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REPORT

A Rare Functional Noncoding Variant
at the GWAS-Implicated MIR137/MIR2682 Locus Might
Confer Risk to Schizophrenia and Bipolar Disorder

Jubao Duan,1,2,* Jianxin Shi,3 Alessia Fiorentino,4 Catherine Leites,1 Xiangning Chen,5 Winton Moy,1

Jingchun Chen,5 Boian S. Alexandrov,6,7 Anny Usheva,6 Deli He,1 Jessica Freda,1 Niamh L. O’Brien,4

MGS,11 GPC,12 Andrew McQuillin,4 Alan R. Sanders,1,2 Elliot S. Gershon,2 Lynn E. DeLisi,8

Alan R. Bishop,7 Hugh M.D. Gurling,4,13 Michele T. Pato,9 Douglas F. Levinson,10 Kenneth S. Kendler,5

Carlos N. Pato,9 and Pablo V. Gejman1,2

Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in>100 susceptibility loci; however,

the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137)

andMIR2682 (miR2682), two microRNA genes important for neuronal function. We sequenced ~6.9 kbMIR137/MIR2682 and upstream

regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele fre-

quency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p ¼ 0.021 for

MAF < 0.5%, p ¼ 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal

p ¼ 4.8 3 10�4). We further identified its risk allele T in 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572

SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP,

respectively. The risk allele Tof 1:g.98515539A>T reduced enhancer activity of its flanking sequence by>50% in human neuroblastoma

cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor

(YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced

MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with

SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression.
MicroRNA (miRNA) dysfunction has been hypothesized

to play an important role in neurodevelopmental dis-

orders such as schizophrenia (SZ) (MIM 181500).1–3 Recent

SZ genome-wide association studies (GWASs) further

strengthen an etiological role for miRNAs. Among >100

genome-wide significant (GWS) SZ risk loci, the MIR137/

MIR2682 locus at 1p21.3 is one of the most strongly asso-

ciated.4–10 The GWS SZ risk variants are also associated

with the impaired dorsolateral prefrontal cortex hyperacti-

vation11 and prefrontal-hippocampal functional connec-

tivity.12 Common GWS (p % 5 3 10�8) variants cluster

around MIR137 (MIM 614303) and MIR2682, with much

weaker association extending to dihydropyrimidine dehydro-

genase (DPYD [MIM 612779]) (Figure 1A). Large-scale

exome sequencing13,14 did not identify SZ-associated vari-

ants in coding regions ofDPYD or withinMIR137/MIR2682

that could explain the association, thus implying the

importance of noncoding variants in conferring SZ risk at

this locus. MIR137 is abundantly expressed in brain, en-

riched at neuronal synapses,15 and regulates neuronal
1Center for Psychiatric Genetics, Department of Psychiatry and Behavioral
2Department of Psychiatry and Behavioral Neuroscience, The University of C

Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892,

College London, London WC1E 6JJ, UK; 5Virginia Institute for Psychiatric an

23298, USA; 6Harvard Medical School, Boston, MA 02115, USA; 7Los Alamos

System, Harvard Medical School, Brockton, MA 02301, USA; 9Department

Los Angeles, CA 90033, USA; 10Department of Psychiatry and Behavioral Scie
11Members of the Molecular Genetics of Schizophrenia collaboration are liste
12Members of the Genomic Psychiatric Cohort consortium are listed in the Su
13Deceased

*Correspondence: jduan@uchicago.edu

http://dx.doi.org/10.1016/j.ajhg.2014.11.001. �2014 by The American Societ

744 The American Journal of Human Genetics 95, 744–753, Decemb
differentiation, migration, and dendritogenesis.16–20 Inter-

estingly, ~25% of SZ GWAS loci contain MIR137 tar-

gets (predicted by TargetScan),4,7,9,10 including several

empirically validated targets CACNA1C (MIM 114205),

ZNF804A (MIM 612282), TCF4 (MIM 602272), CSMD1

(MIM 608397), and C10orf26 (MIM 611129),21,22 suggest-

ing a central hub role for MIR137 in a SZ susceptibility

gene network.MIR137 has also been shown to target a large

number of genes associatedwith autism spectrumdisorders

(ASD [MIM 209850]).23 Although MIR2682 has no known

function, it is predicted (TargetScan) to target ankyrin 3

(ANK3 [MIM 600465]), a gene previously found to be

associated with BP (MIM 125480) in GWAS.24–26 MIR137/

MIR2682 thus represents a SZ risk locus with strong biology

relevant to SZ. Rare deletions of genomic segments flanking

MIR137/MIR2682 have been reported in individuals with

intellectual disability (ID)15 andASD.27,28 Althoughwe pre-

viously ruled out rare and large copy-number variants

(CNVs) at this locus in our SZ GWAS sample,29 it remained

to be explored whether there were any rare SNPs or small
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Figure 1. Genomic Features of the Sequenced MIR137/MIR2682 Locus
(A) Associations at theMIR137/MIR2682 SZGWAS locus:9 regions selected for sequencing (light blue/blue, promoter/enhancer; red, insu-
lator) and counts of the identified sequence variants in cases (red bar) and controls (blue bar), as well as the ENCODE chromatin modi-
fication marks in LCL (GM12878), neuronal cell lines (NH-A and SKNSHRA), and HeLa cells. DNaseI HS indicate regulatory regions.
CTCF track indicates transcriptional insulators. Histonemethylationmark tracks for H3K4m1 and H3K4m3 indicate enhancers and pro-
moters, respectively. Different tracks were overlaid with physical positions on UCSC genome browser. GWAS association p values were
downloaded from Ricopili and expressed as –log P.
(B) Sequencing chromatograms at the rare enhancer SNP 1:g.98515539A>T (T/A shown on DNA minus strand) and a consensus DNA
sequence motif for YY1 binding (activation form).
(c) Cross-species sequence conservation around the SNP 1:g.98515539A>Tand at the YY1motif shown in UCSC genome browser (Note:
DNA plus strand sequence is shown).
indels of strong effect that could explain additional SZ

risk and help to inform the functionality of common risk

variants at the same GWAS loci.30–33

We first sequenced ~6.9 kb of MIR137 and MIR2682 and

their upstream regulatory sequences (Figure 1A and Table

S1 available online) in 2,610 SZ cases and 2,611 controls
The American
from the Molecular Genetics of SZ (MGS) EA GWASs.4,7

NorthShore University HealthSystem’s IRB approved the

human subjects protocol, and proper informed consent

was obtained. The selection of the region for sequencing

wasbasedon theDNaseIhypersensitive site (DHS)mapping

data from ENCODE (Encyclopedia of DNA Elements34,35)
Journal of Human Genetics 95, 744–753, December 4, 2014 745



Table 1. SZ Association of Rare Variants Grouped by Promoter/
Enhancer and Insulator in 2,610 SZ Cases and 2,611 Controls from
the MGS EA GWASs

MAF < 0.5% MAF < 0.1%

Minor Allele Count Minor Allele Count

Variant
Location

SZ
Cases

Controls OR p
Value

SZ
Cases

Controls OR p
Value

Promoter/
Enhancer

223 176 1.27 0.021 105 65 1.62 0.003

Insulator
(CTCF)

62 81 0.77 0.132 26 32 0.81 0.435

All 285 257 1.11 0.246 131 97 1.35 0.029

ENCODE-annotated transcriptional promoters (H3K4me3), enhancers
(H3K4me1), or insulators (CTCF-binding sites) were based on chromatin
histone methylation patterns34 in neuronal NH-A cells (ChIP-seq Signal >
10). MAF, minor allele frequency in MGS controls or cases. OR, odds ratio.
p value is the nominal significance calculated by two-sided Fisher’s exact
test. Using MAF < 1% as a cut-off (not tabulated) did not yield significant as-
sociation. A total of 5,262 DNAs (2,634 SZ cases and 2,628 controls) from the
MGS EA GWAS sample4,7,9,29 were used for Sanger sequencing. 5,223 subjects
(2,610 cases and 2,611 controls) remained for association analysis after sample
quality control.
from neuronal cells (SK-N-SH and NH-A; Figure 1A) and in

fetal brain. We further classified these putative regulatory

sequences as ENCODE-annotated transcriptional pro-

moters (H3K4me3), enhancers (H3K4me1), or insulators

(CTCF-binding sites)34 (Figure 1A and Figure S1). The

PCR-amplified genomic DNA amplicons were sequenced

onanABI 3730DNAAnalyzer. The automatically (SeqScape

2.5; ABI) called SNPs and indels were manually verified,

followed by extensive sequencing quality control metrics

including genotype call rate (>90%), genotype concor-

dance rate (>99.9%) between sequencing data and known

GWAS genotypes,4 and absence of Hardy–Weinberg equi-

librium (HWE) departures (p < 0.001 in controls).

We identified 143 SNPs and Indels (Table S2), of which

133 (~93%) were rare (MAF < 0.5%). The variant density,

proportion of singletons, andMAF distribution of the iden-

tified variants were all similar compared to whole exome or

genome sequencing results (NHLBI-Exome Sequencing

Project [ESP] and UK10K-TwinsUK)36,37 for the same tar-

geted region (Figure S2, Figure S3, and Table S3). The pro-

portion of rare variants identified from our sequencing of

putative regulatory sequences was similar to that of

missense SNPs and frameshift or nonsense SNPs, but

higher than that of intronic SNPs (Fisher’s exact test p ¼
0.0007; Figure S3B) uncovered by exome sequencing of

4,298 EA subjects (NHLBI-ESP).36 The enrichment of rare

variants in the sequenced noncoding regions relative to in-

trons was consistent with the expected functionality of the

sequenced region and possible purifying selection acting

on deleterious variants.38

We identified two common (MAF > 5%) SNPs

(rs2660304 and rs2660302) in linkage disequilibrium

(LD) (r2 ¼ 0.74 and 0.50, respectively, based on 1000 Ge-

nomes) with the reported SZ-associated rs1198588.4–10 As

expected, they showed nominally significant association
746 The American Journal of Human Genetics 95, 744–753, Decemb
to SZ in the sequenced MGS sample (Table S2), providing

evidence of accuracy of our sequencing data. We found

no association of SZ to a 15 bp Sequence Tandem Repeat

(STR; rs58335419) 54 bp upstream from MIR137 (Table

S1 and Figure S4), although the STR was recently found

to reduce in vitro biogenesis of mature MIR137.39 As in a

previous report of no association of this functional

MIR137 STR with SZ in a Japanese sample,40 our nonrepli-

cation of the originally reported weak association (p ¼
0.049)39 with SZ might be due to insufficient power of

our MGS sample. Alternatively, because cellular RNA level

is ultimately a result of multilayer of complex gene regula-

tion predominately at transcriptional level,41 the in vitro

posttranscriptional effect of the MIR137 STR39 might be

masked by other variant(s) with opposite functional effect

and thus does not manifest in vivo phenotypic changes. A

burden test aggregating all 133 rare variants did not pro-

duce evidence for association. As promoter and enhancer

mutations likely reduce transcription while insulator mu-

tations likely increase transcription, we reasoned that sim-

ply collapsing two sets of rare variants expected to have

opposite directions might reduce the power. We thus per-

formed burden tests separately for these two sets of rare

variants. We found that the promoter and enhancer rare

variants as a whole were significantly associated with SZ:

p ¼ 0.021 for variants with MAF < 0.5% in either cases

or controls (to capture both risk and protective variants),

and p ¼ 0.003 for variants with MAF < 0.1% (in cases or

controls); while insulator variants showed no case-control

difference (Table 1). This highlights the importance of

considering the direction of putative functional effects in

association testing of rare variants in aggregate.

The association was primarily driven by a single SNP,

1:g.98515539A>T, that presented in 11 SZ cases versus

0 controls (p ¼ 4.8 3 10�4, Fisher’s exact test) (Table 2).

We repeated the DNA sequencing for 1:g.98515539A>T

and confirmed all 11 heterozygous SZ cases. Although

we had a higher proportion of blood DNAs in MGS SZ

cases (25%) than in controls (1%), the rare variant

1:g.98515539A>T was not overrepresented in DNAs from

bloods (27%) or from LCLs (Table S4). Furthermore, we

confirmed the presence of 1:g.98515539A>T by repeated

sequencing of DNAs re-extracted from available blood

samples of two heterozygous subjects and from an induced

pluripotent stem cell (iPSC) line derived at RUCDR

(Rutgers University Cell and DNA Repository) from a het-

erozygous subject’s cryopreserved peripheral lymphocytes

(Figure S5). These results suggested that the presence of

1:g.98515539A>T in 11 SZ cases was not due to technical

artifacts resulted from sequencing or LCL derivation.

Please note that, with 1:g.98515539A>T left out, the rare

variants with MAF < 0.1% remained excess in SZ cases (p

¼ 0.026; Table 1), and the association with GWAS-impli-

cated common variants in this region did not change

much in MGS sample (from p ¼ 0.0005 to 0.0006). To esti-

mate the empirical significance of the observed association

with 1:g.98515539A>T, we performed 1 million random
er 4, 2014



Table 2. Single Variants Nominally Associated with SZ in 2,610 SZ Cases and 2,611 Controls from the MGS EA GWASs

Variant Name Position (hg19) Function Alleles MAF_case MAF_ctrl OR p Value Perm_P

1:g.98515539A>T 98,515,539 Enhancer A:T 0.0021 0.0000 NA 0.00048 0.004

1:g.98520090G>C 98,520,090 Insulator (CTCF) G:C 0.0002 0.0019 0.10 0.00627 NS

1:g.98519714C>G 98,519,714 Insulator (CTCF) C:G 0.0023 0.0048 0.48 0.04627 NS

rs2660302 98,520,219 Promoter/enhancer A:T 0.1573 0.1803 0.85 0.00807 NT

rs2660304 98,512,127 Promoter/enhancer T:G 0.1695 0.1933 0.85 0.01314 NT

Functional regions were defined as ENCODE-annotated transcriptional promoters (H3K4me3), enhancers (H3K4me1), or insulators (CTCF-binding sites) based on
chromatin histone methylation patterns34 in neuronal NH-A cells (ChIP-seq Signal > 10). Alleles are coded on plus strand. Alleles listed as major:minor. OR, Odds
ratio. p value is the nominal significance calculated by two-sided Fisher’s exact test. Perm_P is the region-wise significance after multiple testing correcting based
on one million random permutations. NS, not significant; NT, not tested due to common SNPs.
permutations for all rare SNPs in the region and de-

termined the region-wise p value was 0.004. Interest-

ingly, two rare insulator variants (1:g.98520090G>C and

1:g.98519714C>G) were more frequent in controls than

in cases (p ¼ 0.006 and 0.046, respectively, Fisher’s exact

test); however, the associations did not survive multiple

testing correction (Table 2), and the more strongly associ-

ated 1:g.98520090G>C was not functional (see functional
Table 3. Association of 1:g.98515539A>T with SZ and BP in the
Combined Samples

Cases Controls

Minor
Allele T

Major
Allele A

Minor
Allele T

Major
Allele A

Fisher
p Value

MGS-SZ 11 5,177 – 5,192

ICCSS-SZ 1 2,067 – 1,316

UCL-SZ 1 1,799 1 2,627

GPC-SZ – 1,000 – 400

NIMH-BP 2 2,090

UCL-BP 8 3,778

GPC-BP 1 2,799 1 2,799

TwinsUK 1 3,205

1000 Genome – 170

Combined-SZ 13 10,043 3 15,709 0.0007

Combined-BP 11 8,667 0.0013

Combined-SZ/BP 24 18,710 0.0001

MGS4,7,9 were Sanger sequenced. ICCSS42,43 were genotyped by TaqMan.
UCL were genotyped by allele-specific PCR using KASPar reagents. GPC geno-
types were extracted from whole genome sequenced data. NIMH-BP were
genotyped by TaqMan. Two public whole-genome sequence (WGS) data
sets were used as population controls (TwinsUK and 1000 Genomes). Fisher’s
Exact Test p values (single-sided) for the combined analysis were shown, and
the combined control sample was used. UCL samples. The case sample
included 1,917 BP and 932 SZ cases. All SZ or BP samples, except for UCL sam-
ple, have been previously described. UCL sample included 1,917 BP and 932
SZ cases, as well as 1,348 control subjects comprised of 868 screened subjects
who had no first degree family or personal history of psychiatric illness and an
additional 480 unscreened normal British subjects obtained from the European
Collection of Cell Cultures (ECACC). BP cases had been given an NHS clinical
diagnosis of BP by the International Classification of Disease 10 (ICD-10) and
then needed to fulfill RDC for BP with clinical data collected by the lifetime
version of the Schizophrenia and Affective Disorder Schedule (SADS-L).76 The
SZ cases were diagnosed in an analogous manner. National Health Service
(NHS) multicenter research ethics approval was obtained for UCL sample.

The American
studies below). We further genotyped 1:g.98515539A>T in

three additional EA SZ samples: (1) the Irish Case-Control

Study of SZ (ICCSS) sample (1,034 cases and 658 con-

trols)42,43 by a customized TaqMan assay (Life Technolo-

gies), (2) the University College London (UCL) sample

(900 cases and 1,314 controls) by allele-specific PCR using

KASPar reagents (LGC Genomics) on a LightCycler 480

(Roche), and (3) the Genomic Psychiatric Cohort (GPC;

500 cases and 200 controls)44 by extracting the genotype

of the 1:g.98515539A>T from available whole-genome

sequencing data sets and found the rare allele in 2 SZ cases

and 1 control (Table 3).

Because SZ and BP share genetic architecture,45 we also

genotyped 1:g.98515539A>T in three EA BP samples: (1)

NIMH-BP (1,046 cases)46,47 by a customized TaqMan assay

(Life Technologies), (2) UCL (1,893 cases) by allele-specific

PCR using KASPar reagents (LGC Genomics), and (3) GPC

(1,400 cases and 1,400 controls) by extracting the genotype

of the 1:g.98515539A>T from available whole-genome

sequencing data sets. We found 1:g.98515539A>T in 11

BP cases and 1 control (Table 3). Furthermore, we identified

1 heterozygous subject in whole-genome sequenced

population controls (publically available; TwinsUK: 1,603

controls, 1000 Genomes: 85 controls) (Table S3). In the

combined case (i.e., case-control) samples, the association

of 1:g.98515539A>T with SZ, BP, and SZ and BP combined

was 0.0007, 0.0013, and 0.0001, respectively (Table 3). We

also examined 1:g.98515539A>T, in two family collec-

tions: (1) Clinical Neurogenetics (CNG) SZ families (307

subjects in 67 pedigrees)48,49 by Sanger sequencing and

(2) Irish Study of High-Density SZ Families (ISHDSF)

(1,400 subjects in 274 pedigrees)42,43 by a customized

TaqMan assay (Life Technologies). We identified one SZ

proband and an unaffected father in a CNG family to be

heterozygous for 1:g.98515539A>T. The presence of the

rare risk allele in an unaffected parent is consistent with

incomplete penetrance, which is even commonly seen

for SZ-associated rare CNVs of large effect50 and for causal

variants in most complex disorders.51

Next, we investigated whether allele T of

1:g.98515539A>T in the 11 SZ MGS EA cases originated

from the same haplotypic background. We merged the ge-

notypes of 1:g.98515539A>T with MGS GWAS genotypes4
Journal of Human Genetics 95, 744–753, December 4, 2014 747



Figure 2. Reporter Gene Assay for
Variant Functionality in Neuroblastoma
(SH-SY5Y) and HeLa Cell Lines
Putative regulatory sequence flanking the
rare enhancer (A) SNP (bp: 98,515,539;
hg19) or the CTCF (B) SNP (bp:
98,520,090; hg19) was cloned in a configu-
ration of minus strand upstream of the
SV40 promoter of pGL3-promoter vector.
The resultant reporter gene vectors car-
rying regulatory sequences with different
alleles of a SNPwere transiently transfected
into neuroblastoma (SH-SY5Y) and HeLa
cell lines, and the relative luciferase activ-
ity was measured for each reporter gene
construct. Allele-specific effects on
enhancer activity or insulator activity of
the cloned sequence were expressed as
the relative luciferase unit, with the re-
porter gene expression of pGL3-promoter
(no insert) as a control for basal SV40
promoter activity. Note that in (B), the
cloned sequence shows an enhancer activ-
ity in SH-SY5Y cells and repressor activity
in HeLa cells, which is consistent with
ENCODE functional annotations (CTCF

and H3K4m1 peaks in NH-A, but only CTCF peak in HeLa). For normalizing the transfection efficiencies between different constructs,
the firefly luciferase constructs were cotransfected with the Renilla luciferase pRL-CMV Vector (Promega). We used Lipofectamine 2000
Transfection Reagent (Invitrogen) for the transfectionwhen the cultured cells are at 60% confluence for SH-SY5Yand 90% confluence for
HeLa cells on 96-well plates. 48 hr after transfection, we measured the firefly and Renilla luciferase activities using Dual-Luciferase Re-
porter Assay System (Promega) according to the manufacturer’s protocol. Data were from 3 independent experiments and expressed
as mean 5 SD. Statistical significance was generated by Student’s t test.
and phased the MIR137 local region using BEAGLE52 for all

subjects. The T alleles were on the same haplotype, suggest-

ing that they were inherited from the same common

ancestor. The shared common-SNP haplotype spans ~77.2

kb (from rs1938567 to rs1198588) (Table S5) with a fre-

quency of 0.787 in MGS controls, 0.792 in TwinsUK con-

trols, and 0.790 in a publically available GWAS sample with

9,562 subjects of European ancestry (The Atherosclerosis

Risk in Communities-ARIC Study data set downloaded

from dbGAP). These results suggest that the rare risk allele

is not just from an unusual ancestry that happens to carry

this rare SNP on the haplotype, and our MGS controls are

not an atypical EA subpopulation. To further assess any con-

founding effect of population stratification on our observed

association with 1:g.98515539A>T, we analyzed the geno-

typic ancestry principal components (PCs)4 of the MGS

cases carrying 1:g.98515539A>T and other MGS subjects

(Figure S6). MGS cases and controls appeared to be matched

very well, with northern European population as a predom-

inate cluster. The MGS cases carrying 1:g.98515539A>T

spread all over the main northern European cluster

(Figure S6), indicating that these individuals with the rare

variant were not preferentially from a small regional sub-

population. For the SZ subjects carrying 1:g.98515539A>T,

we also calculated kinship coefficients using genome-wide

SNPs with SNP frequencies estimated based on the whole

MGS sample. Out of all possible pairs of individuals with

the rare variant 1:g.98515539A>T, only one was greater

than 0.02, nine were close to 0.01, and the rest of them

were zero. This result demonstrated that the SZ cases car-
748 The American Journal of Human Genetics 95, 744–753, Decemb
rying 1:g.98515539A>Tare unlikely from a localized region,

which is consistent with ancestry principal components

analysis. From all of these analyses, we concluded that the

observed disease association with 1:g.98515539A>T was

unlikely due to population stratification.

SNP 1:g.98515539A>T is within an ENCODE-annotated

neuronal cell (NH-A and SKNSH) specific enhancer and pro-

moter ~3.6 kb upstream of MIR137 (Figure 1A). It is 5 bp

away from the binding motif (CCAT) of TF YY-1 (gene acti-

vating form; Figure 1B); the flanking sequence of the YY1

motif with the major allele of 1:g.98515539A>T is highly

conserved in mammals (Figure 1C). We hypothesized that

the risk allele of 1:g.98515539A>T reduced enhancer activ-

ity by interfering with YY1 binding. To test the hypothesis,

we cloned the putative enhancer sequence (the transcribed

minus strand) flanking 1:g.98515539A>T into a luciferase

reporter gene vector (pGL3-promoter) (Figure 2A; Table

S6). As expected from the ENCODE functional annotation,

the cloned sequence exhibited robust enhancer activity as

indicated by luciferase expression in a human neuroblas-

toma cell line (SH-SY5Y), but not in HeLa cells. The

enhancer activity of the cloned sequence was reduced

~50% by the risk allele A relative to the major allele T (we

refer to the nucleotide on the minus strand hereinafter for

the functional study section) of 1:g.98515539A>T (Fig-

ure 2A). However, 1:g.98520090G>C (nominally overrep-

resented in controls; p ¼ 0.006), near an insulator (CTCF

binding-site), did not display any effect on transcription

in the reporter gene assay (Figure 2B) or on open chromatin

(regulatory elements) in a formaldehyde-assisted isolation
er 4, 2014



Figure 3. The Rare Allele A of
1:g.98515539A>T Reduces TF YY1 Binding
(A) EMSA for YY1 binding. A double-
stranded oligonucleotide (29 bp; on minus
strand) flanking the YY1-binding site and
1:g.98515539A>T (allele T or A;
AGAGGTGCTGTGAACACACAGC-
CATTTTC t/a TAGCAGCTTTTTGACTG
TATGTTACCATA) was incubated with
the nuclear extracts of neuroblastoma
(SH-SY5Y) cells. Oligonucleotide probe
(20 fmol) with allele T (lane 2) produced a
much denser band of specific DNA-protein
binding complex than the risk allele A
(lane 6). The DNA-protein complex was
recognized by antibody of YY1 (C-20;
sc-281; rabbit polyclonal; Santa Cruz

Biotechnology), showing up as a super-shift band (lanes 4 and 8), but weaker for allele A. The specificity of the YY1 binding is shown
by the abolishment of the DNA-YY1 binding complex in the presence of excess (50 pmol) unlabeled probe (lanes 3 and 7). The
EMSA was performed using the LightShift Chemiluminescent EMSA kit (Thermo Scientific). Binding reactions were separated by elec-
trophoresis on 6% polyacrylamide gels on XCell SureLock Mini-Cell Electrophoresis System (Life Technologies).
(B) Computing models of the effect of 1:g.98515539A>T on DNA breathing dynamics (~100 bp flanking the SNP site) that is necessary
for binding of TFs. Langevin molecular dynamic (LMD) simulations, based on the Extended Peyrard-Bishop-Dauxois (EPBD) nonlinear
model of DNA, assessed bubble-formation probability and average strand separation as themechanistic parameters characterizing the TF
binding activity of the sequence.54,75 The sequences are simulated in 1,000 separate realizations. Sequence containing allele A in close
proximity to YY1 binding site predicts weak DNA breathing activity (top), in contrast to the much stronger breathing potential of the
sequence with allele T (bottom). The white horizontal lines mark the SNP sites. The YY1 binding sequence ending at the SNP site is
shown below the SNP line. Vertical axis, bubble length in bp; color axis, bubble probability at specific nucleotide positions (horizontal
axis) predicted for DNA openings with amplitude > 2Å at temperature of 310�K.
of regulatory elements (FAIRE) assay53 in lymphoblastoid

cell lines (LCLs; Figure S7).

We further carried out an electrophoresis mobility shift

assay (EMSA) to examine whether the reduced enhancer

activity by allele A of 1:g.98515539A>T correlated with

altered DNA binding to TFs in SH-SY5Y cells. We found

that the YY1 motif-flanking DNA probe carrying the risk

allele A had a much weaker YY1 binding capacity than

the probe with the major allele T (Figure 3A). Consistent

with the EMSA result, computational analysis of local

DNA breathing dynamics also predicted an effect of

1:g.98515539A>T on differential local DNA breathing asso-

ciated with specific TF binding54,55 (Figure 3B). Major allele

T features a conformational DNA dynamics (probability for

bubble formation p ¼ 5.8 3 10�4) that favors strong YY1

binding, while the risk allele A nearly silences the DNA

breathing in the vicinity of the YY1 binding sequence

(Figure 3B). This effect could explain the weak YY1 binding

associated with allele A in EMSA (Figure 3A). Allele T distinc-

tively activates bubble formation with significantly higher

probability that favors strong specific YY1 binding.56

Although 1:g.98515539A>T at the MIR137/MIR2682 lo-

cus is proximal to the transcription start of the MIR137

host gene (MIR137HG), the enhancer sequence surrounding

the SNP could still affect other adjacent genes (DPYD and

LOC729987) (Figure 4A) through long-range regula-

tion.57,58 We therefore performed the 3C assay58–60 in

SH-SY5Y cells to examine whether the 1:g.98515539A>T

site can physically interact with core promoters of DPYD

and LOC729987 (Figure 4A). We identified specific phys-

ical interaction of the enhancer sequence flanking

1:g.98515539A>T with other putative regulatory se-
The American
quences upstream of MIR137/MIR2682, but not with the

core promoters of DPYD or LOC729987 (Figure 4B). This

suggests the functional 1:g.98515539A>T might influence

expression of MIR137/MIR2682, but not of DPYD or

LOC729987.

Together, our reporter gene assay, EMSA, and the 3C

experiment on the rare SNP 1:g.98515539A>T suggest a

mechanism of reduced expression of MIR137/MIR2682 as

contributing to SZ risk at this locus. This is consistent

with a recent report showing an association of the SZ risk

allele of the GWAS-implicated rs1625579 with decreased

MIR137 expression in SZ postmortem brain tissue.61 The

regulatory effect of SNP 1:g.98515539A>T is also consistent

with the possible functional mechanism underlying the

reported microdeletions involving MIR137 in ASD27,28

and ID individuals.15 Although we have confirmed the

transcriptional effect of the SZ-associated rare SNP

1:g.98515539A>T, we cannot rule out other functional var-

iants at MIR137 locus.39 Neurons differentiated from in-

duced pluripotent stem cells (iPSCs) generated from SZ

cases carrying the rare risk allele would be an appropriate

experimental model to test the functional effect of

1:g.98515539A>T on MIR137/MIR2682 expression and on

SZ-relevant cellular and physiological phenotypes.62,63 We

found a dramatic increase of MIR137/MIR2682 expression

during the dopaminergic neuronal differentiation and

maturation from iPSCs64 (Figure S8). Such isogenic human

iPSC-derived neurons differing only at the functional

SNP site will also be an invaluable cellular model to study

the downstream molecular target of MIR137 in a more dis-

ease-relevant physiological condition, complementing the

current knowledge of genome-wide transcriptional effect
Journal of Human Genetics 95, 744–753, December 4, 2014 749



Figure 4. Chromatin Conformation Capture (3C) for Detecting
the Physical Interaction between the Regulatory Sequences of
MIR137/MIR2682 Locus in SH-SY5Y Cells
(A) Genomic locations of 3C probes (P1 to P6) on UCSC genome
browser tracks along ~300 kb region (chr1:98,378,000-
98,688,000). Each probe is a plus-strand sequence ~150 bp up-
stream of a HindIII cutting site. P3 is the bait probe adjacent to
the enhancer sequence where 1:g.98515539A>T resides. P2, P4,
and P5 target the other sequenced regulatory regions upstream
MIR137/MIR2682. P1 and P5 target the core promoters of the
flanking genes DPYD and LOC729987, respectively.
(B) PCR products from different pairs of 3C probes on an agarose
gel (2%). The interacting genomic regions in SH-SY5Y cells were
captured and enriched by sequentially cross-linking of chro-
matin, HindIII cutting of cross-linked chromatins, and religation
of HindIII-digested DNAs. Only physically interacting genomic
regions were enriched and produced specific amplification (corre-
sponding to each pair of 3C probes) in PCR. The specific PCR
products were verified by the expected size (Table S7) and by
direct DNA sequencing. The HindIII-digested but unligated (i.e.,
no ligase) DNAs served as negative controls. PCR controls are
an amplicon within two consecutive HindIII cutting sites and
thus this shows specific amplification for both ligated and unli-
gated chromatins.
ofMIR137 obtained fromoverexpressingMIR137 in human

neuronal stem cell line.65,66

In summary, we have identified a functional rare noncod-

ing risk variant for SZ at one of themost strongly associated

SZ susceptibility loci from GWASs, highlighting the impor-

tance of rare noncoding variants in SZ genetics. Rare func-

tional variants identified at GWAS-implicated loci not only

explain additional genetic risk but also can provide unpar-

alleled direct links to causal variants or mechanisms given

their relatively larger effects compared to common risk var-

iants at the same locus.30,31,67–70 The existence of rare non-

coding SZ-risk variants at the SZ GWAS-implicatedMIR137/

MIR2682 locus is in line with recently reported polygenic

burden of rare disruptive (nonsense, essential splicing

site, and frameshift) variants in genes implicated by SZ

GWAS and CNV studies.13 Our study also demonstrates

an approach of analyzing rare noncoding variants based

on a priori knowledge of directional functionality of a

variant; a higher burden of rare noncoding variants in SZ

cases was only observed in putative promoter and enhancer

regions, but not in transcriptional insulators. Moreover, we

have shown that a rare functional variant at MIR137/

MIR2682 locus might confer risk for developing both SZ
750 The American Journal of Human Genetics 95, 744–753, Decemb
and BP, although common variants at this locus have

been suggested to confer shared risk effect acrossmajor psy-

chiatric disorders.71 Indeed, rare CNVs associated with a

psychiatric disorder frequently show variable phenotypic

expressivity, i.e., with shared risk to other psychiatric disor-

ders or neurodevelopmental conditions.72We acknowledge

that although the association of 1:g.98515539A>T with SZ

in the MGS sample remained significant after multiple-

testing correction (p ¼ 0.004), it did not reach genome-

wide significance, and additional confirmation in indepen-

dent samples will be necessary to definitively establish

the association. It is however noteworthy that replicating

the association with rare variants can be challenging, even

in larger samples.31,73,74 For SZ, there has been no report

of a single rare variant showing genome-wide significant as-

sociation, even in recent large-scale exome-sequencing

studies.13,14 Given that we have provided evidence that

technical artifacts or population stratification are unlikely

to explain our results, our studywarrants further resequenc-

ing efforts with more comprehensive coverage of putative

regulatory sequences at the MIR137/MIR2682 locus, confir-

mation of the observed association in larger independent

samples, and a deeper understanding of the causal link be-

tween SZ risk alleles and disease phenotypes.

Supplemental Data

Supplemental Data include eight figures and seven tables and can

be found with this article online at http://www.cell.com/ajhg.
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