
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Exploring Monte Carlo Tree Search for Combinatorial Optimization Problems

Permalink
https://escholarship.org/uc/item/61k4p7ng

Author
Jeon, Ye Jin

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/61k4p7ng
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Exploring Monte Carlo Tree Search for Combinatorial Optimization Problems

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science

by

Ye Jin Jeon

Committee in charge:

Professor Sicun Gao, Chair
Professor Chung Kuan Cheng
Professor Jun-kun Wang

2024

Copyright

Ye Jin Jeon, 2024

All rights reserved.

The Thesis of Ye Jin Jeon is approved, and it is acceptable in quality and form for

publication on microfilm and electronically.

University of California San Diego

2024

iii

TABLE OF CONTENTS

Thesis Approval Page . iii

Table of Contents . iv

List of Figures . v

List of Tables . vi

Acknowledgements . vii

Abstract of the Thesis . viii

Introduction . 1

Chapter 1 Combinatorial Optimization . 2
1.1 Preliminaries . 2
1.2 Branch and Bound for MILP . 3
1.3 Large Neighborhood Search . 3
1.4 Monte Carlo Tree Search . 4

Chapter 2 MCTS for Combinatorial Optimization . 6
2.1 Overall algorithm . 6
2.2 Node Configuration . 7
2.3 Selection . 8
2.4 Expansion . 8
2.5 Simulation . 10
2.6 Backpropagation . 11

Chapter 3 Experiments and Evaluation . 12
3.1 Job-Shop Problem . 13

3.1.1 Problem Definition . 13
3.1.2 Results . 13

3.2 Set Cover . 14
3.2.1 Problem Definition . 14
3.2.2 Results . 14

3.3 Worker Scheduling . 15
3.3.1 Problem Definition . 15
3.3.2 Results . 15

3.4 Analysis . 16

Chapter 4 Conclusion and Future work . 18

Bibliography . 19

iv

LIST OF FIGURES

Figure 1.1. Monte Carlo Tree Search . 5

Figure 2.1. Searching pattern . 7

Figure 2.2. Point-MCTS and Interval-MCTS . 9

Figure 3.1. Time efficiency between Point-MCTS and Interval-MCTS 16

Figure 3.2. Constraint graph . 17

v

LIST OF TABLES

Table 2.1. Node configuration . 8

Table 3.1. Problem instances . 13

Table 3.2. Results of job shop problem . 14

Table 3.3. Set cover problem instances . 14

Table 3.4. Results of set cover problem . 15

Table 3.5. Worker scheduling problem instances . 15

Table 3.6. Results of worker scheduling problem . 16

Table 3.7. JSP instance and WS instance . 17

vi

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Sicun Gao for his support as the chair of my

committee. I would also like to acknowledge Eric Yu and Zhizhen Qin for their support as my

research coworkers.

vii

ABSTRACT OF THE THESIS

Exploring Monte Carlo Tree Search for Combinatorial Optimization Problems

by

Ye Jin Jeon

Master of Science in Computer Science

University of California San Diego, 2024

Professor Sicun Gao, Chair

This thesis proposes a general search algorithm design for hard combinatorial optimiza-

tion problems. Monte Carlo Tree Search(MCTS) method is a heuristic search method that

partitions the search space while balancing exploration and exploitation. We develop an MCTS

framework to navigate the combinatorial input domain that uses existing mixed integer linear

programming solvers as subroutines. We design different ways to partition the input regions with

MCTS and analyze their search efficiency based on experimental results with three combinatorial

problems. Our experiments show that this framework can outperform other search frameworks

and state-of-the-art commercial solvers such as Gurobi by finding more optimized solutions in a

shorter wall-clock time.

viii

Introduction

Combinatorial optimization (CO) problems are prevalent in the real world with ongoing

research in problems such as employee scheduling, supply chain planning, job machine planning,

box packing, and vehicle routing. These problems can typically be formulated as mixed integer

linear programs (MILP) which are known to be NP-hard. One type of approach to solve CO

is an exact method approach which can guarantee to find the optimal feasible solution. Such

approaches include Branch and Bound (BB) and Cutting Plane. Not surprisingly, however, exact

methods are often impacted the most by the “NP-hardness” of the MILP problem [9], as they fail

to scale in the number of system variables and constraints.

A second type of approach is the heuristic method which attempts to find a high-quality

feasible solution with little to no guarantees on its optimality. There are two common types of

heuristic methods. The first approach is a learning-based approach to improve inner policies of

BB algorithm [5, 7]. These methods takes much engineering effort on interfacing with inner

process of solvers. The second approach involve external searching techniques solving sub-

problems with MILP solver. Such approaches include Large Neighborhood Search (LNS) [12, 14]

which can often deal better with large MILP problems. However, they still need problem-

dependent knowledge to define a ”neighborhood” and locally search for solutions without

exploring other regions of search space to escape converging to local minima.

Since we are aiming to develop a general search algorithm that can be used in various

CO problems considering solvers as black-box models, we choose to follow the second heuristic

method to devise new searching techniques that are more scalable and efficient than existing

methods.

1

Chapter 1

Combinatorial Optimization

1.1 Preliminaries

While we consider more general formulations of the combinatorial optimization problem,

one commonly used form is the mixed integer linear programming (MILP) problem. This

problem optimizes a continuous function for a set of variables that can be both continuous or

integer. The typical formulation for a MILP problem is

min
x

c⊤x

subject to Ax≥ b

c,x ∈ Rn

A ∈ Rm×n

b ∈ Rm

x j ∈ Z for j ∈ J

where c⊤x is the objective function to minimize, Ax≥ b are the inequality constraints, and for

all j ∈ J, x j must be an integer. In general, MILP problems are non-convex and belong in the

class of NP-hard problems due to the discrete nature of the integer constraints.

2

1.2 Branch and Bound for MILP

Branch and Bound (BB) is a standard method for solving MILP problems. The core idea

behind it is to split the input domain into smaller search spaces, and recursively “branch” onto

each subspace. It first solves the linear relaxed solution of the MILP. The linear relaxation of

the MILP removes the integrality constraints x j ∈ Z for j ∈ J, thus turning the problem into a

convex optimization problem which can be solved in polynomial time. The solution found for

the linear relaxation is globally optimal and provides a lower bound to the function value of

feasible solutions. If the relaxed solution satisfies all integrality constraints as well, then the

solution is feasible and the optimal MILP solution has been found. Otherwise, these approaches

will attempt to recover a feasible solution in the neighborhood of the relaxed solution, with some

approaches guaranteeing the optimality of such a feasible solution or the non-existence of such a

solution. To avoid a pure brute-force search, BB keeps track of a “bound” on the function value

of the optimization problem, to prune entire search subspaces if they exceed the bound threshold.

By combining this branch and bound method, BB can find a provably optimal solution faster

than simply performing a brute force search over the entire input domain.

1.3 Large Neighborhood Search

Large Neighborhood Search(LNS) is an improvement heuristic that stochastically opti-

mizes solutions by iteratively destroying and repairing the current solution. [12] introduces a

general LNS framework for mixed integer programming. It starts with an initial feasible solution

and improves the solution by optimizing its partial solution using MILP solver. LNS adapts the

destroy-and-repair method or fix-and-optimize method to define a notion of a neighborhood, and

search the neighborhood for a better solution. First, it decomposes a set of integer variables X

in the solution into a disjoint union X1
⋃

X2
⋃
. . .

⋃
Xk. It views each subset Xi of variables as a

local neighborhood for search. In the destroy-and-repair method, it fixes integers in X\Xi with

their values in the current solution and reoptimizes for variables in Xi solving sub-MILP with

3

Algorithm 1. Large neighborhood search
0: function LNS(the degree of decomposition: k , an initial solution: S)
0: for step = 1, ..., t do
0: Xt ←− Random Decomposition(k)
0: for i = 1, ...,k do
0: S←− Fix and Optimize(S, Xt)
0: end for
0: end for
0: return S
0: end function=0

0: function FIX AND OPTIMIZE(an initial solution: SX , a decomposition: X = X1
⋃

X2. . .
⋃

Xk)
0: for i = 1, ...,k do
0: SX ←− Fix and Optimize(SX , Xi)
0: end for
0: return SX
0: end function=0

Gurobi.

Forming the decomposition step of destroy-and-repair with the current solution is an

important part of LNS heuristics. The degree of decomposition determines the size of the local

neighborhood, which can become a problem for the sub-MILP problem. On one hand, if only a

small part of the solution is destroyed, then the neighborhood can be too small and the heuristic

may result in a redundant solution. On the other hand, if a very large part of the solution is

destroyed, then the neighborhood may be too huge and forces a global reoptimization with the

solver. Thus, the design of the destroy-and-repair heuristic can have a large impact on the quality

of downstream solutions found within the neighborhood of existing solutions.

1.4 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a general search framework that balances ex-

ploitation and exploration traversing tree-like combinatorial spaces. Unlike traditional search

algorithms that rely upon exhaustive exploration of the entire search area, MCTS specializes

in sampling and exploring only promising areas of the search area. MCTS has been commonly

4

Figure 1.1. Monte Carlo Tree Search [13]

applied to combinatorial games and even some real-time video games and has achieved safe

performance. Recently, it is combined with aritificial intelligence(AI) taking advantage of

heuristics to make it more efficient and improve the convergence such AlphaGo Zero by Google

DeepMind [11]. Driven by successes in games, MCTS has been increasingly often applied in

domains outside the game AI such as planning [10], scheduling [3], control and combinatorial

optimization [4, 8].

There are typically four MCTS stages: Selection, Expansion, Simulation, and Backprop-

agation. In Selection, the MCTS algorithm recursively traverses on child nodes with the highest

confidence value until the current node is either unexpanded or terminal. If the selected node is

unexpanded or not terminal, then it will be expanded during the expansion stage and added as

part of the MCTS tree. In the simulation stage, a rollout occurs which can take on many different

interpretations based on the MCTS application. For example, in blackbox optimization, a rollout

would be a function call. In reinforcement learning, it would be simulating a trajectory starting

from the selected node state. Finally, in the back propagation stage, the sampled value from the

rollout is propagated from the selected node back up to the root. MCTS repeats this process until

it reaches some termination condition.

5

Chapter 2

MCTS for Combinatorial Optimization

We propose a new MCTS approach for combinatorial optimization that complements

the limitations of existing methods such as exhaustive search in BB and small search area in

LNS. Start from an initial solution, the goal is to find a globally optimal solution by efficiently

exploiting and exploring promising regions of the input domain. To exploit, the algorithm

partitions the search space by fixing a variable’s value at each level, and vertically expanding the

tree while preserving the assignments of previous levels. To explore, the algorithm keeps track

of less frequently visited parts of the input domain and expands intermediate nodes in the MCTS

tree. Figure 2.1 compares our approach with BB and LNS through a visualization.

We note that the selection of variables to branch on, and the values we assign to them,

are critical for an efficient search. We construct a problem-driven method to choose variables

and their values for a fix-and-optimize method. First, our algorithm selects variables to fix based

on each of their gradients with respect to the objective function. Second, depending on whether

the variable is discrete or continuous, we branch using one of two methods, Point-MCTS and

Interval-MCTS, which we describe in greater detail below.

2.1 Overall algorithm

The algorithm starts by constructing a root node with an initial solution provided by the

solver. In each iteration of the algorithm, we perform four operations sequentially. First, we

6

Figure 2.1. Searching pattern in input domain X . BB(left), LNS(mid), and our approach(right)

perform branch selection starting from the root node, and then expands a new node from the leaf

node on the selected branch. After every expansion of new node, it performs solving sub-problem

with a MILP solver in the simulation stage and back-propagates the simulation result to the root

node to keep track of how many times each node has visited and the best objective value found

in this branch. The details of the algorithm are explained in the following sections.

Algorithm 2. Monte Carlo Tree Search
0: function MCTS(objective: f , domain: Ω)
1: for step = 1, ..., t do

n←− Select(n0)
reward←− Simulation(n)
Backpropagation(n, reward)

2: end for
3: return y0

2.2 Node Configuration

A node consists of its state, untried actions, value, the number of visits, best value,

and solution. The state consists of a decision variable and the assigned value to the variable

determined in the expansion stage. The untried action is the set of possible values of the variable

that has not been explored. The value and solution of the node are assigned according to the

result of sub-routine MILP and the number of visits is increased by one every time the node is

visited.

7

Table 2.1. Node configuration

Attributes Description
State a list of (a decision variable, its value)

Untried actions a list of untried values of a variable in its child nodes
Solution the feasible solution found by sub-MILP solver

Value a the objective value of the solution
Best value the best objective value found along the path where node is in

Parent the immediate parent of the node
Children the list of its child nodes

Visit the number of visits

2.3 Selection

MCTS selects a leaf node to expand a new child node determining the path from the root

to the leaf. When selecting nodes at every level, there are two choices we can do. If the current

node has less child nodes than the possible maximum number of child nodes MC and untried

decision variables, it expands a new child node from the node. Otherwise, it keeps traversing the

tree choosing best child node among its child nodes using UCT v. The UCT is computed by:

v(ni) = Ri/Ni +C ·
√

2 · log(Nb/Ni) (Eq.1)

in which Ri is the values in ni; Ni and Nb denote the number of visits on ni and its parent node

nb; C is a constant to balance between exploitation and exploration. At each branch node nb, its

immediate children who has highest v value is selected. When selecting nodes at every level,

there are two choices we can do. MC is a hyperparameter we can set that indicates the maximum

number of child node each node can have.

2.4 Expansion

After selecting a node ni, it chooses a decision variable xaction among the untried variables

of the selected node ni that has highest gradient value. The gradients are determined by a coeffi-

8

Algorithm 3. Selection and Best Child
0: function SELECT(node: ni)
0: while ni is not terminal do
0: if ni has untried variables and |child|< MC then
0: return Expand(ni)
0: else
0: ni←− Best Child(ni)
1: return ni

0: function BEST CHILD(node: ni)
0: for child node nbi do
0: Compute v(nbi) by Eq.1
0: end for
0: b̂← argmaxiv(nbi)
0: nb← nbb̂
0: return nb

Figure 2.2. Point-MCTS (left) and Interval-MCTS (right)

cient of each variable in the objective function and they are usually static in the combinatorial

optimization problem. Next, it expands new child nodes from the selected node ni.

Point-MCTS If the node ni was not expanded, it creates a child node with the state which

has the variable xaction with the value vcurrent in the solution of ni by default. For the next child

nodes, it expands a child node that has the same variable xaction with the different value vnew. If

the decision variable is binary with its value 0 in the current solution, the new value will be 1. If

the decision variable is integer or real, the new value will be integer or continuous value that has

not been tried.

9

Interval-MCTS It expands two child nodes at each expansion. Assuming the upper

bound of xaction is the value vcurrent in the solution of ni the lower bound of xaction is 0. It chooses

a random value vnew in the original feasible range [0, vcurrent] and divides the range into two

intervals using the value. One child node will have [0, vnew] and the other child node will have

[vnew, vcurrent].

Algorithm 4. Expansion

0: function EXPAND(node: ni)
0: xaction,vcurrent ←− choose variable from ni.untried actions given gradients
0: nodenew = []
0: if is first expansion of ni then
0: ncd ←− Node(state = [xaction,vcurrent], value = ni.value, parent = ni)
0: ni.children.append(ncd)
0: nodenew.append(ncd)
0: end if
0: for i=required number of child node do
0: vi←− choose new value for xaction
0: nci←− Node(state = [xaction,vi], parent = ni)
0: ni.children.append(nci)
0: nodenew.append(nci)
0: end for
0: return nodenew

2.5 Simulation

A simulation is represented as a single solver call using the constraints specified by the

current node. This solver is black boxed and can thus be represented by several different models,

including Gurobi [2] and Z3 [1]. Recall that in our algorithm each branched node contains an

additional assignment or interval that we impose as an added constraint on a particular variable.

The constraints for the current node is composed of the conjunction of the original constraints

and all assignments made at the current node and parent nodes, reaching back up to the root

node. Thus, the solver is tasked to solve a modified variation of the original MILP and find a

new solution. Finally, to limit the amount of time spent optimizing on each node, we restrict the

10

solver to run within a time limit of 5 seconds.

2.6 Backpropagation

Once a feasible solution has been obtained or the solver times out during simulation,

the result is back propagated to the root node starting from the current simulated node. First,

increment the number of visits to the current node. Then, in the case where a feasible solution

was found, the node saves this solution if the objective value obtained is lower than that of

all other solutions this node has observed in the past, assuming a minimization optimization

problem. If no feasible solution was found during simulation (i.e. timeout), do nothing more.

Finally, propagate this feasible solution to the parent node to repeat these steps, until the parent

node is null and we have reached the root node.

Algorithm 5. Simulation and Backpropagation
0: function SIMULATION(node: ni)
0: ctrs←− ni.state
0: S←− FIX AND OPTIMIZE(ctrs)
0: reward←− S objective value
1: return reward

0: function BACKPROPAGATION(node: ni, reward: r)
parent←− ni.parent

0: if r is timeout then
0: ni.value←− 0
0: else if r is infeasible then
0: parent.children.remove(ni)
0: else
0: ni.value←− r
0: while ni is not None do
0: ni.visits += 1
0: if r < ni.best value then
0: ni.best value←− r
0: ni = ni.parent

11

Chapter 3

Experiments and Evaluation

We evaluate the performance of our approach with 3 benchmark MILP problems. The

first two problems, job shop problem(JSP) and set covering (SC), are classic combinatorial

optimization problems. JSP includes both continuous and discrete variables and SC has only

binary variable. Next, we perform our method on a common real-world problem of worker

scheduling (WS). We instantiate our framework in two ways: MCTS with value assignment

(Point-Interval) and MCTS with interval assignment (Interval-MCTS).

Baselines The baselines are Gurobi and LNS with random decomposition and Gurobi.

We use Gurobi 11.0 as the underlying solver for sub-routine problems in both LNS and our

framework and set the time limit to 5 seconds for running each sub-problem. For Gurobi, we set

the total time limit as 1000 seconds.

Hyperparameter Configuration For LNS method, we set the total iteration number of

LNS as 100 and randomly generate 10 decompositions for each iteration. For our framework,

there are two hyperparameters we have to choose: the maximum number of child node and the

constant c to calculate UCT value. These hyperparameters decide the degree of exploration and

exploitation in MCTS; as we set them with big value, it will explore new regions than exploit

good regions it has found. In the experiments, we set 6 for the maximum number of child node

and use 1 for c.

Evaluation Metrics For each benchmark problems, we run baselines and our methods

12

by five different random seeds. We compare the best-found value at the end of the run of all runs

and the time spent to first reach that optimal value.

3.1 Job-Shop Problem

3.1.1 Problem Definition

Job-Shop problem is a classic NP-hard scheduling problem which is defined by a finite set

J of n jobs and a finite set M of m machines. For each job j J, we are given a list (σ j
1 , ...,σ

j
h , ...,σ

j
m)

of the machines which represents the processing order of j through the machines and a list of

their durations (d j
1, ...,d

j
h, ...,d

j
m). The objective is to find a schedule of J on M that minimizes

the makespan, i.e., the maximum completion time of the last operation of any job in J.

Table 3.1. Problem instances

Problem Problem size Variables Constraints
ft06 6 x 6 222 (42 continuous, 180 binary) 396
ft10 10 x 10 1010 (110 continuous, 900 binary) 1900
ft20 20 x 5 2020 (120 continuous, 1900 binary) 3900
ta09 15 x 15 3390 (240 continuous, 3150 binary) 6525

swv03 20 x 10 4020 (220 continuous, 3800 binary) 7800
ta13 20 x 15 6020 (320 continuous, 5700 binary) 11700
ta21 20 x 20 8020 (420 continuous, 7600 binary) 15600
ta32 30 x 15 13530 (480 continuous, 13050 binary) 26550
ta56 50 x 15 37550 (800 continuous, 36750 binary) 74250

3.1.2 Results

Our approach and other baselines could find the global optimal solution in a reasonable

time for instances as small as ft06 and ft10. Interval-MCTS can find more optimal solutions than

Gurobi for the bigger problems, i.e., ft20 and ta09. It found better solutions six times faster than

Gurobi for ft20. There are some bottlenecks for the problem size that our approach can not scale.

Gurobi discovers better solutions than our approach with the problem instances whose sizes are

bigger than ta09. However, our approach could still find good solutions for some big instances

13

Table 3.2. Results of job shop problem

Problem Gurobi LNS Point-MCTS Interval-MCTS

JxM Objective Time(s) Obj Time Obj Time Obj Time

6x6 265 0.1 265 0.2 265 0.2 265 0.2
10x10 7460 2.6 7734 5.0 7460 5.0 7460 5.0
20x5 14002 408.9 15000 5.0 14216 45.2 13840 70.3

15x15 17415 309.9 80833 5.1 17878 264.7 17324 666.1
20x10 21534 271.6 47017 5.1 24513 413.0 23624 130.8
20x15 23788 1000 33973 5.3 27140 51.2 24847 61.2
20x20 29554 985.1 - - 30646 75.6 31295 826.8
30x15 46137 1000 - - 60235 226.8 58230 206.8
50x15 - - - - - - - -

where LNS results in solutions that have huge gaps with the best solution found by Gurobi.

3.2 Set Cover

3.2.1 Problem Definition

φ
⋂

The Set Cover problem is a NP-hard problem that involves finding the minimum

number of sets that cover all elements in a given a universe U of n elements and a collection of

subsets of U say S = {S1,S2, ...,Sm} where every subset Si has an associated cost. The goal is to

find a subset C of S such that every element in U is contained in at least one set in C and the size

of C is minimized.

Table 3.3. Set cover problem instances

J(n) x M(m) Variables Constraints
5000 x 1000 1000 (1000 binary) 5000
5000 x 2000 2000 (2000 binary) 5000
5000 x 4000 4000 (4000 binary) 5000

3.2.2 Results

As the problem consists of only binary variables, we use Point-MCTS and compare it

with Gurobi baseline. As a result, our approach could find the optimal variable faster than Gurobi

14

and even found better objective values for some problem instances.

Table 3.4. Results of set cover problem

Problem size Gurobi Point-MCTS

U x S Objective Time(s) Objective Time(s)

5000x1000 503 443.158 500 250.46
5000x2000 329 414.275 329 5.037
5000x4000 169 46.499 169 5.043

3.3 Worker Scheduling

3.3.1 Problem Definition

Worker scheduling is a problem that finds the weekly schedules of N employees that

satisfy a store requirements and their working hour requirements. The store has the required

number of workers needed each hour during its operation hours. Each worker should work

consecutive hours in one’s possible hour range. The workers also have the preferred number of

days and hours to work and the goal is to find an optimal schedule that satisfies users’ preferences

as many as possible.

Table 3.5. Worker scheduling problem instances

N Variables Constraints
20 2568 (2568 binary) 1316
100 13836 (13836 binary) 6086
300 40272 (40272 binary) 17369

1000 132684 (132684 binary) 56797

3.3.2 Results

Similar to the set cover, it has only binary variables and the result shows Point-MCTS

can find the optimal solution faster than Gurobi.

15

Table 3.6. Results of worker scheduling problem

Problem size Gurobi Point-MCTS

N Objective Time(s) Objective Time(s)

20 29.085 0.016 29.085 0.002
100 125.80 0.62 125.803 0.001
300 328.14 5.37 328.14 0.03
1000 2434.942 21.36 2434.94 0.12

3.4 Analysis

Point-MCTS and Interval-MCTS From the performance perspective, Interval-MCTS

could discover a more optimal solution than Point-MCTS for most of the instances as shown

in Chapter 3. One of the possible factors that might affect Point-MCTS negatively is the small

maximum number of child nodes MC. We use 6 for MC which means Point-Interval can search

only 6 possible values of a variable in each level of the tree while Interval-MCTS could maintain

the entire possible range of its value no matter how many children can be generated in each level.

Furthermore, we also analyze the time each iteration took to re-optimize the solution to compare

their time efficiency. As shown in Figure 3.1, the search time the solver took in each iteration of

Point-Interval decreases consistently as the search space is partitioned into smaller sizes growing

the MCTS tree. This shows the potential time efficiency of Point-MCTS.

Figure 3.1. Time efficiency between Point-MCTS and Interval-MCTS

What makes problem hard Intuitively the complexity of the problem increases if a

problem has more constraints and variables. However, the worker scheduling(WS) problem,

16

which had five times more variables than the job shop problem(JSP), was able to find a solution

faster. This observation implies some factors make a problem inherently hard. One factor is that

JSP has a much larger search space as it has some continuous values to predict. In addition, we

focus on observing the correlation of variables between the constraints of their MILP problems.

We visualize constraint graphs of similar size instances of each problem. The graph is constructed

by connecting variables if they are in the same constraint. As you can see in Figure 3.2, JSP has

more correlations between variables which means a change in one variable induces the changes

in the majority of the variables.

Table 3.7. JSP instance and WS instance

Problem Problem size Variables Constraints
JSP 6 x 6 222 (42 continuous, 180 binary) 396
WS 10 396 (264 continuous, 132 binary) 284

Figure 3.2. Constraint graph of instances above. WS (left) and JSP (right)

17

Chapter 4

Conclusion and Future work

We have presented a general MCTS framework for solving combinatorial optimization

problems. The experiments show that the proposed method discovers better optimal solutions

faster than the best commercial MIP solver Gurobi. Our method can also be applied to search

in the continuous domain of variables unlike other approaches [6] that only work in discrete

domains and are more scalable than the existing general framework for MILP [12]. We believe

this approach has many interesting directions to be improved in the future. As we have many

random components in MCTS design, we can incorporate a learning-based method to choose

variable assignments to branch in the tree. Also, we can study how to efficiently balance

exploration and exploitation of the tree through modeling data-driven UCT value formulation

and a selection rule.

18

Bibliography

[1] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[2] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[3] Zhiming Hu, James Tu, and Baochun Li. Spear: Optimized dependency-aware task
scheduling with deep reinforcement learning. In 2019 IEEE 39th international conference
on distributed computing systems (ICDCS), pages 2037–2046. IEEE, 2019.

[4] Angel A Juan, Javier Faulin, Josep Jorba, Jose Caceres, and Joan Manuel Marquès. Using
parallel & distributed computing for real-time solving of vehicle routing problems with
stochastic demands. Annals of Operations Research, 207:43–65, 2013.

[5] Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

[6] Elias B Khalil, Pashootan Vaezipoor, and Bistra Dilkina. Finding backdoors to integer
programs: A monte carlo tree search framework. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 3786–3795, 2022.

[7] Sirui Li, Wenbin Ouyang, Max Paulus, and Cathy Wu. Learning to configure separators in
branch-and-cut. Advances in Neural Information Processing Systems, 36, 2024.

[8] Jacek Mańdziuk and Maciej Świechowski. Uct in capacitated vehicle routing problem with
traffic jams. Information Sciences, 406:42–56, 2017.

[9] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

[10] Feng Shi, Ranjith K Soman, Ji Han, and Jennifer K Whyte. Addressing adjacency con-
straints in rectangular floor plans using monte-carlo tree search. Automation in Construction,
115:103187, 2020.

[11] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and Marc

19

Lanctot. Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[12] Jialin Song, Yisong Yue, and Bistra Dilkina. A general large neighborhood search frame-
work for solving integer linear programs. Advances in Neural Information Processing
Systems, 33:20012–20023, 2020.

[13] Karol Waldzik and Jacek Mańdziuk. Applying hybrid monte carlo tree search methods to
risk-aware project scheduling problem. Information Sciences, 460:450–468, 2018.

[14] Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search
policy for integer programming. Advances in Neural Information Processing Systems,
34:30075–30087, 2021.

20

	Thesis Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Combinatorial Optimization
	Preliminaries
	Branch and Bound for MILP
	Large Neighborhood Search
	Monte Carlo Tree Search

	MCTS for Combinatorial Optimization
	Overall algorithm
	Node Configuration
	Selection
	Expansion
	Simulation
	Backpropagation

	Experiments and Evaluation
	Job-Shop Problem
	Problem Definition
	Results

	Set Cover
	Problem Definition
	Results

	Worker Scheduling
	Problem Definition
	Results

	Analysis

	Conclusion and Future work
	Bibliography

