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E N V I R O N M E N TA L  S T U D I E S

PM2.5 exposure disparities persist despite strict vehicle 
emissions controls in California
Libby H. Koolik1, Álvaro Alvarado2, Amy Budahn2, Laurel Plummer2,  
Julian D. Marshall3, Joshua S. Apte1,4*

As policymakers increasingly focus on environmental justice, a key question is whether emissions reductions 
aimed at addressing air quality or climate change can also ameliorate persistent air pollution exposure disparities. 
We examine evidence from California’s aggressive vehicle emissions control policy from 2000 to 2019. We find a 
65% reduction in modeled statewide average exposure to PM2.5 from on-road vehicles, yet for people of color and 
overburdened community residents, relative exposure disparities increased. Light-duty vehicle emissions are the 
main driver of the exposure and exposure disparity, although smaller contributions from heavy-duty vehicles es-
pecially affect some overburdened groups. Our findings suggest that a continued trend of emissions reductions 
will likely reduce concentrations and absolute disparity but may not reduce relative disparities without greater 
attention to the systemic factors leading to this disparity.

INTRODUCTION
Despite decades of progress in improving ambient air pollution in 
the United States, people of color still bear a disparate burden of air 
pollution (1–12). Within California, research has quantified and 
characterized these exposure disparities using both measurements 
and models (13–18). Solutions to this persistent inequality are in-
creasingly a focus for academic research and environmental policy 
at the federal, state, and local levels (9, 17–19). A growing body of 
research investigates how air quality policies might contribute to a 
“triple win” that simultaneously achieves meaningful benefits by 
reducing population-wide exposures, mitigating greenhouse gas 
emissions, and reducing exposure disparities and extreme expo-
sures (20, 21). Here, we use a modeling framework to explore how 
multi-decade emissions reductions shaped by air quality and cli-
mate policies have affected environmental justice (EJ) outcomes, us-
ing California’s aggressive on-road mobile source strategy as a case 
study. In this work, we focus on exposure disparities, which can be 
distinct from disparities in health outcomes (22–27).

Recent research on how to reduce air pollution exposure dis-
parities in the United States presents two conflicting approaches 
(9, 19–21, 28). The first approach starts from the recognition that 
many major emitting sectors lead to disparate exposures for peo-
ple of color (2). Thus, focusing on emissions reductions for sectors 
that especially affect people of color could have EJ co-benefits (21, 
29–32). This approach mirrors the policy structure in the United 
States and elsewhere, where environmental regulations are target-
ed to individual economic sectors (e.g., vehicles, industries, and 
power plants) and tailored to relevant technology and infrastruc-
ture. The second body of research suggests that sector-oriented 
policies may not be effective in addressing relative disparities in air 
pollution. For example, optimization modeling found that aggres-
sive nationwide emissions reductions targeting economic sectors 

with higher-than-average disparity impact would not eliminate 
racial-ethnic fine particulate matter (PM2.5) exposure disparities 
without nearly eliminating emissions (9). In contrast, a location-
specific approach—i.e., emissions reductions by location rather than 
by economic sector—rapidly eliminated disparities. Building upon 
this finding, two recent studies (20, 21) simulated climate policies 
with substantial abatement of PM2.5 and its precursors across most 
US economic sectors and found modest potential reductions in dis-
parities. They too reported that “location-specific” policies that tar-
get emissions reductions in all sectors within specific overburdened 
geographies may have a high potential to address relative exposure 
disparities even with small emissions changes (9, 19). To comple-
ment prospective studies, which consider ways to reduce future ex-
posure disparity, we examine the disparity impacts of historical 
emissions trajectories. We focus on the transportation sector, which 
is often highlighted as having a high potential to reduce exposure 
disparities. Historically, racist urban planning and infrastructure 
decisions (e.g., redlining and freeway siting) have concentrated ve-
hicle emissions in communities of color (2, 4, 7, 13, 29). Further-
more, people who are exposed to the highest levels of traffic-related 
air pollution often are not the communities who drive the most 
(30–32). Hence, a recent study found that emissions controls for the 
transportation sector have the greatest potential to mitigate racial-
ethnic inequality in US air pollution (21). Simultaneously, the trans-
portation sector is a priority area for regulatory agencies and 
EJ-oriented community groups; emissions reductions from these 
sources could potentially reduce exposure disparities, human health 
impacts, and greenhouse gas emissions (33).

For nearly 60 years, California led the United States in reducing 
on-road vehicle emissions. Because California’s motor vehicle emis-
sion regulation preceded the Clean Air Act of 1970, California is 
delegated the authority to set vehicle emissions standards more 
stringently than the federal equivalent (34–36). In the present analy-
sis, we model exposure concentrations for the years 2000 through 
2019, during which California’s regulatory agencies pursued an ag-
gressive and interlinked suite of multi-pollutant policies to reduce 
emissions across the entire on-road vehicle fleet (36). Examples in-
clude requiring cleaner fuels and technological advancements (e.g., 
hybrid drivetrain, alternative fuel and propulsion technologies, and 

1Department of Civil and Environmental Engineering, University of California, 
Berkeley, Berkeley CA 94720, USA. 2California Office of Environmental Health Haz-
ard Assessment, Sacramento, CA 95814, USA. 3Department of Civil and Environ-
mental Engineering, University of Washington, Seattle, WA 98195, USA. 4School of 
Public Health, University of California, Berkeley, Berkeley, CA 94704, USA.
*Corresponding author. Email: apte@​berkeley.​edu

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution License 4.0 
(CC BY). 

mailto:apte@​berkeley.​edu


Koolik et al., Sci. Adv. 10, eadn8544 (2024)     11 September 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 11

advanced emissions controls) specific to light-duty, medium-duty, 
and heavy-duty vehicle classes (LDV, MDV, and HDV, respectively).

The suite of regulations that comprise California’s mobile source 
strategy has resulted in large aggregate reductions of emissions of 
multiple pollutants from diverse fleets that make up the state’s on- 
and off-road vehicles (37). Here, we examine how changes in on-
road vehicle emissions from 2000 to 2019 have affected exposure to 
PM2.5. Over this time period, on-road emissions have been shaped 
by several aggressive state regulations targeting specific vehicle 
fleets, including California Air Resources Board’s (CARB) Light-
Duty Vehicle Emissions Standards, Advanced Clean Cars, and the 
Truck and Bus Regulation (38). Despite statewide and fleetwide on-
road vehicle miles traveled increasing ~24%—from 292 billion 
(2000) to 364 billion (2019)—emissions of the four species that prin-
cipally drive population-weighted PM2.5 exposures from on-road 
vehicles have decreased. Regulatory emissions data indicate reduc-
tions of ~70% for primary PM2.5, nitrogen oxides (NOx), and volatile 
organic compounds (VOC), while ammonia (NH3) decreased by 
~15% (fig. S1) (38). Notably, non-exhaust primary PM2.5 emissions 
(e.g., brake and tire wear) have increased by ~20% over this time 
period, causing the relative non-exhaust share of primary PM2.5 to 
increase substantially (14 to 50% from 2000 to 2019) (39). Diverse 
measurement and observational datasets (see the Supplementary 
Materials) corroborate overall declining emissions of PM, NOx, 
VOC, NH3, and other key traffic-related air pollutants (TRAPs) 
(40–50). Considering all species that contribute to total PM2.5, 
California’s on-road emissions reductions outpaced the national 
aggregate, especially for NOx and VOC (51).

On-road vehicle emissions are anticipated to continue to decline 
in California in response to major new regulations: Advanced Clean 
Cars II (starting in 2035, requires all new passenger cars, trucks, and 
SUVs sold in California to be zero-emission vehicles) and Advanced 
Clean Fleets (starting in 2045, all trucks that drive in California 
must use zero-emissions technology). A few recent studies have pro-
jected the air pollution and equity impacts of vehicle electrification 
in California and found limited equity benefits. In this paper, we 
build on a much smaller body of work (14, 52) to focus retrospec-
tively on the equity impacts of past changes in vehicle emissions 
over two recent decades to inform future policy.

We investigate whether the combined impacts of the ensemble of 
mobile source strategies have contributed to a reduction in PM2.5 
exposure disparities. Exposure disparities are multifaceted; we quan-
tify them along several axes described below. Our analysis also con-
siders two specific features (vehicle type and spatial scale) that are 
central to current regulatory design. We conclude with implica-
tions from this California-focused retrospective analysis for future 
EJ-focused policy for the United States.

We developed and used an open-source analysis method based 
on atmospheric simulations from the Intervention Model for Air 
Pollution (InMAP; see Materials and Methods) to model total PM2.5 
concentrations resulting from emissions of PM2.5, NOx, VOC, NH3, 
and sulfur oxides (SOx) emitted by California’s on-road mobile 
source sector from 2000 to 2019. Estimates of on-road mobile emis-
sions are from CARB’s EMission FACtor regulatory model (EM-
FAC v2021 with MPOv11), which has been approved by the US 
EPA (53). EMFAC represents CARB’s best estimate of on-road 
emissions; it incorporates detailed administrative and observation-
al data pertaining to fleet composition, emissions performance, and 
spatiotemporal activity patterns (38). Variably sized gridded PM2.5 

concentrations (1 to 48 km, higher resolution in greater population 
density locations) are combined with tract-level 2010 census popu-
lation data to estimate exposure disparities among demographic 
groups (15). We disaggregate mobile source impacts into four ve-
hicle types: LDV, MDV, HDV, and all other vehicles (e.g., buses, 
motorcycles, and motorhomes; table S1).

In the United States and California, air pollution exposure dis-
parities tend to be larger by race-ethnicity than by other socioeco-
nomic and demographic indicators (e.g., income, education, and 
urbanicity) due in large part to the historical racism and racist 
practices (e.g., housing discrimination, redlining, and highway re-
location) that segregated cities and placed high-pollution sources 
near communities of color (2–4, 10, 11, 54). Accordingly, we focus 
our analyses on racial-ethnic disparities. In addition, we consider 
two statutory geographic designations (AB617 and SB535) of cu-
mulative impacts that California uses for prioritizing EJ (fig. S2) 
(55, 56). Although these geographies have only recently been es-
tablished (and thus past policy may or may not have explicitly tar-
geted these places), we focus on them here because they are 
examples of location-specific policies that target emissions reduc-
tions in overburdened communities. Through the Community Air 
Protection Program (AB617), California has designated specific 
communities (2.7  million people, year 2010; 8.1% of the state’s 
population) for priority in community-based air pollution moni-
toring and emissions reduction plans (55). A second policy, SB535 
(10.2 million people, 30.0% of the state’s population), focuses on 
targeting financial investments toward people living in “disadvan-
taged communities,” identified using several environmental, socio-
economic, and public health indicators for each US census tract in 
California (56, 57).

From here onward, we use the term “overburdened communities” 
to refer specifically to the areas designated as AB617 or SB535 com-
munities and refer to the people who live in these areas as “residents 
of overburdened communities.” The demographic makeup of resi-
dents of overburdened communities has a higher proportion of peo-
ple of color (all groups except for non-Hispanic white Californians) 
than the statewide population (people of color: 92.9% in AB617 
communities, 82.9% in SB535 communities; table S2). We also spe-
cifically consider exposure and disparities experienced by individual 
racial-ethnic groups (e.g., Hispanic Californians).

RESULTS AND DISCUSSION
Statewide trends in overall exposure and relative 
exposure disparity
California’s mobile source policy has succeeded in its overall goal of 
reducing PM2.5 exposures (Fig. 1A). We find that the modeled state-
wide population-weighted mean (PWM) PM2.5 exposure concentra-
tion attributable to on-road vehicles decreased from approximately 
3.2 to 1.1 μg/m3 from 2000 to 2019, a ~65% decrease (i.e., nearly a 
factor of 3) in exposure on average for all Californians. This reduction 
in PM2.5 exposure from on-road vehicles outpaced the overall state-
wide improvement in ambient air quality (fig. S3). For context, mul-
tiple independent estimates of total PWM PM2.5 from all sources in 
California show an approximate ~40% decrease from 15 to 9 μg/m3 
from 2000 to 2019 (58–60).

We evaluate PWM PM2.5 exposure from on-road mobile sources 
for racial-ethnic groups and residents of overburdened communi-
ties (Fig. 1A). Our modeled estimate of PM2.5 declined for all groups, 
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and the ordering of exposures by group is generally consistent over 
time. Among all racial-ethnic groups, Hispanic Californians experi-
enced the highest exposure for all years, with PWM PM2.5 exposure 
concentrations of approximately 3.5 and 1.3 μg/m3 in 2000 and 2019, 
respectively. Black Californians experienced the next highest PWM 
exposure concentration (3.5, 1.2 μg/m3 in 2000 and 2019, respec-
tively), followed by Asian Californians (3.3, 1.2 μg/m3). Of the four 
racial-ethnic groups in Fig.  1A, white Californians were exposed 
to  the lowest PWM PM2.5 concentrations: approximately 2.7 and 
0.9 μg/m3 from 2000 and 2019, respectively. Residents of overbur-
dened communities were exposed to substantially higher PWM con-
centrations of PM2.5 from on-road mobile sources (AB617 residents: 
4.4, 1.6 μg/m3 in 2000 and 2019; SB535 residents: 4.1, 1.5 μg/m3 in 
2000 and 2019) than the PWM for any racial-ethnic group shown 
in Fig. 1A.

For each demographic group, we compute exposure disparity as 
the absolute (in micrograms per cubic meter) and relative (percent) 
difference between the average modeled concentration experienced 
by a group versus the overall state population (Fig. 1B and table S3; 
see also Materials and Methods). In this work, we discuss exposure 
disparities in both absolute and relative terms. Both metrics provide 
useful insights into exposure inequality. Because increases in PM2.5 
concentration have a causal relationship with increases in adverse 
health outcomes, absolute differences between groups of people must 
be minimized to the extent possible. However, systemic inequality in 
terms of relative exposure disparity can persist even if the most over-
burdened areas receive the largest reductions in exposure in absolute 
terms if those reductions are not also the largest in percentage terms. 
Crucially, our analyses focus exclusively on PM2.5 exposure dispari-
ties attributable to on-road vehicles. Most other major emitting sec-
tors in California also disparately expose residents of overburdened 
communities and people of color to PM2.5 (2, 15). Likewise, expo-
sures to other air pollutants are also unequally distributed (4, 7, 10). 
Accordingly, when we find that disparities persist, they persist in a 
larger story of environmental inequity in California.

Reflecting the nearly parallel exposure concentration traces over 
time evident in Fig. 1A, relative disparities in PM2.5 exposure from 

on-road mobile sources (Fig. 1B) were notably persistent, increasing 
slightly over this time period. The relative disparity in exposure to 
on-road mobile sources for Hispanic Californians increased slightly 
from 12.0 (the year 2000) to 13.9% (the year 2019), while the relative 
disparity in exposure for white Californians decreased slightly from 
−13.5 to −15.5%. Thus, the overall relative difference between the 
most and least exposed race-ethnicity increased from 30 to 35%. 
Given expected model uncertainties, these incremental changes 
may not necessarily represent evidence of a trend that is distinguish-
able from approximately constant relative disparity. Likewise, rela-
tive disparities for Black and Asian Californians also persisted 
(respectively 10.5 to 11.5% and 5.4 to 6.2% over this period). Expo-
sure disparities by race-ethnicity are larger than by income (fig. S4). 
Notably, we find persistent disparities in exposure to both primary 
and secondary PM2.5 from vehicle emissions. Relative disparities 
in exposure to primary PM2.5 components (18.6% for Hispanic 
Californians) were larger than disparities in exposure to secondary 
PM2.5 (11.1% for Hispanic Californians).

Absolute and relative exposure disparities in overburdened com-
munities are even larger. For example, the relative disparity in expo-
sure (i.e., relative to the overall population average) for on-road 
mobile source PM2.5 is more than three times as large for AB617 
communities as for the most-exposed racial-ethnic group, increas-
ing somewhat from 40 (the year 2000) to 45% (the year 2019). Strat-
ifying by CalEnviroScreen score (which is used in part to identify 
SB535 communities), we find even larger relative disparities (fig. S4).

Disparities in exposure for those living at the extreme ends of the 
concentration distribution are also relevant for understanding envi-
ronmental injustice. We estimated population-weighted distribu-
tions of exposure by race-ethnicity for each vehicle class (figs.  S5 
and S6). In general, changes in exposure at the upper percentiles 
(i.e., 75th and 90th) are consistent with changes in exposure at the 
PWM and consistent across time. Considering the disparity in ex-
posure at the 75th and 90th percentiles relative to the statewide 
mean, we find large and increasing relative disparities (e.g., 90th 
percentile exposure for Hispanic Californians increased from 104 to 
118% higher than statewide PWM from 2000 to 2019).
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Fig. 1. On-road mobile source PM2.5 exposure and relative disparity in exposure for each demographic group. Statewide population-weighted mean PM2.5 exposure 
concentrations (A) and relative disparity in exposure (B) attributable to on-road mobile sources for the four largest racial-ethnic groups and two policy-relevant environ-
mental justice areas in California. In each year, relative exposure disparities (B) for each racial-ethnic group are computed in reference to the statewide average PM2.5 con-
centration attributable to on-road mobile sources. Concentrations in overburdened communities designated under California’s Community Air Protection Program (AB617, 
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We also evaluated the degree to which the California populations 
who experience the highest overall exposure to PM2.5 from on-road 
vehicles are disproportionately composed of people of color, and 
how this pattern has evolved over time. To do so, we binned the 
California population by decile of modeled exposure to PM2.5 and 
then compared the racial-ethnic composition of each decile in 2000 
and 2019 (Fig. 2 and midpoint result in fig. S7). From 2000 to 2019, 
Hispanic Californians are overrepresented at the highest exposure 
deciles. While the California state population is 37.6% Hispanic, the 
highest decile of exposure for emissions in 2000 and 2019 consists 
of 47.9 and 50.8% Hispanic people, respectively. Similarly, white 
Californians, who comprise 40.1% of the population, are overrepresent-
ed among the populations with the lowest exposures (62.0% of the 
lowest-exposure deciles in 2000 and 2019) and are underrepresented 
in the highest-exposure decile [29.9% (2000) and 27.7% (2019)]. 
In fig. S8, we examine the racial-ethnic composition of the popula-
tion across the full distribution of absolute and percentage changes 
in PM2.5 exposure from on-road vehicles. While the grid cells with 
the largest absolute reduction in concentration consist of more peo-
ple of color than the statewide average, there are only small demo-
graphic differences in the percentage change in exposure. This result 
arises in large part because the geographies with the largest absolute 
reductions in PM2.5 exposure from on-road mobile sources started 
with the highest initial levels of exposure in 2000.

Differences in contributions to exposure disparity by 
fleet type
Because California’s vehicle emissions control policies generally dif-
ferentiate by vehicle type, we disaggregate our analyses of emissions, 
exposures, and disparities by vehicle type based on the official 
EMFAC2021 documentation (table S1) (38). We model the disparities 
and additive contributions of each vehicle fleet type at the state level 
for the most exposed racial-ethnic group, Hispanic Californians, to 
identify which vehicle types have an especially influential role in 
their exposures and disparities.

At the statewide average, we find that LDVs are the vehicle fleets 
with the largest aggregate impact on overall PWM PM2.5 exposures and 
absolute disparities. For example, considering Hispanic Californians, 
LDVs account for 65 to 70% of the 0.2 to 0.4 μg/m3 absolute dis-
parity in PM2.5 exposure from on-road mobile sources (Fig. 3, A 
and B). Contributions to the absolute disparity from HDVs (16 to 
24%), MDVs (9 to 14%), and all other vehicles (<5%) are substan-
tially smaller. Considering the PWM distribution of PM2.5 by vehi-
cle fleet type and race-ethnicity, we find broadly similar racial-ethnic 
distributions of exposure attributable to LDVs, HDVs, and MDVs, 
with Hispanic Californians receiving the highest exposures (fig. S5). 
Between 2000 and 2019, the fractional contributions to absolute dis-
parity from individual vehicle fleet types were stable, likely reflect-
ing the roughly constant distribution of vehicle activity patterns by 
vehicle fleet.

From here on, we focus our discussion on LDVs and HDVs, 
which, in combination, account for >80% of exposures and absolute 
disparities attributable to on-road sources (see fig. S7 for detailed 
results for other fleets). The dominant influence of LDVs on expo-
sure holds across racial-ethnic groups and for residents of overbur-
dened communities (figs.  S9 and S10), but with different overall 
magnitudes of exposure for different subpopulations. This result 
likely arises for two reasons. First, LDVs dominate the overall emis-
sions of PM2.5 and its precursors. On the basis of the CARB emis-
sions inventories used, LDVs contribute most of the NH3 and VOC 
emissions (70 to 95% of NH3 and >80% of VOC) from vehicles, 
which account for ~44 to 56% of total PM2.5 exposure from vehicles. 
LDVs and HDVs contribute more similarly to primary PM2.5 (23 to 
45% LDV and 29 to 56% HDV) and NOx (35 to 48% LDV and 36 to 
43% HDV) emissions, and these species contribute the remaining 
~44 to 56% of total PM2.5 (figs. S11 to S14). Primary PM2.5 emissions 
are more weighted toward non-exhaust emissions in recent years, 
especially for LDVs (figs. S11 to S14). Second, LDV emissions are 
more concentrated near population centers than other vehicle fleets, 
so LDVs result in a substantially higher-than-average exposure im-
pact [fig. S15, population-weighed exposure per ton of annual emis-
sions (metric: micrograms per cubic meter); this metric is directly 
related to intake fraction, e.g., (61–63)].

While the high activity of LDVs causes a higher aggregate impact 
on disparity, HDVs stand out as the fleet type whose emissions cause 
the most disparate impact on Californians of color. As a complement 
to apportioning the overall absolute exposure disparity to emis-
sions from individual vehicle types (i.e., largest aggregate impact), in 
Fig. 3C, we also consider which vehicle fleet types have an especially 
disparate impact on specific racial-ethnic groups (largest relative im-
pact regardless of the magnitude of emissions) relative to the state-
wide population. For example, the relative disparity caused by HDVs 
for Hispanic Californians (range: 16 to 17%) was larger than the 
relative disparity caused by LDVs (range: 11 to 14%). This difference 
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in impacts by fleet type is consistent with recent traffic equity model-
ing, which demonstrated that the majority of Californians of all 
race-ethnicity are exposed to high annual average daily traffic from 
LDVs, but Californians of color are disproportionately exposed to 
higher annual average daily traffic from HDVs (64). Another useful 
metric for discussing the especially disparate impact of HDVs is the 
exposure inequality, defined by Demetillo et al. (65) as the percent 
difference in exposure between the most and least exposed racial-
ethnic groups. On the basis of our results, the PM2.5 inequality for 

Hispanic Californians, relative to white Californians, increased from 
37% in 2000 to 41% in 2019. This finding complements recent work 
that shows the importance of HDV emissions mitigation for reducing 
racial-ethnic disparity (23, 65).

Substantial heterogeneity in fleet-wise contributions at the 
community scale
We find that there is substantial spatial heterogeneity in how differ-
ent vehicle fleet types contribute to PM2.5 exposures. We compare 
modeled contributions by vehicle type at four spatial scales: state-
wide (Fig. 4A), regional (Fig. 4B), within overburdened communi-
ties (Fig. 4C), and community scale (Fig. 4D). Whereas the previous 
section and Fig. 4C evaluate aggregate exposure and disparity across 
all AB617 overburdened communities, in Fig. 4D, we compare con-
tributions to exposure and disparity within individual overbur-
dened communities. The primary goal of this analysis is to highlight 
the heterogeneity among diverse communities in how vehicle fleets 

R
el

at
iv

e 
di

sp
ar

ity
 fr

om
on

-r
oa

d 
m

ob
ile

 s
ou

rc
es

 (
%

)

Year

18

16

14

12

10

8

HDVs

Relative disparity

from all vehicles LDVs

MDVs

Other

2000 2005 2010 2015

C
on

tr
ib

ut
io

n 
to

 o
n-

ro
ad

 
m

ob
ile

 s
ou

rc
e 

di
sp

ar
ity

 (
%

)

Year

100

80

60

40

20

0
2000 2005 2010 2015

60–70%

9–14%

16–24%

<5%

0.3

0.4

0.2

0.1

0A
bs

ol
ut

e 
P

M
2.

5

 d
is

pa
rit

y 
(µ

g/
m

3 )

2000 2005 2010 2015
Year

B

C

A

Fig. 3. Contributions to disparity in exposure to mobile-source PM2.5 for His-
panic Californians. Two methods of comparing contributions to disparity in PM2.5 

exposures from on-road vehicle fleet types shown for the most exposed racial-
ethnic group, Hispanic Californians. First, we compare the absolute magnitude in 
contribution from each vehicle group (A and B); then, we compare the relative dispar-
ity in exposure to each vehicle group (C). (A) Absolute disparities in PM2.5 exposure 
from vehicles for Hispanic Californians relative to the overall statewide population 
declined between 2000 and 2019, consistent with the overall reduction in emis-
sions (fig. S1) and population-weighted mean PM2.5 concentrations (Fig. 1). (B) Frac-
tional contributions to the overall disparity that are attributable to each fleet 
type are estimated by normalizing the absolute contribution to disparity attribut-
able to a single fleet type to the total disparity attributable to all on-road mobile 
sources. In each year, light-duty vehicle (LDVs) emissions are the dominant con-
tributor to the disparately high exposures experienced by Hispanic Californians. 
(C) Disparities attributable to emissions of individual vehicle fleet types relative to the 
statewide average PM2.5 exposure attributable to emissions of that individual ve-
hicle fleet. Note that heavy-duty vehicles (HDVs) especially disparately impact His-
panic Californians, even though HDVs are not the dominant contributor to overall 
emissions (fig. S1), PM2.5 concentrations (Fig. 1), or absolute disparities (C). Fig. 4. Spatial heterogeneity in contributions by fleet to mobile source PM2.5 

exposure. Contribution to PM2.5 exposures from distinct vehicle fleets is shown at 
four spatial scales: (A) statewide, (B) three major regions, (C) residents of overbur-
dened communities, and (D) for 19 individual communities designated by the state 
of California through the Community Air Protection Program (AB617; see fig. S2 for 
identification of each community). At each spatial scale, pie chart icons indicate the 
fractional contribution to exposure attributable to each vehicle fleet type, with 
icons scaled in proportion to the population-weighted mean PM2.5 concentration 
from all vehicle types. Light-duty vehicles contribute especially to mobile source 
PM2.5 exposures in Southern California, while the relative contribution from MDVs 
and especially HDVs is comparatively higher in the Central Valley and San Francisco 
Bay Area. There is considerable heterogeneity among AB617 communities in 
fleet contributions.
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contribute to PM2.5; our estimates are not meant to precisely capture 
community-scale pollution concentrations. As with any emissions 
inventory, modeled concentrations are much more precise with 
locally validated, site-specific information that has been observa-
tionally verified (66). To complement our high-level approach to 
understanding the heterogeneity in source contributions, future 
community-specific analyses could use higher spatial resolution 
modeling tools and local emissions data to better represent the lived 
experience of individual communities.

On average, the Los Angeles area and its AB617 overburdened 
communities have high PWM exposures and high contributions 
from LDVs (>60%). In the Central Valley, while the PWM expo-
sures are lower, the contributions from HDVs are substantially 
higher (e.g., ~60% in Arvin/Lamont). The diversity in fleet contribu-
tions to individual communities showcases the importance of 
community-specific emissions reduction planning. While a com-
munity with a high share of LDVs, for example, might benefit more 
from policy actions that directly reduce those emissions (e.g., more 
electric bus routes and street conversion to bicycle paths), different 
strategies may be more appropriate for a community dominated by 
HDVs (e.g., additional diesel fuel emissions limits, truck electrifica-
tion, and low emissions zones). These differences likely arise from 
differences in spatial distributions of sources relative to residences 
and the magnitude and mixtures of vehicle activity that occur at the 
community scale. In sum, our results support the approach of en-
abling communities to identify and mitigate the largest contributors 
to local exposures and disparities.

Validation, limitations, and implications for future research
Multiple lines of evidence suggest that our core qualitative results 
align with available observational evidence. A relative strength of 
our modeling approach is that it allows us to model temporal chang-
es at a sufficiently high spatial resolution that we can estimate expo-
sure disparities attributable to individual source categories. In 
contrast, a detailed longitudinal record of in situ observations is not 
available at sufficient spatial resolution to permit a rigorous assess-
ment of how disparities in exposure to traffic-related PM2.5 have 
evolved. Nonetheless, CARB’s analyses of ambient monitoring data 
from 1990 to 2014 align qualitatively with our results. These analyses 
of monitoring data indicate declining concentrations of diesel PM, 
PM2.5, and NO2 but with persistent relative and absolute disparities 
for the relatively sparse network of sites located in overburdened 
communities (60).

As additional points of comparison for our modeled results, we 
examined datasets of finely resolved satellite observations and em-
pirical model predictions. These datasets afford the ability to con-
sider changes in exposure and disparity for the entire state (see 
Supplementary Text) (58, 59). In fig. S3, we compare our analyses 
with changes in total PM2.5 (only moderately influenced by vehicles) 
and NO2 (strongly influenced by vehicles). Considering PWM con-
centration changes from 2000 to 2019, our estimated PWM PM2.5 
from on-road vehicles declined at a broadly similar rate (~65%) 
compared to the results from a high-resolution empirical model of 
PWM NO2 spatial patterns (~55%). Our estimates of the racial-
ethnic ordering of vehicle-emitted PM2.5 exposures and disparities 
closely match those from the total PM2.5 and NO2 datasets. Cru-
cially, our finding of temporally persistent relative disparities in ex-
posure to PM2.5 from on-road sources (Fig. 1B) is consistent with 
highly stable patterns of relative disparity in total PM2.5 and NO2 for 

Californians of color (fig. S3). Furthermore, we find that the magni-
tude of our estimate of traffic-related PWM PM2.5 is consistent with 
the on-road vehicle contribution from previous modeling and 
in situ source apportionment studies in California (67–72). In com-
bination, these supporting lines of evidence reinforce our key quali-
tative conclusion that exposures from mobile sources have decreased 
while relative disparities in exposure have persisted.

It is worthwhile to consider possible uncertainties, biases, and 
limitations associated with our approach. Our modeling framework 
is built around the InMAP reduced complexity model (73) and its 
associated InMAP source-receptor matrix [ISRM; (28)]. The com-
putational efficiency of this model enabled us to interactively exe-
cute thousands of unique model runs representing distinct vehicle 
fleets for 20 individual years while maintaining a sufficiently fine 
scale (down to 1 km2) to capture spatially sharp exposure disparities 
(1, 3). However, our modeling approaches have notable limitations. 
First, as with any atmospheric modeling, our results rest on the va-
lidity of underlying emissions inventories, including how they rep-
resent patterns over time and space [see, e.g., (74)], as discussed 
briefly below. Second, InMAP makes simplifying assumptions that 
can lead to somewhat higher bias than traditional chemical trans-
port models (CTMs), which model the underlying atmospheric 
chemistry and dynamics with higher fidelity. One such simplifica-
tion in our model is a linear approximation of nonlinear secondary 
aerosol chemistry. Third, the temporal resolution of our results is 
limited to annual average conditions; we do not quantify exposure 
disparities that occur on seasonal, diurnal, or shorter-than-annual 
timescales, which are also relevant (75). In addition, our model does 
not capture sub-grid scale exposure gradients near roads; those gra-
dients can occur and are important for exposure disparities at scales 
finer than 1 km (76). InMAP results are generally considered more 
robust for spatial aggregations of many grid cells (e.g., air basins and 
groups of overburdened communities), and less so for individual 
pixels or neighborhoods (73). Last, our core analyses assign expo-
sures based on a fixed residential address [which can misclassify 
exposures; see, e.g., (77)] and were estimated using a temporally 
static year 2010 US census dataset (selected as the midpoint year of 
our study).

Considering that our key results emphasize the persistence over 
time of disparities (especially relative disparities)—rather than abso-
lute concentrations at specific locations—our overarching qualitative 
insights are likely to be robust. Relative disparities are principally de-
termined by the interaction of fine-scale spatial patterns of demo-
graphics, roadways, and fleet activity and are less sensitive to the 
magnitude of emissions or concentrations. In the Supplementary 
Materials (the “Model uncertainty and sensitivity” section of Supple-
mentary Text and figs. S16 and S17), we explore how possible biases 
in emissions estimates and model performance could affect our re-
sults. We first review the literature to constrain our understanding of 
the uncertainty from the state regulatory model of on-road mobile 
source emissions estimates (50, 74). From previous work validating 
EMFAC’s on-road mobile source emission factors and a similar 
model’s activity-based spatial surrogates, we believe that our qualita-
tive insight is unlikely to be affected by bias in the emissions inven-
tory. We then perform four tests to evaluate the sensitivity of our 
analyses to potential biases in the emissions and model (fig. S16). A 
key insight is that within the range of expected model biases for In-
MAP, we find that the magnitude and ordering of relative disparities 
are only minimally sensitive. This result arises in part because 
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relative disparities involve ratios of modeled concentration esti-
mates. In addition, because we find meaningful disparities for each 
of the five modeled PM2.5 constituents, pollutant-specific model 
biases (representing, for example, a possible mischaracterization of 
the nonlinear chemistry in InMAP) are unlikely to strongly skew our 
results (see fig. S16). Likewise, this analysis implies that inventory 
biases that affect aggregate levels of emissions are unlikely to affect 
our core insights. We show that our results are robust against spatial 
biases in the emissions inventory by repeating our analysis with 
emissions from two independently derived, peer-reviewed emissions 
inventories (78, 79) and coarser representations of our emissions in-
ventory. Spatial emissions biases in the inventory could conceivably 
affect conclusions about relative disparities if they were much larger 
than what we explored in fig. S16. However, we consider this implau-
sible given how closely our results align with disparity insights from 
high-resolution NO2 predictions (fig. S3). Nonetheless, because nei-
ther EMFAC nor InMAP is meant to authoritatively describe emis-
sions and concentrations in individual model pixels, we ascribe our 
greatest confidence to overall patterns in space and time, but caution 
against overinterpreting results for specific communities or other 
small regions. Last, in a sensitivity analysis (fig. S17), we repeated our 
analysis with 2000 decennial census data. These analyses indicate 
that our core qualitative finding of highly persistent relative disparity 
was generally not sensitive to the selection of the census dataset. In 
particular, the choice of which demographic dataset is used mini-
mally affected the PWM concentrations and relative disparities ex-
perienced by overburdened communities and individual racial-ethnic 
groups in California. However, future demographic shifts in the 
California population that substantially alter patterns of social segre-
gation could meaningfully affect aggregate air pollution disparities at 
the state level. For example, if suburbs become more racially inte-
grated and California’s population becomes increasingly diverse, 
then relative disparities could decrease as a function of demographic 
changes and not necessarily emissions mitigation.

Future research beyond the scope of this assessment could fur-
ther corroborate our findings and build on our results. First, CTM 
simulations could usefully validate our core results, especially as they 
concern the behavior of secondary PM2.5 from vehicle emissions. 
Second, it would be helpful to quantify the effect of decades of vehi-
cle emissions controls on other air pollutants that are relevant to the 
health of overburdened communities, including nitrogen oxides, 
diesel PM, and air toxics. Third, although in  situ observations of 
TRAPs have historically not been available at a sufficiently high spa-
tial resolution to systematically characterize changes in disparity, 
careful analysis of data at particular locations may be able to comple-
ment our statewide insights. Moreover, as hyperlocal measurements 
of TRAPs become more widespread, these types of observational 
studies may be more feasible in the future.

Last, because disparities in terms of health outcomes are also rel-
evant to EJ and distinct from exposure disparities, analyses that 
quantify the complex interplay of emissions, exposures, and social, 
demographic, and epidemiological factors could explore the impact 
of vehicle emissions on environmental health disparities over time 
(22, 23, 25–27, 80–83). Disparities in health outcomes are strongly 
influenced by social determinants of health (e.g., age, obesity, access 
to health care, and criminal justice) that have persisted over time 
and are independent of air pollution (80, 84). Several recent studies 
show that Black and Hispanic Americans in the United States have 
a higher susceptibility to air pollution than non-Hispanic white 

Americans (81–83, 85). Thus, a focus on disparities in exposure may 
underestimate or mischaracterize the ultimate disparities in health 
outcomes (22–27). While this study focused exclusively on expo-
sure disparities, effective policies should address disparities in both 
exposure and health outcomes.

Policy insights from California’s historical mobile vehicle 
control policies
We have demonstrated that while modeled PWM PM2.5 exposures 
and absolute exposure disparities attributable to on-road mobile 
sources have decreased over the past two decades across all popula-
tion groups, relative disparities have remained at both the average 
and at the extreme ends of the exposure distribution for Californians 
of color and residents of overburdened communities. Emissions 
from LDVs and HDVs affect disparities in different ways. LDVs con-
tribute the most to PM2.5 concentrations and absolute disparity, 
while emissions from HDVs most disproportionately expose people 
of color relative to other fleet types, thereby highlighting the impor-
tance of mitigating emissions from both vehicle types. Of the groups 
considered here, residents of AB617 communities in aggregate expe-
rience the highest levels of PM2.5 exposure from on-road vehicles, 
although PWM exposures for these residents have declined by more 
than 60% since 2000. There is substantial heterogeneity among 
AB617 communities in terms of the total exposure concentration 
and the relative contribution from each vehicle type.

Our finding of highly persistent relative disparities for Californians 
of color is disappointing but consistent with a growing body of 
literature on sectoral emissions policy. When policies reduce the 
overall emissions rate without substantially altering the pattern of 
where emissions occur, relative disparities in exposure can persist 
(9, 14, 21). In this vein, the findings from our retrospective analysis 
resonate with the results of studies that have prospectively modeled 
the potential future equity impacts associated with specific vehicle 
policies (e.g., heavy-duty truck electrification and zero-emission ve-
hicle adoption). Consistently with those studies, we have found 
large absolute concentration changes in regions with the highest 
share of people of color, yet we nonetheless find a minimal reduc-
tion in the relative disparity for PM2.5 exposure (14, 23, 25, 52, 86). 
These results arise because the places with the largest concentration 
changes over time tend to be the places most affected by vehicles 
(fig. S8).

While the sustained inequity in PM2.5 exposure resulting from on-
road mobile sources is problematic, California’s mobile source strat-
egy has led to large aggregate reductions in emissions, exposure 
concentrations, and absolute disparities. Although the relative dispar-
ity in exposure to PM2.5 from on-road mobile sources is effectively 
unchanged for Californians of color and residents of overburdened 
communities, the PWM PM2.5 exposures caused by these mobile 
sources were reduced by approximately 64% for all demographic 
groups considered during our study. On-road mobile source controls 
have also reduced emissions from a broad suite of TRAPs (87) that are 
also of health concern. For example, statewide on-road emissions of 
carbon monoxide, nitrogen oxides, and diesel PM also decreased by 
~75% (38, 39). Ambient concentrations of these pollutants have de-
clined substantially in absolute terms, especially at sites in overbur-
dened communities (60). These results speak to the value of both 
aggressive mobile source control and a multi-pollutant mitigation 
strategy that considers multiple TRAPs at once. Future mitigation ef-
forts should continue this approach to avoid the risk of unintended 
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consequences of single-pollutant control strategies (52). Despite this 
success, it is likely that relative disparities for other pollutants with 
similar spatial patterns of on-road emissions have persisted. For ex-
ample, NOx, for which on-road sources contributed 57% of total 
statewide emissions in 2000, is considered. From 2000 to 2019, our 
assessment of high-resolution empirical model predictions shows 
a ~55% decrease in PWM NO2 but large and moderately increasing 
relative disparities by race-ethnicity (fig. S3).

It is useful to consider the implications of our retrospective as-
sessment for California’s current policy efforts that focus heavily on 
eliminating exhaust emissions across the on-road fleet through a 
combination of electrification and—in the case of HDVs—hydrogen. 
For every year of the study, approximately 90% or more of the 
PWM PM2.5 exposure (and absolute exposure disparity) is attribut-
able to exhaust emissions and approximately 80% or more is attrib-
utable to secondary formation from precursor exhaust emissions 
(figs. S11 to S14). Because California’s policies contemplate elimi-
nating exhaust emissions, this result implies that future vehicle elec-
trification has the potential to substantially reduce exposures and 
absolute disparity. Nonetheless, PWM exposure to non-exhaust pri-
mary PM2.5 emissions (i.e., brake and tire wear) increased some-
what from 2000 to 2019 (fig.  S18), while relative disparities from 
non-exhaust primary PM2.5 remained effectively constant. Non-
exhaust emissions would not be fully eliminated through electrifica-
tion and could conceivably be exacerbated by increases in vehicle 
mass (88). Thus, future low levels of exposure from non-exhaust 
emissions (e.g., brake and tire wear) might still disparately affect 
people of color and residents of overburdened communities.

Our results suggest that relative disparities in exposure will per-
sist without a paradigm shift in transportation policy. Some policy 
approaches have the potential to reduce not only aggregate levels of 
exposure but also relative disparities. For example, creating low 
emissions zones or promoting a mode shift away from private auto-
mobiles (e.g., dense public transit networks and bike lane infra-
structure) could be more likely to reduce exposure disparities from 
the on-road vehicle fleet than statewide fleet-specific emissions 
controls, while also improving air pollution throughout the system 
(89). Without systemic changes to transportation infrastructure, it 
seems possible that these relative disparities could persist even in a 
future, lower emission scenario. Conversely, by strategically accel-
erating emissions reductions, such as vehicle electrification efforts, 
with deployment emphasizing overburdened areas, EJ communi-
ties could achieve substantial short-term reductions in relative 
exposure disparity.

While we have focused on one sector within California, our find-
ings contribute to an emerging body of EJ research indicating that to 
reduce relative disparities in exposure, the policy must not only con-
tinue a trend of emissions reduction but also target the disparate 
geographical distribution of emissions in overburdened communi-
ties. While we focused on California as a case study, it is possible that 
these general findings would apply across the United States, as most 
state and national approaches broadly have mirrored California’s, 
with a strong focus on emission rate reductions. Our work provides 
a compelling illustration of how a highly successful emissions reduc-
tion strategy does not necessarily reduce relative disparity in expo-
sures (20, 21). More research is needed to identify the specific suite 
of strategies that can deliver a “triple win” for climate, health, and 
equity goals. We hypothesize that particularly effective strategies 
may go beyond aggregate emission rate reductions by ameliorating 

the inequitable spatial distribution of where activities and emissions 
take place. Thus, future work could explore the environmental eq-
uity impacts of potential policy actions and public investments that 
fundamentally change transportation infrastructure.

MATERIALS AND METHODS
Emissions estimates
We obtained estimates of mobile emissions in California from 
CARB’s EMFAC model (version EMFAC 2021 with MPOv11) for 
calendar years 2000 through 2019 (38). The EMFAC model uses de-
tailed California-specific data to estimate emissions by year and fleet 
and has been approved by the US EPA (53). Estimated emissions 
were spatially allocated to a 1 km–by–1 km grid using surrogates 
developed by CARB and CARB’s Spatial and Temporal Allocator 
(ESTA) model. The ESTA model uses spatial surrogates that are de-
rived from link-level traffic measurement data combined with pop-
ulation estimates and spatial information about idling locations, rest 
stops, and distribution centers (90). The resulting dataset contained 
spatially resolved annual total exhaust, evaporative, brake wear, and 
tire wear emissions for primary PM2.5 and four precursor species: 
NOx, VOC, NH3, and SOx. EMFAC2021 reports results for 54 vehi-
cle categories and five fuel types (gasoline, diesel, natural gas, plug-
in hybrid, and electric). Emissions for this analysis were binned into 
three main vehicle groups: LDVs, MDVs, and HDVs, with all other 
vehicle types (including motorcycles, motorhomes, and buses) 
grouped together as “Other” (table S1). Fleet information is derived 
from detailed data from the California Department of Motor Vehi-
cles, the California Highway Patrol, the International Registration 
Plan Clearinghouse, and the National Transit Database (38). EMFAC 
is therefore capable of providing a reasonable representation of 
distinct activity and emissions patterns for specific vehicle fleets.

Estimates of air concentrations
We modeled annual average PM2.5 concentrations attributable to 
vehicle emissions in California using the ISRM (15, 28, 73). The 
ISRM was developed from the US InMAP, which used WRF-Chem 
simulations and US Environmental Protection Agency National 
Emissions Inventory emissions estimates for 2014. The national ver-
sion of InMAP was sampled on a population-weighted, variably 
sized grid (n = 21,705; 1 km to 48 km) for the state of California 
(15). Approximately 74% of grid cells are the finest resolution, with 
a population-weighted average grid size of 2.4 km (urban: 1.2 km; 
rural: 7.4 km). The gridding algorithm ensures that no cell larger 
than 1 km contains more than 20,000 people or a census block group 
with a population density higher than 2500 people/km.

The ISRM relates, for the n  =  21,705 grid cells in California, 
marginal changes in ground-level concentration in every grid cell 
to marginal changes in emissions in every cell. Because this work 
only evaluates impacts from on-road mobile sources, all concentra-
tions were estimated using the ground-level (i.e., 0 to 57 m above 
ground) layer.

Open-source tool: ECHO-AIR
Air pollution modeling, even with reduced complexity modeling 
tools such as InMAP, can have major accessibility barriers for non-
specialists. For the present analysis, we developed an open-source 
Python-based pipeline that streamlines exposure concentration and 
health impact analyses. The resulting system, called Estimating 
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Concentrations and Health Outcomes – Automated ISRM Resource 
(ECHO-AIR), aims to lower barriers to entry for rapid estimation of 
PM2.5 exposure and health assessments.

Executing ECHO-AIR for analyses in California requires only 
estimates of emissions, which can be input as ArcGIS-compatible 
shapefiles or comma-separated value files. ECHO-AIR is modular, 
enabling users to use any ISRM, population data, and health input 
data, so long as they are formatted correctly ECHO-AIR is managed 
through a public GitHub repository to ensure transparency, maximize 
usability, and perform routine model upgrades and maintenance (see 
Supplementary Text for details).

Population estimates
We obtained population data for the years 2000 and 2010 from the 
decennial US census for California from the National Historic Geo-
graphic Information System (NHGIS) database version 16.0 (91). 
Population estimates were queried at the tract level by age, race, and 
Hispanic origin. Consistent with prior literature (4, 8, 9), racial-
ethnic categories were estimated as follows: The population count for 
Hispanic Californians was defined as Californians of any race who 
were of Hispanic origin; Californians who are not of Hispanic origin 
and are Black or African American alone, Asian alone, or white alone 
were defined as Black, Asian, and white Californians, respectively; all 
other Californians were included in the other category.

Exposure assessment and disparity analysis
We estimated statewide group-level exposures to annual average 
PM2.5 as PWM concentrations, consistent with the air pollution dis-
parity literature (3, 8, 9, 19). For the metrics below, we consider only 
on-road mobile source exposure (i.e., we neglect contributions from 
other source types unless explicitly stated otherwise). To estimate 
exposure to PM2.5 for each year, we calculate geographic intersec-
tions between the 2010 census tract boundaries and the gridded 
concentration estimates. Population is down-sampled based on area 
apportionment; concentration estimates are assumed to be constant 
throughout the grid cell. Exposure concentrations are calculated at 
the smallest geography possible (e.g., polygon intersection of census 
tract and ISRM grid cell).

The PWM exposure is estimated by multiplying the annual aver-
age PM2.5 concentration by the population of the demographic 
group of interest within that grid cell, summing across all grid cells, 
and dividing by the total population

where PWMk is the PWM exposure concentration for group k 
across n grid cells, Pi,k is the population of group k in grid cell i, and 
Ci is the concentration of PM2.5 in grid cell i. Equity was assessed 
using the absolute and relative disparities at the PWM. The absolute 
disparity (DA,k) is defined as a demographic group’s PWM exposure 
(PWMk) subtracted by the statewide PWM exposure (PWMT)

Relative disparities (DR,k) are estimated as the absolute disparity 
divided by the statewide PWM exposure to mobile sources

Because the ISRM is a linear model and the absolute disparity is 
an arithmetic equity metric, absolute disparities can be apportioned 
to individual source categories to find a relative contribution to the 
absolute disparity. Thus, the fractional contribution of a source’s 
emissions to a group’s exposure is estimated as follows

where fj,k is the fractional contribution from source j on the expo-
sure and disparity for group k, DA,j,k is the absolute disparity from 
source j for group k, and DA,t,k is the absolute disparity for group k 
from all on-road mobile sources.
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