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Empirical Methods for Remote Sensing of Nitrogen
in Drylands May Lead to Unreliable Interpretation

of Ecosystem Function
Hamid Dashti, Nancy F. Glenn , Susan Ustin, Jessica J. Mitchell, Yi Qi, Nayani T. Ilangakoon,

Alejandro N. Flores, José Luis Silván-Cárdenas , Kaiguang Zhao,
Lucas P. Spaete, and Marie-Anne de Graaff

Abstract— Nitrogen (N) has been linked to different ecosys-
tem processes, and retrieving this important foliar biochemical
constituent from remote sensing observations is of widespread
interest. Since N is not explicitly represented in physically based
radiative transfer models, empirical methods have been used as
an alternative. The spectral bands selected during the calibration
of empirical methods have been interpreted in the context of
light-N interactions and, consequently, ecosystem function. The
low amount of leaves on shrubs and their sparse distribution in
drylands create an environment, in which the canopy structure
and the bright background soil play an important role in the
canopy total radiation budget. In this paper, we examine the
assumption that removing the impact of canopy structure and soil
will result in improved N retrieval using the empirical methods.
We report the inconsistencies in the selection of spectral bands
among the empirical approaches. Moreover, these methods are
sensitive to the scale of the study and band transformations. Using
the generalized theory of canopy spectral invariants, we found
that at the canopy scale, a combination of canopy structure and
soil dominates the total canopy radiation. At the plot scale, soil
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contributes up to 95% of the total reflectance. Correction for
these two confounding factors leads to no correlation between N
and vegetation reflectance at both scales. We conclude that while
cross-validated predictive models may be statistically achievable,
caution should be taken when interpreting their results in the
context of N-light interactions and ecosystem function. Our
approach can be extended to all terrestrial ecosystems with
multiple layers of canopy and understory.

Index Terms— Drylands, ecosystem function, empirical
methods, radiation budget.

I. INTRODUCTION

TERRESTRIAL ecosystem processes have been inter-
preted from the remote sensing estimates of foliar nitro-

gen and other leaf biochemicals. Canopy nitrogen (N) has been
related to forest albedo and linked to climate change [1], nutri-
ent limitation [2], the Amazonian functional biodiversity [3],
and the role of the plant community in controlling canopy
biochemistry [4].

There are two general approaches for remote sensing of
canopy chemistry: physical methods based on the concept
of radiative transfer models (RTMs) and empirical/statistical
methods based on regression analysis. A combination of
these two approaches, known as the hybrid methods, can
also be used [5]. Since there are no reliable RTMs that
include leaf N, this foliar variable is mostly identified by
empirical methods. Acceptable estimates of N have been
reported using a range of empircal methods (average R2 and
root-mean-square error (RMSE) of 0.72 and ± 0.16, respec-
tively, [6]). These include multiple linear regression [7], [8],
partial least squares (PLSs) regression [7], [9]–[11], stepwise
multiple linear regression [12], and, more recently, popular
methods, such as neural networks [13], [14], support vector
machines (SVMs) [15], [16], Bayesian regression (BR) [17],
and random forest (RF) [18].

The goal of statistical analysis is to fit a model between N
and the feature space (i.e., spectral bands) or a transformation
of the feature space. The developed model is then tested
for its predictive power using cross validation. The most
influential variables on the model fit are then discussed in
the context of light-N interactions. There are three issues
related to this type of study. First, it is known that multiple
chemical, physical, and structural properties of vegetation and
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background soil control the spectral signal received at leaf,
canopy, and plot scales. In many cases, such as in sparse
vegetation cover, N does not dominate the spectra [19], [20].
Ideal empirical studies usually include relevant predictor and
response variables. It is thus essential to consider whether
the empirical relationships between reflectance spectra and N
are suitable. Another consideration is that there is a limited
consistency between empirical studies in the selected bands
for N prediction [6], [21]. More importantly, in some cases,
the selected bands are not consistent with the concepts of
radiative transfer of N absorption but rather driven by the
canopy structure or other factors that may or may not covary
with N. For example, in dense forests with the assumption of
a zero canopy background contribution (i.e., black soil) to the
total canopy bidirectional reflectance factor (BRF), it has been
shown that the canopy structure derives positive correlation
between the near-infrared (NIR, 800–850 nm) and N [22].
In fact, multiple studies have identified NIR as the important
predictors of N [1], [23], [24]. Finally, further investigation on
the generalizability of empirical studies with cross validation
is needed. The number of successful N retrieval studies using
statistical methods has been used as the affirmation for the
replicability of these models [25]. There is an urgent need to
examine the interpretability of empirical methods and their
fundamental meaning to the remote sensing and ecology
community.

One way to study the interpretation of empirical methods
is to investigate their link to underlying light-canopy physical
processes. Knyazikhin et al. [22] used the theory of spectral
invariants [26], which is based on radiative transfer. [27], and
introduced a directional area scattering factor (DASF) as a
new measure of canopy structure. DASF, in concept, is an
estimate of the ratio of the leaf area that forms the canopy
boundary, as seen along a given direction, to the total leaf area.
Normalization of BRF to DASF results in canopy scattering
coefficients (W ) that are insensitive to canopy structure. In
contrast to empirical findings, W exhibits either negative or
no correlation with N [22], [28]. A complicating factor is that
while the DASF approach assumes a black soil background,
in many ecosystems, this assumption is violated, and indeed,
impacts of soil can be larger than those from the canopy
structure itself.

While empirical methods are widely used for canopy N
retrieval, comprehensive studies linking these results to phys-
ical processes, such as canopy radiative transfer, are lacking.
Our goal is to examine the empirical methods used for more
than two decades in the remote sensing community to answer
the fundamental question of whether we can rely on these
methods to predict N in the context of the confounding factors
of canopy structure and soil. Our null hypothesis is that cor-
recting for confounding factors will improve the N predictions
using empirical methods. To test our hypothesis, we implement
a range of empirical models and physical analyses based on
the generalized theory of canopy spectral invariants [22], [29].
Our study advances the community discussion of the light-N
interactions beyond dense forests to include ecosystems with
multiple layers of canopy and understory.

II. MATERIALS AND METHODS

Five sites were selected across western USA in the semiarid
ecosystem, known as the Great Basin (GB), for the field
study and data collection (see Fig. S1 in the Supplementary
Material). The Reynolds Creek Experimental Watershed, Birds
of Prey, and Hollister sites are located in Idaho, and the Big
Pine and Lone Pine sites are located in California on the
eastern side of the Sierra Mountains. The dominant vegetation
cover in the GB is the sparsely distributed shrubs. These
dryland study sites provide the opportunity to study the impact
of canopy structure and soil on remote sensing of N and
extend the previous work in dense forests to xeric ecosystems.
Most of the ecosystems follow the same pattern, in which
an understory layer (e.g., soil, grass, and so on) contributes
to the total pixel radiation budget. Field data sampling was
conducted during 2014–2015 (see Table S1 and data set
S1 in the Supplementary Material). Considering the dominance
of sagebrush (Artemisia tridentata) and bitterbrush (Purshia
tridentata) in the study sites, plots were selected based on
the dominant cover of one of these two species. We define
three scales for the study: at the leaf scale, the spectra were
collected from dry leaves; at the canopy scale, the spectrometer
was held above the top of the canopy; and at plot scale
(10 m × 10 m), the spectra are acquired from the Airborne
Visible/Infrared Imaging Spectrometer—Next Generation (see
data set S2 in the Supplementary Material) airborne hyper-
spectral sensor. An extended version of the data collection
can be found in Text1 in the Supplementary Material. Four
different types of spectral transformations were applied to
the spectra, the smoothed data set using the Savitzky–Golay
filter [30] with a frame size of 11, second-degree polynomial,
logarithmic transformation, first derivative of smoothed data
set, and logarithm of the first derivative. These transformations
are widely used in remote sensing of canopy chemistry and
are known to enhance the absorption features [31]–[33]. For
the statistical analysis, we implemented PLS [34], SVM [35],
RF [36], and BR regression [17] methods and a newly devel-
oped multimethod ensemble variable selection (VS) based on
the integration of PLS, SVM, and RF [37]. In this Ensemble
approach, a spectral band is important if it is identified as
important by all three methods. Each method returns band
importance, which will be weighted by the explained variance
of selected model for each method according to the following
equation:

Iiw = (Ii ∗ R2)/σI (1)

where Iiw is the weighted importance of band i , Ii is the raw
measure of the band importance of the regression method, R2

is the explained variance of the model in cross validation or
out-of-the-bag testing, and σI is the standard deviation across
the raw measures of importance of each model. The product
of the three weighted importance values is considered as the
Ensemble importance. As a base method, we calculate the vari-
able importance in projection (VIP) by developing 1000 PLS
models [37], [38]. VIP is the most common approach for VS
based on PLS outputs. In our approach, a band was considered
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important when its average VIP value along with one standard
deviation (derived from 1000 iterations) was above 1. We refer
to the mean of the 1000 PLS models as the PLSRef model. The
reported R2 and the coefficient of variation (CV) for PLSref
is the mean of all 1000 model runs. K-fold cross validation
and also leave one data set out validation has been used to
assess the model’s performance. In the leave one data set out
approach, a complete data set that has been collected in a given
year and site was kept out of the calibration step. A synthetic
data set was created to test the performance of all methods in
an ideal case. This data set contained 200 observations with
500 correlated predictors; 10 of the predictors were set to have
a coefficient value of 1 (i.e., relevant predictors), and all other
predictors are 0 (unrelated predictors). A complete description
of a similar data set construction is presented in [17]. The
purpose of the statistical analysis is not to test a comprehensive
list of the algorithms but to implement the most common ones.

The physical analysis is based on the theory of canopy spec-
tral invariants. According to this theory, under the assumption
of black soil, canopy scattering s(λ) and absorption a(λ) are
expressed in the following equations:

s(λ) = (1 − p)ωl(λ)

1 − pωl(λ)
i0 (2)

a(λ) = 1 − ωl(λ)

1 − pωl(λ)
i0 (3)

where i0 is the probability of canopy interceptance, ωl is
the single-scattering albedo of an average phytoelement at
any wavelength, and p is the recollision probability [39]. The
recollision probability can be interpreted as the probability
that a photon interacted with canopy elements will interact
within the canopy again [40]. This theory can be generalized
to the situation with multiple end-members, and the interaction
between photons and end-members can be treated as an
infinite-state Markov chain [29]. Then, (2) and (3) have the
following form:

s(λ) = qT �(λ)i(λ) (4)

a(λ) = ∝T i(λ) (5)

where q = (I−Pn)1 is the vector of escape probability after
n interactions, �(λ) = diag[ω1(λ) . . . ωm(λ)] is a diago-
nal matrix of single-scattering albedo associated with end-
members, and ∝ (λ) = (I − �(λ))1 is the vector of the
end-member’s absorptance. The quantity q defines the prob-
ability that a photon scattered by phytoelements will escape
vegetation toward a given direction [41]. This generalization
includes both photons from the canopy end-members rc and
background end-members rB or s = rc + rB . Furthermore,
based on the principle of energy conservation, we can calculate
the canopy radiation budget (CRB) and quantify canopy and
surface contribution to the CRB. We assume that there are
two layers consisting of a canopy layer on top of a flat soil
layer. The solution of CRB with reflective surface is built by
integrating the black soil solution (BS) problem, in which soil
impact is negligible, and the second solution where soil is
considered as the source of illumination (S problem). Then,

CRB can be expressed in the following equations:
rc(λ) = rBS(λ) + ρs(λ)tBS(λ)

1 − ρs(λ)r s(λ)
(ts(λ) − qs) (6)

ac(λ) = aBS(λ) + ρs(λ)tBS(λ)

1 − ρs(λ)r s(λ)
as(λ) (7)

tc(λ) = tBS(λ) + ρs(λ)tBS(λ)

1 − ρs(λ)rs(λ)
(rs(λ) − psl) (8)

where rc, ac, tc,ρs , and qs are canopy reflectance, canopy
absorptance, canopy transmittance, soil reflectance, and photon
escape probability from soil, respectively. The BS’ and S’
reflectance, absorptance, and transmittance are defined in the
following equations:

rBS(λ) = qlωl (λ)

1 − p_{LL}ωl(λ)
i0 (9)

aBS(λ) = 1 − ωl(λ)

1 − p_{LL}ωl(λ)
i0 (10)

tBS(λ) = t0 + p_{LS} − ωl(λ)

1 − p_{LL}ωl(λ)
i0 (11)

and

rs = (tBS − t0)p_{SL}
i0

(12)

as = aBS p_{SL}
i0

(13)

ts = rBS p_{SL}
i0

+ qs (14)

where ql , i0, and t0 are canopy escape probability, canopy
interceptance, and uncollided transmittance of the BS problem,
respectively. p_{LL}, p_{LS}, p_{SL}, and p_{SS} are the
leaf–leaf, leaf–soil, soil–leaf, and soil–soil recollision proba-
bilities. The second term in (6) accounts for the influence of
soil to the CRB. Photons that escape directly from the surface
are not part of the canopy reflectance even if they interact
with canopy before reaching the surface. Subtracting this term
from rc leave us with rBS, which has the form noted in (9).
Not surprisingly, rBS is similar to the model developed for the
black soil problem [39, eq. (2)] with recollision probability
p = p_{LL}. Thus, one should note that the contribution
of soil to the total reflectance is the sum of the photons
that escape from soil (rB) and reach the sensor and the
portion of photons that escape from soil and influence the
canopy reflectance (rc). We refer to the first component as
soil contribution to the total reflectance and second com-
ponent as the soil contribution to the reflectance of CRB.
A complete derivation and description of the terms in (4)–(14)
are provided in [29] and [42]. With the assumption that soil
is flat (no interaction between soil end-members), p_{SS}
is much lower than the other recollision probabilities and
can be neglected (p_{SS} = 0). In order to estimate
p_{LL}, p_{LS}, p_{SL}, and i0, we fit the spectra at each
scale to (4) using the covariance matrix adaptation evolu-
tion strategy (CMAES) optimization approach [43]. The mean
RMSE between simulated and measured total canopy spectra
at the canopy scale is 0.01 and at the plot scale is 0.02.
CMAES is a state-of-the-art evolutionary algorithm developed
for nonlinear, nonconvex black-box optimization problems.
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Fig. 1. Performance of different empirical models on an ideal synthetic data
set.

We added 4% Gaussian noise to the spectrums and performed
inversion. Our preliminary analysis (not shown in this paper)
using 100 different random initial points and a noisy objective
function showed that CMAES is not sensitive to the initial
points or noise and consistently returns the global minima.
Using the recollision probabilities and (6)–(8), CRB was
calculated. For the retrieval of DASF, rBS was used. The
DASF was calculated using the algorithm developed in [22];
the only modification was instead of using a reference leaf
albedo, we used measured green leaf reflectance of sagebrush
and bitterbrush [44]. In order to calculate the leaf albedo,
leaf transmittance was acquired by inversion of PROSPECT-5
leaf model [45] using the measured leaves reflectance. In sum-
mary, the steps of our physical analysis are as follows.

1) Fit the spectrum to (4) to estimate the recollision prob-
abilities.

2) Use estimated recollision probabilities to calculate rBS
using (6)–(14).

3) Use rBS to calculate DASF and canopy scattering.
4) Canopy scattering is then used for statistical analysis.

III. RESULTS AND DISCUSSION

A. Variable Selection Is Sensitive to Transformation
and Scale

Using an ideal data set (materials and method), Fig. 1 shows
the performance of an Ensemble model and its submodels
(PLS, SVM, and RF), VIP, and BR VS techniques. We start
by discussing the VIP results. Between methods, VIP performs
the worst in VS by identifying numerous unrelated bands as
important. In cases where there is high covariation between
variables (e.g., spectral bands) but small correlation to the
target (e.g., N), the standardization used by PLS can address
the latter but at the cost of increasing the weight of minor
variables with low signal-to-noise ratios [46]. This directly
impacts the VIP as it is a filter method and uses the PLS

Fig. 2. VS using different methods at the leaf scale for four different spectral
transformations for nitrogen estimation.

output with no further postprocessing. This behavior can also
be seen at the leaf scale (see Fig. 2), though to a lesser
degree than the canopy and plot scales. Our first observation
shows that the VIP is sensitive to the type of transformation.
Across all transformations, the VIP identified the NIR region
(∼800–1350 nm) as important predictors of leaf N. This is
controversial since most of the incident radiation is reflected
and transmitted (∼50% each) in the NIR region by the leaf
mesophyll [47], and it is extremely difficult to identify weak
N absorption bands (e.g., 910 and 1020 nm [48]) using VS
techniques. While many hyperspectral studies use VIP for
band selection [32], [49], [50] and, specifically, in foliar
N estimation [10], [24], [51], [52], the selection of unrelated
bands may require further examination of VIP.

Fig. 1 shows that the BR produced the closest results to the
ideal model for band selection, and the Ensemble approach
follows with less ideal but comparable results. In the Ensemble
approach, a spectral band is important if it is considered
important by all three regression methods (PLS, RF, and
SVM). The peaks in the PLS match the coefficients of the
ideal model, but PLS has assigned weights to many unrelated
variables. RF is more restrictive, and consequently, many
unrelated bands are close to zero. This restrictive behavior,
however, caused RF to miss some of the important variables.
The SVM results are similar to PLS, which has been observed
in other studies [37]. The improved performance of the BR
and Ensemble methods can be attributed to the fact that both
methods are ensembles of competing models. BR is based on
the Bayesian model averaging and has theoretical advantages
over standard regression analysis [17]. The Ensemble method,
on the other hand, uses the relative merits of PLS, SVM, and
RF. For example, the restrictive VS method of RF is balanced
with the more inclusive PLS and SVM in the Ensemble
approach.
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When we used field data at the leaf scale, both the Ensemble
and RF methods show less sensitivity to the transformations.
However, the individual models of the Ensemble in isolation
show sensitivity to the transformation. These transformations
have been accepted as a standard preprocessing method for
remote sensing of foliar biochemistry. Thus, two studies with
the same data set, but different spectral transformations for
predicting N can suggest different spectral bands as important
predictors. At the leaf scale, our findings show that the
log-transformed data set leads to more meaningful bands when
compared with known N absorption regions (see Table S2 in
the Supplementary Material). If assuming the leaf reflectance
spectrum has the same shape as leaf transmittance, then the
log transformation is an approximation of the foliar absorption
spectra and is consistent with the Beer’s law absorption
coefficient [53].

Using the log transformation and the Ensemble approach
for interpretation, most of the selected bands at the leaf scale
are in the visible and mid-infrared (>1350 nm) with no
bands selected in the NIR region. Selection of the visible
spectrum can be attributed more explicitly to the chlorophyll
content [54]. Moderate correlation is reported between chloro-
phyll and N [6]. In the shortwave-infrared region identified
bands centered near 1655, 1715, 1900, and 2200 nm can be
attributed to N absorption at 1690, 1940, and 2240 nm. Among
them, the bands near 2240 and 2300 nm are more directly
related to the N or proteins that carry N, while other bands
can be associated with absorption by biochemicals, such as
lignin, cellulose, and starch. The complex interactions between
N and these biochemicals may result in misinterpretation of
the selected bands and, consequently, unreliable statistical
estimates of N. The Ensemble method is a VS method and
does not provide predictions. Since the VS performance of
BR and Ensemble is close, BR can be used for both VS
and model fitting at the leaf scale. We conclude that at the
leaf scale, with the assumption of no confounding factors,
robust empirical methods, such as BR, are likely to provide
a meaningful model for N predictions. However, it is impor-
tant to choose the appropriate spectral transformation (e.g.,
logarithmic transformation), and results of the VS should be
checked with known absorption regions.

Moving from the leaf to canopy and plot scales, the selected
bands for N differ, regardless of the method used. Fig. 3 shows
VS for the log-transformed data set. Other transformations
can be found in Fig. S3 in the Supplementary Material. The
fundamental assumption of empirical predictions is foliar N
controls the reflectance [55], [56], and thus, we would expect
consistency in the bands identified as important across scales.
However, Fig. 3 indicates a lack of this consistency across
scales. This is the first evidence that there are other elements
that may have more dominant role in controlling the canopy
radiation.

Using log-transformed data and focusing on the Ensemble
or BR methods, the spectral regions identified as important for
N are similar to the regions identified as important for a similar
analysis of leaf area index (LAI) at the canopy and plot scales
(see Fig. 4, and Fig. S4 in the Supplementary Material). Most
of these bands lie in the red edge and the NIR region. The

Fig. 3. Scaling up band selection for N from (Top Left) leaf to (Top Right)
canopy and (Bottom) plot. Data are shown for log transformation.

Fig. 4. VS for LAI and N at (Top) canopy and (Bottom) plot scales (data
shown for log transformation).

NIR region in particular is known to be attributed to canopy
structure (i.e., LAI). However, the predictive power of these
bands for LAI is much less than N (see Tables S3 and S4 in
the Supplementary Material). For example, the cross-validated
mean R2 and CV of all methods for the log-transformed
prediction of N at the canopy scale are 0.61 and 16.67, respec-
tively, while for LAI, they are 0.26 and 35.39, respectively.
It is tempting to discuss this in terms of ecology and the
association between canopy N and LAI; however, it is more
likely a statistical problem. An explanation is that statistically
significant explanatory variables (e.g., spectral bands) that
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have an association with a target variable might not necessarily
carry the most predictive power, and the most predictive vari-
ables are not necessarily the most significant ones [57], [58].
A key distinction that makes a variable significant or pre-
dictive lies in the properties of their underlying distribution.
This issue has been observed in different disciplines from
genome-wide association studies [59] for disease predictions
to social studies predicting civil wars [60]. Thus, the problem
can be statistically framed by asking if the research goal is to
find highly significant or highly predictive variables, whereas
searching for both significant and predictive variables can
lead to conflicting directions [57]. The notion of predictability
and significance of variables has not been explored in remote
sensing of canopy biochemistry. In Section III-B, we discuss
the problem associated with cross validation and demonstrate
that these predictive variables for N lose their predictive power
when applied to an external data set, of which time or location
is different from the calibration data set.

B. Cross Validation Is Overoptimistic

Generalization of a statistical method is a key concept and
refers to applying a model based on a particular target popu-
lation to other populations [61]. As discussed in the classical
paper by Verstraete et al. [55] (1996), “a relation, obtained
by statistically correlating remote sensing measurements and
field observations, is useful only for those locations and times
other than those used to establish the correlation.” Otherwise,
remote sensing provides no new information. Cross validation
is accepted as the de facto standard method used in remote
sensing communities to test for the generalization of the
developed model. Table S5 in the Supplementary Material
shows results for normal cross-validation versus validation
results for the data set that was kept out of calibration (see
Section II). The data sets are different in either time (year
of data collection) or spatial location. While cross validation
shows well enough performance of different methods, when
applying the same models to an independent data set, R2

of at least one of the methods is close to 0. Similar results
are reported in other disciplines [62], [63]. Even strict cross
validations may still be overoptimistic due to heterogeneity
between data sets [64]. Thus, our results indicate that indeed
these statistical methods are not replicable.

Changes in time and location change the distribution of
feature space [65], [66] due to differences in measurements
or state variables that control the soil–plant-reflectance inter-
actions. The state variables are those that are clearly rep-
resented in RTMs [55]. The simplest statistical fix for the
replicability of statistical methods is to seek models that
perform well enough in the context of the leave one data
set out test. None of the methods used in this paper show
strong overall performance with this test. More sophisticated
solutions are based on the methods that can compensate (or
correct) for distributional shifts that may also be referred
to as “domain adaptation” [67], [68]. The recent framework
developed in [65] would enable us to identify and correct the
distributional shift. The important point here is even if we
correct for distribution shifting and ignore the fact that we do

Fig. 5. Spectral invariant parameters at (Left) canopy and (Right) plot scales.

not have enough information about the vegetation to derive
N (see Section III-C), our model is still, at best, a predictive
model and is not correlative. Because we are changing the
distribution of features, as a consequence, we might obtain
a new set of features that might have good predictive power,
even for external data sets, but with limited correlative relation
with N. Our conclusion is that if we ignore the impacts of
canopy structure and soil on the total canopy reflectance and if
the question at hand is just prediction not interpretation, then
with some statistical manipulations, we are able to produce
predictive models. However, caution must be observed when
interpreting these models and, in particular, at scales larger
than the leaf scale.

C. Canopy Structure and Soil Dominate the
Total Canopy Reflectance

Fig. 5 shows the box plot of the estimated spectral invariants
at the canopy and plot scales. Here, we assume a two-layer
system, in which a layer of a canopy is on the top of a layer of
soil, an assumption similar to many open canopy ecosystems.
However, this approach can be extended to the layers of
multiple canopies from different species and understories.
The probabilities of a photon intercepted by the canopy and
soil are i0 and 1 − i0, respectively. P_{LL}, P_{LS}, and
P_{SL} are the probabilities of photon interactions between
canopy–canopy, canopy–soil, and soil–canopy, respectively.
Fig. 5 shows that changing scale from canopy to plot should
affect P_{SL} and i0 but not P_{LL} and P_{LS}. This is
because, the probability that a photon escapes from the canopy
(1 − P_{LL} − P_{LS}) should remain independent of the
soil condition (e.g., reflective versus nonreflective). At the
canopy scale, the mean of i0 is 0.17, and at the plot scale,
it is 0.05. This low number simply shows the large impact of
the soil on the total reflectance at both canopy and plot scales.
For example, if we assume no additional interaction between
photons from vegetation and soil, the total canopy reflectance
is composed of 17% information from the shrub and 83%
from the soil. At the plot scale, the contribution of soil can
be represented in two forms: photons leaving the soil toward
the sensor and photons leaving the soil and contributing to the
CRB. Thus, the impacts of the soil at the plot scale are more
than the canopy. Fig. 6 compares the simulation for two shrubs.
The contribution of canopy reflectance to total reflectance is
much higher in the green shrub. If we remove the contribution
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Fig. 6. Comparison of simulations between (Left) dry shrub located in
California and (Right) green shrub located in Idaho.

Fig. 7. Simulation of different components of total reflectance of (Left)
canopy and (Right) plot samples.

of soil in the CRB for the dry shrub, then the residual (which is
reflectance of the canopy itself) is close to 0. This is expected
since there is no leaf on the canopy. Finally, Fig. 7 shows the
simulations of different components of the total canopy and
plot reflectance for all samples. Not surprisingly, the greater
impact of soil at the plot scale, compared to the canopy scale,
is observable.

The next step is to estimate the impact of canopy structure
on the total BRF. We removed the soil contribution in total
BRF, and the residual was used to calculate the DASF (see
Section II). Among 151 samples at the canopy scale, we could
not calculate DASF for 49 samples. These shrubs are mostly
located in California sites, suffering drought, that have few
small leaves [e.g., Fig. 6 (Left)]. Thus, after removing the
impact of soil, the residual is close to 0, and calculating DASF
is meaningless. As expected, this problem is worse at the plot
scale. In fact, we could not calculate DASF for any of the
plot samples after removing soil. This is another piece of
evidence that supports the rejection of using a cross-validated
statistical N estimate at the plot scale (see Table S3 in the
Supplementary Material). In conclusion, the majority of the
information contained in the plot reflectance is from the soil
(up to 95%), and after removing it, there might not be enough
information to infer canopy structure or N. Thus, our statistical
prediction of foliar N at the plot scale is unreliable.

Fig. 8. Relationship between DASF and BRF in the NIR region.

Fig. 9. Canopy scattering correction for soil and canopy structure.

R2 of the BRF/leaf albedo ratio versus BRF relationship is
an estimate of the DASF quality retrieval. A note of caution
is that, in theory, it is still possible to estimate DASF values
with an R2 close to 1 for small BRF. However, the estimated
DASF is very small. Normalizing canopy BRF to a small
DASF will result in large canopy scattering (W more than 1),
which is impossible. This is important since filtering sparse
vegetation based on this R2 has been recently suggested [69],
which may lead to incorrect canopy scattering. For green
shrubs, DASF has a positive correlation (see Fig. 8) with
the shoulder of the NIR region (800–850 nm). This is in
line with the radiative transfer process and the findings by
Knyazikhin et al. [22] (2013).

Fig. 9 shows canopy scattering for the shrubs, for
which we were able to calculate DASF. Canopy scatter-
ing mimics a typical leaf albedo and is insensitive to
canopy structure [22], demonstrating success with the DASF
approach. In Section III-D, we experiment with using canopy
scattering across all wavelengths to predict foliar N.

D. Correlation and Causation and the
Concept of Counterfactual

Table I shows the results of corrected canopy samples versus
their counterpart samples, which were not corrected for soil
and canopy structure. It can be seen that after correction
for canopy structure and soil, none of the methods or trans-
formations predict N for canopy-scale data. Since we have
selected the log transformation for our statistical analysis in
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TABLE I

EMPIRICAL ESTIMATION OF CANOPY N FOR SHRUBS CORRECTED FOR
THE IMPACT OF SOIL AND CANOPY STRUCTURE

Section III-A, we also provided its 1:1 plots between measured
and predicted N before and after corrections (SI, Fig. S5 in
the Supplementary Material). The correlation between N and
reflectance implies association (dependence) rather than cau-
sation. Association can exist between two variables in the
presence or absence of causality [70]. It is common to deduce
a causal relationship from a correlation. For any causal claim
to be verified, one should consider the might be condition. For
example, what might be the case for the N-light relationship
if canopy structure and soil did not exist? This is known as
the theory of counterfactual [71]. Causality is the fundamental
property of a system, which means a causal relationship would
be invariant to the changes of the system. Our physical
analysis provides the basis to test for the counterfactual
outcomes. Since the results of the N prediction before and
after correction for soil and canopy structure have changed,
a causal relationship between reflectance and N cannot be
concluded. Consequently, we reject our null hypothesis that
removing confounding factors improves predictions.

One argument is that N-reflectance correlation implies a
functional association [72], which is consistent with ecological
understanding (i.e., plant physiology). From our analysis,
correction for canopy structure and soil leads to no cor-
relation. This does not, however, invalidate the functional
association. Undoubtedly, N plays an important role in dif-
ferent canopy processes; however, not all associations lead to
correlation [70]. The functional association can be translated
into a priori information. Currently, remote sensing alone is
not able to incorporate such a priori information into the
predictions of N. Dynamic vegetation models (DVMs) can
be used to reconcile the theory of remote sensing and ecol-
ogy. For example, these models incorporate both ecological
processes (e.g., photosynthesis) and light-canopy interactions
(e.g., RTMs).

To account for the role of canopy structure—and to some
extent soil, two solutions have been proposed. First, empirical
models are applied to adjusted spectra that have been filtered
with a normalized difference vegetation index and height and,
then, adjusted with a brightness normalization [73]. A second
approach is to add light detection and ranging (LiDAR)-
derived canopy structural parameters, such as canopy height or
fractional cover, to the feature space to construct the statistical
model [52]. In both approaches, multiple scattering is not
explicitly solved. The impact of canopy geometry, such as
orientation and arrangement of leaves and branches, as well
as multiple scatterings between the canopy and different layers
of understory, including soil, confound the N signal. Adding
LiDAR variables to the feature space makes the final model
more complicated to interpret rather than simpler.

IV. CONCLUSION

Due to the lack of inclusion of N in leaf RTMs, N,
historically, has been estimated with remote sensing data using
statistical methods [6]. The interpretation of the statistical
models depends on the spectral bands selected during the
process of model fitting. We have shown that different models
can identify different important bands (see Fig. 1). Moreover,
each model is sensitive to the type of transformation applied to
the spectra before model fitting. These experiments show that
common VS routines for foliar biochemistry studies at scales
coarser than the leaf may be misleading. Strong prediction
rates reported in remote sensing studies are often based on
cross validation, which may be overoptimistic. None of our
empirical methods could reproduce cross-validation results
when applied to an external data set. Thus, we concluded that
these methods are not replicable.

We extended the physical work of [22] to cases, where
vegetation is sparse, and soil cannot be ignored. At the plot
scale, the impact of soil is a dominant confounding factor,
and in more extreme cases, such as drylands, there might
not be enough information to retrieve biochemistry or some
canopy structure variables, such as DASF. Recent develop-
ments using full-waveform LiDAR may solve the problem of
canopy structure [74]. Removing confounding factors at the
canopy and plot scales leads to different statistical models
that might or might not have prediction power. We discussed
this against the theory of counterfactuals, leading to rejection
of our null hypothesis that removing confounding factors
will improve empirical predictions. The idea of functional
association, which is used to justify statistical methods, is best
suited for remote sensing coupled with DVMs.

Our overall conclusion is that if we are interested in
predicting N with remote sensing, then we might be able
to produce such empirical models, in particular with the
growing body of machine learning algorithms. However, one
must be cautious in interpreting these models, particularly
in complex ecosystems, because they may be affected by
the canopy structure, soil, spectral transformation, and the
type of model implemented. With advancements in space-
borne hyperspectral and full-waveform LiDAR observations
and, thus, sophisticated measurements of ecological processes
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(e.g., photosynthesis, solar-induced fluorescence, and so on),
there is strong potential to gain new insights of chang-
ing ecosystems [75]. Empirical methods serve an important
role in analyzing the products of these newly developed
sensors. Given the issues related to empirical methods, the
remote sensing community should be cautious about the
statistical tools they use. We encourage deeper discussions
of these methods and the need to explore new fields in
statistics for remote sensing, such as a rigorous investi-
gation of causality and predictivity versus significance of
variables.

Our results might imply that radiative transfer modeling is
the best approach to estimate N. However, currently there
is no reliable leaf scale RTM that incorporates N because
of the lack of absorption coefficients and other information
due to the many different types of bonds N carries [76].
Moreover, RTMs at both the leaf and canopy scales carry
multiple implicit and explicit assumptions that might cause
relative error up to 70% [77]. For example, the assumption of
considering canopy as turbid media in 1-D RTMs leads to the
definition of effective LAI, which is different from true LAI
measured [78]. Regardless, these deficiencies do not make
RTMs useless. Most DVMs require RTMs to simulate the
CRB. Thus, a potentially better approach to solve the problem
of N retrieval is to incorporate it with the DVMs (i.e., through
data assimilation) rather than using remote sensing data in
insolation. For example, ED2 [79], [80] and CLM [81] DVMs
use a simple two-stream canopy RTM [82]. Incorporation
of more sophisticated 3-D RTMs into these models might
improve their performance [83] and, consequently, facilitate
better N predictions. In addition, the canopy spectral invariants
theory has produced results close to 3-D RTMs [84] with
much faster performance, and thus, a logical next step is to
incorporate the generalized canopy spectral invariants theory
into DVMs.
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