Title
Reaction Mechanisms for Long-Life Rechargeable Zn/MnO2 Batteries

Permalink
https://escholarship.org/uc/item/61k0n6tb

Journal
Chemistry of Materials, 31(6)

ISSN
0897-4756

Authors
Li, Yun
Wang, Shanyu
Salvador, James R
et al.

Publication Date
2019-03-26

DOI
10.1021/acs.chemmater.8b05093

Peer reviewed
Reaction mechanisms for long life and ultra-high power rechargeable Zn ion batteries†

Yun Li,a Shanyu Wang,a James Salvador,b Jinpeng Wu,c,d Bo Liu,a Wanli Yang,a Jiong Yang,a Wenqing Zhang,a Jun Liu,a and Jihui Yang*a,*

Rechargeable aqueous Zn-ion batteries (ZIBs) are very promising for large-scale grid energy storage applications owing to their low cost, environmentally benign constituents, excellent safety, and relatively high energy density.1, 2 Their usage, however, is largely hampered by the fast capacity fade. The cycle stability seems to be highly rate-dependent,3 which poses an additional challenge, but can also play a pivotal role in uncovering the reaction mechanisms. The complexity of the reactions has resulted in long-standing ambiguities of the chemical pathways of Zn/MnO2 system, and has led to many controversies with regard to their nature. In this report, we present a combined experimental and theoretical study of Zn/MnO2 cells. We found that both H+/Zn2+ intercalation and conversion reactions occur at different voltages, and that the rapid capacity fading can clearly be ascribed to the rate-limiting and irreversible conversion reactions at a lower voltage. By avoiding the irreversible conversion reactions at ~ 1.26 V, we successfully demonstrate ultra-high power and long-life Zn/MnO2 cells which, after 1000 cycles, maintain an energy density of ~ 231 Wh kg–1 and ~ 105 Wh kg–1 at a power density of ~ 4 kW kg–1 (9C, ~ 3.1 A g–1) and ~ 15 kW kg–1 (30C, ~ 10.3 A g–1), respectively. The excellent cycle stability and power capability are superior to most reported ZIBs or even some lithium-ion batteries. The results establish accurate electrochemical reaction mechanisms and kinetics for Zn/MnO2, and identify the interplay of the voltage window and rate as the determining factors for achieving excellent cycle life.

Introduction

Large-scale grid storage technology is critical for managing peak demands, improving the grid reliability, integrating most sustainable energy sources such as solar radiation, wind, wave power, geothermal energy, etc., and further powering the energy infrastructures.1, 2 In spite of the prosperous research on Li-ion and beyond Li-ion batteries with high energy density, their low cyclability, however, has remained a grand challenge, hindering the widespread applications of these attractive ZIBs. A prerequisite for improving the cycle life and electrochemical performance of Zn/MnO2 batteries is to accurately determine the reaction mechanisms, especially under different rates, which poses a considerable challenge. In our combined experimental and computational study, a concomitant intercalation and conversion reactions of H+/Zn2+ occurring at different voltages in the Zn/MnO2 system is established. The rapid capacity fading is unambiguously ascribed to the rate-limiting and irreversible conversion reactions at a lower voltage. By mitigating or avoiding the irreversible conversion reactions at the lower voltage, we demonstrate high performance Zn/MnO2 cells with ultrahigh power capability and excellent cycle life.
In this combined experimental and computational study, we mechanisms, clarify the origin of capacity fading, and design (different phases and compositions) under various rates, which efforts, the computational modeling has been hindered by the quantitative analysis is difficult. In terms of the theoretical environment information, offers localized structure, composition, and chemical (NMR) or high resolution transmission electron microscopy reaction products. XRD data leave ambiguities due to the diffraction peaks grand challenge. On the experimental side, X-ray diffraction accurate determination of the reaction products and and electrochemical performance of Zn/MnO cycle stability of the Zn/MnO inactive byproducts, use of MnSO different polymorphs, Mn dissolution, electrochemically Despite significant prior efforts, phase transformation between was suggested, analogous to the argument of Kim et al. into MnO with good cycle stability and high energy density. A similar study has been reported by Pan et al., yet a distinct conversion reaction involving protons in the cathodic reactions was suggested, analogous to the argument of Kim et al. Despite significant prior efforts, phase transformation between different polymorphs, Mn dissolution, electrochemically inactive byproducts, use of MnSO additive, low electronic conductivity, etc., still make it very challenging to improve cycle stability of the Zn/MnO cells. For example, the selection of a MnO2 polymorph with a larger tunnel size such as the todorokite-MnO2 or the addition of MnSO4 in the electrolyte to decrease the pH cannot completely solve the cycle life issues. A necessity for improving the cycle life and electrochemical performance of Zn/MnO2 batteries is the accurate determination of the reaction products and mechanisms, especially under different rates, which poses a grand challenge. On the experimental side, X-ray diffraction (XRD) data leave ambiguities due to the diffraction peaks overlapping and the low crystallinity for many possible reaction products. Nuclear magnetic resonance (NMR) or high resolution transmission electron microscopy offers localized structure, composition, and chemical environment information, but macroscopic and quantitative analysis is difficult. In terms of the theoretical efforts, the computational modeling has been hindered by the complexity and a large variety of the reaction products (different phases and compositions) under various rates, which necessitates experimental guidance to reduce the required computational resources. Therefore, a coupled experimental and computational approach is called for to reveal the reaction mechanisms, clarify the origin of capacity fading, and design high performance ZIBs. In this combined experimental and computational study, we unravel a concomitant intercalation and conversion reactions of H’/Zn2+ occurring at different voltages in the Zn/MnO2 system. The rapid capacity fading is unambiguously ascribed to the rate-limiting and irreversible conversion reactions at a lower voltage. The active MnO2 cathode materials were electrodeposited in-situ from MnSO4-based electrolyte onto the current collectors, inspired by the electrodeposition of electrolytic MnO2 (EMD) used in the alkaline primary batteries. By minimizing or avoiding the irreversible conversion reactions at the lower voltage, we demonstrated high performance Zn/MnO2 cells which can deliver high energy and power densities of ~ 300 Wh kg\(^{-1}\) and ~ 2 kW kg\(^{-1}\) at 3C (1.032 A g\(^{-1}\)), ~ 231 Wh kg\(^{-1}\) and ~ 4 kW kg\(^{-1}\) at 9C (3.096 A g\(^{-1}\)), and ~ 105 Wh kg\(^{-1}\) and 15 kW kg\(^{-1}\) at 30C (10.32 A g\(^{-1}\)) with negligible capacity fading after 100 (at 3C), 1000 (at 9C), and 1000 (at 30C) cycles. These values are superior to most reported ZIBs or even some lithium-ion batteries. Furthermore, the revealed reaction mechanisms in our in-situ electrochemically deposited Zn/MnO2 cells should be ubiquitous to those previously reported ex-situ Zn/MnO2 cells or other ZIBs, and thus should be applicable for improving their cycle stability.

Experimental Section

Materials and characterization

The electrodes for in-situ deposited MnO2 were prepared by thoroughly mixing 45 wt.% carbon black (TIMCAL Graphite & Carbon super P, MTI Corporation, USA) and 55 wt.% polyvinylidene fluoride (PVDF) in N-Methyl-2-pyrrolidone (NMP). The slurries made by a planetary centrifugal mixer (ARE-310, Thinky, USA) were cast on Ni foils by a MC-20 Mini-Coater (Hohsen, Japan). Ni foils with coatings were then dried in vacuum at 100 °C for 6 h to get rid of the NMP solvent. Powder XRD data of the cathode materials were collected on a Rigaku RAPID II (Mo K\(_\alpha\) radiation, Rigaku, Japan) between 5° and 45° (2\(\theta\)) at room temperature. Microstructures of the samples were determined by a field emission scanning electron microscope (FESEM) equipped with Oxford energy dispersive spectroscopy (EDS) (FEI Sirion XL30, USA). The sample chemical compositions were determined by a 2D Micro-X-ray Fluorescence analyzer (Micro-XRF, M4 TORNADO, Bruker, USA). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the mass loadings of MnO2 deposits. To investigate the evolution of the Mn oxidation state in the electrodes, soft X-ray absorption spectroscopy (sxAS) data were collected in total electron yield mode in the iXRS endstation at Beamline 8.0.1.0 of the Advanced Light Source at Lawrence Berkeley National Laboratory.[Please cite RSI (2017) doi:10.1063/1.4977592 - all experimental specifications are provided there]. Experimental resolution of sxAS is about 0.15 eV without considering core hole lifetime broadening. For ex-situ XRD, sxAS, SEM, and XRF studies, the recovered electrodes after electrochemical cycling were rinsed with deionized water and dried at room temperature.

Electrochemical test
Electrochemical tests were carried out in both coin cells and three-electrode open cells. The cathodes were assembled in 2032 type coin cells with selected electrolytes and 0.5 mm thick excess Zn foil as the anodes. Glass fiber membrane filters (Whatman) were used as the separators. In the three-electrode open cells, the cathodes were used as the working electrodes, and Zn foils as the reference electrodes and the counter electrodes. The coin cells and the three-electrode open cells were cycled galvanostatically between 1.0 and 1.8 V (vs. Zn2+/Zn) at 30 °C using a multifunction model 4200 battery tester (Maccor, USA). Cyclic voltammetry (CV) tests were carried out using a Reference 600 Potentiostat (Gamry, USA) at a scan rate between 0.1 and 1.0 mV s-1. In the CV cells, the cathodes were used as the working electrode, silver chloride electrodes as the reference electrodes, and Pt foil the counter electrodes. The electrolytes used were 0.2 M MnSO\textsubscript{4}+1 M ZnSO\textsubscript{4} aqueous solutions.3 Electrochemical impedance spectroscopy (EIS) tests were carried out using a VersaSTAT 4 potentiostat (Ametek Scientific Instruments, USA) with a frequency range from 1 MHz to 0.01 Hz and an AC amplitude of 5 mV.

First-principles calculations
All calculations in the present study were performed within the generalized gradient approximation (GGA) using the Perdew, Burke and Ernzerhof (PBE) exchange–correlation functional.56 A planewave basis set and the projector augmented wave (PAW) method as implemented in the Vienna Ab initio Simulation Package (VASP) were used,57-60 based on the density functional theory (DFT). Furthermore, to account for the strong onsite Coulombic repulsion of the Mn-3d electrons, the GGA+U method was used for the Mn-containing compounds.61 The effective onsite Coulombic term U\textsubscript{eff} of the Mn-3d electrons was chosen to be 3.9 eV, according to a previous reference.62 Zn-doped MnO\textsubscript{2} calculations were performed in fully relaxed 2x2x1 supercells. The Monkhorst–Pack scheme 5x5x2 k-point sampling was used for the integration in the irreducible Brillouin zone.55 The cutoff energy for the plane waves is set to be 520 eV. The total ground state energy converged within 10-5 eV. The lattice parameters and the ionic position were fully relaxed, and the final forces on all atoms were less than 0.01 eV/Å.

Results and discussion
Electrochemical performance of in-situ deposited Zn/MnO\textsubscript{2} cells
Carbon black was used as the MnO\textsubscript{2} cathode electrodeposition substrate due to its high electrical conductivity, porous structure, and large surface area; all of which are beneficial for the electrodeposition and the subsequent electrochemical reactions. To evaluate the energy storage capability of the in-situ Zn|MnSO\textsubscript{4}, ZnSO\textsubscript{4}|carbon-black cells, the coin cells were tested in the potential range of 1.0-1.8 V vs. Zn2+/Zn (Fig. 1). Fig. 1a shows the initial electrodeposition of MnO\textsubscript{2} cathode at a current density of 0.01 mA cm-2 for 30 h and the subsequent galvanostatic discharge/charge profiles of the cell at a current density of C/3 (C = 0.344 A g-1). The typical loading of MnO\textsubscript{2} deposits is ~ 0.54 mg cm-2 based on the electrodeposition charge, which is approximately consistent with the average loading of ~ 0.47 mg cm-2 derived from the ICP measurements. The initial electrodeposition plateau is at ~ 1.73 V vs. Zn2+/Zn and the two discharge plateaus are at ~ 1.40 V and ~ 1.26 V. On the subsequent cycles, new charge plateaus appear at ~ 1.51 V and ~ 1.58 V. The charge/discharge plateau potentials are in good agreement with the CV redox peaks shown below, as will be discussed later. The appearance of 1.40/1.26 V discharge and 1.58/1.51 V charge plateaus was also observed in previous reports, which were assigned as either Zn-intercalation or proton-conversion reactions associated with the crystallographic evolution of MnO\textsubscript{2} during the cycling processes.3, 40, 41, 46-49 In this work, we will show that the two discharge plateaus at 1.40 V and 1.26 V represent more complicated reactions which incorporate both H+ and Zn2+ into the MnO\textsubscript{2} host and reducing Mn(4+) into Mn(3+)/Mn(2+).

The cycling performance at the C/3 rate is shown in Fig. 1b. The capacity increase in the first few cycles is due to a gradual activation of the deposited MnO\textsubscript{2} (electrolyte wetting, surface stabilization, etc.). After the activation, the cell suffers severe capacity fading from 400 to 20 mA h g-1 within 100 cycles. The poor cycle stability leads us to speculate that there may exist irreversible reactions (e.g., conversion reaction or other side reactions) during discharge that cause significant disruption of the original electrode architecture or material crystal structures. Interestingly, the capacity retentions are significantly better at higher discharge/charge rates, as shown in Fig. 1b, e.g., ~ 30% and ~ 80% discharge capacity retentions at 1C and 3C after 100 cycles, respectively. This electrochemical behavior is related to the unique reaction mechanisms in Zn/MnO\textsubscript{2}, which will be discussed below.

Figure 1c shows the initial discharge/charge profiles of the Zn/MnO\textsubscript{2} cells at C/3, 1C, and 3C. The cells cycled at higher rates (1C and 3C) show lower discharge and charge capacities as expected. Upon close examination of the discharge plateaus, we find that the first discharge plateau at ~ 1.40 V shows comparable specific capacities among different rates (~ 175 mA h g-1 for 3C and ~ 210 mA h g-1 for C/3), while the capacity pertaining to the second discharge plateau at ~ 1.26 V decreases significantly from ~ 190 mA h g-1 at C/3 to ~ 100 mA h g-1 at 3C. This clearly indicates that these two plateaus have distinctive rate-dependent kinetics, such that the electrochemical reactions at 1.26 V are kinetically limited at high rates, while those at 1.40 V are only slightly dependent on the rate. The capacity retention data are plotted in Fig. 1d, as such, the discharge/charge profiles for the 100th cycle at the 3C rate show that the cell retains ~ 90% and ~ 60% of the discharge capacity of the 1.40 V and 1.26 V plateaus, respectively. The cell cycled at the 1C rate, however, mostly...
displays capacity corresponding to the 1.40 V discharge plateau after 100 cycles. Therefore, these data seem to suggest that the high capacity retention at high rates is mainly due to the irreversible reactions occurring at the ~1.40 V discharge plateau as well as the significantly kinetically-limited irreversible reactions at 1.26 V. At high rates, the irreversible reactions are greatly suppressed and hence better capacity retention is achieved. The poor capacity retention for the cell cycled at the C/3 rate should be attributed to the irreversible reactions occurring at ~1.26 V. These irreversible reactions (primarily conversion reactions) bring about massive inactive products and substantial structural stresses originated from drastic phase transitions that severely disrupt cathode structure and thus block the ion and electron transport, resulting in ~80% and ~90% capacity losses at ~1.40 V and ~1.26 V, respectively.

Redox reaction mechanisms

XRD and XRF To elucidate the reaction mechanisms in the in-situ Zn/MnO$_2$ cells, structure and composition of the in-situ formed MnO$_2$ cathode and its evolution during discharge/charge were examined by ex-situ XRD. The XRD patterns were carefully collected for the original MnO$_2$ deposits (labeled as A in Fig. 1a and shown in Fig. 2), cathode after fully discharged at C/3 (labeled as C in Fig. 1c and shown in Fig. 2a), and after fully discharged at 3C (labeled as E in Fig. 1c and shown in Fig. 2b). The originally deposited MnO$_2$ cathode (A, Fig. 2c) can be indexed to the hexagonal structure of birnessite δ-MnO$_2$ (JCPDS 18-0802), which can also be viewed as a layered MnO$_2$. Crystal structure of the hexagonal birnessite δ-

MnO$_2$ consists of sheets of edge-sharing [Mn$_6$O$_{12}$] octahedra with Mn atoms located above or below the in-sheet Mn vacancies. The charge of in-sheet Mn vacancies is compensated by the interlayer Mn$^{3+}$ or other cations such as Zn$^{2+}$ and H$. Compared with the originally deposited MnO$_2$, the diffraction patterns of MnO$_2$ cathodes discharged to 1.0 V at C/3 (C) and 3C (E) shift ~0.5° (2θ) towards lower angles. This clearly indicates a lattice expansion caused by cation insertion, such as H$/\text{Zn}^{2+}$ intercalation,35, 40, 49. Meanwhile, some characteristic peaks of MnOOH (JCPD #01-075-1199) appear, presumably formed during the H$^+$/Zn$^{2+}$ insertion accompanied by a structural relaxation (e.g., vacancy redistribution and/or rearrangement of Mn-O bonds).33, 38, 67, 68 The same peak shift and the appearance of MnOOH for both points C and E suggest similar H$/\text{Zn}^{2+}$ intercalation processes at high (3C) and low (C/3) rates. Furthermore, similar peak shift of MnO$_2$ and appearance of MnOOH for cathodes discharged to 1.3 V at C/3 (point B for the 10th cycle in Figs. 1c and 2a) and 3C (point D for the 10th cycle in Figs. 1c and 2b) after 10 cycles suggest that the H$/\text{Zn}^{2+}$ intercalation processes occurring prior to 1.3 V (at 1.40 V). After fully discharged to 1.0 V at C/3 (Fig. 2a), the XRD of point C clearly shows the formation of massive basic zinc sulfate ZnSO$_4$·3Zn(OH)$_2$·nH$_2$O (mainly n = 4 with JCPDS # 09-0204), in addition to the H$^+$/Zn$^{2+}$-inserted MnO$_2$ phases. Additionally, new diffraction peaks appear at 26.1° (2θ), 36.2° (2θ), 37.6° (2θ), which can be indexed to be MnO$_2$ (JCPDS # 24-0734), while the 26.1° (2θ) peak can also be assigned to MnO (JCPDS # 01-1206). The appearance of ZnSO$_4$·3Zn(OH)$_2$·nH$_2$O, MnO$_2$, and MnO after fully discharge is in good agreement with our hypothesis of conversion reactions at 1.26 V. In addition, the
XRD pattern of the fully charged state (Fig. S1b, ESI†) is quite similar to that of the originally deposited MnO2 electrode (A), implying that the parent MnO2 phase is largely recovered after the initial recharge. The long-term cycling at low rates, however, will irreversibly accumulate MnO2, and ZnSO4·3Zn(OH)2·nH2O from the conversion reactions, evident by the apparent diffraction peak of MnO2 at 2θ = 10.1° in the XRD of point B for the 10th cycle. After 100 cycles (Fig. 2c), the irreversible conversion products MnOx, MnO2, and ZnSO4·3Zn(OH)2·nH2O predominate on the electrodes, eventually disrupt the electrode structure and result in a poor capacity retention, as will be discussed in more details below.

XRD of the cathode discharged to 1.0 V at a high rate of 3C (point E) is shown in Fig. 2b. The apparent lower peak intensities of ZnSO4·3Zn(OH)2·nH2O, MnO2, and MnO for fully-discharged cathode (point E) and partially-discharged cathode after 10 cycles (point D) suggest a significant suppression of the conversion reactions occurring at 1.26 V, well consistent with the largely decreased capacity of the second discharge plateau at the 3C rate. The Zn2+ conversion phase ZnMn2O4·mH2O only shows as a weak peak at 2θ of 15.4° (Fig. 2b) in the initial discharge processes, however, intensified peaks of ZnMn2O4·mH2O were identified after 10 cycles. Fig. 2d compares the XRD patterns of fully-discharged electrodes at 3C after the 1st and 100th cycles. The original H2/Zn2+-inserted MnO2 phases nearly disappear after 100 cycles. Instead, conversion products ZnMn2O4·mH2O, tunnelled Zn-woodruffite [T(3, 4)] (JCPDS # 47-1825), and Mn2O3 dominate after 100 cycles. As shown in Fig. 2, the diffraction peaks overlap for many discharged products. Meanwhile, some discharge products are mutually transformable through various intermediate phases depending on the local pH value, humidity, temperature, etc.66 69 Therefore, it is very challenging to exactly distinguish the phases in the electrode via XRD only, but the XRD results are insightful to unravel the trend of phase transition from MnO2 to MnOOH and ZnMnO2, and finally to Zn2+/H+ conversion products, more significantly to clarify the origin of capacity fade.

XRF analyses results of the cathodes at different stages of the first discharge/charge are shown in Fig. S1b (ESI†). The signals of Zn and S are normalized to the Mn signal. The initially deposited cathode is mainly composed of Mn as expected (O is not resolved here), with a slight ZnSO4 contamination from the electrolyte. The Zn and S contents, predominantly from ZnMnO2, ZnSO4·3Zn(OH)2·nH2O, and ZnMnO2·mH2O increase significantly for the fully discharged cathodes, and nearly revert to the original values after recharging, indicating the almost reversible electrochemical processes in the first discharge/charge. The cathode discharged at C/3 shows a doubled Zn content and almost a quadrupled S content compared to those discharged at 3C, which are consistent with their distinct discharged capacities (~ 400 mAh g−1 vs. ~ 290 mAh g−1). More specifically, based on the high Zn content of discharged cathode at 3C we can confirm the existence of Zn2+ incorporated products, since at least 11% Zn (of the overall 39% Zn) in the cathode comes from ZnMnO2 or ZnMnO2·mH2O while the rest (28% Zn based on 7% S) is from ZnSO4·3Zn(OH)2·nH2O.

sXAS In order to directly detect the chemical states of Mn, Mn L-edge sXAS was performed on electrodes at the representative electrochemical stages, as shown in Fig. 3. Compared with the hard X-ray XAS of Mn K-edge that has been extensively applied to study the valence of Mn in rechargeable Zn/MnO2 c ells,46, 48, 70 soft X-ray based sXAS is a more direct and sensitive probe to determine the valence 3d states of transition-metals (TM) through the dipole-allowed 2p-3d transitions. Because TM-L sXAS probes the localized 3d states directly, the Mn L-edge sXAS spectral lineshape is insensitive to specific structural differences, if a local octahedral structure is maintained.71 The spectroscopic features could be well interpreted by comparing with reference spectra of different Mn states,74 as indicated in Fig. 3 by the vertical dashed lines. The absorption spectra of the Mn L-edge consist of well-separated features in two regions, L1 (628-646 eV) and L2 (649-671 eV).
prolonged cycling. In contrast, for the cathode discharged at a cathode structure, and thus result in a serious capacity loss in MnO
means of EDS. These flakes, covering and growing across the in Fig. 4c, can be identified to be ZnSO
C/3), however, large flakes with sizes of ~ 10–20 µm occurring at 1.40 V. For the fully discharged cathode (1.0 V at 4e), the electrodes roughly retain the original morphology of like nanosheets with thicknesses of tens of nanometers (Fig. 4). SEM reveals directly the sharp contrast on the 1.26 V discharge plateau in electrodes cycled at different rates.
variation here is likely a surface effect from the surface/bulk recharged cathode might correspond to the activation of MnO
conversion reactions at 1.26 V are largely suppressed, resulting clearly reveals an almost complete reduction of Mn
results that show the current density (C-rate) has a minor effect on the H+/Zn
peaks recovers and becomes stronger when fully discharged to 1.0 V. Mn
peaks dominate the sXAS lineshape of the electrode at C/3, labeled as C in Fig. 1c and shown in Fig. 3a), while Mn
and Mn
peak intensities only moderately increase with the 3C samples (labeled as E in Fig. 1c and shown in Fig. 3b). This result clearly reveals an almost complete reduction of Mn
60 to Mn
8 after fully discharge at C/3, accounting for the comparable discharge capacity of 190 mAh g
1.40 V reactions to that of 1.40 V reactions (210 mAh g
For electrodes cycled with high rates (e.g., 3C), the kinetic-limited conversion reactions at 1.26 V are largely suppressed, resulting in a slight evolution of the Mn valences, and thus smaller contribution to the overall discharge capacity. The intensity of Mn
peaks recover and becomes stronger when fully discharged, illuminating reversible Mn valence changes between Mn
4 and Mn
3. The stronger Mn
4 peaks in the recharged cathode might correspond to the activation of MnO
deposits in the first few cycles, thus the finite amount of intensity variation here is likely a surface effect from the surface/bulk charge redistribution in the ex-situ samples and the limited sXAS probe depth of about 10 nm. Therefore, the sXAS results not only present the overall Mn valence evolution upon electrochemical potentials, they also reveal directly the sharp contrast on the 1.26 V discharge plateau in electrodes cycled at different rates.
SEM Figure 4 shows the surface morphology of the cathode at various cycling stages. The morphology of the originally deposited MnO
on carbon black surface shows hydrangea-shape clusters with several micrometers in diameter and petal-like nanosheets with thicknesses of tens of nanometers (Fig. 4a). After being discharged to 1.3 V at C/3 or 3C (Fig. 4b and 4e), the electrodes roughly retain the original morphology of the MnO
clusters, primarily due to the intercalation reactions occurring at 1.40 V. For the fully discharged cathode (1.0 V at C/3), however, large flakes with sizes of ~ 10–20 µm, as shown in Fig. 4c, can be identified to be ZnSO
3Zn(OH)
2H
2O by means of EDS. These flakes, covering and growing across the MnO
clusters, would block the ion diffusion, disrupt the cathode structure, and thus result in a serious capacity loss in prolonged cycling. In contrast, for the cathode discharged at 3C, as shown in Fig. 4f, the intergrowth between MnO
nanosheets and ZnSO
3Zn(OH)
2H
2O flakes provides a stable and percolating microstructure, which is beneficial for the electrochemical reactions. Moreover, the sizes of ZnSO
3Zn(OH)
2H
2O flakes in 3C discharged electrode are less than 2 µm and they apparently present in smaller amounts than those discharged at low rates. For the charged cathode shown in Fig. 4d, the electrode reverts to the morphology of the original MnO
electrode, and only few ZnSO
3Zn(OH)
2H
2O flakes are observed. The petal-shaped MnO
nanosheets are retained during the whole electrochemical reaction processes, implying a stable and reversible microstructure for the concurrent intercalation and conversion reactions in the first few cycles. This also agrees well with the reversible behavior in the XRD results.
In addition, the high reversibility of the Zn anode also contributes to the good cycling performance. SEM images of Zn anodes before and after 20 cycles are shown in Fig. S2 (ESI†). The laminated Zn was well deposited with no sign of Mn contamination and no significant surface oxidation (EDS).

Summary of the reaction mechanism and DFT simulations
Based on the above experimental analyses of electrochemical behavior, XRD, XRF, sXAS, and SEM, we can summarize the redox reactions and structural transformations occurring in the in-situ Zn/MnO
2 cell, as shown in Fig. 5. To further confirm our proposed reaction pathway, we employed DFT simulations to calculate the voltages of the two redox reactions occurring at ~ 1.40 V and ~ 1.26 V. Our calculations considered various H+/Zn
intercalation and conversion reactions with MnO
2. The voltage of a redox reaction can be obtained from the difference in the total Gibbs free energy between the products and reactants, and the Gibbs free energies and structures of all compounds were computed based on fully relaxed structures. Based on the DFT results, the major redox reactions can be formulated as below:

\[\text{MnO}_2 + 33\text{Zn} + 10\text{ZnSO}_4 + 100\text{H}_2\text{O} + \text{Zn}^{2+} + 98\text{H}^+ \]

84MnO
2 + 33Zn + 10ZnSO
4 + 100H
2O + Zn
2+ + 98H
+
Fig. 4 SEM images of the cathode recovered from the test cells after (a) MnO_2 deposition, discharged to (b) 1.3 V and (c) 1.0 V at C/3, (d) fully charged at C/3, and discharged to (e) 1.3 V and (f) 1.0 V at 3C.
2) H+/Zn2+ conversion reactions at ~1.26 V

\[8 \text{Zn}_{0.125} \text{MnO}_2 + 16\text{MnOOH} + 4\text{Zn} + \text{ZnS}_4 \text{O}_4 + 3\text{H}_2 \text{O} = 5\text{Mn}_3 \text{O}_4 + 3\text{MnO} + 2[\text{ZnMn}_3 \text{O}_7 \cdot 2\text{H}_2 \text{O}] + \text{ZnS}_4 \text{O}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2 \text{O} \]

The calculated voltages for Equations (1) and (2) are 1.39 V and 1.26 V and agree very well with the experimental results. Here we took Zn\(_{0.125}\)MnO\(_2\) as the Zn-insertion compound for simplicity, and MnOOH as the H\(^+\)-insertion compound. We also

\[8 \text{ZnO} + 16\text{MnOOH} + 4\text{Zn} + \text{ZnS}_4 \text{O}_4 + 3\text{H}_2 \text{O} = 5\text{Mn}_3 \text{O}_4 + 3\text{MnO} + 2[\text{ZnMn}_3 \text{O}_7 \cdot 2\text{H}_2 \text{O}] + \text{ZnS}_4 \text{O}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2 \text{O} \]
calculated the voltages of other possible redox reactions, such as Zn$^{2+}$ intercalation as the exclusive reaction at the initial discharge stage, however, the calculated voltages are significantly different from the experimental values which oblige us to rule out these scenarios, as shown in Table S1 (ESI†). The combined experimental and theoretical evidence ascertain the main reactions pathway in our in-situ Zn/MnO$_2$ cell, as illustrated in Fig. 5 and formulated in Equations (1)-(2).

Due to the complexity of Zn/MnO$_2$ system, there might be some minor side reactions, which will not significantly contribute to the capacity and influence the electrochemical behavior.

Kinetic behaviours

To discern the different kinetic behavior of the two separate redox reactions at 1.40 V and 1.26 V, the standard reaction rate constants $k^\circ_{1.40V}$ and $k^\circ_{1.26V}$ were derived by CV and are shown in Fig. 6. Fig. 6a shows a series of cyclic voltammograms obtained at different scan rates (0.1-1 mV/s). It is clear that the reaction at 1.40 V is more reversible than the one at 1.26 V, due to its smaller peak separations (160-280 mV vs. 300-420 mV). The peak current is expressed as:

$$i_{pc} = 0.227nFAC^\alpha k^\circ \exp\left[-\frac{(\alpha n F)(E - E^\circ)}{RT}\right]$$

where i_{pc} is the peak cathodic current; n the number of electrons involved in the overall electrode processes; A electrode area; C the maximum concentration change of H$^+$/Zn$^{2+}$ in the cathode materials; α the charge transfer coefficient; n the number of electrons involved in the redox steps; E_{pc} the peak cathodic potential; and E° the formal potential. The average formal potential values of 1.48 V and 1.26 V are used to plot the ln i_{pc} vs. $(E_{pc} - E^\circ)$ relations for the two reactions at 1.40 V and 1.26 V, respectively. Fig. 6b presents the plots of ln i_{pc} vs. $(E_{pc} - E^\circ)$ obtained from the cyclic voltammograms in Fig. 6a. From the intercepts of the straight lines, the standard reaction rate constants $k^\circ_{1.40V}$ and $k^\circ_{1.26V}$ are calculated as 1.26 × 10$^{-7}$ and 1.58 × 10$^{-8}$ cm2/s, respectively. The standard reaction rate constant at 1.40 V ($k^\circ_{1.40V}$) is almost one order of magnitude larger than that at 1.26 V ($k^\circ_{1.26V}$). $k^\circ_{1.40V}$ is also comparable to that of LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ (NMC111) in Li-ion batteries for intercalation reaction (~ 2.5 × 10$^{-7}$ cm2/s). The kinetic behavior was also studied by EIS. Fig. 6c shows the EIS results of a Zn/MnO$_2$ cell discharged to two different statuses (1.40 V and 1.26 V). The discharged cell displays two semicircles in high and middle frequency regions, representing the interfacial and charge transfer resistances, respectively, and a diffusion tail in low frequency region due to the ion-diffusion processes in solids. The EIS data can be well fitted using the equivalent circuit shown in the inset. After being discharged to 1.3 V at C/3, fitting the EIS data gives an internal resistance (R_i) of 7.3 Ω, an interfacial resistance (R_i) of 66.3 Ω, and a charge transfer resistance (R_c) of 646.5 Ω. In comparison, the cell fully discharged to 1.0 V at C/3 shows a much higher R_i (2019.2 Ω) but similar R_c (6.6 Ω) and R_i (93.2 Ω). The largely increased charge transfer resistance is primarily due to the irreversible conversion products, which disrupt the electrode structure and thus largely hinder the ion and electron transport, well consistent with above XRD and SEM analyses.

In general, a kinetic-limited reaction has a small k°, a small exchange current density i_0, and thus a high R_c. Thereby a large current density will require a high activation energy E_a and a large overpotential to allow the reaction to proceed at such a high rate. In this case, only a small fraction of the initial reactants has sufficient energy to overcome the energy barrier and form the final products, leading to a small measurable capacity. To illustrate the different kinetic behavior of the two redox reactions, reaction energetics are plotted in Fig. 7. For the H$^+$/Zn$^{2+}$ intercalation reactions at ~ 1.40 V, a small energy barrier will allow for a large reaction rate, and an increase in...
current will not significantly increase the energy barrier due to its large $k^*_{1.40V}$ and low $R_{ct,1.40V}$. Further discharge at $\sim 1.26\text{ V}$, however, the rate-limiting process possesses a high activation barrier due to its small $k^*_{1.26V}$ and high $R_{ct,1.26V}$, especially at high rates. The concurrence of conversion reactions with both H^+ and Zn^{2+} at 1.26 V is responsible for the undesirable rate performance, since these conversion reactions cause large volume change, sluggish phase transformation, the formation of electrochemically inactive $\text{ZnSO}_4\cdot3\text{Zn(OH)}_2\cdotn\text{H}_2\text{O}$, etc. Therefore, at large current densities, the slow conversion reactions will be largely suppressed, causing a capacity reduction but significantly improving overall capacity retention. Even though the reaction mechanisms demonstrated here is for our in-situ formed Zn/MnO$_2$ cells, we believe the concomitant intercalation and conversion reactions of $\text{H}^+/\text{Zn}^{2+}$ could be ubiquitous in other aqueous Zn/MnO$_2$, considering the similar electrochemical behavior (discharge profiles, cycling properties) and similar cell structure (same electrodes and electrolytes).\(^{3,44,47}\)

Optimizing the power capability and cycling stability

According to our understanding of the reaction mechanisms and kinetic behavior in Zn/MnO$_2$ cells, to improve the cycle stability it is desirable to mitigate/eliminate the rate-limiting, irreversible, and electrode-disrupting conversion reactions occurring at $\sim 1.26\text{ V}$. Since fast $\text{H}^+/\text{Zn}^{2+}$ intercalation reactions are not influenced by the current density, mitigation/elimination of the conversion reactions could also largely improve the power density of the Zn/MnO$_2$ cell. As the first example, the in-situ Zn/MnO$_2$ cells were designed to be cycled at higher rates, e.g., 9C and 30C, to restrain the irreversible $\text{H}^+/\text{Zn}^{2+}$ conversion reactions at $\sim 1.26\text{ V}$. As shown in Fig. 8a-b. As expected, higher current density largely restrains the capacity of the second discharge plateau as compared to the discharge/charge profiles at C/3 (Fig. 8a). Consequently, as shown in the Fig. 8b, high rate cycling between 1.0 and 1.8 V largely improves the cycle stability. For instance, the 9C and 30C cell delivers a discharge capacity of 175 mAh g$^{-1}$ and 75 mAh g$^{-1}$ after 1000 cycles, respectively. More importantly, there is no significant capacity fading for the two cells after several initial cycles (to stabilize the cathode). Similarly, in a second example, by increasing the low cut-off voltage from 1.0 V to 1.3 V, the irreversible conversion reactions at 1.26 V can be avoided (Fig. 8a). The cell displays an initial capacity of 175 mAh g$^{-1}$ at 1C, about half of that of the cell discharged to 1.0 V. After a rapid capacity fade in the initial 10 cycles, the cell discharged to 1.3 V shows a negligible capacity fading after 150 cycles, as shown in Fig. 8c. The reason for the large initial capacity drop in the cells at different current densities, as shown in Fig. 1 and 8, is unclear and will be investigated in the future.

Figure 8d shows the Ragone plot (power density vs. energy density) of in-situ Zn/MnO$_2$ cells as compared to previously reported Zn/MnO$_2$ cells and ZIBs with other cathode materials. Our cell cycled at 9C exhibits gravimetric energy and power

![Ragone plot](image)
densities up to 231 Wh kg$^{-1}$ and 4 kW kg$^{-1}$, respectively. These values, achieved after 1000 cycles, are much higher than those of conventional Zn/MnO$_2$ and ZIBs with other cathode materials published recently.5, 78-85 In particular, the cell cycled at 30C demonstrates a power density of 15 kW kg$^{-1}$, close to those of supercapacitors.86 Overall our in-situ aqueous Zn/MnO$_2$ cells show very competitive electrochemical performance suitable for stationary grid storage, especially taking into account their low cost and superior safety. The electrochemical performance of the in-situ Zn/MnO$_2$ cells could be further improved by optimizing the surface properties of carbon black to control the MnO$_2$ deposition (morphology, porosity, composition, loading mass, etc.) or by optimizing the electrolyte to improve the reversibility of the conversion reactions.

Conclusions

In this work, in-situ formed Zn/MnO$_2$ cells with Zn and carbon-black electrodes in MnSO$_4$-ZnSO$_4$ electrolyte are developed. Our coupled experimental and theoretical study clarifies the complex redox reactions in Zn/MnO$_2$ system, as such, there exists a concurrence of Zn$^{2+}$ and H$^+$ intercalation and conversion reactions corresponding to the two discharge plateaus at \sim 1.40 V and \sim 1.26 V, respectively. These two types of reactions show distinct kinetics and thus distinct rate-dependent capacities and capacity retention. The capacity of H$^+/\text{Zn}^{2+}$ intercalation reactions is well retained and rate-insensitive while that of the subsequent H$^+/\text{Zn}^{2+}$ conversion reactions is highly dependent on the discharge/charge rate. By virtue of the different rate-dependent electrochemical behavior for these two redox reactions, we successfully demonstrated ultra-high power and long-life Zn/MnO$_2$ cells which, after 1000 cycles, can still maintain an energy density of \sim 231 Wh kg$^{-1}$ at a power density of \sim 4 kW kg$^{-1}$ (9C, \sim 3.1 A g$^{-1}$) or an energy density of \sim 105 Wh kg$^{-1}$ at a power density of \sim 15 kW kg$^{-1}$ (30C, \sim 10.3 A g$^{-1}$). The excellent cycle stability and power capability are superior to most reported ZIBs with ex-situ MnO$_2$ or other cathode materials. In addition, the revealed reaction mechanisms in our in-situ Zn/MnO$_2$ cell could be applied to ex-situ Zn/MnO$_2$ systems or other ZIBs, opening an avenue to further improve their cycling and power performance. We therefore emphasize that through rationally control the active electrochemical reactions high power density and excellent cycle stability could be achieved in electrodes with multiplex but kinetically different electrochemical redox reactions.

Notes and references

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported in part by the State of Washington through the University of Washington Clean Energy Institute and via funding from the Washington Research Foundation, and by Inamori Foundation. X-ray diffraction measurement is supported by General Motors, Research and Development. Soft X-ray spectroscopy was performed at the Advanced Light Source (ALS), which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231.
ARTICLE

42. Z. Xiu, V. Mathew and J. Kim, Electrochemistry Communications, 2015, 60, 121-125.

Supplementary Information

Reaction mechanisms for long life and ultra-high power rechargeable Zn ion batteries

Yun Li, a Shanyu Wang, a James Salvador, b Jinpeng Wu, c,d Bo Liu, c Wanli Yang, c Jiong Yang, e Wenqing Zhang, c Jun Liu, f and Jihui Yang a,*

a. Material Science and Engineering Department, University of Washington, Seattle, WA 98195, USA.
b. Chemical Sciences and Materials Systems Lab, General Motors R&D Center, Warren, Michigan 48090, USA.
c. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
d. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA.
e. Material Genome Institute, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
f. Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

* Email: jihuiy@uw.edu

Fig. S1. (a) XRD patterns of the initially deposited MnO₂ and fully recharged cathodes at C/3. (b) The corresponding XRF analysis results of electrodes at different stages.
Fig. S2. SEM images of Zn anode (a) before and (b) after 20 cycles.

Table S1. The Gibbs free energies and resulting voltages of representative reaction equations.

<table>
<thead>
<tr>
<th>Reaction Equations</th>
<th>Zn₉MnO₃ takes (x=0.125) as an example</th>
<th>(\Delta G(\text{eV}))</th>
<th>Voltage(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) (6\text{MnO}_2 + 3\text{Zn} + \text{ZnSO}_4 + 10\text{H}_2\text{O} \rightarrow 6\text{MnOOH} + \text{ZnSO}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2\text{O})</td>
<td>-8.604</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>2) (8\text{MnO}2 + \text{Zn} \rightarrow 8\text{Zn}{0.125}\text{MnO}_3)</td>
<td>-2.009</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>3) (84\text{MnO}_2 + 33\text{Zn} + 10\text{ZnSO}_4 + 100\text{H}2\text{O} \rightarrow 60\text{MnOOH} + 24\text{Zn}{0.125}\text{MnO}_3 + 10[\text{ZnSO}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2\text{O}])</td>
<td>-92.067</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>4) (18\text{MnOOH} + 3\text{Zn} + \text{ZnSO}_4 \rightarrow 6\text{Mn}_3\text{O}_4 + \text{ZnSO}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2\text{O} + 2\text{H}_2\text{O})</td>
<td>-6.381</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>5) (6\text{MnOOH} + 3\text{Zn} + 2\text{ZnSO}_4 + 4\text{H}_2\text{O} \rightarrow 6\text{Mn}_3\text{O}_4 + 3\text{ZnSO}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2\text{O})</td>
<td>-4.390</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>6) (72\text{Zn}_{0.125}\text{MnO}_3 + 39\text{Zn} + 16\text{ZnSO}_4 + 112\text{H}_2\text{O} \rightarrow 24\text{Mn}_3\text{O}_4 + 10[\text{ZnSO}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2\text{O}])</td>
<td>-110.655</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>7) (24\text{Zn}_{0.125}\text{MnO}_3 + 21\text{Zn} + 8\text{ZnSO}_4 + 56\text{H}_2\text{O} \rightarrow 24\text{Mn}_3\text{O}_4 + 8[\text{ZnSO}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2\text{O}])</td>
<td>-45.948</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>8) (8\text{Zn}_{0.125}\text{MnO}_3 + \text{Zn} + 4\text{H}_2\text{O} \rightarrow 2\text{Mn}_3\text{O}_4 + 2[\text{ZnMn}_3\text{O}_4 \cdot 2\text{H}_2\text{O}])</td>
<td>-4.026</td>
<td>2.013</td>
<td></td>
</tr>
<tr>
<td>9) (8\text{Zn}_{0.125}\text{MnO}_3 + 16\text{MnOOH} + 4\text{Zn} + \text{ZnSO}_4 + 3\text{H}_2\text{O} \rightarrow 5\text{Mn}_3\text{O}_4 + 3\text{MnO} + [2\text{ZnMn}_3\text{O}_4 \cdot 2\text{H}_2\text{O}] + \text{ZnSO}_4 \cdot 3\text{Zn(OH)}_2 \cdot 4\text{H}_2\text{O})</td>
<td>-10.075</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>10) (48\text{Zn}_{0.125}\text{MnO}_3 + 74\text{MnOOH} + 41\text{Zn} + 10\text{H}_2\text{O} \rightarrow 38\text{Mn}_3\text{O}_4 + 8\text{MnO} + 47\text{Zn(OH)}_2)</td>
<td>-103.02</td>
<td>1.26</td>
<td></td>
</tr>
</tbody>
</table>