). The lexical nature of syntactic ambiguity 
resolution. Psychological Review, 101(4), 676–703. [PubMed: 7984711] 

Mahowald K, & Fedorenko E (2016). Reliable individual-level neural markers of high-level language 
processing: A necessary precursor for relating neural variability to behavioral and genetic 
variability. Neuroimage, 139, 74–93. [PubMed: 27261158] 

Mani N, & Huettig F (2012). Prediction during language processing is a piece of cake—But only for 
skilled producers. Journal of Experimental Psychology: Human Perception and Performance, 
38(4), 843. [PubMed: 22774799] 

Marcus MP, Santorini B, & Marcinkiewicz MA (1993). Building a large annotated corpus of English: 
The Penn Treebank. Computational Linguistics, 19(2), 313–330.

Martin CD, Thierry G, Kuipers J-R, Boutonnet B, Foucart A, & Costa A (2013). Bilinguals reading in 
their second language do not predict upcoming words as native readers do. Journal of Memory 
and Language, 69(4), 574–588.

Matchin W, Brodbeck C, Hammerly C, & Lau E (2018). The temporal dynamics of structure and 
content in sentence comprehension: Evidence from fMRI-constrained MEG. Human Brain 
Mapping, 40(2), 663–678. [PubMed: 30259599] 

Matchin W, Hammerly C, & Lau E (2017). The role of the IFG and pSTS in syntactic prediction: 
Evidence from a parametric study of hierarchical structure in fMRI. Cortex, 88, 106–123. 
[PubMed: 28088041] 

Matchin W, Sprouse J, & Hickok G (2014). A structural distance effect for backward anaphora in 
Broca’s area: An fMRI study. Brain and Language, 138, 1–11. [PubMed: 25261745] 

Mather M, Cacioppo JT, & Kanwisher N (2013). How fMRI can inform cognitive theories. 
Perspectives on Psychological Science, 8(1), 108–113. [PubMed: 23544033] 

McFee B, Raffel C, Liang D, Ellis DPW, McVicar M, Battenberg E, & Nieto O (2015). librosa: Audio 
and music signal analysis in python. In Proceedings of the 14th Python in Science Conference 
(pp. 18–25).

McMillan CT, Clark R, Gunawardena D, Ryant N, & Grossman M (2012). fMRI evidence for strategic 
decision-making during resolution of pronoun reference. Neuropsychologia, 50(5), 674–687. 
[PubMed: 22245014] 

McMillan CT, Coleman D, Clark R, Liang T-W, Gross RG, & Grossman M (2013). Converging 
evidence for the processing costs associated with ambiguous quantifier comprehension. Frontiers 
in Psychology, 4, 153. [PubMed: 23565102] 

Meier EL, Kapse KJ, & Kiran S (2016). The Relationship between Frontotemporal Effective 
Connectivity during Picture Naming, Behavior, and Preserved Cortical Tissue in Chronic 
Aphasia. Frontiers in Human Neuroscience, 10, 109. [PubMed: 27014039] 

Mesulam M-M (1998). From sensation to cognition. Brain: A Journal of Neurology, 121(6), 1013–
1052. [PubMed: 9648540] 

Meyniel F, & Dehaene S (2017). Brain networks for confidence weighting and hierarchical inference 
during probabilistic learning. Proceedings of the National Academy of Sciences, 114(19), 
E3859–E3868.

Miezin FM, Maccotta L, Ollinger JM, Petersen SE, & Buckner RL (2000). Characterizing the 
hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of 
ordering brain activity based on relative timing. Neuroimage, 11(6), 735–759. [PubMed: 
10860799] 

Miller EK, & Cohen JD (2001). An integrative theory of prefrontal cortex function. Annual Review of 
Neuroscience, 24(1), 167–202.

Mineroff Z, Blank IA, Mahowald K, & Fedorenko E (2018). A robust dissociation among the 
language, multiple demand, and default mode networks: evidence from inter-region correlations 
in effect size. Neuropsychologia, 119, 501–511. [PubMed: 30243926] 

Mitsugi S, & MacWhinney B (2016). The use of case marking for predictive processing in second 
language Japanese. Bilingualism: Language and Cognition, 19(1), 19–35.

Mollica F, Siegelman M, Diachek E, Piantadosi ST, Mineroff Z, Futrell R, & Fedorenko E (2018). 
High local mutual information drives the response in the human language network. BioRxiv, 
436204.

Shain et al. Page 33

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Montague PR, Dayan P, & Sejnowski TJ (1996). A framework for mesencephalic dopamine systems 
based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 1936–1947. [PubMed: 
8774460] 

Monti MM, Parsons LM, & Osherson DN (2012). Thought beyond language: Neural dissociation of 
algebra and natural language. Psychological Science, 23(8), 914–922. [PubMed: 22760883] 

Nesterov YE (1983). A method for solving the convex programming problem with convergence rate 
O(1/k^2). In Dokl. Akad. Nauk SSSR (Vol. 269, pp. 543–547).

Newman AJ, Pancheva R, & Ozawa K (2001). An Event-Related fMRI Study of Syntactic and 
Semantic Violations. Journal of Psycholinguistic Research, 30(3), 339–364. [PubMed: 
11523278] 

Nieto-Castañón A, & Fedorenko E (2012). Subject-specific functional localizers increase sensitivity 
and functional resolution of multi-subject analyses. Neuroimage, 63(3), 1646–1669. [PubMed: 
22784644] 

Nieuwenhuis S, Forstmann BU, & Wagenmakers E-J (2011). Erroneous analyses of interactions in 
neuroscience: a problem of significance. Nature Neuroscience, 14(9), 1105. [PubMed: 21878926] 

Nieuwland MS, Martin AE, & Carreiras M (2012). Brain regions that process case: Evidence from 
Basque. Human Brain Mapping, 33(11), 2509–2520. [PubMed: 21898678] 

Nguyen L, van Schijndel M, & Schuler W (2012). Accurate Unbounded Dependency Recovery using 
Generalized Categorial Grammars. In Proceedings of COLING 2012 (pp. 2125–2140). Mumbai, 
India.

Novais-Santos S, Gee J, Shah M, Troiani V, Work M, & Grossman M (2007). Resolving sentence 
ambiguity with planning and working memory resources: Evidence from fMRI. Neuroimage, 
37(1), 361–378. [PubMed: 17574445] 

Novick JM, Trueswell JC, & Thompson-Schill SL (2005). Cognitive control and parsing: Reexamining 
the role of Broca’s area in sentence comprehension. Cognitive, Affective, \& Behavioral 
Neuroscience, 5(3), 263–281.

Obleser J, & Kotz SA (2009). Expectancy constraints in degraded speech modulate the language 
comprehension network. Cerebral Cortex, 20(3), 633–640. [PubMed: 19561061] 

Obleser J, Wise RJS, Dresner MA, & Scott SK (2007). Functional integration across brain regions 
improves speech perception under adverse listening conditions. Journal of Neuroscience, 27(9), 
2283–2289. [PubMed: 17329425] 

Oldfield RC (1971). The assessment and analysis of handedness: the Edinburgh inventory. 
Neuropsychologia, 9(1), 97–113. [PubMed: 5146491] 

Paunov A, Blank IA, & Fedorenko E (2019). Functionally distinct language and Theory of Mind 
networks are synchronized at rest and during language comprehension. Journal of 
Neurophysiology. 10.1152/jn.00619.

Payne BR, & Federmeier KD (2018). Contextual constraints on lexico-semantic processing in aging: 
Evidence from single-word event-related brain potentials. Brain Research, 1687, 117–128. 
[PubMed: 29462609] 

Peelle JE, Troiani V, Wingfield A, & Grossman M (2009). Neural processing during older adults’ 
comprehension of spoken sentences: Age differences in resource allocation and connectivity. 
Cerebral Cortex, 20(4), 773–782. [PubMed: 19666829] 

Perani D, & Abutalebi J (2005). The neural basis of first and second language processing. Current 
Opinion in Neurobiology, 15(2), 202–206. [PubMed: 15831403] 

Petersen SE, Fox PT, Posner MI, Mintun M, & Raichle ME (1988). Positron emission tomographic 
studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585. [PubMed: 
3277066] 

Pickering MJ, & Gambi C (2018). Predicting while comprehending language: A theory and review. 
Psychological Bulletin, 144(10), 1002. [PubMed: 29952584] 

Pinker S (1994). The Language Instinct: How the Mind Creates Language. New York: HarperCollins.

Pliatsikas C, & Luk G (2016). Executive control in bilinguals: A concise review on fMRI studies. 
Bilingualism: Language and Cognition, 19(4), 699–705.

Poldrack RA (2006). Can cognitive processes be inferred from neuroimaging data? Trends in 
Cognitive Sciences, 10(2), 59–63. [PubMed: 16406760] 

Shain et al. Page 34

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Poldrack RA (2011). Inferring mental states from neuroimaging data: from reverse inference to large-
scale decoding. Neuron, 72(5), 692–697. [PubMed: 22153367] 

Polyak BT, & Juditsky AB (1992). Acceleration of stochastic approximation by averaging. SIAM 
Journal on Control and Optimization, 30(4), 838–855.

Rao RPN, & Ballard DH (1999). Predictive coding in the visual cortex: a functional interpretation of 
some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79. [PubMed: 10195184] 

Rasmussen NE, & Schuler W (2018). Left-Corner Parsing With Distributed Associative Memory 
Produces Surprisal and Locality Effects. Cognitive Science, 42, 1009–1042. [PubMed: 
28763111] 

Rayner K, Ashby J, Pollatsek A, & Reichle ED (2004). The effects of frequency and predictability on 
eye fixations in reading: Implications for the EZ Reader model. Journal of Experimental 
Psychology: Human Perception and Performance, 30(4), 720. [PubMed: 15301620] 

Resnik P (1992). Left-Corner Parsing and Psychological Plausibility. In Proceedings of COLING (pp. 
191–197). Nantes, France.

Richlan F, Gagl B, Hawelka S, Braun M, Schurz M, Kronbichler M, & Hutzler F (2013). Fixation-
related fMRI analysis in the domain of reading research: using self-paced eye movements as 
markers for hemodynamic brain responses during visual letter string processing. Cerebral Cortex, 
24(10), 2647–2656. [PubMed: 23645718] 

Roark B, Bachrach A, Cardenas C, & Pallier C (2009). Deriving lexical and syntactic expectation-
based measures for psycholinguistic modeling via incremental top-down parsing. Proceedings of 
the 2009 Conference on Empirical Methods in Natural Langauge Processing, 324–333.

Rodd JM, Davis MH, & Johnsrude IS (2005). The neural mechanisms of speech comprehension: fMRI 
studies of semantic ambiguity. Cerebral Cortex, 15(8), 1261–1269. [PubMed: 15635062] 

Rogalsky C, Almeida D, Sprouse J, & Hickok G (2015). Sentence processing selectivity in Broca’s 
area: Evident for structure but not syntactic movement. Language, Cognition and Neuroscience, 
30(10), 1326–1338.

Rogalsky C, & Hickok G (2011). The role of Broca’s area in sentence comprehension. Journal of 
Cognitive Neuroscience, 23(7), 1664–1680. [PubMed: 20617890] 

Rüschemeyer SA, Fiebach CJ, Kempe V, & Friederici AD (2005). Processing lexical semantic and 
syntactic information in first and second language: fMRI evidence from German and Russian. 
Human Brain Mapping, 25(2), 266–286. [PubMed: 15849713] 

Rushworth MF, & Behrens TE (2008). Choice, uncertainty and value in prefrontal and cingulate 
cortex. Nature Neuroscience, 11(4), 389. [PubMed: 18368045] 

Sakai KL (2005). Language acquisition and brain development. Science, 310(5749), 815–819. 
[PubMed: 16272114] 

Saxe R, Brett M, & Kanwisher N (2006). Divide and conquer: a defense of functional localizers. 
Neuroimage, 30(4), 1088–1096. [PubMed: 16635578] 

Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, & Botvinick MM (2013). Neural 
representations of events arise from temporal community structure. Nature Neuroscience, 16(4), 
486. [PubMed: 23416451] 

Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, & Zilles K (2008). 
Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior 
parietal cortex. Cerebral Cortex, 18(9), 2141–2157. [PubMed: 18245042] 

Schuster S, Hawelka S, Himmelstoss NA, Richlan F, & Hutzler F (2019). The neural correlates of 
word position and lexical predictability during sentence reading: Evidence from fixation-related 
fMRI. Language, Cognition and Neuroscience, 1–12.

Schuster S, Hawelka S, Hutzler F, Kronbichler M, & Richlan F (2016). Words in context: The effects 
of length, frequency, and predictability on brain responses during natural reading. Cerebral 
Cortex, 26(10), 3889–3904.

Scott TL, Gallée J, & Fedorenko E (2017). A new fun and robust version of an fMRI localizer for the 
frontotemporal language system. Cognitive Neuroscience, 8(3), 167–176. [PubMed: 27386919] 

Scott SK, & McGettigan C (2013). The neural processing of masked speech. Hearing Research, 303, 
58–66. [PubMed: 23685149] 

Shain et al. Page 35

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shafto MA, & Tyler LK (2014). Language in the aging brain: The network dynamics of cognitive 
decline and preservation. Science, 346(6209), 583–587. [PubMed: 25359966] 

Shain C (2019). Prediction is all you need: A large-scale study of the effects of word frequency and 
predictability in naturalistic reading. Proceedings of the 2019 Annual Conference of the North 
American Chapter of the Association for Computational Linguistics.

Shain C, van Schijndel M, Futrell R, Gibson E, & Schuler W (2016). Memory access during 
incremental sentence processing causes reading time latency. In Proceedings of the 
Computational Linguistics for Linguistic Complexity Workshop (pp. 49–58). Association for 
Computational Linguistics.

Shain C, & Schuler W (2018). Deconvolutional time series regression: A technique for modeling 
temporally diffuse effects. In Proceedings of the 2018 Conference on Empirical Methods in 
Natural Language Processing.

Shain C, & Schuler W (2019). Continuous-Time Deconvolutional Regression for Psycholinguistic 
Modeling. PsyArXiv.

Shannon CE (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 
379–423,623–656.

Shmuel A, Augath M, Oeltermann A, & Logothetis NK (2006). Negative functional MRI response 
correlates with decreases in neuronal activity in monkey visual area V1. Nature Neuroscience, 
9(4), 569. [PubMed: 16547508] 

Shmuel A, Yacoub E, Pfeuffer J, de Moortele P-F, Adriany G, Hu X, & Ugurbil K (2002). Sustained 
negative BOLD, blood flow and oxygen consumption response and its coupling to the positive 
response in the human brain. Neuron, 36(6), 1195–1210. [PubMed: 12495632] 

Sims CA (1980). Macroeconomics and reality. Econometrica: Journal of the Econometric Society, 1–
48.

Sims J, Kapse K, Glynn P, Sandberg C, & Kiran S (2016). The relationship between the amount of 
spared tissue, percent signal change and accuracy in language recovery in aphasia. 
Neuropsychologia, 84, 113–126. [PubMed: 26775192] 

Smith NJ, & Levy R (2013). The effect of word predictability on reading time is logarithmic. 
Cognition, 128, 302–319. [PubMed: 23747651] 

Smith AT, Singh KD, & Greenlee MW (2000). Attentional suppression of activity in the human visual 
cortex. Neuroreport, 11(2), 271–278. [PubMed: 10674469] 

Sood MR, & Sereno MI (2016). Areas activated during naturalistic reading comprehension overlap 
topological visual, auditory, and somatotomotor maps. Human Brain Mapping, 37(8), 2784–
2810. [PubMed: 27061771] 

Speer NK, Reynolds JR, Swallow KM, & Zacks JM (2009). Reading stories activates neural 
representations of visual and motor experiences. Psychological Science, 20(8), 989–999. 
[PubMed: 19572969] 

Speer NK, Zacks JM, & Reynolds JR (2007). Human brain activity time-locked to narrative event 
boundaries. Psychological Science, 18(5), 449–455. [PubMed: 17576286] 

Sreenivasan KK, Curtis CE, & D’Esposito M (2014). Revisiting the role of persistent neural activity 
during working memory. Trends in Cognitive Sciences, 18(2), 82–89. [PubMed: 24439529] 

Stanescu-Cosson R, Pinel P, van de Moortele P-F, Le Bihan D, Cohen L, & Dehaene S (2000). 
Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size 
on the cerebral networks for exact and approximate calculation. Brain, 123(11), 2240–2255. 
[PubMed: 11050024] 

Staub A (2015). The effect of lexical predictability on eye movements in reading: Critical review and 
theoretical interpretation. Language and Linguistics Compass, 9(8), 311–327.

Staub A, & Benatar A (2013). Individual differences in fixation duration distributions in reading. 
Psychonomic Bulletin \& Review, 20(6), 1304–1311. [PubMed: 23637011] 

Steedman M (2000). The syntactic process. Cambridge, MA: MIT Press/Bradford Books.

Strange BA, Duggins A, Penny W, Dolan RJ, & Friston KJ (2005). Information theory, novelty and 
hippocampal responses: Unpredicted or unpredictable? Neural Networks, 18(3), 225–230. 
[PubMed: 15896570] 

Shain et al. Page 36

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Strijkers K, Chanoine V, Munding D, Dubarry A-S, Trébuchon A, Badier J-M, & Alario F-X (2019). 
Grammatical class modulates the (left) inferior frontal gyrus within 100 milliseconds when 
syntactic context is predictive. Scientific Reports, 9(1), 4830. [PubMed: 30886251] 

Tahmasebi AM, Artiges E, Banaschewski T, Barker GJ, Bruehl R, Büchel C, … others. (2012). 
Creating probabilistic maps of the face network in the adolescent brain: a multicentre functional 
MRI study. Human Brain Mapping, 33(4), 938–957. [PubMed: 21416563] 

Tanenhaus MK, Spivey-Knowlton MJ, Eberhard KM, & Sedivy JCE (1995). Integration of visual and 
linguistic information in spoken language comprehension. Science, 268, 1632–1634. [PubMed: 
7777863] 

Thompson-Schill SL, Bedny M, & Goldberg RF (2005). The frontal lobes and the regulation of mental 
activity. Current Opinion in Neurobiology, 15(2), 219–224. [PubMed: 15831406] 

Tomaiuolo F, MacDonald JD, Caramanos Z, Posner G, Chiavaras M, Evans AC, & Petrides M (1999). 
Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal 
gyrus: an in vivo MRI analysis. European Journal of Neuroscience, 11(9), 3033–3046. [PubMed: 
10510168] 

Tran D, Kucukelbir A, Dieng AB, Rudolph M, Liang D, & Blei DM (2016). Edward: A library for 
probabilistic modeling, inference, and criticism. ArXiv Preprint ArXiv:1610.09787.

Tyler LK, Marslen-Wilson WD, Randall B, Wright P, Devereux BJ, Zhuang J, … Stamatakis EA 
(2011). Left inferior frontal cortex and syntax: Function, structure and behaviour in patients with 
left hemisphere damage. Brain, 134(2), 415–431. [PubMed: 21278407] 

Uhrig L, Dehaene S, & Jarraya B (2014). A hierarchy of responses to auditory regularities in the 
macaque brain. Journal of Neuroscience, 34(4), 1127–1132. [PubMed: 24453305] 

Ullman MT (2016). The declarative/procedural model: a neurobiological model of language learning, 
knowledge, and use In Neurobiology of Language (pp. 953–968). Elsevier.

Vaden KI, Kuchinsky SE, Cute SL, Ahlstrom JB, Dubno JR, & Eckert MA (2013). The cingulo-
opercular network provides word-recognition benefit. Journal of Neuroscience, 33(48), 18979–
18986. [PubMed: 24285902] 

Vagharchakian L, Dehaene-Lambertz G, Pallier C, & Dehaene S (2012). A temporal bottleneck in the 
language comprehension network. Journal of Neuroscience, 32(26), 9089–9102. [PubMed: 
22745508] 

van Schijndel M, Exley A, & Schuler W (2013). A Model of Language Processing as Hierarchic 
Sequential Prediction. Topics in Cognitive Science, 5(3), 522–540. 10.1111/tops.12034 
[PubMed: 23765642] 

van Schijndel M, Nguyen L, & Schuler W (2013). An Analysis of Memory-based Processing Costs 
using Incremental Deep Syntactic Dependency Parsing. In Proc. of CMCL 2013 Association for 
Computational Linguistics.

van Schijndel M, & Schuler W (2013). An Analysis of Frequency- and Memory-Based Processing 
Costs. In Proceedings of Human Language Technologies: The 2013 Annual Conference of the 
North American Chapter of the ACL.

van Schijndel M, & Schuler W (2015). Hierarchic syntax improves reading time prediction. In 
Proceedings of NAACL-HLT 2015 Association for Computational Linguistics.

Vandenberghe R, Nobre AC, & Price CJ (2002). The response of left temporal cortex to sentences. 
Journal of Cognitive Neuroscience, 14(4), 550–560. [PubMed: 12126497] 

Visser M, Jefferies E, & Lambon Ralph MA (2010). Semantic processing in the anterior temporal 
lobes: A meta-analysis of the functional neuroimaging literature. Journal of Cognitive 
Neuroscience, 22(6), 1083–1094. [PubMed: 19583477] 

Wacongne C, Changeux J-P, & Dehaene S (2012). A neuronal model of predictive coding accounting 
for the mismatch negativity. Journal of Neuroscience, 32(11), 3665–3678. [PubMed: 22423089] 

Wacongne C, Labyt E, van Wassenhove V, Bekinschtein T, Naccache L, & Dehaene S (2011). 
Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the 
National Academy of Sciences, 108(51), 20754–20759.

Wang R, Shen Y, Tino P, Welchman AE, & Kourtzi Z (2017). Learning predictive statistics: strategies 
and brain mechanisms. Journal of Neuroscience, 37(35), 8412–8427 [PubMed: 28760866] 

Shain et al. Page 37

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang L, Uhrig L, Jarraya B, & Dehaene S (2015). Representation of numerical and sequential patterns 
in macaque and human brains. Current Biology, 25(15), 1966–1974. [PubMed: 26212883] 

Wartenburger I, Heekeren HR, Abutalebi J, Cappa SF, Villringer A, & Perani D (2003). Early setting 
of grammatical processing in the bilingual brain. Neuron, 37(1), 159–170. [PubMed: 12526781] 

Wehbe L, Murphy B, Talukdar P, Fyshe A, Ramdas A, & Mitchell T (2014). Simultaneously 
uncovering the patterns of brain regions involved in different story reading subprocesses. PloS 
One, 9(11), e112575.

Wernicke C (1874). Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer 
Basis. Cohn.

Whitfield-Gabrieli S, & Nieto-Castanon A (2012). Conn: a functional connectivity toolbox for 
correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. [PubMed: 
22642651] 

Whitney C, Huber W, Klann J, Weis S, Krach S, & Kircher T (2009). Neural correlates of narrative 
shifts during auditory story comprehension. Neuroimage, 47(1), 360–366. [PubMed: 19376237] 

Wild CJ, Yusuf A, Wilson DE, Peelle JE, Davis MH, & Johnsrude IS (2012). Effortful listening: The 
processing of degraded speech depends critically on attention. Journal of Neuroscience, 32(40), 
14010–14021. [PubMed: 23035108] 

Willems RM, Frank SL, Nijhof AD, Hagoort P, & den Bosch A (2015). Prediction during natural 
language comprehension. Cerebral Cortex, 26(6), 2506–2516. [PubMed: 25903464] 

Wingfield A, & Grossman M (2006). Language and the aging brain: Patterns of neural compensation 
revealed by functional brain imaging. Journal of Neurophysiology, 96(6), 2830–2839. [PubMed: 
17110737] 

Wise RJS, Scott SK, Blank SC, Mummery CJ, Murphy K, & Warburton EA (2001). Separate neural 
subsystems within Wernicke’s area. Brain, 124(1), 83–95. [PubMed: 11133789] 

Wlotko EW, & Federmeier KD (2012). Age-related changes in the impact of contextual strength on 
multiple aspects of sentence comprehension. Psychophysiology, 49(6), 770–785. [PubMed: 
22469362] 

Yarkoni T, Speer NK, & Zacks JM (2008). Neural substrates of narrative comprehension and memory. 
Neuroimage, 41(4), 1408–1425. [PubMed: 18499478] 

Yokoyama S, Okamoto H, Miyamoto T, Yoshimoto K, Kim J, Iwata K, Jeong H, Uchida S, Ikuta N, 
Sassa Y, & Nakamura W, (2006). Cortical activation in the processing of passive sentences in L1 
and L2: An fMRI study. Neuroimage, 30(2), 570–579. [PubMed: 16300965] 

Zarr N, & Brown JW (2016). Hierarchical error representation in medial prefrontal cortex. 
NeuroImage, 124, 238–247. [PubMed: 26343320] 

Shain et al. Page 38

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• fMRI shows linguistic prediction effects using naturalistic stimuli

• Prediction is implemented by language-specific, not domain-general networks

• Prediction is sensitive both to word-cooccurrences and to hierarchical 

structure
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Figure 1: 
Inter-individual variability in the mapping of function onto anatomy. Each column 

demonstrates variability in a different coordinate in MNI space, specified at the top (in mm). 

For each coordinate, sagittal T1 slices from four participants are shown, with the coordinate 

circled on each slice (participants differ across columns). In each case, the top two 

participants show a Sentences > Nonwords effect in this coordinate (colored in red-yellow), 

whereas the bottom two participants show the opposite, Nonwords > Sentences effect in this 

same coordinate (colored in green-blue). In all cases, the effect size of the circled coordinate 

is strong enough to be included among the participant-specific fROIs. Other voxels 

exhibiting strong contrast effects in the localizer task (namely, among the top 10% of voxels 
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across the neocortical gray matter) are superimposed onto the anatomical slices, in color. 

Colorbars show p-values associated with each of the two localizer contrasts.
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Figure 2: 
Defining participant-specific fROIs in the language (top) and MD (bottom) networks (only 

the left-hemisphere is shown). All images show approximated projections from functional 

volumes onto the surface of an inflated brain in common space. (A) Group-based masks 

used to constrain the location of fROIs. Contours of these masks are depicted in white on all 

brains in (B)-(D). (B) Overlap maps of localizer contrast effects (Sentence > Nonwords for 

the language network, Nonwords > Sentences for the MD network) across the 78 

participants in the current sample (these maps were not used in the process of defining fROIs 

and are shown for illustration purposes). Each non gray-scale coordinate is colored 

according to the percentage of participants for whom that coordinate was among the top 

10% of voxels showing the strongest localizer contrast effects across the nerocortical gray 

matter. (C) Overlap map of fROI locations. Each non gray-scale coordinate is colored 

according to the number of participants for whom that coordinate was included within their 

individual fROIs. (D) Example fROIs of three participants. Apparent overlap across 

language and MD fROIs within an individual is illusory and due to projection onto the 

cortical surface. Note that, because data were analyzed in volume (not surface) form, some 

parts of a given fROI that appear discontinuous in the figure (e.g., separated by a sulcus) are 

contiguous in volumetric space.
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Figure 3: 
Estimated overall double-gamma hemodynamic response functions (HRFs) by network
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Figure 4: 
Estimated language-network HRFs by fROI

Shain et al. Page 44

Neuropsychologia. Author manuscript; available in PMC 2021 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: LANG likelihood improvement by participant.
Spread of by-participant likelihood improvements in each comparison. Most improvements 

are positive, and effects are not driven by large positive outliers (see Table 10).
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Table 1:

Previous fMRI studies of prediction effects in naturalistic sentence comprehension

Study # Participants Stimulus length HRF model Functional 
localization

Out-of-sample 
evaluation

Willems et al., 2015 24 19 min Canonical No No

Brennan et al., 2016 26 12 min Canonical Yes No

Henderson et al., 2016 40 22 paragraphs Canonical No No

Lopopolo et al., 2017 22 19 min Canonical No No

Current study 78 13.5 min (avg per 
participant)

Data-driven 
(CDR)

Yes Yes
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Table 2:

Experimental parameters for the different versions of the localizer task.

Version

A B C D

Number of participants 60 6 5 7

Task (Passive Reading / Memory) PR M M M

Words / nonwords per trial 12 12 8 12

Trial duration (ms) 6,000 6000 4,800 6000

 Fixation 100 300 300 300

 Presentation of each word / nonword 450 350 350 350

 Probe (M) + button press (M/PR) 400 1000 1350 1000

 Fixation 100 500 350 500

Trials per block 3 3 5 3

Block duration (s) 18 18 24 18

Blocks per condition (per run) 8 8 4 6

Conditions Sentences Nonwords Sentences Nonwords Sentences Nonwords 

Word-lists
*

Sentences Nonwords 

Word-lists
*

Fixation block duration (s) 14 18 16 18

Number of fixation blocks 5 5 3 4

Total run time (s) 358 378 336 396

Number of runs 2 2 3–4 2–3

*
Used for the purposes of another experiment; see (Fedorenko et al., 2010).
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Table 3:
LANG surprisal estimates by fROI.

Estimates given are the area under the fitted HRF. Models explain held-out variance in all regions but AngG.

fROI Hemisphere 5-gram estimate PCFG estimate % Held-Out Variance Explained

AngG L 0.030 0.156 0.0%

AntTemp L 0.215 0.017 5.1%

IFG L 0.287 0.309 2.2%

IFGorb L 0.010 0.318 1.3%

MFG L 0.382 0.346 2.3%

PostTemp L 0.242 0.258 6.1%
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Table 4:
MD surprisal estimates by fROI.

Estimates given are the area under the fitted HRF. Models explain no held-out variance in any region except 

left MFGorb.

fROI Hemisphere 5-gram estimate PCFG estimate % Held-Out Variance Explained

AntPar L 0.102 −0.523 0.0%

IFGop L 0.009 0.141 0.0%

Insula L −0.200 0.284 0.0%

MFG L 0.074 −0.026 0.0%

MFGorb L −0.215 0.252 0.5%

MidPar L 0.116 −0.051 0.0%

mPFC L −0.125 0.257 0.0%

PostPar L 0.083 −0.006 0.0%

PrecG L 0.078 0.048 0.0%

SFG L 0.180 0.025 0.0%

AntPar R 0.016 −0.077 0.0%

IFGop R −0.011 0.075 0.0%

Insula R −0.185 0.227 0.0%

MFG R 0.058 −0.006 0.0%

MFGorb R −0.004 0.019 0.0%

MidPar R 0.040 −0.110 0.0%

mPFC R −0.321 0.440 0.0%

PostPar R −0.312 0.434 0.0%

PrecG R 0.034 0.118 0.0%

SFG R 0.066 −0.034 0.0%
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Table 5:

Model effect estimates.

Coefficient

Predictor LANG MD Combined

Sound Power −0.055 −0.006 −0.003

TR Number −0.148 0.048 −0.005

Rate 0.242 0.146 0.048

Frequency −0.060 −0.199 −0.134

5-gram Surprisal 0.209 −0.025 0.003

PCFG Surprisal 0.235 0.097 0.038

Network -- -- −1.32

Sound Power by Network -- -- −0.050

TR Number by Network -- -- −0.008

Rate by Network -- -- 0.269

Frequency by Network -- -- 0.040

5-gram Surprisal by Network -- -- 0.212

PCFG Surprisal by Network -- -- 0.193
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Table 6:

Model percent variance explained compared to a “ceiling” linear model regressing against the mean response 

of all other participants for a particular story/fROI. “% Total” columns show absolute percent variance 

explained, while “% Relative” columns show percent variance explained relative to the ceiling.

LANG MD Combined

% Total % Relative % Total % Relative % Total % Relative

Ceiling 6.18% 100% 1.34% 100% 2.63% 100%

Model (train) 3.68% 59.5% 0.75% 56.0% 1.18% 44.9%

Model (evaluation) 2.30% 37.2% 0.00% 0.00% 0.71% 27.0%
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Table 7:
LANG result.

Significance in LANG by paired permutation test of log-likelihood improvement on the evaluation set from 

including a fixed effect for each of 5-gram Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed 

effect and (2) baselines containing the other fixed effect only. The Effect Estimate column shows the estimated 

effect size from the model containing the fixed effect (i.e. the area under the estimated HRF).

Comparison p LL Improvement Effect Estimate

5-gram over neither 0.0001*** 182 0.307

PCFG over neither 0.0001*** 183 0.352

5-gram over PCFG 0.0001*** 61 0.209

PCFG over 5-gram 0.0001*** 61 0.235
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Table 8:
MD result.

Significance in MD by paired permutation test of log-likelihood improvement on the evaluation set from 

including a fixed effect for each of 5-gram Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed 

effect and (2) baselines containing the other fixed effect only. A p-value of 1.0 is assigned by default to 

comparisons in which held-out likelihood improved under ablation. The Effect Estimate column shows the 

estimated effect size from the model containing the fixed effect (i.e. the area under the estimated HRF).

Comparison p LL Improvement Effect Estimate

5-gram over neither 0.137 3 0.019

PCFG over neither 1.0 −29 0.081

5-gram over PCFG 1.0 −8 −0.025

PCFG over 5-gram 1.0 −40 0.097
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Table 9:
Combined result.

Significance in the combined data by paired permutation test of log-likelihood improvement on the evaluation 

set from including a fixed interaction for each of 5-gram Surprisal and PCFG Surprisal with Network, over (1) 

a baseline with neither fixed interaction and (2) baselines containing the other fixed interaction only. The 

Effect Estimate column shows the estimated interaction size from the model containing the fixed interaction 

(i.e. the difference in effect estimate between LANG and MD).

Comparison p LL Improvement Effect Estimate

5-gram:Network over neither 0.0001*** 144 0.212

PCFG:Network over neither 0.0001*** 144 0.193

5-gram:Network over PCFG:Network 0.0001*** 53 0.301

PCFG:Network over 5-gram:Network 0.0001*** 53 0.317
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Table 10:
Generality of LANG surprisal effects across participants.

Median likelihood improvement in LANG on the evaluation set by participant, percent of participants whose 

held-out predictions improved due to surprisal effects, and the number of participants with the largest held-out 

improvement whose data can be removed without changing the significance of the effect at a 0.05 level. Held-

out likelihood improves for most participants in every comparison, and at least 5 of the most responsive 

participants can be removed in each comparison without changing the significance of the effect.

Comparison Median LL Improvement by Participant % Participants Improved Num Removable Participants

5-gram over neither 1.236 71.8% 19

PCFG over neither 0.732 64.1% 14

5-gram over PCFG 0.335 61.5% 7

PCFG over 5-gram 0.498 60.3% 5
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