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ABSTRACT
Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the “many-body energy”
(MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body
interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as
an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations. MBX is parallelized
internally using Open Multi-Processing and can utilize Message Passing Interface when available in interfaced molecular simulation software.
MBX enables classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations that combine conventional force
fields and MB-nrg PEFs, for diverse systems ranging from small gas-phase clusters to aqueous solutions and molecular fluids to biomolecular
systems and metal-organic frameworks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156036

I. INTRODUCTION

Molecular dynamics (MD) and Monte Carlo (MC)
simulations1,2 have been widely used for understanding and
characterizing structural, thermodynamic, and dynamical proper-
ties of molecular systems, from small gas-phase clusters to extended
materials and biomolecular systems.3–8 The potential energy
function (PEF) used to represent the multidimensional potential
energy surface associated with the molecular system being studied
directly determines the level of realism as well as the predictive
power of any MD and MC simulation.

In the early days of molecular simulations, due to lim-
ited computational resources, the only viable options for PEFs

were empirically parameterized force fields (FFs) that use rela-
tively simple expressions to describe intramolecular distortions
and pairwise-additive functions to describe intermolecular
interactions.9,10 Although more advanced (nonpolarizable and
polarizable) FFs developed over the past five decades11–15 remain
the most commonly used PEFs in MD and MC simulations,
machine-learning (ML) models trained on electronic structure
data have become increasingly popular, promising higher accuracy
than conventional FFs.16–19 Some examples of ML PEFs include
neural network potentials (NNPs),20–29 equivariant graph neural
network potentials,30 Gaussian approximation potentials (GAPs),31

moment tensor potentials (MTPs),32 and spectral neighbor analysis
potentials (SNAPs),33 as well as PEFs based on the atomic cluster
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expansion,34 kernel ridge regression methods,35 gradient-domain
machine learning (GDML),36 and support vector machines
(SVM).37 Permutationally invariant polynomials (PIPs) have
also been used, either as standalone fitting functions38–62 or in
combination with neural networks (PIP-NNs).63–66 Many ML PEFs
are, however, limited in their transferability—those designed to
mimic gas phase properties perform well under those conditions
but may not be as accurate when applied to condensed-phase
systems,67–69 and models that are trained to reproduce condensed-
phase properties may not perform as well in the gas phase or at
interfaces.70,71

Ten years ago, Babin, Medders, and Paesani introduced MB-
pol, a data-driven many-body PEF for water rigorously derived
from “first principles.”72–74 MB-pol combines physics-based many-
body models with data-driven machine-learned representations of
individual many-body interactions that are expressed in terms of
multidimensional PIPs. These machine-learned PIPs were shown
to account for limitations in classical representations of molec-
ular interactions that arise when overlapping electron densities
lead to quantum-mechanical effects that do not have a classi-
cal counterpart, such as exchange-repulsion, charge transfer, and
charge penetration.75–77 The PIPs of MB-pol were trained on large
datasets of many-body energies calculated at the coupled cluster
level of theory, including single, double, and perturbative triple
excitations, i.e., CCSD(T), the current “gold standard” for chemi-
cal accuracy.78 By construction, MB-pol is fully transferable across
all phases,79,80 accurately reproducing the properties of small gas-
phase clusters,81–92 liquid water,93–99 the air/water interface,100–104

and ice.105–110 Remarkably, MB-pol was shown to be the first and,
currently, only water PEF able to correctly predict the phase dia-
gram of water.111 More recently, an updated version of MB-pol,
MB-pol(2023), which was trained on larger training sets of many-
body interactions, was shown to achieve even higher accuracy for
simulations of water in both gas and liquid phases.112

Building on the accuracy and predictive power of MB-
pol, many-body PEFs for various molecular systems were devel-
oped, including halide113–119 and alkali-metal120–124 ions in water,
molecular fluids,125–128 small molecules in water,129,130 and generic
covalently-bonded molecules in the gas phase.131 These many-
body PEFs were developed within the many-body energy (MB-
nrg) theoretical/computational framework,113,120 which effectively
generalizes the MB-pol framework to arbitrary molecules. Briefly,
the MB-nrg PEF of a system is built upon a baseline physics-
based model describing permanent electrostatics, London disper-
sion forces, and many-body polarization, which is supplemented by
explicit machine-learned n-body PIPs. As in MB-pol, the MB-nrg
PIPs effectively represent quantum-mechanical many-body interac-
tions arising from the overlap of the electron densities of individual
monomers.113,120

Here, we introduce MBX (Many-Body eXpansion),132 a mod-
ular C++ library that can either be used as a standalone software
for calculating MB-nrg energies and forces for the molecular sys-
tem of interest or interfaced with external MD and MC engines to
perform classical and quantum simulations of the molecular sys-
tem of interest across different thermodynamic states and phases,
in both periodic and non-periodic conditions, using the corre-
sponding MB-nrg PEFs. Importantly, MBX is interfaced with MB-
Fit,133 a Python software infrastructure that provides an integrated

suite of codes for the automated development of MB-nrg PEFs for
generic molecules, from training set generation to PEF fitting and
implementation.134

II. THEORY: MB-NRG POTENTIAL ENERGY FUNCTIONS
The energy of a system containing N (atomic or molecu-

lar) monomers (hereafter referred to as 1-mers) can be rigorously
expressed as a sum of n-body energy contributions (1 ≤ n ≤ N)
according to the many-body expansion (MBE) of the energy,135

EN(1, . . . , N) =
N

∑
i=1

ε1B(i) +
N

∑
i< j

ε2B(i, j)

+
N

∑
i< j<k

ε3B(i, j, k) + ⋅ ⋅ ⋅ + εNB(1, . . . , N), (1)

where each 1-body energy, ε1B(i), is the energy of the isolated ith
1-mer, E1(i). For n ≥ 2, the n-body energies, εnB are defined
recursively according to the following expression:

εnB(1, . . . , n) = En(1, . . . , n) −
n

∑
i=1

ε1B(i)

−
n

∑
i< j

ε2B(i, j) −
n

∑
i< j<k

ε3B(i, j, k)

− ⋅ ⋅ ⋅ −
n

∑
i< j<k<...

ε(n−1)B(i, j, k, . . .). (2)

It should be noted that within the MB-nrg theoretical/computational
framework the reference zero for the energy scale (where
EN = 0) corresponds to the molecular configuration in which all
N 1-mers are separated by infinite distances and each 1-mer is in its
minimum-energy geometry. As a consequence, ε1B(i) corresponds
to the distortion energy of the ith 1-mer relative to its minimum-
energy geometry. Since the MBE converges quickly for molecular
systems with localized electron densities, i.e., molecular systems with
large electronic band gaps,136–139 the MBE provides a rigorous and
efficient theoretical/computational framework for the development
of many-body PEFs where each n-body term of Eq. (1) is fitted to
reproduce the corresponding n-body reference energies calculated
from “first principles.”

As in MB-pol,72–74 the MB-nrg PEFs integrate physics-based
many-body terms, representing contributions to molecular interac-
tions that can be accurately represented by classical expressions (e.g.,
permanent electrostatics and polarization), with explicit machine-
learned representations of individual n-body terms in the MBE,
which effectively recover quantum-mechanical interactions arising
from the overlap of 1-mer’s electron densities (e.g., exchange-
repulsion, charge transfer, and charge penetration) that cannot be
represented by classical expressions.140 Specifically, the MB-nrg the-
oretical/computational framework approximates the MBE defined
in Eq. (1) as

EN = V1B + V2B + V3B + ⋅ ⋅ ⋅ + VnB + Velec, (3)

where n ≤ N and N is the total number of 1-mers in the system.
Each of the VnB terms of an MB-nrg PEF includes an n-body

machine-learned term (VnB
ML) for each n-mer. Each VnB

ML is expressed
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as a product of a switching function and a PIP (i.e., VnB
ML = snBVnB

PIP).
The switching function (snB) ensures that the contribution from the
associated VnB

ML term goes to zero as any subset of the 1-mers in an
n-mer is separated from the rest.

Following the original MB-pol PEF,72,73 a given n-body PIP
takes the following form:

VnB
PIP(M1, M2, . . . , Mn∣ν(M1, M2, . . . , Mn))

=
L

∑
l=1

cl ⋅ ηl(ξ1, ξ2, . . . , ξλ), (4)

where M1, M2, . . . , Mn are n 1-mers that compose an n-mer of type
ν(M1, M2, . . . , Mn), L is the number of linear parameters, cl are the
linear parameters, ηl are the symmetrized monomials built from
the variables, ξ1−λ, each of which is an exponential of an interatomic
distance with one of the following forms:

ξexp(Rmn) = e−kτ(mn)Rmn , (5a)

ξexp0(Rmn) = e−kτ(mn)(Rmn−d0,τ(mn)), (5b)

ξcoul(Rmn) = e−kτ(mn)Rmn/Rmn, (5c)

ξcoul0(Rmn) = e−kτ(mn)(Rmn−d0,τ(mn))/Rmn, (5d)

where m and n are the indices for the physical atoms or fictitious sites
defined by the n-mer’s geometry, and Rmn is the distance between
two atoms/sites. τ(mn) maps the pair of atoms/sites into distinct
classes, such that all atom/site pairs within the same class share the
same nonlinear fitting parameters kτ(mn) and d0,τ(mn). There is one
unique set of monomials (ηl), linear fitting parameters (cl), and
non-linear fitting parameters [kτ(mn), d0,τ(mn)] for each unique n-mer
type [ν(M1, M2, . . . , Mn)].

In Eq. (3), V1B is the total 1-body energy given by

V1B =
N

∑
i=1

V1B
ML(Mi∣ν(Mi))(+V1B

disp). (6)

Because a switching function is not used for the 1-body term,
V1B

ML(Mi∣ν(Mi)) is simply a machine-learned PIP representing the
1-body energy of the ith 1-mer with functional form as in Eq. (4),

V1B
ML(Mi∣ν(Mi)) = V1B

PIP(Mi∣ν(Mi)), (7)

V1B
disp represents the 1-body dispersion energy, as a sum of inter-

atomic pairwise contributions,

V1B
disp =

N

∑
i=1

⎡⎢⎢⎢⎢⎢⎣
∑
k,l∈Mi

l≠k

− Δkl f (bklRkl)
C6,kl

R6
kl

⎤⎥⎥⎥⎥⎥⎦
, (8)

where Rkl is the distance between atoms k and l located on 1-mer Mi,
C6,kl is the corresponding dispersion coefficient, and Δkl = 0 if the
atom pair is excluded or 1 otherwise. f (bklRkl) is the Tang–Toennies
damping function,141

f (bkl, Rkl) = 1 − exp (−bklRkl)
6

∑
n=0

(bklRkl)n

n!
, (9)

where bkl is a fitting parameter. By convention, all atom pairs
that participate in a bond, angle, or dihendral angle are excluded

(Δkl = 0). Thus, for most 1-mers, all atom pairs are excluded and
V1B

disp = 0. However, for large 1-mers, this may not be the case.
The explicit 2-body term of an MB-nrg PEF, V2B in Eq. (3), is

expressed as

V2B =
N

∑
i=1
j>i

V2B
ML(Mi, M j ∣ν(Mi, M j)) + V2B

disp, (10)

where V2B
ML(Mi, M j ∣ν(Mi, M j)) is a 2-body machine-learned term

representing the 2-body energy of the 2-mer composed by the ith
and jth 1-mers, constructed as a product of a switching function and
a PIP with functional form as in Eq. (4),

V2B
ML(Mi, M j ∣ν(i, j)) = s2B(Mi, M j ∣ν(Mi, M j))

× V2B
PIP(Mi, M j ∣ν(Mi, M j)), (11)

V2B
disp in Eq. (10) is the total 2-body dispersion energy calculated as a

sum of pairwise additive contributions associated with each pair of
atoms located on the two 1-mers in a 2-mer,140

V2B
disp =

N

∑
i=1
j>i

⎡⎢⎢⎢⎢⎣
∑
k∈Mi

∑
l∈M j

− f (bklRkl)
C6,kl

R6
kl

⎤⎥⎥⎥⎥⎦
, (12)

where Rkl is the distance between atoms k and l located on
1-mers Mi and Mj, respectively, C6,kl is the corresponding dis-
persion coefficient, and f (bklRkl) is the Tang–Toennies damping
function [Eq. (9)]. In both Eqs. (8) and (12), the dispersion coef-
ficients are calculated using the Exchange Dipole Moment (XDM)
model.142–144

All other explicit many-body terms (VnB) in Eq. (3) take the
following form:

VnB =
N

∑
i=1
j>i
...
l>k

VnB
ML(Mi, M j , . . . , Ml∣ν(Mi, M j , . . . , Ml)), (13)

where each VnB
ML(Mi, M j , . . . , Ml∣ν(Mi, M j , . . . , Ml)) is built as the

product of a switching function and a PIP with functional form as in
Eq. (4),

VnB
ML(Mi, M j , . . . , Ml∣ν(Mi, M j , . . . , Ml))
= snB(Mi, M j , . . . , Ml∣ν(Mi, M j , . . . , Ml))
× VnB

PIP(Mi, M j , . . . , Ml∣ν(Mi, M j , . . . , Ml)). (14)

Explicit n-body terms may be retained up to an arbitrary n-body
level. Generally, it is sufficient to truncate these terms at the n = 3
or n = 4 level, depending on the system being studied. Specific details
about the switching functions (s2B, s3B, and s4B), including functional
forms used by the MB-nrg PEFs available in MBX, are discussed in
the supplementary material.

Finally, the electrostatics term, Velec, in Eq. (3) is based on
a modified version of the Thole model145 introduced in Ref. 146
and further refined for the MB-pol PEF.72,73 Velec represents per-
manent electrostatics by a sum of Coulomb interactions between
smeared partial charges located on each 1-mer as well as induced
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electrostatics (up to dipoles) by an implicit many-body polarization
term. Within the MB-nrg theoretical/computational framework, the
partial charges, which can have fixed or geometry-dependent val-
ues, are obtained by fitting the multipole moments calculated from
“first principles” for each isolated 1-mer and can be placed on both
physical atoms and fictitious sites.

In MBX, Velec is represented by four terms describing charge-
charge interactions (Vqq), charge-dipole interactions (Vqμ), dipole-
dipole interactions (Vμμ), and the polarization energy (Vpol),
respectively. Each of these terms is defined as follows:

Vqq =
N

∑
i
∑
j>i

qiT̂i jq j , (15a)

Vqμ =
N

∑
i
∑
j>i
(μα

i T̂α
i jq j − qiT̂α

i jμ
α
j), (15b)

Vμμ = −
N

∑
i
∑
j>i

μα
i T̂αβ

i j μβ
j , (15c)

Vpol =
1
2

N

∑
i=1

μiα̂
−1
i μi, (15d)

where the Einstein notation is used for repeated Greek letters (e.g.,
μα

i is a condensed form of ∑α=x,y,z μα
i ) In Eqs. (15a)–(15d), N is the

total number of electrostatic sites in the system, qi is the charge of
site i, μi is the dipole moment of site i, α̂i is the polarizability of site
i (α̂i becomes a scalar if it is isotropic), and T̂i j , T̂α

i j , and T̂αβ
i j are the

electrostatic tensors defined as follows:

T̂i j = S0(Ri j)
1

Ri j
, (16a)

T̂α
i j = ∇αT̂i j = −S1(Ri j)

Rα
i j

R3
i j

, (16b)

T̂αβ
i j = ∇αT̂β

i j = S2(Ri j)
3Rα

i jR
β
i j

R5
i j
− S1(Ri j)

δαβ

R3
i j

, (16c)

T̂αβγ
i j = ∇αT̂βγ

i j = −S3(Ri j)
15
R7

i j
Rα

i jR
β
i jrγ + S2(Ri j)

3
R5

i j

× (Rα
i jδβγ + Rβ

i jδαγ + Rγ
i jδαβ), (16d)

where α, β, γ define any of the Cartesian directions (x, y, or z),
Rij is the distance between atoms i and j, and δ is the Kronecker
delta. The functions Si(r) are the screening functions designed to
smear the charges over space, which can be recursively derived from
Eq. (18a) as

Sk(r) = Sk−1 −
r

2k − 1
∂

∂r
Sk−1(r). (17)

As in MB-pol,72,73 the screening functions for the MB-nrg PEFs are
given by

S0(r) = 1 − e−a( r
A )

4

+ a1/4r
A

Γ(3
4

, a( r
A
)

4
), (18a)

S1(r) = 1 − e−a( r
A )

4

, (18b)

S2(r) = S1(r) −
4a
3
( r

A
)

4
e−a( r

A )
4

, (18c)

S3(r) = S2(r) −
4a
15
( r

A
)

4
e−a( r

A )
4

(4a( r
A
)

4
− 1), (18d)

where a is the Thole damping, which can be different for
charge–charge, charge–dipole, and dipole–dipole interactions,
A = (αiα j)1/6, with i and j being the two sites involved, r = Rij, and
α is the polarizability factor that is usually set to be the same as the
polarizability. The interested reader is referred to Ref. 147 for specific
details about the derivation of Eqs. (14)–(17).

III. SOFTWARE STRUCTURE
The C++ source code of MBX is organized into four

modules, each of which handles specific functions: building
block is responsible for maintaining the state of the system;
potential evaluates the various components of the MB-nrg
PEFs; I/O manages inputs, outputs, and interfaces with MD
drivers; and utilities contains functions to execute miscella-
neous support tasks. The potential module is further divided
into sub-modules to calculate each of the energy contributions
described in Eq. (3): n-body PIPs, 2-body dispersion, perma-
nent electrostatics, and many-body polarization. The general work-
flow for an energy calculation step performed by MBX is shown
in Fig. 1.

A. Input
Since all PEF parameters are directly compiled into MBX, the

user only needs to provide minimal information that is passed to
MBX through two files: the NRG file, which contains information
about all 1-mers in the system and their initial coordinates, and
the JSON file, which specifies details about the calculation to be
performed, such as enabling or disabling n-body terms for cer-
tain n-mers, and assorted settings, such as the algorithm for the
calculation of many-body polarization and convergence threshold

FIG. 1. General workflow for an energy and force calculation step in MBX.
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for the induced dipole moments. More information about the for-
mat and contents of the NRG and JSON files are discussed in the
supplementary material.

B. Building block
The building block module contains the System class,

which stores all the information about the 1-mers in the system.
MBX provides a function that reads the NRG file, and creates
and initializes a System instance. The initialized System can then
be configured using the JSON parameters that control the energy
calculation. Initializing a System object requires multiple mem-
ory allocation calls and is therefore not instantaneous, but it is
performed only once per system of interest.

While MD and MC software implementations for force fields
typically treat atoms as the smallest unit, MBX considers 1-mers,
each consisting of a few atoms, as the smallest unit of the system
since the n-body PIPs, which form the backbone of MB-nrg PEFs,
are evaluated on these 1-mers. For this reason, the System class
stores data on a per-1-mer basis.

For each 1-mer type defined in a MB-nrg PEF, the parameters
defining all relevant atomic quantities (e.g., charges, polarizabilities,
and dispersion coefficients) are automatically compiled into MBX.
Because the n-body PIPs of a given MB-nrg PEF are fitted over
the underlying representation of electrostatics and dispersion, the
parameters entering the expressions for V2B

disp [Eq. (10)] and Velec
[Eqs. (15a)–(15d)] are intertwined with each MB-nrg PEF. As a con-
sequence, if the user wishes to adopt a different set of electrostatic or
dispersion parameters, all n-body PIPs will need to be refitted using
MB-Fit.133

The System class oversees the calculations of each contribu-
tion to the total energy by delegating to the appropriate functions
within the potential module (see below). Each function returns
the energy and associated gradients of a particular energy contribu-
tion with respect to the coordinates of the atoms. Once the System
object is initialized, it is not possible in the current version of MBX to
add new 1-mers or change the type of existing ones without rebuild-
ing the System instance. The atomic coordinates can be updated
at any time as long as they are in the same order as the initial
set of coordinates. Similarly, any parameters specifying the type of
calculation to be performed (e.g., algorithm for many-body polar-
ization, convergence threshold for the induced dipoles, and box size
and shape for calculations in periodic boundary conditions) can be
changed at any time.

MBX initializes a System object through the following steps:

1. Create a new System object with default parameters corre-
sponding to those used for a gas-phase calculation.

2. Add 1-mers to the System using the AddMonomer member
function. The coordinates, atom labels, and 1-mer type for
each 1-mer are stored in the System object.

3. After all 1-mers have been added, initialize the System. This
involves storing the properties for each 1-mer and reordering
the 1-mers for optimization of parallelization. The reorder-
ing process groups 1-mers of the same type together and
orders the types by increasing number of 1-mers. For exam-
ple, the input for a system of 250 CO2 molecules (i.e.,
1-mers of type CO2) and 300 H2O molecules (i.e., 1-mers
of type H2O) can be provided in any order, but MBX will

reorder it such that the CO2 molecules come before the H2O
molecules.

4. Set the physical properties of the atoms, such as charges, polar-
izabilities, and dispersion coefficients, using helper functions.

5. Parse the JSON file containing information about box size and
shape for calculations in periodic boundary conditions, cut-
offs, and type of MB-nrg PEFs, as well as other options that
control and determine the type of calculation and energy calls
to be performed. If a JSON file is not found or not present, the
defaults are used.

C. Machine-learned 1-body term: V1B
ML

Since different MD and MC engines have different conven-
tions regarding storage of atom coordinates, MBX first translates the
atoms in the 1-mer to obey the minimum-image convention before
evaluating the 1-body PIPs. This is only necessary when perform-
ing a calculation in periodic boundary conditions. MBX selects the
first atom of each 1-mer as the reference atom to identify the min-
imum images of the other atoms in the 1-mer. This reference atom
is then placed in the principal box and the closest images of other
atoms in the 1-mer are selected through an algorithm that operates
in fractional coordinates.

D. Machine-learned n -body terms (n > 1): VnB
ML

MBX supports n-body PIPs with arbitrary values for n, which
can be generated with MB-Fit,133,134 and currently already provides
functions to evaluate 2-body, 3-body, and 4-body PIPs. Adding
n-body PIPs with larger values of n is trivial and does not require
any significant refactoring of the source code. In order to efficiently
evaluate all VnB

ML terms [Eq. (4)], MBX first identifies all n-mers for
which it is possible that the associated n-body switching function
(snB) is non-zero. An n-mer is accepted and passed to the polyno-
mial evaluation if and only if some 1-mer within the n-mer is within
a predefined n-body cutoff (rnB

cutoff) of all other 1-mers in the n-mer.
In other words, there must be a “central” 1-mer, and all other 1-mers
must be within the n-body cutoff of the “central” 1-mer. This idea is
formalized in the following criterion:

CENTER-NEIGHBOR CRITERION: Using the first atom of
each 1-mer to define the position of the 1-mer, the center-
neighbor criterion for a given n-mer is satisfied if and only
if there exists at least one 1-mer (“center”) such that the
distances between the “center” 1-mer and all other n − 1
1-mers (“neighbors”) in the n-mer are smaller than the n-
body cutoff rnB

cutoff.

The value for each rnB
cutoff used by the CENTER-NEIGHBOR CRI-

TERION is specified by the user in the JSON file. As a consequence,
MBX only needs to collect n-mers for which the CENTER-NEIGHBOR
CRITERION is satisfied and pass this information to the PIP evalua-
tor. The rules for setting appropriate values for rnB

cutoff are discussed
in the supplementary material.

MBX uses a K-D Tree to search for n-mers that satisfy the
CENTER-NEIGHBOR CRITERION, after which the evaluation of the
n-body PIPs with n > 1 is effectively the same as for the 1-body
PIPs. Using a K-D Tree allows MBX to quickly identify relevant
n-mers and avoid the need for a double or triple loop over all 1-mers,
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which would be extremely slow. The Nanoflann library148 is used to
implement the K-D Tree and perform the radial search. It should
be noted that, although not negligible, the Central Processing Unit
(CPU) time required to create the tree and perform the search is still
a small fraction of the CPU time required to calculate the n-body
PIP contributions. The K-D Tree implementation in MBX is as fol-
lows: first, a tree is built using the first atom of each 1-mer as a point
in the tree. Once the tree containing all the 1-mers is completed,
MBX loops over all the 1-mers, which will be the candidate “center”
1-mer in the current loop, and performs a radial search of all other
1-mers that are within rnB

cutoff, which will be the candidate “neighbor”
1-mers. Then, n-mers are constructed from the “center” 1-mer
and each combination of n-1 “neighbors.” By construction, each of
the constructed n-mers necessarily satisfies the CENTER-NEIGHBOR
CRITERION. However, it is possible that the same n-mer can be
selected several times, with different 1-mers acting as the “center.”
To avoid double counting, the candidate n-mer is considered valid
only if the 1-mer index of the “center” is the smallest among all valid
“center” 1-mers.

Although K-D Trees were not originally designed for use in
periodic boundary conditions, MBX has implemented a patch that
allows for their use in such cases by replicating the box in space. This
implies that instead of building a tree for a single copy of the system
as done in the gas phase, MBX builds a tree for 27 copies: the original
one and the 26 adjacent boxes. Only images within the main simu-
lation box are eligible “center” 1-mers. Future versions of MBX will
implement more advanced solutions to address the potential mem-
ory cost of this process when the target number of 1-mers is large.
After obtaining the lists of n-mers, MBX sends batches of multiple
n-mers of the same type to the PIP functions, which then transform
the coordinates into PIP variables and calculate the corresponding
PIP values.

E. Physics-based terms
MBX defines two distinct classes that are dedicated to calculat-

ing the following non-bonded interactions: dispersion (Dispersion
class) and permanent and induced electrostatics (Electrostatics
class). As in conventional force fields and discussed in Sec. II, MBX
excludes these non-bonded interactions for atom pairs that are part
of a bond, angle, or dihedral angle. However, MBX does not scale
these interactions as common force fields do—for a particular atom
pair, they are either entirely enabled or entirely disabled [hence, Δkl
in Eq. (8)]. Generally, all atom pairs within a 1-mer are excluded, but
in the event that a 1-mer contains non-excluded pairs both classes
calculate the contributions from 1-mer dispersion and electrostat-
ics [i.e., dispersion energy as in Eq. (8) and 1-body contributions to
Velec in Eq. (3), respectively] in a first step, ignoring any pair in the
excluded pairs list. Then, the intermolecular contributions are calcu-
lated in a double-loop over the 1-mer types. For each pair of 1-mer
types, the contributions to the dispersion and electrostatics ener-
gies are calculated. Before evaluation, the coordinates and associated
properties (e.g., atomic charges and polarizabilities, dispersion coef-
ficients, etc.) are reordered to maximize speedup from vectorization
through single-instruction multiple-data (SIMD) operations.

1. Dispersion
As shown in Eq. (12), the dispersion energy of a MB-nrg PEF

is calculated in real space as a pairwise-additive potential using

pair-defined dispersion coefficients (C6,kl) that are calculated using
the XDM model.142–144 If the molecular system of interest is in
periodic boundary conditions, the long-range contribution to the
dispersion energy is calculated in reciprocal space using the parti-
cle mesh Ewald (PME) algorithm as implemented in the helPME
library.149,150 PME uses atom-defined C6 that are then combined
using the usual geometric mean combination rule to obtain pair
coefficients (i.e., C6,kl =

√
C6,kkC6,ll). A discontinuity in the energy

and its gradients can occur if the C6,kl pair coefficients used to
calculate the dispersion energy in real space are abruptly changed
to the values used by the PME algorithm at the cutoff distance.
To avoid this discontinuity, MBX applies a switching function of
the same form as that used for the 2-body PIP switching func-
tion (see the supplementary material), enabling a smooth transition
from the C6,kl used in real space to the C6,kl used in the PME
calculation.

2. Electrostatics
The electrostatics calculation involves several steps, including

the computation of the permanent electric field, the calculation of
the long-range electric field using the PME algorithm as imple-
mented in the helPME library,149,150 and the determination of the
induced dipoles using one of three algorithms: iterative, conjugate
gradient, or always stable predictor-corrector.151 The permanent
contribution to the electrostatic energy is straightforward to calcu-
late and relatively fast. However, the bottleneck of the electrostatics
calculation is to obtain the induced dipoles on each site. While the
analytical solution of the induced dipole moments is possible, it is
not efficient for large systems,147 and it has not been implemented in
MBX. A detailed description of the possible methods to solve for the
induced dipole moments can be found in Ref. 147.

F. Output
Once all energy and gradient contributions have been calcu-

lated, they are summed and stored in the System object, ready to
be retrieved by the user or a MD/MC driver. After this step is com-
pleted, external modifications to the coordinates of the system such
as progression to the next MD/MC step can be performed. The new
coordinates are set in the same System instance, which can then be
used to perform another energy/force calculation.

While energies and forces are the most commonly retrieved
information by MD and MC drivers, MBX provides interfaces to
retrieve any of the system’s properties, including but not limited
to, charges, permanent and induced dipole moments, and the virial
tensor.

IV. DRIVERS
MBX has three built-in drivers to perform single point cal-

culations, geometry optimizations, and normal-mode analyses, all
written in C++. A simple example on how to use MBX to read
an NRG file and set up the system with a JSON file is shown
in Fig. 2.

Besides the internal drivers discussed above, the current version
of MBX also provides an efficient interface to popular software pack-
ages Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)152 and i-PI153 for both classical MD and quantum path-
integral molecular dynamics (PIMD) simulations.2 MBX acts as a
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FIG. 2. Example of a C++ main function to use the MBX library with a NRG and a JSON file.

client that returns MB-nrg energies and forces, while the actual MD
steps are controlled by the MD engine. In the case of i-PI, the com-
munication between MBX and i-PI can be established in two ways:
Internet and Unix domain sockets. For LAMMPS, MBX is con-
nected through the combination of specific FIX and PAIR_STYLE
commands in the LAMMPS input. The MBX/LAMMPS and MBX/i-
PI interfaces have already been used to study the water vapor/liquid
equilibrium,104 CH4/H2O126,128 and CO2/H2O125,127 mixtures, and
ions in solution.118,119,122 In the current version of MBX, all of the
computationally expensive functions are parallelized using Open
Multi-Processing (OpenMP) to maximize use of large many-core
compute nodes. This design readily enables other “driver” codes,
serial or parallel, to couple with MBX and perform advanced cal-
culations, such as MD and PIMD simulations using LAMMPS or
i-PI.

The pure driver-only nature of i-PI makes the interface with
MBX very simple. A single driver code that communicates with the
i-PI socket is enough to allow both packages to communicate. The
driver code receives the coordinates and the simulation cell from
i-PI through a socket, sets them into MBX, and performs the energy
calculation for those coordinates. Gradients and energies are then
retrieved from MBX and sent through the socket to i-PI that per-
forms the time evolution for each time step, updating both atom
coordinates and simulation cell, which are then sent back to the
driver.

In the case of LAMMPS, MBX is tightly coupled to enable large-
scale parallel simulations with minimal overhead. LAMMPS is par-
allelized using a spatial domain decomposition algorithm whereby
the simulation is partitioned into sub-domains and individual Mes-
sage Passing Interface (MPI) ranks are responsible for computing all
tasks within the sub-domain to which they have been assigned. In
MBX, minimal changes were necessary to enable the calculation of
the real-space interactions within each LAMMPS sub-domain con-
taining local and ghost particles. Local particles are contained within
the sub-domain owned by an MPI rank and ghost particles are repli-
cated from neighboring sub-domains owned by other MPI ranks.

For performance reasons, the iterative electrostatic solver in MBX
was enabled with MPI and does not need to interact with LAMMPS
during intermediate steps. In current CPU-only data-driven many-
body simulations with MBX+LAMMPS, the performance bottleneck
functions include evaluation of the n-body PIP terms, and calcu-
lation of the long-range portion of the electrostatic and dispersion
interactions that include evaluation of distributed 3D Fast Fourier
Transforms (FFTs). The electrostatic solver involves an iterative
calculation of induced dipole moments requiring repeated commu-
nication with neighboring MPI ranks and evaluation of multiple 3D
FFTs. These terms of the MB-nrg PEF along with all the others can
be evaluated independently of one another and in arbitrary order.

The LAMMPS interface also enables hybrid FF/MB-nrg sim-
ulations where some interactions are described by conventional
force fields [e.g., Assisted Model Building with Energy Refine-
ment (AMBER),154 Chemistry at Harvard Molecular Mechanics
(CHARMM),155 and Optimized Potentials for Liquid Simulations
(OPLS)156] and other interactions are described by MB-nrg PEFs.
In these hybrid simulations, the electrostatic energy is exclusively
computed by MBX, while the remaining non-bonded interactions
between FF and MB-nrg molecules are represented by Lennard-
Jones potentials that can be derived using standard Lorentz-
Berthelot mixing rules. In the case of FF molecules solvated in MB-
pol water, the recommended effective Lennard-Jones parameters for
MB-pol are listed in Table I.

Importantly, given its modularity and portability, MBX can
be used in combination with any software package (e.g., in-house
software developed within a research group) that supplies atom

TABLE I. Effective Lennard-Jones parameters for MB-pol water.

Atom σ (Å) ε (kcal/mol)

O 3.263 93 0.269 48
H 2.683 54 3.7 × 10−10

J. Chem. Phys. 159, 054802 (2023); doi: 10.1063/5.0156036 159, 054802-7

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

coordinates and expects energies and forces. MBX modules and
sub-modules can be included by other C++ codes and System
objects can be instantiated and used like any other C++ class. MBX
also provides wrapper interfaces in C, FORTRAN and Python. The
System class by itself is too big to be automatically adapted to other
languages. However, for each one of the main System member
function, there is a wrapper that enables calls from other program-
ming languages. While not all of the member functions are wrapped,
implementing a wrapper to retrieve a property that is currently not
available is a simple and straightforward process.

V. PARALLELIZATION
In order to perform calculations on large systems, it is nec-

essary to parallelize the evaluation of the various contributions to
the total potential energy and forces. MBX exploits two sources of
parallelization. Internally, MBX parallelizes the calculation of the
various PEF contributions using OpenMP. Externally, MBX can
exploit MPI parallelization schemes implementing domain decom-
position which may be available in the interfaced molecular simula-
tion software. For example, since LAMMPS is able to partition the
simulation box into sub-domains overseen by individual MPI ranks,
the MBX/LAMMPS interface allows each LAMMPS MPI rank to use
one or more MBX OpenMP threads. This implies that both sources
of parallelization (OpenMP in MBX and MPI in LAMMPS or other
software) can be used together.

As a showcase of the OpenMP parallelization, Fig. 3 reports
the mean runtime of an energy calculation for a box of 2048
water molecules as a function of the number of cores. The tim-
ings observed suggest that the OpenMP parallelization is efficient
up to about 16 threads, after which MBX is not currently able to
take full advantage of further parallelization through OpenMP. Also
shown in Fig. 3 is the runtime when the calculations are performed
within LAMMPS using a single MPI rank (and the indicated num-
ber of OpenMP threads). As expected, the scaling for both MBX as a
standalone code and when interfaced with LAMMPS using a single
MPI rank is essentially identical, since the OpenMP parallelization is

FIG. 4. Relative time to calculate all energies and gradients for a cubic box of
2048 water molecules in periodic boundary conditions using MBX interfaced with
LAMMPS. Calculations were each performed 100 times, and the average was
taken. The relative times are presented as a function of the number of OpenMP
threads (nOMP) per MPI rank and the number of MPI ranks (nMPI), being the time
corresponding to 1 OMP thread and 1 MPI rank the reference. Calculations were
performed on a compute node with two sockets each with 64 2.6 GHz AMD 7H12
Rome processors.

internal to MBX. It should be noted here that, as is generally the case,
the electrostatics represents the most expensive energy contribution
to calculate. Since the i-PI interface utilizes no additional source of
parallelization, the relative times profile of MBX in i-PI is essentially
identical to that obtained when MBX is interfaced with LAMMPS in
Fig. 3.

When the simulations are driven by LAMMPS, MBX can also
take advantage of parallelization over MPI ranks. Figure 4 shows
the relative times associated with the MBX energy and gradient
calculations when interfaced with LAMMPS, utilizing several differ-
ent combinations of MPI ranks and OpenMP threads. Comparing
columns [1, 2] and [1, 4] with columns [2, 1] and [4, 1], it is
clear that the OpenMP parallelization is more effective when the
total number of available threads is small. However, as nOMP gets

FIG. 3. Relative time to calculate all energies and gradients for a cubic box of 2048 water molecules in MBX in periodic boundary conditions. Calculations were each performed
100 times, and the average was taken. The relative times are presented as a function of the number of OpenMP threads used with MBX as a standalone code (a) and with
LAMMPS using a single MPI rank (b), being the reference time the average time taken when using 1 OMP thread. All the calculations were performed on a compute node
with two sockets each with 64 2.6 GHz AMD 7H12 Rome processors.
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larger and approaches the parallelization limit observed in Fig. 3,
the use of MPI ranks is more effective in achieving the best per-
formance. The optimal combination of OpenMP threads and MPI
ranks depends on various factors, including the system’s size and
topology (i.e., cluster, bulk, or interface). It should be noted that the
evaluation of all individual contributions to the energy scales rel-
atively well with both MPI and OpenMP parallelization, with the
exception of the PME part of the electrostatics, which will be the
focus of further optimizations in the subsequent releases of MBX.
The actual timings associated with the MBX energy and gradient cal-
culations shown in Figs. 3 and 4 are reported in the supplementary
material.

All timings reported in Figs. 3 and 4 were obtained for simu-
lations of 2048 water molecules in a periodic cubic box carried out
on a compute node with two sockets each with 64 2.6 GHz AMD
7H12 Rome processors using a convergence threshold (ε) for the
atomic induced dipole moments of 10−16, which corresponds to each
component of the induced dipole moment of each atom being con-
verged up to the eighth decimal digit. The convergence criterion
is met when the squared difference between successive iterations
(k and k + 1) of each induced dipole moment component (α) for
each atom i, μindi,α , is smaller than the tolerance ε,

(μ(k+1)
indi,α

− μ(k)indi,α
)

2
< ε, ∀ i, α. (19)

A threshold ε = 10−16 corresponds to a conservative and safe con-
vergence criterion for all systems that we have simulated with our
MB-nrg PEFs to date. However, it is worth noting that larger val-
ues up to ε = 10−8 are sufficient for systems with weaker responses
to electric fields (e.g., neat H2O, CO2, CH4 solutions). A sys-
tematic analysis of the energy conservation and associated energy
fluctuations for simulations of 2048 water molecules in a peri-
odic cubic box carried out in the microcanonical (NVE = constant
number of molecules, volume, and energy) ensemble as a func-
tion of the convergence tolerance is reported in the supplementary
material.

VI. CONCLUSIONS
Over the pasy decade, data-driven many-body MB-nrg PEFs

have been shown to accurately predict the properties of various
molecular systems from the gas to the condensed phase. By inte-
grating an underlying many-body polarizable model with explicit
machine-learned representations of individual n-body interactions,
MB-nrg PEFs achieve chemical accuracy in the representation of
molecular interactions at both short and long range, and at all
n-body orders.

In this work, we introduced MBX, a C++ modular library that
enables MB-nrg energy and forces calculations. MBX is divided
into modules responsible for particular tasks. The potential mod-
ule is divided into sub-modules, each handling one specific energy
contribution: n-body PIPs, dispersion energy, and electrostatics.
Other modules are responsible for input/output, interfacing with
drivers (e.g., software for MD and MC simulations), and con-
structing the System class that stores the state of the molecular
system.

While MBX can be used as a standalone software, it also pro-
vides interfaces to common MD packages such as i-PI and LAMMPS

along with interfaces written in Fortran and Python that can be
seamlessly used in combination with third-party software (e.g., in-
house software developed by a research group). Both interfaces
have already been used to study various molecular systems, includ-
ing liquid water, CO2/H2O mixtures, CH4/H2O mixtures, hydrated
alkali-metal ion clusters, and ionic solutions.

MBX includes an internal OpenMP parallelization that is
more efficient when the number of threads is small. When inter-
faced with external software that provides its own MPI paral-
lelization (e.g., LAMMPS), MBX enables efficient MB-nrg energy
and force calculations that take advantage of both OpenMP
and MPI parallelizations. Future versions of MBX will include
improved parallelization schemes as well as the implementation
of the extended MB-nrg framework introduced in Ref. 131 for
covalently bonded molecules, with the goal of enabling fast MB-
nrg energy/force calculations that, in turn, will enable chemically
accurate large-scale computer simulations of generic molecular
systems.

SUPPLEMENTARY MATERIAL

Description of the MBX input file formats and functional form
of the switching functions for the MB-nrg PEFs.
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