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Despite intensive searches for topological superconductors, the realization of topological super-
conductivity remains under debate. Previous proposals for the topological s-wave, p-wave, and
chiral d-wave superconductivity have both advantages and disadvantages. In this review, we discuss
two-dimensional topological superconductivity based on the non-chiral d-wave superconductors. It
is shown that the noncentrosymmetric d-wave superconductors become topological superconduc-
tors under an infinitesimal Zeeman field without fine-tuning of parameters. Floquet engineering
for introducing the Zeeman field in a controllable way is also proposed. When the two-dimensional
noncentrosymmetric superconductors are stacked to recover the global inversion symmetry, the field-
induced parity transition may occur, and the high-field odd-parity superconducting state realizes
various topological phases depending on the stacking structures. Two-dimensional heterostructures
of strongly correlated electron systems, which have been developed by recent experiments, are pro-
posed as a platform of the high-temperature topological superconductivity and the interplay of
topology and strong correlations in superconductors.

I. INTRODUCTION

Quantum many-body states, such as magnetic,
density-wave, and superconducting states, have been tra-
ditionally classified by symmetry. Symmetry breaking
allows emergent responses and specifies universal criti-
cality of the phase transition. On the other hand, recent
advances in the condensed matter physics shed light on
a new aspect of quantum phases; they can be classified
based on the topology. Indeed, the concept of topol-
ogy is a useful tool to classify both gapped and gapless
phases by combining it with symmetry. The so-called
topological periodic table1–3 classifies topological insula-
tor/superconductor4–6 with global symmetries, namely,
time-reversal symmetry, particle-hole symmetry, and chi-
ral symmetry. Later it has been recognized that the
crystalline symmetry may enrich the topological prop-
erties, and the concepts of topological crystalline insula-
tor/superconductor7–9 as well as higher-order topological
insulator/superconductor10,11 have been established.

Although the realization of topological insulators has
been demonstrated in materials, the presence of topo-
logical superconductors in nature remains under debate.
This is because the condition for the topological super-
conductivity (TSC) is hard to be satisfied and the ex-
perimental method to detect signatures of TSC is lim-
ited. Unlike topological insulators, topological supercon-
ductors in some classes host Majorana quasiparticles at
boundaries or defects4,12,13, and potential applicability to
fault-tolerant topological quantum computation has been
intensively studied14,15. Thus, identifying topological su-
perconductors is highly awaited from the viewpoints of
both fundamental science and future technological inno-
vation.

Superconductors are traditionally classified by the rel-

ative angular momentum l of Cooper pairs, as s-wave,
p-wave, d-wave, f -wave etc16. They are characterized by
the inversion parity and spin degree of freedom. In the
usual setup, s-wave, d-wave, and other superconductors
with even l are even-parity spin-singlet superconductors,
while p-wave, f -wave, and other superconductors with
odd l are odd-parity spin-triplet superconductors. Pre-
vious searches of topological superconductors mainly fo-
cused on the s-wave superconductors17–21 and odd-parity
superconductors4,12,13,22,23 such as p-wave and f -wave
ones. Both of them have advantages and disadvantages.
The s-wave superconductors are ubiquitous in the sense
that they are found in most superconducting materials.
However, to realize TSC we usually need sizable spin-
orbit coupling and magnetic field as well as fine-tuning of
parameters17–21. On the other hand, the odd-parity su-
perconductors are strong candidates of intrinsic topolog-
ical superconductors because fine-tuning of parameters is
not needed under some conditions4,12,13,22,23. However,
the odd-parity superconductors are very rare in nature.
Although recent progress due to extensive studies is ap-
proaching the TSC of these classes8,9,23–32, it is still an
on-going issue.

In this review, we discuss another strategy for realizing
TSC, focusing on d-wave superconductors. The d-wave
superconductivity is the most typical class of supercon-
ductors in strongly correlated electron systems33. Thus,
the d-wave superconductors may be a promising platform
of TSC if it is realizable without fine-tuning of parame-
ters. So far, the d-wave superconductors have not been
considered as a strong candidate for intrinsic topologi-
cal superconductors because the gapless excitation makes
the bulk topology ill-defined unless the chiral d-wave su-
perconductivity spontaneously breaks time-reversal sym-
metry. Although there are previous proposals for chiral
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d-wave superconductivity, such as in graphene34 and SrP-
tAs35, it is rare like the odd-parity superconductivity.
Below we explore the TSC based on the ordinary non-
chiral d-wave superconductors. This is a concise review
of our works in this direction.

Our proposals are based on the crystal structure which
globally or locally breaks space inversion symmetry. In
the globally inversion asymmetric (noncentrosymmetric)
d-wave superconductors, a Zeeman field opens the gap
in the excitation spectrum, making the bulk topology
well-defined, and the TSC is realized without fine-tuning
of parameters (Sec. II). As for a source of the Zeeman
field, in addition to the ferromagnetic proximity effect
and external magnetic field, Floquet engineering using
the circularly polarized laser light is discussed (Sec. III).
For locally noncentrosymmeric superconductors, the par-
ity transition in the superconducting state and resulting
odd-parity spin-singlet superconductivity are predicted
(Sec. IV). Analysis of multilayer superlattices reveals
various topological superconducting phases protected by
the mirror reflection symmetry. Interestingly, trilayer
superconductors may host stable Majorana fermions,
and quad-layer d-wave superconductors are a testbed for
the reduction of topological classification by interactions
(Sec. V). For an experimental platform, heterostructures
of high-Tc cuprate superconductors and heavy-fermion
superconductors are mainly discussed. Moreover, a re-
cently discovered bulk superconductor CeRh2As2 is also
discussed as a candidate for parity transition and TSC.

II. TOPOLOGICAL D-WAVE
SUPERCONDUCTIVITY

In this section, we discuss a general mechanism to real-
ize TSC in noncentrosymmetric nodal superconductors.
The obtained results are used in the subsequent sections.
The idea is to focus on the gap nodes of e.g. the d-
wave superconductors. Such a linear dispersion of the
quasiparticle energy is similar to the Dirac electrons in
graphene, and thus called the Bogoliubov-Dirac quasi-
particles. It is shown that the Bogoliubov-Dirac quasi-
particles acquire a mass gap and the degeneracy at the
gap nodes is lifted by applying the Zeeman field, owing
to the interplay with the inversion-symmetry breaking.
We can obtain a large Berry curvature near such massive
Bogoliubov-Dirac points, leading to TSC with a nontriv-
ial Chern number.

This section is organized as follows. In Secs. II A
and II B, we introduce the notations and obtain the ex-
pression of the mass gap acquired by the Bogoliubov-
Dirac quasiparticles. The parity mixing of the super-
conducting order parameter plays an essential role. In
Sec. II C, the obtained assembly of massive Bogoliubov-
Dirac quasiparticles is shown to have a nontrivial Chern
number for spin-singlet superconductors with a small
admixing of the spin-triplet component. Thereby, two-
dimensional (2D) TSC and its associated Majorana edge

states are obtained. In Sec. II D, we discuss various Ma-
jorana edge states realized in the presence or absence of
the Zeeman field. Chiral and unidirectional Majorana
edge states are realized under the Zeeman field, while
Majorana flat bands are realized in the absence of the
fields. Their relation is discussed based on the evolu-
tion of the bulk Bogoliubov-Dirac quasiparticles under
the Zeeman field. Section II E is devoted to the exten-
sion of the obtained results to three dimensions. We find
that Weyl superconductivity is realized from line-nodal
spin-singlet-dominant noncentrosymmetric superconduc-
tors by applying Zeeman fields. We discuss experimental
platforms in Sec. II F, and summarize the discussion of
this section in Sec. II G.

A. Model for noncentrosymmetric superconductors

Let us begin with a general theory for field-induced
TSC in noncentrosymmetric systems. The model is

H =
∑
kσ

ξ(k)c†kσckσ +
∑
kσσ′

(αg(k) · σ)σσ′c†kσckσ′

−
∑
kσσ′

(µBH · σ)σσ′c†kσckσ′

+
∑
kσσ′

∆σσ′(k)c†kσc
†
−kσ′ + H.c., (1)

where ckσ is the annihilation operator of electrons with
momentum k and spin σ(=↑, ↓). The first term is ki-
netic energy measured from a chemical potential µ. The
second term is a spin-orbit coupling characteristic of the
systems lacking inversion symmetry. This term is re-
garded as the momentum-dependent Zeeman coupling
with the spin polarization axis at k specified by the g-
vector, g(k). When the time-reversal symmetry is pre-
served, the g-vector has to be antisymmetric in mo-
mentum, g(k) = −g(−k). Thus, this term is called
anti-symmetric spin-orbit coupling (ASOC). The third
term represents the Zeeman field, whose potential ori-
gins are discussed in Sec. II F. The superconducting
gap function is here phenomenologically introduced as
∆(k) = (ψ(k) + d(k) · σ)iσy, with ψ(k) and d(k) being
real. Note that the even-parity spin-singlet component
ψ(k) and odd-parity spin-triplet component (d-vector)
d(k) are allowed to be admixed because of the broken
inversion symmetry. We adopt the notations H ≡ |H|,
d(k) ≡ |d(k)|, g(k) ≡ |g(k)|, and ĝ(k) ≡ g(k)/g(k). In
the following part, we assume the conditions,

µBH, |ψ(k)|, d(k)� αg(k), (2)

for k near Fermi surfaces. These conditions are satisfied
in most of the existing noncentrosymmetric superconduc-
tors.

In the following, we discuss the energy spectrum and
the topology of Bogoliubov quasiparticles. For this pur-
pose, it is convenient to rewrite Eq. (1) with the Nambu
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spinor Ψ†k = (c†k,↑, c
†
k,↓, c−k,↑, c−k,↓) and introduce the

Bogoliubov-de Gennes (BdG) Hamiltonian:

H =
1

2

∑
k

Ψ†kHBdG(k)Ψk + const., (3)

HBdG(k) =

(
HN (k) ∆(k)
∆(k)† −HTN (−k)

)
, (4)

where HN (k) = ξ(k) + (αg(k) − µBH) · σ is the Bloch
Hamiltonian of the normal state. The spectrum of Bo-
goliubov quasiparticles is given by the eigen-energies of
HBdG(k), while TSC can be discussed based on its eigen-
states.

In this section, we proceed with discussions without
specifying ξ(k), g(k), ψ(k), and d(k) characterizing the
model. Later, we set the form for 2D d-wave supercon-
ductors and show the topological superconducting phase.
Classification and basis functions based on the crystalline
point group can be found in Ref.36 for superconducting
gap functions and in Refs.37,38 for the ASOC.

B. Gap generation

We focus on gapless superconductors, which accom-
pany nodal excitation in the Bogoliubov quasiparticle’s
spectrum. The key to realizing TSC is the gap genera-
tion due to the paramagnetic effect. The finite excitation
gap allows a well-defined bulk topological invariant, and
the geometric properties of nodal quasiparticles may give
rise to the nontrivial bulk topology.

We begin by clarifying that nodal excitation is stable
in the presence of the time-reversal symmetry, and there-
fore, time-reversal-symmetry breaking is indispensable
for the gap generation. In our model, the time-reversal
symmetry is preserved for H = 0. On the condition (2),
the energy dispersion of the Bogoliubov quasiparticles is
obtained as38–40

Eγ(k) = ±
√
Eγ(k)2 + |ψ(k) + γd(k) · ĝ(k)|2, (5)

with the normal band energy with the helicity γ = ±,

E±(k) ≡ ξ(k)± α|g(k)|. (6)

Thus, ψ(k)±d(k)· ĝ(k) is interpreted as the gap function
of the helicity ± bands. A gap node exists when the
relation

E±(k0) = ψ(k0)± d(k0) · ĝ(k0) = 0, (7)

is satisfied for a point k0 on the Fermi surface with the
helicity ±. For instance, a dx2−y2 -wave superconduct-
ing state with ψ(k) ∝ cos kx − cos ky and d(k) = 0 has
nodal points along the k ‖ [110] line, if the line crosses a
Fermi surface (See Fig. 1). These nodes are stable even
when a finite d(k) is taken into account, as can be readily
examined for the model given later [Eqs. (15)].

The stability of the nodal points is ensured by topolog-
ical protection. The nodal points in 2D systems, which
correspond to line nodes in three dimensions, are actu-
ally robust in time-reversal invariant spin-singlet super-
conductors. A protecting topological invariant is the one-
dimensional winding number defined by41–43:

W (k0) ≡ Im

∮
C(k0)

dk

2π
· ∇k ln det q(k), (8)

where C(k0) is a sufficiently small loop running anticlock-
wise around the nodal point k0, and q(k) is the Hamil-
tonian in the chiral basis

UcHBdG(k)U†c =

(
0 q(k)

q(k)† 0

)
. (9)

The unitary matrix Uc is chosen so as to diagonalize the
chiral operator Γ,

UcΓU
†
c =

(
12×2 0

0 −12×2

)
, Γ ≡

(
0 σy
σy 0

)
. (10)

The chiral operator is obtained by combining the time-
reversal symmetry with the particle-hole symmetry and,
satisfies the chiral symmetry {Γ,HBdG(k)} = 0. It turns
out that in our model, the winding number is given by
the sign reversal of the gap function along the Fermi sur-
face:40,44

W (k0) = −sgn

[
∂ (ψ(k)± d(k) · ĝ(k))

∂k‖

]
k=k0

, (11)

for a node k0 on the Fermi surface with helicity ± defined

in Eq. (7). Here, k̂‖ ≡ ẑ × ∇kE±(k)/|ẑ × ∇kE±(k)| is
the direction along the Fermi surface (See Fig. 1), and

∂k‖ ≡ k̂‖ ·∇k is the corresponding derivative. This result
is used later to identify TSC.

Because the chiral symmetry is preserved in time-
reversal symmetric superconductors, the nodal excita-
tion is robust against inversion-symmetry breaking alone.
However, the gap may open when we additionally break
time-reversal symmetry. Indeed, the Zeeman field H 6= 0
changes the quasiparticle’s energy to40

Eγ(k) = −γµBH · ĝ(k)±
√
Eγ(k)2 + |∆γ(k)|2, (12)

with γ = ± and

∆±(k) = ψ(k)± d(k) · ĝ(k)

+ i

[
µBH · ĝ(k)× d(k)

αg(k)

]
. (13)

A brief sketch of the derivation is given in Appendix A.
When the energy shift term ∓µBH ·ĝ vanishes for a direc-
tion of H, the excitation energy is given by the gap func-
tion in the band basis ∆±(k). Because the gap function
of each band contains both real and imaginary compo-
nents, the system has properties analogous to the chiral
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superconductivity. As in the chiral px ± ipy-wave and
dx2−y2 ± idxy-wave states45, the superconducting state
may be fully gapped, and may also carry a nontrivial
Chern number as discussed in the next section. The con-
dition for the gap opening is

M(k0) ≡ µBH · ĝ(k0)× d(k0)

αg(k0)
6= 0, (14)

at the nodal point k = k0.
For the condition (14) to be satisfied, the d-vector must

have a component perpendicular to the g-vector at the
nodes so that ĝ × d 6= 0. This component is expected to
be finite in general. It is true that the d-vector in noncen-
trosymmetric superconductors tends to be parallel to the
g-vector, as it is thermodynamically favored by the spin-
orbit coupling.39,46 However, the relation ĝ ‖ d is not
imposed by any point group symmetry, and hence is not
a rigorous constraint. Accordingly, ĝ ‖ d is not satisfied
in situations, for example, where the k-dependence of the
pairing interaction for the dominant spin-triplet channel
is mismatched with that of the g-vector47. Actually, a
study on a noncentrosymmetric superconductor CePt3Si
points to a d-vector far from parallel to the g-vector47,48:
The d-vector has a simple k dependence corresponding to
the short-ranged Cooper pairs, while the g-vector has a
complicated one as a result of the orbital degeneracy49,50.
Furthermore, in unconventional superconductors, the g-
and d-vectors belong to different irreducible representa-
tions of the point group. In this case, the mismatch of
the symmetries of the g- and d-vectors may also lead to
the violation of ĝ ‖ d, as we see in details for the case of
the d-wave superconductivity. Thus, the perpendicular
component does not vanish in general.

Let us consider a Rashba superconductor on the square
lattice with dominant dx2−y2 -wave pairing. We set

ξ(k) = −2t(cos kx + cos ky) + 4t′ cos kx cos ky − µ,
(15a)

g(k) = (− sin ky, sin kx, 0)T , (15b)

ψ(k) = ψ0(cos kx − cos ky), (15c)

d(k) = d0(sin ky, sin kx, 0)T , (15d)

and µBH = µBHẑ. The dominant dx2−y2-wave or-
der parameter ψ(k) belongs to the B1 irreducible rep-
resentation of the C4v point group. Thus, the admixed
spin-triplet order parameter naturally belongs to the
B1 representation, and the basis function is given by
Eq. (15d) when we assume Cooper pairs on nearest-
neighbor bonds. Note that a typical g-vector of the
Rashba-type, Eq (15b), is not parallel but perpendicular
to the d-vector at the nodal points, k0 ‖ [110] or ‖ [11̄0].
From the symmetry points of view, this is because the
ASOC must belong to the identity (A1) representation,
not to the B1 representation. The different symmetry
properties of ĝ(k) and d(k) lead to such an orthogonal-
ity (in this case, the mirror planes (11̄0) and (110) play
the vital role). Note also that ĝ ‖ d is satisfied for antin-
odal directions k ‖ [100] and [010], where a dominant

𝑘!

𝑘"

−𝜋

𝜋

0
𝜋−𝜋

𝑘"∥

FIG. 1. Fermi surfaces and point nodes of the noncentrosym-
metric d-wave superconductivity for H = 0, modeled by
Eqs. (15). Spin-split Fermi surfaces are shown by red lines.
Red closed circles and green closed squares represent nodes
with the winding number W (k0) = +1 and −1, respectively.

The purple arrows show the direction of k̂‖. The shaded re-
gion indicates ψ(k) > 0.

contribution to the condensation energy is gained. The
microscopic analysis of the Rashba-Hubbard model by
random-phase approximation51, cluster dynamical mean-
field theory52, and fluctuation-exchange approximation53

supports a finite admixture of the d-vector component for
the nodal k directions. Thus, the condition (14) is satis-
fied, predicting the gap opening under a Zeeman field.

(a) H = 0 (b) H 6= 0

FIG. 2. (a) and (b) Energy spectrum of Bogoliubov quasipar-
ticles in a Rashba dx2−y2 -wave superconductor with a p-wave
component admixed. The spectrum around E ' 0 is shown
for (a) µBH = 0, and (b) µBH = 0.3. Large values of ψ0, d0,
and µBH are adopted for visibility.

To verify the above discussions we show the numeri-
cally obtained energy spectrum of Bogoliubov quasipar-
ticles. We adopt Eqs. (15) and take t = 1, t′ = 0.2,
α = 0.3, µ = −0.79, ψ0 = 0.5, and d0 = 0.1. While
Fig. 2(a) shows the topologically protected nodal excita-
tion at H = 0, Fig. 2(b) reveals the gap generation due
to the finite Zeeman term, H 6= 0. The appearance of
the excitation gap can also be understood by analyzing
∆±(k). Equation (13) for the model (15) is given by

∆±(k) = −
(
ψ0 ∓

d0

|k|

)
(k2
x − k2

y)− iµBHd0

α|k|2
kxky. (16)

Here, the expression for small wave numbers is shown
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for simplicity. Thus, we can interpret the Rashba d-wave
superconductor under Zeeman field as the effective real-
ization of the chiral dx2−y2 + idxy-wave state, and thus a
gapful spectrum naturally follows.

C. Topological superconductivity

When a finite gap is generated by the paramagnetic
effect as in Fig. 2(b), we can define the bulk topologi-
cal invariant. This case belongs to the class D in the
Altland-Zirnbauer classification1–3. Therefore, the topo-
logical property is specified by the Chern number ν ∈ Z,
defined by54

ν ≡
∑

i,j;n:occ.

1

2πi

∫
k∈[2D BZ]

d2k εij∂ki 〈un(k)|∂kj |un(k)〉 .

(17)

The summation for n is taken over all the occupied bands,
and |un(k)〉 is the quasiparticle wave function of the n-
th energy band. εij (i, j = x, y) is the antisymmetric
tensor satisfying εxy = 1. To avoid confusion, note that
−ν is sometimes adopted as the Chern number in the
literature.

Here we show a simple formula for the Chern number
in the gapped noncentrosymmetric superconductors. We
again consider the general case represented by the model,
Eq. (1). The idea for evaluating the Chern number is
based on the original formula for the quantum anoma-
lous Hall effect55. The point is that the excitation in the
nodal superconductor shows a linear dispersion similar
to the Dirac electrons. The Chern number of a massive
Dirac electron is known to be −sgn [WM ]/2, where W
and M are the chirality and the mass of the Dirac elec-
tron, respectively. In the same way, each node, i.e. each
Bogoliubov-Dirac quasiparticle has the Chern number
−sgn [W (k0)M(k0)]/2 when gapped out by the Zeeman
field. Here, the winding number W (k0) and the induced
gap M(k0) are given in Eqs. (11) and (14), respectively.
Thus, the Chern number of the system is given by sum-
ming up the contribution from all the Bogoliubov-Dirac
quasiparticles:40,44

ν =
∑

(±, k0)

1

2
sgn

[
∂ (ψ ± d · ĝ) /∂k‖

µBH · ĝ × d/α

]
k=k0

=
∑

(±, k0)

1

2
sgn

[
(ẑ ×∇kE±) · ∇k (ψ ± d · ĝ)

µBH · ĝ × d/α

]
k=k0

.

(18)

Here, (±,k0) labels the gap node at k = k0 on the E±-
Fermi surface, defined by Eq. (7). Since the number of
linear nodes must be even, Eq. (18) is quantized to be
integer. For more details, see Refs.40,44.

Let us apply the formula (18) to the Rashba d-wave
superconductivity modeled by Eq. (1) with Eqs. (15).
Note that four nodes are located on each helicity band

[Fig. 1], all of which are crystallographically equivalent
owing to the fourfold-rotation symmetry. It is easy to
check that the summand of Eq. (18) is invariant under
fourfold rotation. Thus, we obtain

ν = 2(s+ + s−). (19)

Here, we defined s± by the sign in Eq. (18) evaluated for
the nodes in the first quadrant kx, ky > 0. Note that

s+ · s− = sgn [∂k‖(ψ + d · ĝ)]sgn [∂k‖(ψ − d · ĝ)]

= sgn [∂k‖ψ]2

= 1, (20)

because ∂k‖(ψ ± d · ĝ) ' ∂k‖ψ for the dominant d-wave
pairing. Thus, we obtain a nontrivial Chern number

ν = 4s+ = −4, (21)

by using s+ = −1 in this model. In summary, we have
shown that all the Bogoliubov-Dirac quasiparticles in the
Rashba d-wave superconductivity make additive contribu-
tions to the Chern number. Topological d-wave super-
conductivity is realized in this way. The result ν = −4
is supported by the numerical calculation40,56 using the
Fukui-Hatsugai-Suzuki method57, as well as microscopic
analysis of the Rashba-Hubbard model under the Zee-
man field52. The robustness of the topological d-wave
superconductivity has been illustrated for an additional
inclusion of the Dresselhaus spin-orbit coupling58.

Following the above discussion, we can obtain a sim-
plified version of the general formula (18):

ν =
s+N+ + s−N−

2
. (22)

We denote the number of nodes on the Fermi surfaces
with helicity ± by N±, and the corresponding sign of
Eq. (18) by s±. This formula is obtained by showing the
fact that crystallographically equivalent nodes contribute
to the Chern number with the same sign, s+ or s−, when
the order parameter belongs to a certain 1D irreducible
representation of the point group and the Zeeman field is
perpendicular to the system40. Note that we have N+ =
N−, unless the spin-orbit coupling is so large as to cause
the Lifshitz transition.

We can draw general conclusions from the for-
mula Eq. (22), by assuming either spin-singlet or -triplet
pairing is dominant. For spin-singlet-dominant super-
conductors, we have ∂k‖(ψ ± d · ĝ) ' ∂k‖ψ and obtain
s+ = s−. Thus, we generally conclude that the Chern
number is nontrivial,

ν = s+N+ 6= 0. (23)

Considering that almost all of the superconductors in
nature are spin-singlet superconductors, our result im-
plies the existence of various candidate materials. On the
other hand, when the spin-triplet pairing is dominant, the
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contributions to the Chern number from the spin-split
bands are canceled out. This is because ∂k‖(ψ ± d · ĝ) '
±∂k‖d · ĝ and therefore s+ = −s−. Thus, we conclude
ν = 0 for the spin-triplet dominant pairings. The result is
in sharp contrast to the fact that the spin-triplet super-
conductors are promising candidates for time-reversal-
invariant TSC8,9,59.

By Eq. (23), nontrivial Chern numbers are obtained
for the spin-singlet-dominant pairings other than the d-
wave state as well. As an example, we discuss a dominant
extended s-wave state admixed with the p-wave compo-
nent40. We consider

ψ(k) = ψ0(δ1 + cos kx + cos ky), (24)

and take δ1 to be small enough to possess accidental
nodes. We adopt the model (15) for the normal state,
and use the d-vector

d(k) = d0(− sin 2ky, sin 2kx, 0). (25)

Here, Eq. (25) is adopted to satisfy Eq. (14), although
a natural choice might be d(k) = d0(− sin ky, sin kx, 0).
Note again that such a component of the d-vector gener-
ally exists, as d(k) ‖ g(k) is not required by any symme-
try. For δ1 = −0.1 and µ = −0.8, there exist eight point
nodes on each one of the helicity ± Fermi surfaces, all of
which are related by crystalline symmetries40. Thus, we
expect the Chern number |ν| = 8 according to the for-
mula (23). The numerical calculation revealed the Chern
number ν = 8, and also revealed nontrivial values of the
Chern number for µ and δ1 with which the system pos-
sesses gap nodes40.

We call the above pairing symmetry the S + p-wave
state. Here and hereafter, the capitalized pairing sym-
metry represents the dominant one and, hence, the
model (15) for the topological d-wave superconductivity
is called the D+ p-wave state. The S + p-wave state has
been proposed47,60 for noncentrosymmetric superconduc-
tors CeRhSi3

61 and CeIrSi3
62. The above result suggests

that a nontrivial Chern number is obtained for the effec-
tive 2D system given by a slice of the three-dimensional
(3D) Brillouin zone of these compounds with a fixed value
of kz. We apply the results obtained here to 3D systems
in Sec. II E. In particular, we also discuss the spin-triplet-
dominant s+P -wave state, which has been proposed47,63

for a noncentrosymmetric superconductor CePt3Si64.

D. Majorana edge states of topological d-wave
superconductor

Nontrivial bulk topology is reflected in the appear-
ance of gapless edge states, according to the bulk-edge
correspondence. The edge states of topological super-
conductors are conventionally called the Majorana edge
states. As the quantum (anomalous) Hall insulators ac-
company chiral edge states, chiral Majorana edge states
are predicted by the finite Chern number ν of the BdG

FIG. 3. Chiral Majorana edge states of topological d-wave
superconductivity. The purple lines correspond to the bulk
quasiparticles gapped out by the Zeeman field. The green and
red spectrum show the Majorana edge states on the (010) and
(01̄0) edges, respectively.

Hamiltonian8,9,59. To be specific, we focus on the case of
topological d-wave superconductivity in this section. The
following numerical results are obtained by the model (1)
with Eqs. (15) for several values of H.

To obtain the edge spectrum, let us consider the peri-
odic and open boundary conditions for the x and y di-
rections, respectively. In Fig. 3, we show the correspond-
ing energy spectrum. Note that kx is still a good quan-
tum number since translational invariance is preserved
for the x direction. The purple lines correspond to the
bulk quasiparticles since almost the same dispersion can
be reproduced by redrawing the bulk energy spectrum
Fig. 2(b) in terms of kx vs. quasiparticle energy. On
the other hand, the gapless modes highlighted with red
and green are absent in the bulk spectrum. Indeed, the
weight of wave functions of the red and green modes are
localized around the (010) and (01̄0) edges, respectively,
while delocalized in the x direction. Thus, we identify
the red and green modes with the chiral Majorana edge
states, which have negative and positive group velocities
on the (010) and (01̄0) edges, respectively. There are four
modes on each edge, which is consistent with the Chern
number |ν| = 4.

The appearance of chiral Majorana edge states is in-
dependent of the boundary directions. Indeed, we obtain
chiral Majorana edge states also on the (110) and (11̄0)
edges, as shown in Fig. 4(a). Here, ka = kx + ky is the
good quantum number, and the bulk quasiparticles have
a dispersion similar to Fig. 2(b) replotted in terms of
ka. Although the dispersion of the edge states is a little
complicated, we still find four gapless chiral modes with
positive and negative velocities on each one of the edges.
By switching off the Zeeman field, the dispersion of the
chiral Majorana edge states becomes flat as shown in
Fig. 4(b), connecting the gap nodes of the bulk d-wave su-
perconductor. These edge modes are the Andreev bound
states59 associated with the sign reversal of the d-wave
gap function. They are called the Majorana flat bands,
and are protected by the ka-dependent winding number
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(a) (b)

FIG. 4. (a) Chiral Majorana edge states of topological d-
wave superconductivity with different boundary directions.
The green and red spectrum show the Majorana edge states
on the (1̄10) and (11̄0) edges, respectively, while purple lines
show bulk spectrum. The gray dashed line indicates the zero
energy. (b) The spectrum of the same system with H =
0. As decreasing H, the chiral edge states in the panel (a)
are transformed to the Majorana flat bands. A minigap of
the bulk quasiparticles at ka = 0 is a finite-size effect, and
vanishes in the thermodynamic limit.

FIG. 5. Unidirectional Majorana edge states of topological
d-wave superconductivity. The purple lines correspond to the
bulk quasiparticles. The green and red spectrum show the
Majorana edge states on the (1̄10) and (11̄0) edges, respec-
tively.

defined by an equation similar to Eq. (8)41–43,65. Thus,
the chiral Majorana edge states on the (110) and (11̄0)
edges can be regarded as reminiscent of Majorana flat
bands, and vice versa. Note that Majorana flat bands do
not appear on the (100) and (010) edges, in contrast to
the chiral Majorana edge states.

An advantage of the chiral Majorana edge states is
their robustness against a broader class of perturba-
tions. Chiral Majorana edge states are robust against
impurity scatterings, in contrast to the Majorana flat
bands1–3. Furthermore, chiral Majorana edge states are
robust against the correlation effects beyond the present
analysis66 (See also the discussion in Sec. V for interac-
tion effects on the topological classification). Thus, chiral
Majorana edge states would be more easily accessible in
experiments.

It is interesting to see the evolution of the energy spec-
trum as the Zeeman field H is tilted from the direction
perpendicular to the g-vector. According to Eqs. (12),
there appears a paramagnetic shift ∓H · ĝ(k0) in energy
around the nodes. As long as the tilting is small and

FIG. 6. Schematic picture for the evolution of energy dis-
persion under H. The purple lines correspond to the bulk
spectrum, while the red and green lines represent edge modes.

the excitation gap remains finite, the Chern number ν is
well-defined, and thus chiral edge states survive. On the
other hand, the energy spectrum becomes gapless when
the inequality

|µBH · ĝ(k0)| > |M(k0)|, (26)

is satisfied, although the band gap remains open. We
show in Fig. 5 the edge spectrum corresponding to
Fig. 4(a) but with a tilted Zeeman field

H = H(sin θ cosφ, sin θ sinφ, cos θ),

θ = π/4, , φ = 3π/4. (27)

Interestingly, some of the edge states are unidirectional
rather than chiral: Compared with Fig. 4(a), the two
edge modes around ka = ±π highlighted with red have
the different sign of the group velocity, while the green
ones and the edge modes around ka = 0 keep the original
sign. This indicates a unidirectional edge flow, where the
quasiparticle currents on both edges do not completely
cancel with each other. Such edge states are called the
unidirectional Majorana edge states67. Since a finite total
quasiparticle current in the ground state is prohibited, a
counterpropagating flow of the bulk gapless quasiparti-
cles is expected68. Note that it has been recently shown
that similar unidirectional edge modes can be induced
with applying an external supercurrent69.

The evolution of the edge states under H is summa-
rized in Figs. 6(a)-(c). Here, the purple lines represent
bulk massless/massive Bogoliubov-Dirac quasiparticles,
while the red and green lines represent the dispersion of
the edge states. In the absence of the Zeeman field, there
appear the Majorana flat bands for appropriate boundary
directions (Fig. 6(a)). By applying a Zeeman field per-
pendicular to the g-vector, the Majorana flat bands are
lifted to form the chiral Majorana edge states (Fig. 6(b)).
After the bulk Bogoliubov-Dirac quasiparticles cross the
zero energy by tilting the Zeeman field, these chiral Ma-
jorana edge states are transformed into the unidirectional
Majorana edge states (Fig. 6(c)). When the Zeeman
field is further tilted and H becomes parallel to the g-
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vector, the mass gap of Bogoliubov-Dirac quasiparticles
vanishes.

We also summarize in Figs. 6(d)-(e) the evolution of
the edge states with a different choice of the boundary
directions, e.g. those for Fig. 3. Although there are no
Majorana flat bands, chiral Majorana edge states appear
by applying the Zeeman field perpendicular to the g-
vector, as ensured by the bulk-edge correspondence of
the Chern number. When the Zeeman field is tilted and
the dispersion becomes gapless, these edge states overlap
with the bulk quasiparticles and unidirectional Majorana
edge states do not appear. The numerical results corre-
sponding to Fig. 6(f) is available in Ref.44.

In summary, chiral Majorana edge states, Majorana
flat bands, and unidirectional Majorana edge states ap-
pear in nodal noncentrosymmetric superconductors with
and without Zeeman field. The former appears irrespec-
tive of the boundary directions, while the latter two ap-
pear for appropriate boundary choices. The appearance
of these Majorana edge states is not limited to topologi-
cal d-wave superconductivity, and is a general feature of
the paramagnetically-induced TSC44.

E. Extension to three dimensions: Weyl
superconductivity

We have seen that 2D noncentrosymmetric supercon-
ductors with point nodes are gapped by the Zeeman
field, and TSC is realized. Here, we discuss the para-
magnetic effect on 3D noncentrosymmetric supercon-
ductors with line nodes. It turns out that such su-
perconductors become point-nodal superconductivity un-
der the Zeeman field. These superconducting states are
an example of the so-called Weyl superconductivity70,71,
which has topologically-protected point nodes (the Weyl
points). The known candidates of Weyl superconductiv-
ity have almost been limited to (intrinsic) chiral super-
conductors8,9,45,65 such as URu2Si2

8,72,73, SrPtAs35,74,
UPt3

75,76, and ferromagnetic superconductors including
UCoGe, URhGe, and UGe2

8,77,78. The following discus-
sion reveals that Weyl superconductivity is ubiquitous in
the low-Zeeman-field phases of noncentrosymmetric line-
nodal superconductors for both spin-singlet and spin-
triplet dominant states.

As we have already seen, the condition (14) must be
satisfied for a node to be gapped by the Zeeman field. In
other words, if k0 remains to be a nodal point even in
the presence of H, the three constraints

E±(k0) = ψ(k0)± d(k) · ĝ(k0) = M(k0) = 0, (28)

must be simultaneously satisfied. For a 2D wave number
k0 = (k0x, k0y), this is possible only for accidental cases
by fine-tuning the parameters of the system. When we
turn to three dimensions, on the other hand, we have
an additional wave number k0z, whose variation in the
Brillouin zone may play the same role as the fine-tuning.
Thus, some discrete points on the line nodes may remain

gapless even under the Zeeman field, satisfying Eq. (28),
although most of the nodal points are gapped out. Ac-
cordingly, it is expected that noncentrosymmetric line-
nodal superconductors become point-nodal superconduc-
tivity under the Zeeman field.

From the viewpoint of topology, the obtained point
nodes are the so-called Weyl points with a nontrivial
monopole charge,

C(kW ) =

∫
S2(kW )

dSk
2πi

n̂(k) ·B(k), (29)

Bi(k) =
∑
n:occ.

εijl 〈∂jun(k)|∂lun(k)〉 . (30)

Here, S2(kW ) is a small spherical surface enclosing the
Weyl point kW , while dSk and n̂(k) are its areal ele-
ment and unit normal vector, respectively. The Weyl
charge (29) is analogous to the magnetic monopole: The
difference is that it resides in the momentum space and,
instead of the magnetic field, there appears the Berry
curvature B(k), the integrand of the Chern number
(Eq. (17)). The Weyl points are topologically protected
by the Weyl charge and are robust against perturbation
of the system. Superconductivity with Weyl points is re-
ferred to as the Weyl superconductivity, in analogy with
the Weyl semimetals79. Corresponding to the Fermi arcs
in Weyl semimetals, Weyl superconductors host the Ma-
jorana arcs on the surface Brillouin zone8,9,65. It has
been clarified that Weyl quasiparticles show an anoma-
lous thermal Hall effect depending on the nodal posi-
tions8 and intriguing phenomena induced by an emer-
gent pseudo-magnetic field caused by the lattice distor-
tion80–83.

To be specific, let us consider the case of CeRhSi3 and
CeIrSi3. It has been shown that both of them have quasi-
2D Fermi surfaces with spin splitting due to the Rashba
AOSC47,84,85. We adopt the model (15) with an addi-
tional kz-dependent term in ξ(k):

ξ(k) = −2t(cos kx + cos ky) + 4t′ cos kx cos ky

− 8t̃ cos
kx
2

cos
ky
2

cos kz − µ, (31)

following Ref.60. In the theoretical analysis of a noncen-
trosymmetric Hubbard model60, S + p-wave state with
ψ(k) ∼ cos 2kz has been pointed out. Thus, we adopt

ψ(k) = ψ0 [cos 2kz + δ2(cos kx + cos ky)] . (32)

Here, we additionally take into account a small inplane
k dependence with δ2, which is allowed by the A1 sym-
metry of the order parameter. Owing to a finite δ2, the
line nodes originally at kz = ±π/4, ±3π/4 become not
completely horizontal, and extend in a small region of kz
around kz = ±π/4, ±3π/4.

To identify the topology and Weyl points, we consider
a 2D slice of the 3D Brillouin zone, fixing a value of kz.
The Chern number ν(kz) of the effective 2D system is
well defined as long as the spectrum under H is gapful



9

FIG. 7. kz-dependent Chern number ν(kz) of the model for
CeRhSi3 and CeIrSi3. We use t = 1, t′ = 0.475, and t̃ = 0.3,
following Ref.60. We adopt µ = −0.9 to make charge density
near the half filling. The other parameters are α = 0.3, ψ0 =
0.05, δ2 = 0.3, and d0 = 0.01.

there. Figure 7 shows the numerical result of ν(kz) under
finite Zeeman field H = Hẑ. Nontrivial Chern number
ν(kz) = 4 is obtained around the line nodes, where the
effective 2D system is nodal for H = 0 and is 2D TSC
for H 6= 0. On the other hand, at kz away from the
nodes the Chern number is trivial ν(kz) = 0. This is be-
cause the effective 2D system of such kz is gapful even in
the absence of Zeeman field and, therefore, is topologi-
cally equivalent with the time-reversal symmetric s-wave
superconductivity with the vanishing Chern number.

In Fig. 7, the change of the kz-dependent Chern num-
ber is seen for some kz around the line nodes. Since the
Chern number does not change as long as the band gap
is open, such a change of ν(kz) necessarily accompanies
gapless points, i.e. the Weyl points. Indeed, we have the
relation

ν(k′z)− ν(kz) =
∑

kz≤kWz≤k′z

C(kW ), (33)

according to the Stokes’ theorem. The left-hand side is
the flux of Berry curvature threading the planes with
constant kz and k′z. Its source is the Weyl points in
between, as given on the right-hand side. Each Weyl
point carries C(kW ) = ±1 in this model as is usual and,
therefore, four Weyl points are associated with each jump
of ν(kz). Thus, we have 64 Weyl nodes in this model.

We note that noncentrosymmetric d-wave supercon-
ductors with 3D Fermi surfaces become Weyl supercon-
ductivity under Zeeman field, by the same mechanism as
discussed above56. Actually, we obtain ν(kz) = −4 and
ν(kz) = 0 for kz with and without Fermi surfaces, re-
spectively. In reality, we also obtain ν(kz) = −1 and −2
for intermediate values of kz. For details, see Ref.56.

As another example, we consider a noncentrosym-
metric superconductor CePt3Si39,64. Two pairing sym-
metries, namely, the p + D + f -wave47,63 and s + P -
wave46,47,63 states, have been discussed as the candidate
order parameter in accordance with experiments. The
first one is a spin-singlet dominant state and, therefore,
Weyl superconductivity is naturally expected under the
Zeeman field (See Ref.40). Here we focus on the latter
one, the dominant p-wave state. Such a state can be

described by

ψ(k) = ψ0, d(k) = d0(− sin ky, sin kx, 0), (34)

with d0 > ψ0. The s + P -wave superconductivity with
3D Fermi surfaces hosts a line node, since one of the gap
functions of the two bands with different helicities,

ψ(k)± d(k) · ĝ(k) ∼ ψ0 ± d0|k|, (35)

vanishes for a small wave number k ∼ ψ0/d0
38,86,87. The

line node is protected by a finite winding number (8), in
contrast to centrosymmetric odd-parity superconductors,
where the Kramers degeneracy trivializes W (k0) and line
nodes are usually unstable (known as the Blount’s the-
orem36,88,89)90. By considering the cross section of the
line node with a constant kz plane, we obtain an effective
2D model with nodal points. According to the general
considerations in Secs. II B and II C, the nodal triplet-
dominant state is gapped by the Zeeman field but should
give a trivial Chern number. However, the present case
is exceptional, since the nodes are located on only one of
the Fermi surfaces and the cancellation between the dif-
ferent helicity bands does not occur. Thus, we also obtain
a finite kz-dependent Chern number for this type of line
nodes and, Weyl superconductivity is realized under the
Zeeman field. For more details, see Ref.40.

Note that the models adopted here do not completely
reproduce the Fermi surfaces of CeRhSi3

84,85, CeIrSi3
85,

and CePt3Si85,91,92. However, the mechanism to realize
Weyl superconductivity is generally applicable to line-
nodal noncentrosymmetric superconductors. In partic-
ular, the appearance of the Weyl points is independent
of the details of the dispersion, although its details, e.g.
where and how many Weyl points appear, may depend.
Thus, Weyl nodes are expected for realistic Fermi sur-
faces as well.

F. Experimental platform

We have studied TSC induced by the paramagnetic
effect. The necessary ingredients are (1) thin films
of nodal spin-singlet superconductors, (2) inversion-
symmetry breaking, and (3) the Zeeman field. In the
following, we discuss the ingredients (1)-(3) order by or-
der.

(1) The 2D d-wave superconductors naturally offer a
promising platform to realize the topological d-
wave superconductivity. Thin films and superlat-
tices of cuprate superconductors93–95 and a heavy-
fermion superconductor CeCoIn5

96–99 have already
been fabricated. Recently, a twisted bilayer cuprate
superconductor has also been fabricated100.

Thin films of anisotropic s-wave superconductors
with accidental nodes are also the candidate. For
example, implications of the line nodes have been
reported for the bulk FeSe101–103. Unfortunately,
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thin films of FeSe have been reported to show a
gapful superconducting state104–106. If nodal su-
perconductivity is realized by changing system pa-
rameters and the environment, FeSe thin films can
be a good platform for 2D TSC.

(2) Inversion-symmetry breaking can be introduced by
the structural asymmetry. Thus, the presence of
the substrate naturally makes the thin film super-
conductors noncentrosymmetric. Since we have as-
sumed the conditions given by Eq. (2), the strength
of the ASOC α should at least amount to α ∼ Tc.
Although it is unclear that this condition is satisfied
in the thin film superconductors mentioned above,
α can be controlled to some extent by the gating
techniques including the electric double-layer tran-
sistor107–109. Artificial superlattices of CeCoIn5

98

are also promising, where the Rashba spin-orbit
coupling can be introduced by the tricolor stacking
and is tunable by the layer thickness99,110. These
noncentrosymmetric d-wave superconductors offer
a fertile ground to explore TSC.

(3) A natural way to introduce the Zeeman field is to
apply an external magnetic field. A concern is the
orbital depairing effect, which is not taken into ac-
count in the present analysis. A least orbital de-
pairing effect is expected in (a) the heterostruc-
ture with a ferromagnet and (b) laser-irradiated
cuprate thin films. In the system (a), the Zee-
man field is introduced by an exchange coupling.
Therefore, a sizable Zeeman field can be induced.
The heterostructures of the cuprate superconduc-
tors YBa2Cu3O7

111–114 and La2−xSrxCuO4
113,115

with a ferromagnet La2/3Ca1/3MnO3 have already
been realized. In the system (b), it is shown by the
Floquet theory that a Zeeman field is introduced to
the cuprate thin films by applying a high-frequency
circularly-polarized laser light. The details of this
proposal are discussed in Sec. III. The systems (a)
and (b) free of the orbital depairing are the promis-
ing platforms of topological d-wave superconductiv-
ity.

We note that an external magnetic field may also
be used to realize TSC, although we should take
care of the existence of the vortices. Cuprate su-
perconductors and CeCoIn5 are believed to have
a large Maki parameter

√
2Hc

0/H
P
0 ,116 meaning a

small vortex density near the Pauli limiting field
H = HP

0 . Here, Hc
0 and HP

0 are the critical fields
due to the orbital and Pauli depairing effects, which
are estimated for the centrosymmetric cases. On
the other hand, the Pauli limiting field is absent in
noncentrosymmetric superconductors for perpen-
dicular magnetic fields, while Hc

0 and thus the co-
herence length would be of the same order of mag-
nitude as the centrosymmetric cases. Thus, we may
obtain a superconducting state with sparse vortices
for HP

0 . H � Hc
0 , where a mean inter-vortex

distance is considerably larger than the coherence
length. The region away from vortices, which spans
most of the entire system, can be viewed as the
system with a uniform Zeeman field. To be pre-
cise, the vortices cause the Doppler shift due to
the supercurrent, by which many experimental re-
sults are fitted well117. However, its primary effect
is to simply shift the quasiparticle spectrum and,
therefore, topological properties are expected to be
preserved. Thus, it is feasible to observe gap open-
ing and Majorana quasiparticles under an external
magnetic field.

In addition to the ingredients discussed above, it is
desirable to obtain a large gap. This allows an easier ob-
servation of the induced gap and Majorana edge states
by e.g. scanning-tunneling microscopy (STM) and angle-
resolved photoemission spectroscopy (ARPES). Let us
estimate the size of the mass gap induced by the param-
agnetic effect. For the evaluation of Eq. (14), we have to
know the ratio r = d0/ψ0 by which the spin-triplet com-
ponent is admixed as a result of the inversion-symmetry
breaking. Here, ψ0 and d0 are the typical strength of the
spin-singlet and -triplet components, respectively. By us-
ing r, the induced band gap is given by

∆E ≡ 2|M(k0)| ' 2µBHψ0

α
r. (36)

A rough estimation of r is r ∼ α/W with W the energy
scale of the normal state such as the Fermi energy and the
bandwidth. This is intuitive for small α/W , but seems to
be valid for relatively large α/W as well, as confirmed by
a recent theoretical calculation of the Rashba-Hubbard
model (r ∼ 0.5 for α/W ∼ 0.5)53. We note that the
ratio r would be significantly enhanced even for a small
α/W , when the attractive interactions in the spin-singlet
and spin-triplet channels are nearly degenerate. Such a
situation may also give a promising platform, but here
we limit ourselves to the simplest cases where r ∼ α/W
holds. Thus, we obtain an estimate of the gap size,

∆E ∼ ψ0

W
µBH. (37)

According to this expression, strong-coupling supercon-
ductors are suitable for obtaining a large induced gap.
Cuprate superconductors and CeCoIn5 superlattices are
promising candidates also for this reason. Iron-based su-
perconductors may also be a good candidate when nodal
excitation is realized. In particular, the parameter ψ0/W
amounts to be . 0.1 in cuprate superconductors33. Thus,
we obtain ∆E ∼ 1K under µBH ∼ 10T. The Zeeman
field µBH ∼ 10T is not so small but would be accessible
in experiments by external magnetic fields. The molec-
ular field of ferromagnets may be much larger. The gap
∆E ∼ 1K would also be within the precision of cutting-
edge experimental techniques118. Thus, we expect that
the induced gap and Majorana edge states are observable
in experiments.
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G. Summary of this section

In this section, we have discussed a general mecha-
nism to realize 2D TSC with nontrivial Chern number.
The platform is nodal noncentrosymmetric superconduc-
tors. The gapless Bogoliubov-Dirac quasiparticles be-
come massive under the Zeeman field, owing to the in-
terplay of the paramagnetic effect with the parity mixing
of the order parameter. The obtained gapful supercon-
ducting state has nontrivial Chern numbers for dominant
spin-singlet pairings, while the dominantly spin-triplet
pairing states usually have the trivial Chern number.

According to the bulk-boundary correspondence, chi-
ral Majorana edge states appear in systems with open
boundaries. We have shown the evolution of the Majo-
rana edge states under tilting of the Zeeman field and
identified the unidirectional Majorana edge states with
a peculiar unidirectional flow on the edges. The relation
of these edge states to the Majorana flat bands in the
absence of the Zeeman field has also been revealed. Fur-
thermore, we have extended the theory to 3D systems.
3D line-nodal superconductors become Weyl supercon-
ductors under the Zeeman field. We have discussed the
possibility of the Weyl superconductivity in CeRhSi3,
CeIrSi3, and CePt3Si under the Zeeman field.

We have also discussed experimental platforms and es-
timated the induced gap size. Thin films and superlat-
tices of d-wave superconductors are the promising can-
didates of TSC. The Zeeman field can be introduced by
applying the external magnetic field, making heterostruc-
ture with ferromagnet, or irradiating a circularly polar-
ized laser light. We expect the excitation gap and Ma-
jorana edge states would be observable in future experi-
ments.

III. LASER-INDUCED TOPOLOGICAL
D-WAVE SUPERCONDUCTIVITY

As mentioned in the previous section, the application
of laser light is one of the promising routes for realizing
topological d-wave superconductivity. We proposed that
thin films of d-wave superconductors under laser light can
be topologically nontrivial and showed chiral Majorana
edge modes119. In this section, we explain this proposal
in detail.

The realization of TSC has been an intriguing re-
search subject in condensed matter physics during the
last decade. Thus, it is an important task for theorists
to propose a promising new scenario for the realization of
TSC in natural materials. For this purpose, in this sec-
tion we focus on the idea of Floquet engineering, which
is a scheme for controlling the states of matter with a
periodic driving and gathering great attention in recent
years120–123. Based on this idea, we searched supercon-
ductors which become topologically nontrivial under the
periodic driving with laser light. Then, we found that
the 2D d-wave superconductors fabricated on a substrate

can be a topological superconductor with application of
circularly polarized laser light119. One of the strength of
this proposal is its wide applicability. Our scheme can be
applied to any d-wave superconductors typically realized
in strongly correlated materials such as high-Tc cuprate
superconductors. Another strong point is its high con-
trollability. Changing the properties of laser light (e.g.,
intensity, frequency, polarization and so on), we can con-
trol various topological phases. Furthermore, using a
short laser pulse, we can control the topological nature
in an ultrafast time scale such as a picosecond or a fem-
tosecond order.

This section is organized as follows. First, we
briefly review Floquet engineering and Floquet theory in
Sec. III A. Then, we introduce our model describing the
laser-irradiated d-wave superconductors in Sec. III B and
derive the effective static model with the Floquet theory
in Sec. III C. Using the model, we show the topological
properties of d-wave superconductors under laser light in
Sec. III D. Finally, we discuss the experimental setup in
Sec. III E and address the conclusion and the outlook in
Sec. III F.

A. Floquet engineering and Floquet theory

Thanks to the recent developments of experimental
techniques (e.g., realization of strong laser light appli-
cable to solids and highly controllable quantum sys-
tems such as ultracold atoms), it becomes possible to
realize periodically-driven quantum systems in experi-
ments120–123. Periodically-driven systems show nonequi-
librium states different from equilibrium states. Choos-
ing the adequate driving protocol, we can realize the
desired quantum states in nonequilibrium states. This
approach for controlling quantum states is called Flo-
quet engineering120–123, which is named after Floquet
theory. This is a theoretical framework for periodically-
driven systems described with a time-periodic Hamilto-
nian H(t) = H(t + T ) where T is a time period and
based on the Floquet’s theorem which is the analogue
of the Bloch’s theorem in the time direction. In gen-
eral, time-dependent quantum many-body problems are
difficult to solve, but the application of the Floquet’s the-
orem makes the problem tractable even in strongly cor-
related systems. Floquet engineering schemes for various
phases have been proposed124–133, and the most widely-
studied one is the engineering of band topology. A pi-
oneering work by Oka and Aoki showed that a periodic
driving with circularly polarized laser makes Dirac cones
of graphene gapped out and induces topologically non-
trivial states showing chiral edge modes124. This finding
stimulated many researchers to study this kind of topo-
logical states called Floquet topological phases. How-
ever, it took a long time to realize them in experiments,
especially in solids. The first experimental realization
was achieved in ultracold atoms which are loaded in a
periodically-shaken optical lattice134. In solid states, a
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FIG. 8. Typical real-time evolution of an observable Ô under
laser light. The gray broken and blue solid curve represent the
time evolution induced by a continuous wave (gray curve) and
a pulse wave (yellow curve), respectively. Prethermalization
occurs within the time scale τ satisfying τth . τ . τp.

similar phenomenon on the surface of the topological in-
sulator Bi2Se3 has been reported135,136. Although the ex-
periment in graphene had not been reported for a while,
it was reported very recently that graphene irradiated
by a short laser pulse shows a nearly-quantized transient
Hall current, which should be a signature of the Floquet
topological phases137. Floquet engineering in solids is
becoming a possible way to control the topological states
of matter in experiments and gathering great attention.

In the rest of this subsection, we introduce the ba-
sic theoretical concepts in the Floquet theory needed for
explaining our proposal. For the detail of the Floquet
theory, see other review papers120–123. As we mentioned
above, we would like to consider periodically-driven d-
wave superconductors. The d-wave superconductivity is
typically realized in strongly correlated electron systems,
but there is a crucial problem for periodically-driven in-
teracting closed138 systems that they thermalize to the
infinite temperature state in the long time limit139. Thus,
it is naively expected that driven d-wave superconduc-
tors only show a topologically trivial phase. However,
owing to the recent development of the Floquet the-
ory140,141, it was proved that there appears a nontriv-
ial prethermalized state before thermalizing to the infi-
nite temperature state142 and the prethermalized state’s
lifetime τp becomes exponentially longer when the driv-
ing frequency ω ≡ 2π/T increases. This means that the

expectation value O(t) ≡ 〈ψ(t)| Ô |ψ(t)〉 of an observ-

able Ô approaches 〈Ô〉
H

(n)
eff ,βeff

≡ Tr[Ô exp(−βeffH
(n)
eff )]

up to the lifetime τp and finally reaches 〈Ô〉T=∞ ≡ Tr[Ô].

Here, βeff and H
(n)
eff are the effective inverse temper-

ature and the truncated effective Hamiltonian, respec-

tively (the definition of H
(n)
eff is given below). The dy-

namics is schematically shown with the gray broken curve
in Fig. 8, suggesting that a topologically nontrivial phase
may appear in driven d-wave superconductors transiently

in the prethermalized state. Such a transient topolog-
ical phase is described with the thermal state of the

static (time-independent) Hamiltonian H
(n)
eff . To define

H
(n)
eff , we introduce the original effective Hamiltonian

Heff ≡ (i/T ) logU(T ) where U(T ) is a time-evolution
operator for one period. This Hamiltonian plays an es-
sential role in the Floquet theory, but it is difficult to
directly calculate it. To avoid this difficulty, the pertur-
bative expansion in powers of (1/ω) is widely used120–123.
The effective Hamiltonian is expanded as

Heff = H0 +

∞∑
n=1

[H+n, H−n]

nω
+O

[(
1

ω

)2
]
, (38)

where Hn ≡ 1
T

∫ +T/2

−T/2 dtH(t)e−inωt is the Fourier compo-

nents of the time-dependent Hamiltonian143. This for-
mula provides a way to obtain the effective Hamiltonian,
but the expansion is known not to be a convergent series
in a large system size in general141. Therefore, we typ-

ically adopt a truncated Hamiltonian H
(n)
eff which only

contains terms up to n-th order of (1/ω). In the fol-

lowing, we use the H
(1)
eff as the effective Hamiltonian for

simplicity. In other words, we redefine Heff ≡ H(1)
eff here.

Finally, we mention the case when we use a pulse laser
with a finite pulse width. To pump the electrons in solids,
we need strong intensity of laser light in most cases. To
gain it, we can use a short laser pulse. However, driv-
ing by a single pulse (shown at the bottom of Fig. 8
with the yellow curve) is obviously not time-periodic
and the Floquet theory is not applicable in the strict
sense. On the other hand, signatures predicted by the
Floquet theory are observed in solid-state experiments
even when the pulse laser is used135–137. Also, it was
theoretically reported that the Floquet-like behavior is
reproduced with a pulse laser144. These suggest that
we can approximately apply the Floquet theory in the
time window where the electric field is strongly oscillat-
ing near the pulse’s center. Thus, as shown in Fig. 8,
the prethermalized state is expected to be realized in the
intermediate time scale even with a pulse laser, and af-
ter the application of the laser pulse, the system goes
back to the thermal equilibrium at τeq where O(t) ther-

malizes to 〈Ô〉eq ≡ Tr[Ô exp(−β0H(0))] with the initial
temperature β0. Therefore, to realize the Floquet engi-
neering with pulse laser, we have to choose a pulse width
w as it satisfies the condition τth . w . τp, where τp is
the lifetime of the prethermalized states explained before
and τth is the thermalization time needed for reaching
the prethermalized state from the initial state. In most
strongly correlated materials, τth is the order of femtosec-
onds determined by the electron-electron interaction. In
contrast, τp depends on the details of material and laser
light145. Thus, we should choose as short as possible
satisfying w & τth and w should be the order of ten fem-
toseconds or sub-picoseconds typically. We note that τp
can be effectively longer considering the dissipation to



13

FIG. 9. Schematic picture of the setup. A d-wave super-
conductor thin film fabricated on a substrate is irradiated by
circularly polarized laser light in the z-direction.

thermal baths such as phonons or substrates which are
neglected here.

B. Model

We consider the laser-irradiated thin film of d-wave
superconductors (the setup is shown in Fig. 9) and dis-
cuss its topological properties. For this purpose, we first
explain the model for the thin film of d-wave supercon-
ductors fabricated on a substrate. The potential induced
by the substrate breaks the inversion symmetry, and thus
a Rashba spin-orbit coupling appears in this system. To
describe it, we introduce a Rashba-Hubbard model as

H =
∑
kσ

ξ(k)c†kσckσ

+
∑
kσσ′

(αg(k) · σ)σσ′c†kσckσ′ + U
∑
i

ni↑ni↓, (39)

where the kinetic energy ξ(k) and g-vector g(k) have
been given by Eqs. (15a) and (15b), respectively. We
choose the form of ξ(k) with the next-nearest neighbor
hopping t′ in a square lattice for reproducing the Fermi
surface of typical cuprate materials well-known as d-wave
superconductors. In addition, we incorporate the effect
of laser light. The laser light is described by a classical
electromagnetic field A(t) and introduced as a Peierls
phase, which corresponds to the substitution k → k −
A(t) in the momentum space. Then, we obtain the time-
dependent Hamiltonian as

H(t) =
∑
kσ

ξ(k −A(t))c†kσckσ

+
∑
kσσ′

(αg(k −A(t)) · σ)σσ′c†kσckσ′ + U
∑
i

ni↑ni↓,

(40)

with A(t) = (Ax cosωt,Ay sinωt, 0), which corresponds
to the circularly (Ax = Ay) or elliptically (Ax 6= Ay)
polarized laser light. We adopt the Hamiltonian (40) as
a model describing laser-irradiated d-wave superconduct-
ing thin films.

C. Effective Hamiltonian

The model (40) is a many-body and time-dependent
Hamiltonian and thus not easy to treat directly. Here
we focus on the time-periodicity of the Hamiltonian (40)
and apply the Floquet theory, which enable us to under-
stand the properties of this model via the effective static
Hamiltonian. To derive the effective Hamiltonian, we use
the formula (38) and then obtain

Heff = H0 +

∞∑
n=1

[H+n,H−n]

nω

=
∑
kσ

ξ̃0(k)c†kσckσ

+
∑
kσσ′

(αg̃0(k) · σ)σσ′c†kσckσ′ + U
∑
i

ni↑ni↓

−
∑
kσσ′

µBH̃(k)σzc
†
kσckσ′ , (41)

where

ξ̃0(k) = −2t(J0(Ax) cos kx + J0(Ay) cos ky)

+ 4t′J0

(√
A2
x +A2

y

)
cos kx cos ky − µ,

(42)

g̃0(k) = (−J0(Ay) sin ky, J0(Ax) sin kx, 0), (43)

H̃(k) = −4α2J 2(Ax, Ay)

µBω
cos kx cos ky, (44)

J 2(Ax, Ay) =

∞∑
m=0

(−1)mJ2m+1(Ax)J2m+1(Ay)

2m+ 1
, (45)

and Jn(x) represents the n-th Bessel function. There ap-
pear two laser-induced effects in the effective model (41).
One is reduction of the hopping and the spin-orbit cou-
pling seen in Eqs. (42) and (43). This effect is known
as dynamical localization which has been experimentally
observed in ultracold atoms146 and solids147 and leads to
a change in the shape of the Fermi surface. The other is
the laser-induced magnetic field (44) which reflects the
time-reversal symmetry breaking due to the circularly
polarized laser light. This term is closely related to the
inverse Faraday effect148, meaning the magnetization in-
duced by the circularly polarized light.

Next, we take into account the superconducting or-
der. We refer to the results of many-body calcula-
tions48,51–53,63,149 and introduce the mean field of su-
perconductivity. Due to the inversion symmetry break-
ing, there should be an additional odd-parity component,
such as p-wave or f -wave pairing. To introduce this ef-
fect to our model, we adopt a simple form of D+p wave
order parameter ∆(k) = i[ψ(k)+d(k)·σ]σy with ψ(k) =
∆d(cos kx − cos ky) and d(k) = ∆p(sin ky, sin kx, 0), as-
suming that |∆d| is much larger than |∆p|. With this
order parameter, we write down the BdG Hamiltonian
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FIG. 10. Quasiparticle spectrum of the effective BdG Hamil-
tonian [Eq. (46)] (a) without and (b) with laser light. The
parameters are set as t = 1.0, t′ = 0.2, α = 0.3, ω = 0.4,
∆d = 0.4, and ∆p = 0.08.

as HBdG = 1
2

∑
k Ψ†kH(k)Ψk, where

H(k) =

(
HN (k) ∆(k)
∆†(k) −HTN (−k)

)
, (46)

HN (k) = ξ̃0(k)σ0 + αg̃0(k) · σ − µBH̃(k)σz, (47)

and Ψ†k = (c†k↑, c
†
k↓, c−k↑, c−k↓). Differences from

Eq. (15) are only the renormalization due to dynamical
localization and the momentum dependence in an effec-
tive magnetic field H̃(k). Therefore, we expect qualita-
tively the same behaviors as we have seen in the pre-
vious section. Diagonalizing this BdG Hamiltonian, we
obtain the quasiparticle spectrum shown in Fig. 10. Sim-
ilarly to Fig. 2, the energy spectrum has nodal points be-
fore irradiating laser light, and these points are gapped
out with applying laser light. As mentioned in the pre-
vious section, the nodes in d-wave superconductors are
protected by combination of time-reversal symmetry and
particle-hole symmetry. In addition to breaking inversion
symmetry by the substrate, the laser-induced magnetic
field [Eq. (44)] breaks the time-reversal symmetry and
then the nodes are made gapped. Thanks to this energy
gap, the system can host robust topological phases and
indeed show topologically nontrivial phases as explained
below.

D. Topological properties

In this subsection, we investigate the topological prop-
erties of the laser-irradiated d-wave superconductor thin
films. We focus on the weak intensity regime (Ax, Ay .
1.5) and explain there appears a topological phase. In the
strong intensity regime (Ax, Ay & 1.5), different topolog-
ical phases can be realized. See the original paper119 for
detail of the strong intensity regime.

1. Edge modes

The most direct way to clarify if the topologically non-
trivial phases are realized or not is to check the energy
spectrum with the open boundary condition since there

ky

kx

π

-π-π π

ky

kx

π

-π-π π

C=- 4

Ax

Ay

2

0
0 2

ε 0

0.06

-0.06
-1-2 210

(c) (d)

(a) (b)

FIG. 11. (a) Energy spectrum of the effective Hamilto-
nian [Eq. (46)] with the open boundary condition in the
x-direction and the periodic boundary condition in the y-
direction. The orange and blue dots represent the localized
modes at each edges. (b) Topological phase diagram. Color
plot shows numerically calculated Chern numbers for each
(Ax, Ay) point. The white area represents a topologically triv-
ial phase (C = 0) and the blue is a topologically nontrivial
phase (C = −4). (c, d) Fermi surfaces (red lines) and zeros of
the superconducting gap (blue lines) at (Ax, Ay) = (0.1, 0.1).
The E+ [E−] band is shown in (c) [(d)], and the shaded

(white) region represents ψ ± d · ĝ/[µB(H̃ẑ) · (ĝ × d)/α] <
0 (> 0). The parameters (t, t′, α) are set as (1.0, 0.2, 0.3) in all
the figures. The others (ω,∆d,∆p) are set as (0.4, 0.4, 0.08)
in Fig. 11(a) and (36.0, 0.05, 0.01) in Figs. 11(b-d).

appear gapless modes localized at the boundary when
the system is topologically nontrivial. For this purpose,
we calculate the energy spectrum of the effective model
[Eq. (46)] with the open boundary condition in the x-
direction and the periodic boundary condition in the y-
direction. The result is shown in Fig. 11 (a). There
appear four chiral modes at each side of edges, and this
fact suggests a topologically nontrivial phase based on
the bulk-boundary correspondence.

2. Chern number and phase diagram

Next, we study the topological index calculated from
the bulk information. The above BdG Hamiltonian be-
longs to the class D in terms of the ten-fold classifica-
tion1–3, and it is known to be characterized by a Z topo-
logical index. Thus, we calculate the Chern number tak-
ing a value on Z defined for 2D systems. The definition
has been given in Eq. (17). In this section, we denote the
Chern number by C instead of ν in Sec. II.
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To calculate the Chern number, we take two ap-
proaches. One is a numerical one called Fukui-Hatsugai-
Suzuki method57, which is an efficient numerical way to
compute the Chern number of the model defined on dis-
cretized momentum space. The numerical results are
shown in Fig. 11 (b) as a phase diagram. It shows that
the Chern number C takes a non-zero value (C = −4) in
a broad range of parameters including the infinitely weak
intensity regime. Note that the Chern number on the Ax-
and Ay-axes is ill-defined because the linearly polarized
laser light preserving time-reversal symmetry does not
gap out the nodal points. The absolute value of Chern
number |C| represents the number of chiral edge modes
and the result is consistent with the edge spectrum in
Fig. 11 (a).

The other approach is an analytical calculation follow-
ing the formula explained in the previous section. From
the same derivation as Eq. (18), the Chern number of our
BdG Hamiltonian (46) can be calculated as

C =
∑

(±,k0)

1

2
sgn

[
(ẑ ×∇kE±) · ∇k(ψ ± d · ĝ)

µB(H̃ẑ) · (ĝ × d)/α

]
k=k0

,

(48)

where ẑ is a unit vector in the z-direction, E± = ξ̃0(k)±
α|g̃(k)|, ĝ = g̃(k)/|g̃(k)|, and H̃(k) is k dependent40.
The summation is taken over all the gapped nodes at k0

on the E± bands’ Fermi surfaces defined as E±(k) =
0. The analytic formula (48) enables us to evaluate
the Chern number with counting the contribution from
gapped nodes, which are intersections of a Fermi surface

and zeros of the gap function ψ(k)±d(k)· ˜g(k) = 0. Each
gapped node gives a contribution + 1

2 or − 1
2 and the sign

of each contribution can be estimated as follows. First,
we set the direction parallel to the Fermi surface of E±(k)

bands as k̂± = ẑ × ∇kE±/|ẑ × ∇kE±|. Next, we find

the change in the sign of ψ±d · ĝ/(µB(H̃ẑ) · (ĝ×d)/α),
which is in the argument of the function of Eq. (48).
When it changes from negative to positive (positive to

negative) along the k̂± direction at gapped nodes, the
contribution is + 1

2 (− 1
2 ). Following this procedure, we

can evaluate the Chern number analytically. Indeed, see-
ing Figs. 11(c) and (d), we can count each contribution
from the gapped nodes, and the Chern number turns out
to be −4, which coincides with the numerical result.

E. Experimental setups

Our scheme has three advantages for realizing TSC in
experiments. First one is that our theory can be applied
to any d-wave superconductors. Second one is that the
TSC can be induced by infinitesimally weak intensity of
laser light. Third one is that the laser-induced magnetic
field gives rise to only the paramagnetic effect and thus
does not induce vortices which break superconductivity.
In the following, we discuss the experimental setups for
realizing TSC based on our proposal.

1. Material

With a slight modification of the dispersion relation
ξ(k), which is expected not to change the qualitative re-
sults, our results are basically applicable to any d-wave
superconductor. In addition, for realizing stable TSC
against perturbations, it is important to induce a suffi-
ciently large Rashba spin-orbit coupling. For this pur-
pose, making an atomically thin film on a substrate is
one of the effective approaches. For these reasons, the
most promising candidate material is a cuprate super-
conductor, of which thin films have already been fabri-
cated93,94. Despite the 3d orbital character of electrons, a
sizable spin-orbit coupling has been recently reported150.
Thanks to its high critical temperature, the cuprate su-
perconductor is also a good candidate from other view-
point that its superconducting state should be robust to
irradiating laser light. Some of the heavy-fermion su-
perconductors can also be good candidates because they
show d-wave superconductivity. For instance, atomically-
thin layers of CeCoIn5 have already been fabricated, and
the spin-orbit coupling is controllable98,99. Thus, the het-
erostructure of CeCoIn5 is also a good platform to realize
TSC based on our scenario.

2. Frequency and intensity of laser light

In this section, we used the high-frequency expansion
in the Floquet theory and thus, strictly speaking, the fre-
quency must be sufficiently high and off-resonant. Since
the frequency has to be higher than the typical energy
scale of the original Hamiltonian, which is the band width
D ∼ 8t corresponding to the order of 1-10 eV. Thus,
laser light should be visible or near-ultraviolet. As for
the resonance, while there exist many unoccupied bands
above Fermi energy, we have to choose an appropriate
frequency so as to make it off-resonant. While it is not
easy to strictly achieve all the above conditions in ex-
periments, our result is expected to be approximately
valid and the TSC should appear even out of these con-
ditions. This is because the TSC in our model is known to
universally appear in noncentrosymmetric systems with-
out time-reversal symmetry40. Even if we change the
frequency, the symmetry properties are unchanged. In-
deed, the gap opening at the Dirac nodes predicted by
the high-frequency expansion126 have been observed in
experiments even when the frequency is much lower than
the theory135,137.

We mentioned above that the laser light opens the gap
at the nodal point in superconducting gap and then TSC
is realized with infinitesimally weak intensity of light.
However, the weak intensity opens only a tiny gap which
is fragile against perturbations and cannot be observed
in experiments. To observe it, the gap must exceed the
energy scale of thermal excitations at finite temperature.
Thus, there exists the minimum intensity to observe the
TSC in experiments. We estimate it from the formula



16

representing the size of the energy gap∣∣∣∣∣µB(H̃(k)ẑ) · (ĝ(k)× d(k))

αg̃(k)

∣∣∣∣∣
k=k0

∼ 4α2

ω

∆p

α̃
J1(Ax)J1(Ay),

(49)

with α̃ ≡ (J0(Ax)2 + J0(Ay)2)1/2α. The admixed p-
wave component ∆p is roughly estimated as ∆p ∼
∆dα̃/EF

39,151. Assuming typical values as α = 0.1 eV,
ω = 10 eV and ∆d/EF = 0.1, we need Ax = Ay = 1.21
to induce the superconducting gap 0.1 meV ∼ 1K. The
corresponding electric field is almost 600 MV/cm. It is
the minimum amplitude to observe TSC in the experi-
ments at low temperatures around 1 K. On the other
hand, the formula (49) implies that there is a realizable
maximum gap size since the Bessel function J1(x) takes
the maximum value(∼ 0.58) at x ∼ 1.84, which corre-
sponds to the electric field amplitude E ∼ 1 GV/cm.
With this intensity, the energy gap becomes 0.4 meV for
the above parameter set. For realizing a larger gap, we
need to prepare material with larger spin-orbit coupling
or apply laser with lower frequency.

3. Experimental method

To obtain the strong intensity to realize the TSC, we
have to use a short laser pulse whose time scale is typ-
ically the order of ten femtoseconds or sub-picoseconds.
Therefore, the phenomena must be transient and they are
called ultrafast phenomena. To observe the ultrafast phe-
nomena, the methods must be time-resolved and achieve
a good time resolution. Indeed, time-resolved opti-
cal measurements135,136 and transport measurements137

have been used to observe the Floquet states in solids.
The optical and transport properties are expected to be
changed transiently reflecting the TSC only when apply-
ing the laser light. By the transport measurement, it
should be possible to probe the transient signature of
the Majorana edge modes. With optical measurements,
the gap opening at the Fermi level is a good signature
to be probed. For this purpose, time-resolved ARPES
would be most promising because the nodal structure of
the superconducting gap in cuprates has already been ob-
served in equilibrium ARPES measurements152. Another
approach is time-resolved STM measurement153–156. It
can reveal the spatially-resolved information which can
be direct evidence of the Majorana edge modes. There-
fore, we believe this is an important direction to explore
the laser-induced topological phases experimentally.

F. Summary of this section

We explained our proposal to realize d-wave TSC with
laser light. Based on the concept of the Floquet engi-
neering, we have considered the realization of TSC with a
periodic driving by laser fields. To study the periodically

driven system, we have used the Floquet theory and the
high-frequency expansion. We have derived the effective
model and discussed its topological properties. Then, we
have found that TSC characterized by the Chern num-
ber is realized with infinitesimally small intensity of laser
light. We have also discussed the experimental setup
about materials and laser light (frequency and intensity)
and experimental probes.

There are various future directions left to be studied.
One is to investigate different driving schemes. While we
have studied the high frequency driving, there have been
proposed the methods to obtain the effective Hamilto-
nian for different driving schemes such as low frequency
driving or resonant frequency driving157,158. It should be
interesting to investigate how TSC is realized with these
approaches. Whereas we can only study the prethermal
steady states with these approaches since they are based
on static effective Hamiltonian, it should also be of inter-
est to calculate the real-time dynamics induced by laser
irradiation and study how TSC emerges in the time evo-
lution. Another direction is to study superconductors
in other classes. For instance, we recently showed that
transition metal dichalcogenide bilayers with circularly
polarized laser light also become a topological supercon-
ductor while they are s-wave superconductors and do not
have strong spin-orbit coupling159. We believe that the
application of laser light provides a useful approach to
change the quantum states of matter in a highly control-
lable way and open a new avenue to study various exotic
states of matter including TSC.

While we study the external drive with AC electric
fields, it is also interesting to consider a DC (static) drive.
Recently, it has been shown that d-wave topological su-
perconductivity can be induced with applying a DC su-
percurrent69. The advantageous point is that this setup
is free from the heating problem which is crucial for the
Floquet engineering as explained above. We believe it
is important to further explore a new pathway to realize
TSCs for finding more useful and realizable ones.

IV. TOPOLOGICAL SUPERCONDUCTIVITY
IN LOCALLY NONCENTROSYMMETRIC

MULTILAYERS

While the superconductivity without inversion sym-
metry has been a topic of interest for a long time, at-
tention has been paid to the global crystallographic sym-
metry of systems. This is mainly because the Kramers
theorem for the degeneracy of electronic states relies on
the global inversion symmetry in addition to the time-
reversal symmetry. To lift the Kramers degeneracy at
a given momentum, either inversion symmetry or time-
reversal symmetry is required to be broken. Actually,
the spin splitting in the electronic states [see Eq. (6)] is
a characteristic property of the systems lacking global
inversion symmetry. We have dealt with TSC in such
globally noncentrosymmetric systems in Secs. II and III.
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Here we switch the topic to locally noncentrosymmet-
ric superconductivity. Even when the global inversion
symmetry in the crystal structure is preserved, the lo-
cal site symmetry of atoms may be broken. The crystals
with such symmetry are now called locally noncentrosym-
metric crystals. Although less attention was paid to the
locally noncentrosymmetric systems, recent studies shed
light on unique properties of the systems which are at-
tracting interest in a broad range of the fields from anti-
ferromagnetic spintronics160 to exotic superconductivity.

For the basic properties of superconductivity in the
locally noncentrosymmetric systems we can refer to an
early-stage review article116. For instance, the selec-
tion rule for Cooper pairing161, anomalous paramagnetic
effect162, field-induced odd-parity superconductivity163,
and Fulde-Ferrell-Larkin-Ovchinnikov state with unusual
phase modulation164 have been outlined. For one of the
developments after Ref. 116, in this article, we review
ideas and results of the TSC in the field-induced odd-
parity superconducting state. Recent experimental sup-
port in CeRh2As2

165 is also briefly discussed.

A. Model and electronic states

FIG. 12. Illustration of the multilayer crystal structure163.
(a) Bilayers and (b) trilayers. Blue bars represent atomic
layers. Layer dependence of the Rashba ASOC and order
parameters in the BCS and PDW states are shown.

Here we focus on a typical and realistic crystal struc-
ture lacking local inversion symmetry with keeping global
inversion symmetry. An illustration of the multilayer
crystalline structure is shown in Fig. 12. Since an in-
version center exists at the center of multilayers, global
inversion symmetry is preserved. However, the local in-
version symmetry on the outer layers is broken. Various
compounds naturally crystallize in the multilayer struc-
ture. Examples of bulk crystals are found in a broad class
of materials from high-Tc cuprate superconductors150

to a heavy-fermion superconductor CeRh2As2
165. Fur-

thermore, recent advances in technology have provided
a way to synthesize artificial 2D systems with multi-
layer structures. For examples, heavy-fermion superlat-
tices97–99,166,167 and van der Waals heterostructures168

are current topics of interests. We will review a heavy
fermion superlattice CeCoYb5/YbCoIn5 in Sec. V.

Superconductivity in the locally noncentrosymmetric
multilayers is modeled by the following minimal Hamil-

tonian,

H = H0 +HI , (50a)

H0 =
∑

k,s,s′,m

[ξ(k)σ0 + αmg(k) · σ − µBH · σ]ss′c
†
ksmcks′m

+
∑

k,s,〈m,m′〉

t⊥(k)c†ksmcksm′ , (50b)

HI =
1

2N

∑
k,k′,s,s′,m

Vss′(k,k
′)c†ksmc

†
−ks′mc−k′s′mcksm,

(50c)

where the index for layers m runs from 1 to M (M -layer
system). The first term in the single-particle part H0

includes the in-plane kinetic energy, ASOC, and Zeeman
coupling. While the local inversion symmetry breaking
gives rise to an ASOC at each layer, the global inversion
symmetry constrains the layer-dependence of the cou-
pling constant. The ASOC coupling constant, αm, must
be layer-dependent and change the sign after the layer
permutation by the inversion operation. Thus, it has the
form,

(α1, α2) = (α,−α) in bilayer systems, (51a)

(α1, α2, α3) = (α, 0,−α) in trilayer systems, (51b)

as illustrated in Fig. 12. More generally, the relation
αm = −αM+1−m has to be satisfied. The second term
in H0 represents the interlayer hopping with t⊥(k), and
HI is an effective interaction term stabilizing supercon-
ductivity.

Electronic structures in the normal state are obtained
by diagonalizing the single-particle part, H0. The energy
band in the bilayer systems at H = 0 is

E±(k) = ξ(k)±
√
α2g(k)2 + t⊥(k)2, (52)

and all the bands are two-fold degenerate in accordance
with the Kramers theorem. Comparing this with Eq. (6),
we recognize that the layer-dependent ASOC is additive
to the interlayer hopping. Therefore, it may be hard to
extract contributions of the ASOC in the band disper-
sion. On the other hand, we can see a characteristic
feature in the wave function. Analytic expressions of the
wave function have been provided in Ref. 162, and we
here discuss the limiting cases for bilayers. In the weak
ASOC limit, αg(k)/t⊥(k) → 0, the wave functions are
conventional bonding and anti-bonding orbitals. In the
strong ASOC limit, t⊥(k)/αg(k)→ 0, the Kramers pairs
are formed by

{|1, ↑〉, |2, ↓〉}, and {|1, ↓〉, |2, ↑〉}, (53)

in which spin (s =↑, ↓) and sublattice (layer, m = 1, 2)
degrees of freedom are entangled. A schematic illustra-
tion of the electronic states is shown in Fig. 13. The spin
and sublattice entangled electronic states discussed above
are recently called ”hidden spin polarization”169, because
the feature is hidden in the band dispersion, Eq. (52).
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Such electronic structures have been observed in vari-
ous compounds by the spin-resolved ARPES170–173 and
polarization-resolved optical measurements174.

FIG. 13. Spin-momentum locking in the bilayer Rashba
model162. Direction of spin orientation is opposite between
the layers, because the Rashba spin-orbit coupling is opposite
(α1 = −α2). The interlayer hopping couples the states with
different energy.

It is expected from the above results that effects of
the ASOC are significant when the ASOC is compara-
ble or larger than the inter-sublattice hopping. This is
true in most cases. Therefore, a strategy for uncover-
ing features of locally noncentrosymmetric systems dif-
ferent from even-locally centrosymmetric systems is to
study the case with a small t⊥(k). Actually, intriguing
phenomena, such as field-induced odd-parity supercon-
ductivity175–177, have been shown in the systems with
vanishing inter-sublattice hopping t⊥(k) = 0 at symmet-
ric points in the Brillouin zone5,175–179. Disappearance
of the inter-sublattice hybridyzation may be ensured by
nonsymmorphic and/or rotation symmetry180,181. The
nodal line excitation in nonsymmorphic odd-parity su-
perconductors originates from this property76,182–188.

B. Odd-parity superconductivity

In this section, we discuss the field-induced odd-parity
superconductivity163. Although the model (50) and its
straightforward generalization are applicable to generic
multi-sublattice systems, such as bilayer Ising supercon-
ductors159,168,176,189, we here focus on the multilayer
Rashba system, supposing cuprate superconductors150,
heavy-fermion superlattices97–99,166,167, and a recently
discovered superconductor CeRh2As2

165.
On the 2D square lattice, we have ξ(k) and g(k)

in Eqs. (15a) and (15b) as in the previous sections.
Hereafter, we take t′ = 0 for simplicity. Suppos-
ing weakly-coupled multilayers, we assume a small
and momentum-independent interlayer hopping t⊥(k) =
t⊥ � W , where W is the band width. Accordingly,
only the intralayer interaction is taken into account,
which is given by Vss′(k,k

′) = −Vsψs(k)ψs(k
′)δs,−s′ −

Vt [ψt1(k)ψt1(k′) + ψt2(k)ψt2(k′)]. The first term with
the coupling constant Vs is the pairing interaction in

the spin-singlet channel. We here consider either s-
wave or d-wave pairing, namely, ψs(k) = 1 or ψs(k) =
cos kx − cos ky. The second term is the interaction in

the spin-triplet p-wave channel, ψt1(k) =
√

2 sin kx and

ψt2(k) =
√

2 sin ky. In the following part, we study dom-
inantly spin-singlet pairing states and assume Vs > Vt,
because the spin-singlet superconductors are much more
ubiquitous than the spin-triplet ones.
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FIG. 14. Phase diagrams of the bilayer Rashba supercon-
ductors in the Hz-T plane163. The BCS and PDW phases
are shown. The dashed lines are the first-order phase tran-
sition lines. (a) α/t⊥ = 0, (b) α/t⊥ = 1, (c) α/t⊥ = 2, (d)
α/t⊥ = 3. We set t⊥ = 0.1 and µ = 2 in the unit t = 1.

The BCS-type mean-field theory reveals the Hz-T
phase diagrams in Fig. 14. Here, we consider the sim-
plest case, namely, purely spin-singlet s-wave pairing
state in bilayers. The superconducting order parame-
ter has a simple form, ∆mss′ = ψm(iσy)ss′ , and it can
depend on layers. The two phases in Fig. 14 have dis-
tinct layer-dependence; (ψ1, ψ2) = (∆,∆) in the BCS
state while (ψ1, ψ2) = (∆,−∆) in the pair-density wave
(PDW) state. The BCS state is stable at zero magnetic
field, H = 0, so as to gain the Josephson coupling en-
ergy. On the other hand, the PDW state is stable in the
high magnetic field region, when the ASOC strength is
comparable or larger than the interlayer hopping. As we
emphasize later, the PDW state is an odd-parity super-
conducting state, although it is mainly stabilized by the
spin-singlet pairing. Thus, Fig. 14 reveals field-induced
parity transition in the superconducting state.

The phase diagrams are understood by analyzing the
gap function in the band basis. Since the bilayer model
is a two-band model, the gap function is defined for each
band and obtained by a unitary transformation of the
order parameter in the sublattice basis. When the spin-
triplet paring is neglected as in the calculations of Fig. 14,
the gap functions of the two bands are equivalent, and
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they are obtained as162,

∆BCS = ∆, (54)

in the BCS state, while

∆PDW(k) =
αg(k)√

α2g(k)2 + t2⊥
∆, (55)

in the PDW state. Equation (55) indicates that intra-
band Cooper pairs vanish in the PDW state when α =
0. Indeed, the pairs are formed between the bond-
ing and anti-bonding orbitals with nonequivalent energy
dispersion. Such pairing state is unstable as in the
spin-polarized state beyond the Pauli-Chandrasekhar-
Clogston limit. Therefore, Fig. 14(a) for α = 0 does
not show the PDW phase. When we switch on the layer-
dependent ASOC leading to the hidden spin polarization,
the gap opens at the Fermi level, which makes the PDW
state meta-stable. Although it is still less stable than the
BCS state at H = 0 because of |∆PDW(k)| < |∆BCS|, the
PDW state is thermodynamically stable in the high-field
region. This is because the paramagnetic depairing effect
is almost completely suppressed in the PDW state. The
Pauli-Chandrasekhar-Clogston limit of the upper critical
field is roughly estimated as

HP =
HP

0√
1− χs/χn

, (56)

where χs (χn) is the spin susceptibility in the su-
perconducting (normal) state and HP

0 is the Pauli-
Chandrasekhar-Clogston limit of spin-orbit coupling free
systems. Both numerical and analytic calculations have
shown the anomalous paramagnetic effect162, that is,
χs/χn = 1 in the PDW state while 0 < χs/χn < 1
in the BCS state. Since the critical field is higher in
the PDW state than the BCS state, field-induced phase
transition occurs from the BCS state to the PDW state.
The phase diagrams in Fig. 14 are determined by the
competition between the paramagnetic depairing effect
and decrease in the intra-band gap function. The PDW
phase is stabilized as the parameter α/t⊥ increases, as
expected. When the interaction in the spin-triplet chan-
nel is taken into account, the PDW phase is furthermore
stabilized190. We have obtained similar phase diagrams
for the d-wave superconducting state and for the trilay-
ers191. An example for the trilayer system is shown in
Fig. 15, for instance163. We see the PDW phase as well
as the additional crossover and first-order transition, at
which the ratio of order parameters on the outer and
inner layers changes with keeping the global symmetry.

The sign-reversing order parameter of superconduc-
tivity was first proposed for bilayer systems at H = 0
by Nakosai et al.192. However, fine-tuning of the band
structure and interaction is required for the stable PDW
state at H = 0. On the other hand, the PDW state is
ubiquitously stabilized at H 6= 0 in the locally noncen-
trosymmetric superconductors close to the Pauli limit.
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FIG. 15. Phase diagram of the trilayer Rashba supercon-
ductors for α/t⊥ = 3. The dashed lines are the first-order
phase transition lines. Dash-dotted and dashed lines in the
BCS phase indicate the crossover and first-order transition,
respectively. See Refs. 163 and 190 for details.

The phase diagrams in Figs. 14 and 15 are obtained in
the Pauli limit, namely, by neglecting the orbital effect.
Stability of the PDW state against the orbital effect has
been shown in Ref. 193.

Interestingly, the PDW state is an odd-parity su-
perconducting state although the superconductivity is
caused by the spin-singlet Cooper pairs. The odd-
parity spin-singlet superconductivity looks incompatible
with the text-book understanding of the BCS theory.
However, the inversion operation accompanied by the
layer permutation gives the additional negative sign in
the representation of the PDW order parameter, which
changes the parity of superconductivity. For the tetrag-
onal D4h system, the irreducible representation of the
s-wave PDW state is Au, which is the same as the spin-
triplet pxŷ − pyx̂ state. Thus, Figs. 14 and 15 show
the field-induced transition from an even-parity super-
conducting state to an odd-parity one. This provides a
way to realize odd-parity superconductivity without rely-
ing on the rare spin-triplet Cooper pairs. As we discuss in
the next subsection, the field-induced odd-parity super-
conducting state is a candidate for topological crystalline
superconductivity.

In the experiments, evidence for the PDW state and
even-odd phase transition was recently obtained for the
analogous bulk compound, CeRh2As2

165. The phase
transition in the superconducting state has been ob-
served, and the phase diagram resembles the theoretical
prediction in Fig. 14. After the experimental report of
CeRh2As2, several theoretical studies investigated the ef-
fects of 3D stacking structure, interlayer pairing, and dis-
orders on the anomalous paramagnetic effect and phase
diagram177,194–197. The present results basically support
the parity transition in the superconducting state.

So far we considered the magnetic field along the c-axis.
When the magnetic field is perpendicular to the c-axis,
the Fulde-Ferrell-Larkin-Ovchinnikov state with unusual
phase modulation164, named complex stripe state, is sta-
bilised in the Pauli limit. The PDW state may also be
stabilized in this field direction when the paramagnetic
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effect is competing with the orbital effect198.

Another representative of the ASOC in superconduc-
tors is the Zeeman-type ASOC in triclinic and hexag-
onal systems, where the g-vector is parallel to the c-
axis199–201. With the choice of the Zeeman-type ASOC
instead of the Rashba ASOC, the model corresponds to
the bilayer Ising superconductors168. In contrast to the
multilayer Rashba superconductors, the PDW state may
be stabilized in this case by the in-plane magnetic field.
Realization in the bilayer MoS2

168 has been proposed176,
and experimental progress is awaited.

C. Topological mirror superconductivity

In the search for TSC, the odd-parity superconduct-
ing state has been sought as a strong candidate. In the
usual setup, odd-parity superconductivity is caused by
spin-triplet Cooper pairs whose realization is established
only in few compounds, mainly in Uranium-based heavy-
fermion systems77,202. On the other hand, the field-
induced PDW phase is an odd-parity superconducting
state due to the spin-singlet pairing, which occurs widely
in nature. Therefore, we may expect TSC in the PDW
phase, and its clarification may open a new route to re-
alize TSC.

As discussed in theoretical studies for the PDW
phase191,203,204, it is hard to realize the TSC in terms
of the so-called topological periodic table based on the
Altland-Zirnbauer symmetry class1–3. The symmetry
class D implies the Z classification in two dimension,
and the topological invariant is the Chern number. How-
ever, to obtain a finite Chern number, fine-tuning of the
parameters is required to cause the Lifshitz transition
as in the case of Rashba superconductors in magnetic
fields17–21. Such fine-tuned parameters are hard to be
realized in the intrinsic superconductors.

However, the above discussion does not mean that
the PDW phases are topologically trivial. It is now
widely known that the topological properties are en-
riched by crystalline symmetry. The topologically non-
trivial insulators and superconductors protected by crys-
talline symmetry are named topological crystalline in-
sulator/superconductor7 and the classification theories
have been extensively developed for them205–209. Below
we show that the PDW state may be a topological crys-
talline superconductor protected by the mirror symme-
try191,203,204.

In the following, the discussions are based on the BdG
Hamiltonian in which the interaction term Eq. (50c) is
approximated by the BCS-type mean field theory. The

BdG Hamiltonian reads

H =
∑

k,s,s′,m

[ξ(k)σ0 + αmg(k) · σ − µBH · σ]ss′c
†
ksmcks′m

+
∑

k,s,〈m,m′〉

t⊥c
†
ksmcksm′

+
∑

k,m,s,s′

∆mss′(k)c†kmsc
†
−kms′ + H.c.. (57)

The layer-dependent order parameter can then be pa-
rameterized by ∆̂m(k) = [ψm(k) + dm(k) · σ]iσy, where
ψm(k) and dm(k) represent the spin-singlet and spin-
triplet components of order parameters on the layer m,
respectively. For the d-wave (s-wave) superconductor we
adopt ψm(k) = ∆m(cos kx−cos ky) (ψm(k) = ∆m). The
p-wave component is induced by the spin-orbit coupling
and pairing interaction in the spin-triplet channel, that
is dm(k) = am(sin ky, sin kx, 0) + ibm(− sin kx, sin ky, 0)
for the d-wave superconductor, while dm(k) =
am(− sin ky, sin kx, 0) + ibm(sin kx, sin ky, 0) for the s-
wave superconductor. For simplicity, we hereafter ignore
the magnetic-field-induced component, bm = 0. Defi-
nition of the BCS and PDW states is straightforwardly
extended to more-than-two-layer systems:

BCS state : ψm(k) = ψM+1−m(k), (58a)

dm(k) = −dM+1−m(k), (58b)

PDW state : ψm(k) = −ψM+1−m(k), (59a)

dm(k) = dM+1−m(k). (59b)

The BdG Hamiltonian is represented as H =
1
2

∑
k Ψ†kH(k)Ψk with use of Nambu operators Ψ†k =

(c†ksm, c−ksm) in 4×M dimension.
The multilayer structures illustrated in Fig. 12 preserve

the mirror symmetry with respect to the central ab-plane.
Thus, the superconducting states have a well-defined mir-
ror parity. The BCS state is mirror-even, while the PDW
state is mirror-odd. Accordingly, the BdG Hamiltonian
obeys the mirror symmetry.

M±xyH(k)M±†xy = H(k), (60)

with the mirror reflection operator in the particle-hole
space, M+

xy (M−xy) for the mirror-even (mirror-odd)
state. Equation (60) guarantees that the BdG Hamilto-
nian can be block-diagonalized in the eigenbasis ofM±xy.
Thus, the system is divided into the two subsectors cor-
responding to the sector Hamiltonian H±λ (k) (λ = ±1)
with λi as eigenvalues of M±xy.

Here, let us focus on the PDW state. The mirror re-
flection operator for the mirror-odd PDW state is writ-
ten as M−xy = iσzτ0Pz with [Pz]mm′ = δmM−m′ being

the layer permutation operator. Noticing (M−xy)2 = −1

and the anti-commutation relation {M−xy, C} = 0, which
ensure the particle-hole symmetry closed in each mirror
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sector, we recognize that the block-diagonalized Hamil-
tonian for each sector belongs to class D203. Note the the
time-reversal symmetry is broken in each mirror sector
even at zero magnetic field. Therefore, the classification
of 2D systems is Z characterized by the Chern number,

νλ =

∫
BZ

d2k

2π
Fλ(k), (61a)

with

Fλ(k) = ∂kxA
λ
y (k)− ∂kyAλx(k), (61b)

Aλµ(k) = i
∑
n:occ

〈un,λ(k)|∂µ|un,λ(k)〉. (61c)

Here, |un,λ(k)〉 denotes the eigenvector of the sector
Hamiltonian Hλ(k); Hλ(k)|un,λ(k)〉 = |un,λ(k)〉Enλ
(n = 1, · · · ,dimHλ). Different from previous sections for
noncentrosymmetric superconductors, the Chern number
is defined for each mirror sector. Because of the particle-
hole symmetry in each sector, the stable Majorana state
appears on the surface, when the Chern number is odd.

Because each mirror sector follows the Z-classification,
the total system follows the Z×Z-classification. For con-
venience, we rewrite the topological invariants

νM =
ν+ − ν−

2
, νtot = ν+ + ν−. (62)

where the mirror Chern number νM
210 is introduced,

while the total Chern number is νtot. When the total
Chern number is zero as the cases we consider here, the
mirror Chern number is an integer. In accordance with
the bulk-boundary correspondence, νM and νtot predict
the numbers of helical Majorana edge modes and chiral
edge modes, respectively.

Although the mirror Chern number depends on the pa-
rameters of the model191,203, below we discuss the rep-
resentative results for the cases where the magnetic field
and interlayer hopping do not cause the Lifshitz tran-
sition. In the weakly coupled multilayer systems, this
condition is satisfied in a wide range of parameters. The

results are summarized in Table I, and we discuss one by
one below.

s-wave SC d-wave SC
Bilayer 0 4
Trilayer 1 1

Quad-layer 0 8

TABLE I. Representative values of the mirror Chern number
νM in the multilayer PDW state191,203,204.

First, we discuss the bilayer system191,203. The
layer-dependent order parameter is represented by
[ψ1(k), ψ2(k)] = ψ(k) [1,−1] and [d1(k),d2(k)] =
d(k) [1, 1]. Unitary transformation diagonalizing the mir-
ror reflection operator leads to the sector Hamiltonian

H−±(k) =(
H′(k)± t⊥σz −[ψ(k)− d(k) · σ]iσy

iσy[ψ(k)∗ − d∗(k) · σ] −H′T (−k)∓ t⊥σz

)
,

(63)

where H′(k) = ξ(k)σ0 − µBHzσz − αg(k) · σ. Interest-
ingly, the sector Hamiltonian is equivalent to the BdG
Hamiltonian of the noncentrosymmetric single-layer su-
perconductors (see Sec. II), when we regard µBH

′
z(λ =

±) = µBHz ∓ t⊥ as fictitious Zeeman fields. From this
correspondence, topological properties are clarified based
on the results in Sec. II. For the S+p-wave superconduc-
tor, the Chern numbers are trivial, ν± = 0, unless the fic-
titious magnetic field causes the Lifshitz transition17,18.
On the other hand, for the D + p-wave superconductor,
we can apply the results in Sec. II and obtain ν± = ±4.
Thus, the field-induced D+ p-wave PDW state is identi-
fied as a topological mirror superconductor specified by
the mirror Chern number, νM = 4.

Next, we discuss the trilayer PDW state191,203.
The layer-dependent order parameter is represented
by [ψ1(k), ψ2(k), ψ3(k)] = [ψout(k), 0,−ψout(k)] and
[d1(k),d2(k),d3(k)] = [dout(k),din(k),dout(k)]. As a
result of the block diagonalization of the BdG Hamilto-
nian, we obtain the sector Hamiltonian:

H−+(k) =


ξ+(k) αk+

√
2t⊥ 0 −dout−(k) −ψout(k)

αk− ξ−(k) 0 0 ψout(k) dout+(k)√
2t⊥ 0 ξ+(k) −din−(k) 0 0

0 0 −d∗in−(k) −ξ+(k) −
√

2t⊥ 0

−d∗out−(k) ψout(k)∗ 0 −
√

2t⊥ −ξ+(k) αk−
−ψout(k)∗ d∗out+(k) 0 0 αk+ −ξ−(k)

 , (64)

H−−(k) =



ξ+(k) αk+ 0 0 −dout−(k) −ψout(k)

αk− ξ−(k)
√

2t⊥ 0 ψout(k) dout+(k)

0
√

2t⊥ ξ−(k) din+(k) 0 0

0 0 d∗in+(k) −ξ−(k) 0 −
√

2t⊥
−d∗out−(k) ψout(k)∗ 0 0 −ξ+(k) αk−
−ψout(k)∗ d∗out+(k) 0 −

√
2t⊥ αk+ −ξ−(k)

 , (65)
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where ξ±(k) = ξ(k) ∓ µBHz, k± = sin ky ± i sin kx, and
dout/in±(k) = d xout/in(k) ± id yout/in(k). Although we do

not know their counterpart in existing systems, we have
shown that both S+p-wave and D+p-wave PDW states
are topological mirror superconductors with the mirror
Chern number, νM = 1. Instead of discussing the details
of the calculation, we show an intuitive understanding of
the S + p-wave PDW state. In this case, the gap does
not close when we adiabatically change the parameter as
t⊥ → 0. In the limit, the layers are isolated. The two
outer layers are noncentrosymmetric S + p-wave super-
conductors which are mostly trivial as we discussed for
bilayers. On the other hand, the sector Hamiltonian of
the inner layer is equivalent to the spinless chiral p-wave
superconductor, known as a topological superconductor
hosting Majorana fermions12,13. Indeed, this part gives
nontrivial Chern numbers ν± = ±1 leading to νM = 1.
Although such an intuitive understanding has not been
obtained for the D + p-wave state, we numerically ob-
tained the same topological invariant, νM = 1.

Finally, we discuss the quad-layer PDW state204. By
symmetry, the Rashba ASOC, spin-singlet gap function,
and spin-triplet one follow the layer dependence,

[α1, ψ1(k),d1(k)] = [α,ψ(k),d(k)], (66a)

[α2, ψ2(k),d2(k)] = [α′, ψ′(k),d′(k)], (66b)

[α3, ψ3(k),d3(k)] = [−α′,−ψ′(k),d′(k)], (66c)

[α4, ψ4(k),d4(k)] = [−α,ψ(k),d(k)]. (66d)

Setting ψ(k) := ∆d(cos kx − cos ky) and d(k) :=

a (sin ky, sin kx, 0)
T

with real numbers ∆d and a in accor-
dance with the B-representation of the C4 point group,
we numerically obtain the phase diagram in Fig. 16. In
Fig. 16, we plot the Chern numbers ν± against the Zee-
man field µBH and the chemical potential µ. This fig-
ure is obtained by employing the Fukui-Hatsugai-Suzuki
method57. In Figs. 16(a) and (b), we can see that the
mirror Chern number and the total Chern number take
(νM, νtot) = (8, 0) when the magnetic field is weak, pre-
dicting eight pairs of helical Majorana edge modes. The
presence of these modes has been confirmed by the com-
putation of energy spectrum204 (see Fig. 17 in the next
section).

D. Summary and outlook of this section

In this section, we have shown the field-induced tran-
sition from the even-parity superconducting state to the
odd-parity state, which arises from the unique electronic
structure in locally noncentrosymmetric multilayer sys-
tems. Based on this finding, we propose a way to realize
odd-parity TSC by spin-singlet Cooper pairing, which are
ubiquitous in materials.

The field-induced odd-parity superconducting state,
named PDW state, was identified as a topological crys-
talline superconductor protected by mirror reflection
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FIG. 16. (a) and (b): Chern numbers of mirror sectors
ν+ and ν− against the magnetic field µBH and the chemical
potential µ, respectively204. The Chern numbers are shown
by numbers enclosed with solid lines. (c): Chern numbers as
functions of the magnetic field. (d) The mirror Chern number
and the total Chern number as functions of the magnetic field.
These data are obtained for t = 1.0, t⊥ = 0.1, α = 0.3,
α′ = 0.2, ∆d = ∆′d = 0.05, a = −0.01, and a′ = −0.0067. In
panels (c) and (d), the chemical potential is fixed to µ = −0.1.

symmetry. The topological invariant, mirror Chern num-
ber, shows non-monotonic dependence on the number of
layers (see Table. I). For the d-wave superconductors, the
representative mirror Chern numbers are νM = 4, 1, and
8 for bilayers, trilayers, and quad-layers, respectively. All
of these topological phases have intriguing properties.
The bilayer PDW state is an analog of topological d-
wave superconductivity discussed in Secs. II and III. The
trilayer PDW state may host stable Majorana fermion
on boundaries because νM ∈ 2Z + 1. As we show in the
next section, the quad-layer PDW state is a testbed for
the reduction of TSC by interactions, because νM ∈ 8Z.
These results shed light on the strongly correlated elec-
tron systems with multilayer structures as a fascinating
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platform of the TSC. For example, cuprate superconduc-
tors naturally form the multilayer structure150, while re-
cent developments of the heavy-fermion superlattice en-
able artificial control of the multilayer structure98,99.

Very recently, the field-induced odd-parity supercon-
ducting state has been reported in the bulk CeRh2As2

having the locally noncentrosymmetric bilayer struc-
ture165. Motivated by this discovery, interest on the
locally noncentrosymmetric superconductivity and the
PDW state is increasing194–197. Thus, attention is natu-
rally paid to the possible TSC in CeRh2As2. Classifica-
tion of topological phases is different from the case in this
section, because not the mirror symmetry but the non-
symmorphic glide symmetry is preserved in CeRh2As2.
To clafiry TSC in CeRh2As2, topological analysis com-
bined with a first-principles band calculation has been
carried out. It shows that the PDW state in CeRh2As2

is a topological crystalline superconductor protected by
the nonsymmorphic glide symmetry and specified by the
glide Z2 invariant211.

V. REDUCTION OF TOPOLOGICAL
CLASSIFICATION BY INTERACTIONS

So far, we have supposed that electron correlations
are negligible. However, extensive theoretical studies
have elucidated that the electron correlations may in-
duce novel topological phenomena which have not been
observed for free fermions. In particular, Fidkowski and
Kitaev212 have pointed out that electron correlations may
change the classification results which play an essential
role for the material searching1–3. Namely, they have an-
alyzed the one-dimensional topological superconductors
which follow the Z-classification at the non-interacting
level and have found that one can gap out the Majo-
rana edge modes without breaking the relevant symme-
try when the number of the gapless Majorana modes is
multiple of eight. This fact indicates that the electron
correlations change the topological classification from Z
to Z8

212. In this review, we refer to this type of phenom-
ena as reduction of the topological classification because
the number of possible topological phases is reduced by
electron correlations. Further extensive theoretical stud-
ies have elucidated that the reduction occurs at any di-
mensions66,213–229, enhancing its significance.

In spite of the above theoretical progress, there are
few experimental studies addressing this issue because of
the absence of candidate platforms. Therefore, it would
make variable advance to theoretically propose a possi-
ble testbed. In this section, we point out the possibility
that a CeCoIn5/YbCoIn5 superlattice system is a feasible
platform of the reduction of the topological classification
from Z× Z to Z× Z8

204.
In the absence of correlations, the heavy fermions con-

fined in the layer of CeCoIn5 can show the topological
crystalline superconductivity following Z × Z, which we
have already discussed in Sec. IV. For quad-layer (bi-

layer) of CeCoIn5, the eight (four) pairs of helical Ma-
jorana modes emerge. In this section, we see that elec-
tron correlations can gap out the helical Majorana modes
without breaking the symmetry when the number of the
helical modes are multiple of eight. Thus, quad-layer
CeCoIn5 can be a testbed of the reduction of the topo-
logical classification from Z× Z to Z× Z8.

A. CeCoIn5/YbCoIn5 superlattice

The CeCoIn5/YbCoIn5 superlattice system is a typical
example of experimentally realizable 2D heavy-fermion
superconductors97–99,166,167. In this system, the thick-
ness of CeCoIn5-layers can be tuned at the atomic level.
Proximity effects between CeCoIn5 and YbCoIn5 are
suppressed due to large mismatch of the Fermi veloc-
ity163,230,231. Thus, 2D heavy fermions emerge in Ce-
layers which show superconductivity around 1K. In the
following, we discuss the 2D superconducting phase in
the subsystem composed of CeCoIn5.

The CeCoIn5 multilayers may be the platform of the
model Eq. (50), because of the following facts. (i) Mirror
reflection symmetry is locally broken owing to the pres-
ence of YbCoIn5-layers98,162,166,167. (ii) Bulk CeCoIn5

is a dx2−y2 -wave superconductor232. (iii) The system is
close to the Pauli limit233. (iv) The CeCoIn5 superlattice
is affected by the strong spin-orbit coupling98,162,166,167.
Thus, we may expect that the field-induced odd-parity
superconducting state, namely, the PDW state is real-
izable in the CeCoIn5 superlattice. The PDW phase of
the quad-layer CeCoIn5 can be described by the BdG
Hamiltonian Eq. (57) with Eq. (66).

Topological phase diagram of the model has been
shown in Fig. 16. For the numerical calculation, we set
parameters for quad-layer CeCoIn5 as follows. (i) In-
tralayer hopping: taking into account mass renormaliza-
tion, we assume the intralayer hopping approximately
3meV. (ii) Pairing potentials: we adopt the pairing po-
tential, ∆d = 0.05t, in accordance with the experimen-
tal observation97 showing the transition temperature ap-
proximately Tc ' 1K. (iii) Rashba spin-orbit coupling:
we set α = 0.3t. First-principles calculations indicate
typical spin-splitting in the heavy fermions as 1000K92.
Here, we have taken into account the renormalization fac-
tor. (iv) Interlayer hopping: we set the interlayer hop-
ping as t⊥ = 0.1t. This is consistent with the angular de-
pendence of the upper critical field, which indicates the
quasi-2D electronic structure and the interlayer hopping
weaker than the Rashba spin-orbit coupling98,166.

Figures 16(a) and 16(b) reveal the mirror Chern num-
ber and the total Chern number (νM, νtot) = (8, 0) in the
weak magnetic field region, predicting the eight pairs of
helical Majorana edge modes localized at each edge. In
order to verify this bulk-edge correspondence, we calcu-
late the energy spectrum E(ky) by imposing the open
(periodic) boundary condition for the x- (y-) direction.
In Fig. 17, we observe eight Majorana edge modes in the
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λ = +1 mirror sector which is consistent with the Chern
number ν+ = 8 in the bulk. For the λ = −1 mirror sector,
the Chern number ν− = −8 predicts the eight Majorana
edge modes propagating in the opposite direction, which
has also been verified by numerics.
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FIG. 17. Energy spectrum of the mirror sector Hamiltonian
H+ under the open (periodic) boundary condition for the x-
(y-) direction. Here, we plot the data around ky = ±π/2.
The edge modes localized around the edge x = 1 (x = L)
are shown with red (blue) symbols. The red lines are for the
guide of the eyes. The data are obtained for the following
parameter set in order to suppress the finite size effects: t =
1.0, t⊥ = 0.1, α = α′ = 0.3, ∆d = ∆′d = 0.4, µBH = µ = 0,
and L = 300. At this parameter set, the topology of the bulk
is characterized by (νM, νtot) = (8, 0).

With the above data, we expect that eight pairs of he-
lical Majorana modes emerge in the quad-layer CeCoIn5

of CeCoIn5/YbCoIn5 superlattices. We stress that the
number of the helical Majorana modes can be tuned in
experiments; e.g., for the bilayer CeCoIn5, four pairs of
helical Majorana modes may emerge (see Sec. IV).

B. Gappability of the helical Majorana modes

Here, we show that the helical Majorana modes can be
gapped out without breaking the mirror reflection sym-

metry when the number of helical edge modes is multiple
of eight.

The effective Hamiltonian for the helical edge modes
is written as

Hedge =
∑
λα

∫
dx [sgn(λ)ηλ,α(x)(−iv∂x)ηλ,α(x)] , (67)

where the summation is taken over λ = ± and α =
1, · · · , 8, and sgn(λ) takes 1 (−1) for λ = + (−). We
note that the single pair of helical Majorana modes
cannot be gapped out without breaking the symme-
try66,212,215–217,222,229. Before analyzing gappability of
the multiple helical Majorana modes, we discuss the sym-
metry beyond the quadratic Hamiltonian. The particle-
hole symmetry changes to the symmetry of fermion num-
ber parity Pf = (−1)Nf with the fermion number op-
erator Nf when we go beyond the quadratic Hamilto-
nian212. Therefore, the relevant symmetry to the helical
gapless edge modes is the symmetry of mirror reflection
and fermion number parity.

Now, by employing bosonization approach, let us see
that one can gap out the eight pairs of helical Majo-
rana modes without breaking the relevant symmetry. To
simplify the analysis, we rewrite the two pairs of helical
Majorana fermions ηλ,α(x) (α = 1, · · · , 8) with a pair of

helical complex fermions f†λ,α := ηλ,2α−1(x) − iηλ,2α(x)

(α = 1, · · · , 4),

Ledge =

∫
dx [KIJ∂τφI∂xφJ − VIJ∂xφI∂xφJ ] . (68)

Here, φI(x) (I = 1, · · · , N) denotes the bosonic field

defined as fI(x) := κIe
−iφI(x)/

√
2πα with the fermion

operator f := (f+,1, f−,1, f+,2, f−,2, · · · , f+,N , f−,N ).
The matrix K := σz ⊗ 1lN×N describes the chirality
(i.e., whether the modes propagate to left or right).
V = v1l2N×2N denotes the velocity. With transforma-
tion laws of fermions Rηλ,α(x)R−1 = −ληλ,α(x) and

Pfηλ,α(x)P−1
f = −ηλ,α(x), we obtain

RφR−1 = φ+ π(1, 0, 1, 0, · · · , 1, 0), (69a)

PfφP
−1
f = φ+ π(1, 1, · · · , 1, 1). (69b)

Here, the mirror reflection operator is defined as R =
e−i

π
2Nf e−iπS

z

Pz
234 with Pz denoting the exchange of the

layers and the z-component of the total spin operator Sz.
We note that introducing a set of cosine terms cos(lTi ·
φ) with n-independent integral vectors l’s gaps out n-
helical edge modes where l’s satisfy the Haldane’s criteria
lTi Klj = 0 for all pair of i, j = 1, · · · , n235.

Examining the presence/absence of the symmetry-
protected gapless edge modes elucidates whether the sys-
tem is topological/trivial. In terms of the bosonization
approach, it can be found by analyzing whether there ex-
ist cosine terms gapping out all of the edge modes without
symmetry breaking. We note that there are two ways to
break symmetry: (i) introducing a cosine term which is
not invariant under the transformation; (ii) spontaneous
symmetry breaking.
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As a first step, we discuss the case of N = 1 where
we can see a pair of helical Majorana modes which are
symmetry-protected. Firstly, we note that vectors l’s
satisfying the Haldane’s criteria are written as

l = l(1,−1), l(1, 1) l ∈ Z. (70)

If l is odd, the cosine term cos(lT · φ) is not invariant
under applying R. If l is even, the cosine term cos(lT ·φ)
preserves the symmetry. We note, however, that reflec-
tion symmetry is spontaneously broken because applying
the operator R shifts 〈lT ·φ〉/l→ 〈lT ·φ〉/l+π (mod 2π).
Thus, there is no cosine term gapping out the edge mode
without symmetry breaking. Therefore, the single helical
Majorana mode is symmetry-protected.

In a similar way, we can discuss the case of N = 2.
In this case, two linearly independent vectors l’s describ-
ing cosine terms are required in order to gap out all of
the edge modes. Namely, at least a pair of helical Majo-
rana modes survives even in the presence of cosine terms
preserving the symmetry236,237.

In the case of N = 4, we can see that the eight
pairs of helical Majorana modes are no longer symmetry-
protected; all of these modes can be gapped out without
symmetry breaking. Specifically, introducing the cosine
terms described by the following four independent vec-
tors l’s gaps out all of edge modes:

lT1 = (1, 0|1, 0|0,−1|0,−1), lT2 = (0, 1|0, 1| − 1, 0| − 1, 0),

lT3 = (1, 1| − 1,−1|0, 0|0, 0), lT4 = (0, 0|0, 0|1, 1| − 1,−1).

(71)

Introducing these cosine terms do not break the symme-
try because the following relations hold for arbitrary i
(i = 1, · · · , 4):

RlTi · φR−1 = lTi · φ (mod 2π), (72a)

Pf l
T
i · φP−1

f = lTi · φ (mod 2π). (72b)

These cosine potentials describe two-body interactions
which can be induced by intralayer antiferromagnetic in-
teractions. Therefore, we can conclude that for N = 4,
the system is topologically trivial because of the electron
correlations. This means that the topological classifica-
tion is reduced from Z× Z to Z× Z8

204.

We note that the problem for N = 3 is reduced to
the one for N = −1 because we know that the system is
topologically trivial for N = 4. In a similar way as the
N = 1 case, we can see that the Majorana modes are
symmetry-protected for N = −1.

Therefore, we end up with the conclusion that the sys-
tem characterized by (νM, νtot) = (8, 0) is topologically
trivial in the presence of electron correlations, indicat-
ing that the CeCoIn5/YbCoIn5 superlattice system may
serve as a testbed of the reduction of topological classifi-
cation.

C. Summary of this section

In this section, we have pointed out that the superlat-
tice system of CeCoIn5/YbCoIn5 can be a testbed of the
reduction of topological classification, Z × Z → Z × Z8.
We have shown that the system may host eight pairs
of helical edge modes protected by the mirror reflection
symmetry. In addition, we have shown that these eight
pairs of helical Majorana modes can be gapped out by in-
teractions without symmetry breaking. For experimental
observation of the reduction, the STM measurement is a
promising possibility. So far, the STM measurement has
been carried out to detect the Majorana modes localized
around the edge of the one-dimensional topological su-
perconductors. In addition, recently, it became possible
to apply the STM measurement to the heterostructures
of CeCoIn5

238. Thus, we consider that the STM mea-
surement may experimentally support the reduction of
topological classification by observing the following be-
haviors: the system hosts Majorana modes for the bilayer
or trilayer of CeCoIn5 while it does not for the quad-layer
systems.

We note that after the proposal for the
CeCoIn5/YbCoIn5 superlattice204 another platform
of the reduction was also proposed; a one-dimensional
system of cold atoms showing Z → Z4

239. For this
system, quantitative calculations are available by the
density-matrix renormalization group (DMRG) analysis.
For the 2D testbed, further numerical analysis, which
takes into account the details of electronic structure and
electron correlations, are awaited. This issue is left as a
future work.

VI. SUMMARY AND OUTLOOK

In this review, we have discussed the TSC based on
the non-chiral d-wave superconductors. Our proposals
rely on the globally or locally noncentrosymmetric crys-
tal structure, where the spin-orbit coupling may affect
superconducting properties. For noncentrosymmetric d-
wave superconductors, the Zeeman term in combination
with the spin-orbit coupling induces effectively chiral gap
function and makes the bulk topological invariant non-
trivial. The mechanism of TSC was explained in analogy
with the quantum anomalous Hall insulator in the Hal-
dane model. In locally noncentrosymmetric supercon-
ductors of either s-wave or d-wave symmetry, the para-
magnetic pair-breaking effect causes the even-odd parity
transition. The resulting topological crystalline super-
conductivity was clarified.

Different from most proposals for topological s-wave
superconductors, the topological d-wave superconductiv-
ity discussed here is realizable without fine-tuning of pa-
rameters, such as spin-orbit coupling, Zeeman term, and
chemical potential. The platform is the 2D heterostruc-
tures of strongly correlated electron systems, and the con-
trollability of recently developed d-wave superconductor



26

heterostructures may enable various topological super-
conducting phases. For example, the quad-layer d-wave
superconductor specified by the mirror Chern number 8
may be a testbed for the reduction topological classifica-
tion, which has not been demonstrated so far.

Previous studies mainly focused on s-wave and spin-
triplet superconductors. However, both of them have
disadvantages. Although the s-wave superconductors are
ubiquitous, fine-tuning of parameters is usually required
for realizing TSC. The spin-triplet superconductors are
possibly topological as it is. However, candidates are
limited in nature. In addition to these directions, the
topological d-wave superconductivity clarified here may
open a new way for searching TSC.

Progress in the topological d-wave superconductivity is
further on-going recently. For instance, chiral d-wave su-
perconductivity in twisted bilayer cuprate superconduc-
tors has been proposed240,241, and experimental efforts
are being conducted for realization100. Furthermore, a
newly discovered superconductor CeRh2As2

165 may be a
bulk candidate of locally noncentrosymmetric topological
superconductors211. Identification of TSC and Majorana
fermions and clarification of the unique properties are
awaited for future studies.
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Appendix A: Derivation of energy dispersion

We show the outline of the derivation of Eq. (12). It

is convenient to work with the Nambu spinor Ψ′k
†

=

(c†k↑, c
†
k↓, c−k↓,−c−k↑) rather than Ψ†k. Then, we obtain

the BdG Hamiltonian corresponding to Ψ′k
†
,

H′BdG(k) = (ξ(k) + g(k) · σ)τz − h · σ
+ {(ψ(k) + d(k) · σ)τ+ + H.c.}, (A1)

with h = µBH and αg(k) → g(k) for simplicity. The
symbol τµ (µ = 0, 1, 2, 3) represents the Pauli matrices
in the Nambu space, with τ± ≡ (τx ± iτy)/2. The essen-
tial procedure of the derivation is a somewhat technical
unitary transformation Us = exp(−iπĝ(k) · στz/4). The
transformed BdG Hamiltonian UsH′BdGU

†
s has the same

form as Eq. (A1) with

g(k)→ gs(k) = g(k)− ĝ(k)× h, (A2)

h→ hs(k) = (ĝ(k) · h) ĝ(k), (A3)

ψ(k)→ ψs(k) = −id(k) · ĝ(k), (A4)

d(k)→ ds(k) = −iψ(k)ĝ(k) + ĝ(k)× (d(k)× ĝ(k)).
(A5)

When we consider the case h ⊥ g(k) (such as for Rashba
systems under h ‖ ẑ), hs = 0 and UsH′BdGU

†
s is formally

equivalent with noncentrosymmetric superconductors in
the absence of Zeeman field. Thus, Eqs. (12) are obtained
by using the formula (5) (Eq. (5) is valid for complex-
valued ψ(k) and d(k) as well). In the presence of a par-
allel Zeeman field, it causes Pauli pair-breaking effect by
±hs(k) · ĝs(k), leading to the full formula Eq. (12). For
more details, see Ref. 40.
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rectional Majorana edge states has the vanishing total
electric current.
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