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Abstract

Rate-Limiting Steps in Protein Folding
by

Jack Schonbrun

Doctor of Philosophy in Biophysics
University of California at San Francisco

Ken A Dill, Chair

Many proteins fold and unfold with single-exponential (2-state) kinetics, implying
the existence of a transition state. What are the transition state conformations of a
folding protein? We have solved the complete folding kinetics of a simplified protein
model using a rigorous eigenvector method. We conclude that there is an alternative
to barrier-based models for explaining 2-state folding. While Transition-State theory
explains rates in terms of either energy or entropy barriers, the funnel model instead
explains kinetics in terms of entropic acceleration. Single exponential kinetics can
arise from the multiplicity of routes downhill to the native state on funnel- shaped
landscapes. The rate of conformational diffusion at the top of the landscape is faster
than intrinsic bond rotation rates because of the multiplicity of routes, and slows

toward the bottom of the funnel, leading to a separation of time scales (fast at the top,



slowest at the bottom), and to single-exponential kinetics. Model predictions agree
with experiments in giving a ‘chevron’ dependence of folding rate with the strength

of native contacts, one of the main experimental fingerprints of 2-state folding.
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Chapter 1

Transition States in Protein

Folding

Jack Schonbrun and Ken A. Dill



Abstract. Proteins are compler molecules, having thousands of degrees of free-
dom. Why is protein folding often simple, involving only single-ezponential (called
two-state) kinetics? Such kinetics is usually interpreted using transition-state the-
ory, in terms of a reaction coordinate and an activation barrier, either energetic or
entropic. Using a microscopic model, we find a different ezplanation: a rate acceler-
ation, due to the funnel shape of the energy landscape, rather than a deceleration due
to a bottleneck. Folding is fast relative to the microscopic transition rate because of
multiple parallel reaction coordinates. The apparent transition state—the ensemble of
rate-limiting microsteps—is the same ensemble as the denatured conformations, but

with different statistical weights.

The kinetics of protein folding is often remarkably simple. For many proteins,
both folding and unfolding processes are single exponential functions of time (1-5).
And the ratio of the forward to reverse rate constants equals the equilibrium constant.

Such situations can be described in terms of a two-state model,
D& N,

and a corresponding Arrhenius diagram (Figure 1). Arrhenius diagrams originated to
explain why chemical and physical processes are slower than a “speed limit,” kT/h =
0.16 psec, where k is Boltzmann’s constant, T is temperature, and h is Planck’s

constant. The main idea embodied in such diagrams is the concept of a bottleneck,



called the transition state or activated state (6). The same idea is embodied in the
Kramers’ theory for reactions in solution (7).

But protein folding is quite different than chemical reactions. The challenge is
to explain why protein folding is so fast, not why it is slow. Hundreds to thousands
of bonds must rotate for a typical denatured conformation to become native, and
each rotation probably requires 1-100 psec, yet some proteins can fold in as little
as 10 usec (2). There cannot be many mistakes or large barriers. Also, since each
denatured conformation is so different than every other one, there cannot be a single
microscopic trajectory that leads to the folded state.

Theoretical models have provided a microscopic understanding of several aspects
of protein folding kinetics (12-19). Two-state protein folding is now often described
in terms of funnel-shaped energy landscapes (20-22) (see Figure 1b). Deeper on
the landscape represents lower energies, and the width represents the number of
conformations having a given energy. There are many unfolded conformations (high
on the landscape), and very few low-energy native-like conformations (low on the
landscape). This is mainly due to excluded volume: there are relatively few ways a
polymer chain can configure into compact low-energy conformations (23).

But it is not yet clear how two-state folding kinetics can result from a funnel-
like energy surface, which has no apparent bottleneck. Put differently, what mi-
crostates (conformations) collectively constitute the macrostate called the transition

state (T'S), and how do they differ from those that constitute the denatured state
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Figure 1.1: Transition-state explanation of single- exponential processes, such as
protein folding, involves a rate- limiting step, shown as an obligatory thermodynamic
barrier. b, Theory and simulations show that energy landscapes for protein folding
are funnel-shaped, having no apparent microscopic energetic or entropic barriers.
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To address this question, we use a Go model (24,25). Go models are widely used
for studying two-state protein folding (26-29) because such models have two-state
folding and unfolding kinetics, unique lowest-energy native states, exponentially large
conformational searches with chain length, and because full landscape characteriza-
tion is not yet computationally feasible for more detailed models. For the kinetics
problem of interest here, we needed a rigorous and general way to identify the micro-
scopic rate-liming conformations. We use a master equation method (30).

We reach two main conclusions about how two-state protein folding differs from

the traditional transition-state interpretation.
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Figure 1.2: Two different models of microscopic kinetics. Series: When a macro-
scopic flow process results from microscopic fluxes in series, the macroscopic rate is
limited by the microscopic bottleneck rate. The hypothetical numbers illustrate dif-
ferent microscopic step flow rates. Parallel: When microscopic flows are in parallel,
the macroscopic rate is faster than the fastest microscopic rates.

(1) Parallel Routes Accelerate the Flow. Figure 2a shows the principle of a
bottleneck: if microscopic flow processes are in series, one step will be rate-limiting.
The rate of native structure formation would be limited by a particular conformational
transition or the formation of a particular substructure of the protein. Figure 2b
shows an alternative model. In a parallel flow process, the macroscopic flow rate is
faster than the individual microscopic rates. Figure 3 shows that the the overall rate
of folding in our model is faster than almost all of the microscopic conformational
transition rates, hence most closely resembles the parallel flow model.

Why is folding so fast? The explanation is entropic acceleration. A previous



argument (‘the Levinthal paradox’ (31)) suggests that the folding search for the
native structure should be slowest at the earliest stages because the chain has so
many high-energy (open, denatured) conformations to explore. Our model shows the
opposite: the chain wastes the least amount of its folding time in the high-energy
states. The large numbers conspire to speed up folding, not to slow it down. If
the intrinsic rate of transition from conformation ¢ to jj is k;j,, folding can happen
faster than this because conformation 7 could also instead transition to any other
conformation j = 1,2,3,...,jo,..., M that is downhill in energy. This multiplicity
of routes downhill accounts for why the energy level-to-level rates are faster than
the conformation-to-conformation rates. While transition-state theories invoke an
intrinsic mazimum rate kT/h and a slowing step (an energy barrier), the funnel
model explains the high speed of folding in terms of an intrinsic minimum rate and
an acceleration due to the multiplicity of microscopic routes to the native structure.

Single-exponential dynamics is usually taken to imply a relatively unique mi-
croscopic trajectory. How can multiple parallel routes explain the single-exponential
dynamics observed in this model and in experiments? Single-exponential kinetics also
occurs if early steps are fast enough to cause the last steps to be rate-limiting. On
funnel landscapes, folding is fast throughout the high energy levels on the landscape,
but much slower at the end, where the multiplicity of routes is smaller.

(2) The Transition State Conformations are Denatured Conformations

What are the rate-limiting conformations in the funnel model? There are 4 macrostates
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Figure 1.3: The rate of folding is faster than almost all the microscopic transitions
between conformations. The large arrow shows the overall folding rate. The histogram
to the right shows the microscopic transition rates. The small arrows on the left show
the level-to-level transition rates between energy levels: 0 to 1 indicates transitions
at the top of the energy funnel, 1 to 2, is the next level down, etc.

relevant in the model: NV, the single native conformation, D,, the Boltzmann-weighted
denatured ensemble under the unfolding conditions from which folding is initiated,
Dy, the Boltzmann-weighted non-native ensemble under particular folding conditions,
and T'Sy (the apparent transition state), the eigenvector of conformations that fold
to the native state with the single-exponential relaxation time given by the slowest
eigenvalue, under folding conditions.

In transition-state theories, the macrostates (Reactant, Intermediate, Transition
State, Product) are all identifiable as distinct ensembles of microstates (specific
atomic structures) that occur along a single reaction coordinate. Along any such
one-dimensional coordinate, a state A is either ‘before’, or ‘after’ some other state B.
Applied to proteins, it implies the transition state is between—and distinct from—the

denatured state (D) and the native state (N): D - TS — N.
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Figure 1.4: Series: the transition-state model involves macrostates (reactant, transi-
tion state, product) that are small localized ensembles of microstates. Each micro-
scopic structure can be identified as being a member of only one macrostate. Parallel:
the present model shows that the macrostates for two-state protein folding (D, the
denatured state, or T'Sy, the transition state under folding conditions) are broad
ensembles that encompass all the non-native chain conformations. A given chain
conformation is not a unique member of a macrostate.

But Figures 4 and 5 show that our folding model is at variance with these as-
pects of classical rate theory, in two respects. The right side of Figure 4 illustrates
schematically how the T'S; ensemble can be so broad that it includes all the same
conformations that are in D, and D;. Figure 5 shows the distributions from the
model simulations. No individual chain conformation is exclusively in one state D,,
Dy, or T'S; without being in the others at the same time. These ensembles differ only
in the statistical weights of the individual conformations. The folding process is the
evolution of a single ensemble, not a time sequence of distinct ensembles.

Second, the ensembles D,, Dy, and T'S; change with external conditions. If we
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Figure 1.5: “Chevron” plot showing predicted folding rate versus strength of native
contacts. The histograms show the distributions of conformations (most native-like
to the right) under different folding conditions for the denatured ensemble D; (bot-
tom row) and the apparent transition state, T'S; (top row). As conditions become
stabilizing of the native state, both ensembles D; and T'S; become more native-like.
Because of this, the left (folding branch) of the chevron curve shows “rollover”, a de-
viation from linearity. Interestingly, under strong native conditions, the D; ensemble
is more native-like than the T'Sy ensemble.

were to attempt to rank order these macrostates in terms of their structural similarity
to the native state, figure 5 shows that under strong native conditions the order would
be T'S;y — Dy — N. This nonsensical result is a consequence of using a single reaction

coordinate and a series model to represent a process that is intrinsically parallel.
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The principal test of a two-state folding model is whether it predicts the ‘chevron’
(V- shaped) dependence of the folding rate on the driving force (denaturant or tem-
perature) that is observed in experiments (82-35). Figure 5 shows that this model
does so. Moreover, some experiments show small downward curvature on the left
(folding) branch of the chevron plot (86, 37). This is also predicted by the model.
What is the basis for this curvature? Classical theories expect no curvature, based
on assuming that the TS doesn’t change with external conditions. In that light,
the curvature has been explained as resulting from intermediate states (37) or broad
transition states (38). But Figure 5 gives a different explanation, namely that the
apparent transition state ensemble changes with denaturant or temperature. TSy
reaches a limiting native-like distribution under strong native conditions.

Summary Many proteins fold and unfold rapidly with single-exponential (2-
state) kinetics. Previous explanations have been based on transition-state assump-
tions that: (1) that macrostates (D, T'S, N) are distinct and unique collections of
identifiable microstates, (2) there is a single reaction coordinate, so the terms ‘for-
ward’ and ‘backward’ have meaning, and (3) the rate of folding does not exceed the
rate of some microscopic (energetic or entropic) bottleneck step.

The present work offers a different interpretation: (1) The macrostates—the de-
natured and apparent transition states—encompass all the non-native conformations,
but each macrostate is a different distribution of microscopic populations, (2) there

are multiple microscopic routes in a high-dimensional space, so a single microscopic
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reaction coordinate is not sufficient, (3) Folding is an acceleration relative to an in-
trisic slowest rate, not a slowing down relative to an intrinsic fastest rate, and (4)
the rate of folding can be faster than individual microscopic transition rates. In this
model, the apparent rate-limit that gives single- exponential behavior arises because
the last microscopic transitions are slow relative to earlier steps. Early steps are ac-
celerated by the multiplicity of folding routes at the top of the funnel. In this view,

the message in two-state folding kinetics is the accelerator, not the brakes.
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Explanations of Protein Folding

Kinetics
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Abstract. Many proteins fold and unfold with single-ezponential (2-state) ki-
netics, implying the existence of a transition state. What are the transition state
conformations of a folding protein? We have solved the complete folding kinetics of
a simplified protein model using a rigorous eigenvector method. We conclude that
there is an alternative to barrier-based models for explaining 2-state folding. While
Transition-State theory ezplains rates in terms of either energy or entropy barriers,
the funnel model instead ezplains kinetics in terms of entropic acceleration. Single
ezponential kinetics can arise from the multiplicity of routes downhill to the native
state on funnel- shaped landscapes. The rate of conformational diffusion at the top
of the landscape is faster than intrinsic bond rotation rates because of the multiplic-
ity of routes, and slows toward the bottom of the funnel, leading to a separation of
time scales (fast at the top, slowest at the bottom), and to single-ezponential kinetics.
Model predictions agree with ezperiments in giving a ‘chevron’ dependence of folding
rate with the strength of native contacts, one of the main ezperimental fingerprints of

2-state folding.

2.1 Introduction: Of funnels and barriers

How does single-exponential protein folding and unfolding kinetics arise from
funnel-shaped energy landscapes? The energy landscape of a protein is the math-
ematical function that gives the relative free energies of all its conformations. It gives

the microscopic framework for understanding the thermodynamics of folding and of
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all of a protein’s conformational transitions. The landscape also underlies folding
kinetics, since folding is a process of navigating from the non-native states high on
the landscape downhill toward the native state.

Despite the complexity of a typical protein, experiments often show remarkably
simple single-exponential folding or unfolding curves [1, 2, 3, 4, 5]. That is, when an
ensemble of such protein molecules is jumped from unfolding to folding conditions,
the native population follows a single exponential function of time, with a well-defined
rate constant. The rate constant depends on the amino acid sequence, and on the
folding conditions, but typically not on the initial state of the protein.

There are two important facts that must be addressed in any viable theory of how
proteins fold. First, folding can often be described by simple mass-action schemes,
involving only 2 or 3 states, such as D & N, or D & I =& N [1]. Second, proteins
become native much faster than would occur by exhaustive searching through confor-
mational space [6]. These two points have been addressed by two different pictures
of folding: the barrier picture and the funnel picture.

To describe these two pictures, we first define some terms. A microstate refers
to a single conformation of a protein molecule: every bond length and angle has a
particular value. The list of all such microstates gives the conformational space. A
macrostate refers to some particular collection (ensemble) of microstates, a subset of
the conformational space. Examples of macrostates include the denatured state D;

intermediate states I; the transition state T'S. The native state N is a macrostate
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that is so sharply defined as to be (approximately) identical to a single microstate.

The barrier picture developed around the idea that folding involves rate-limiting
steps. When a physical process or chemical reaction has single-exponential kinetics in
both forward and backward directions, it can be described in terms of two states in a
mass- action model, A = B. Transition-State theory developed by Arrhenius, Eyring,
and others [7] explains single-exponential kinetics in terms of a thermodynamic barrier
between states A and B. Transition-state theory uses the concept of a reaction
coordinate, a 1-dimensional degree of freedom where ‘backwards’ means toward the
reactant and ‘forward’ means toward the product. The reaction coordinate is an
example of a macropathway, an ensemble- averaged descriptor of progress. The term
micropathway refers to the trajectory of a single chain as it folds. Whereas a reaction
coordinate is 1-dimensional, a micropathway occurs in a high- dimensional space,
the conformation space. Whereas progress happens as a monotonic function of time
along a reaction coordinate, a micropathway can involve backtracking and random
meandering; it is not monotonic. Whereas progress is simple to define along a 1-
dimensional coordinate, there is often no unambiguous meaning of the word ‘progress’
in a high- dimensional space, since a conformational change can be forward along some
coordinates and backward along others at the same time.

The power of transition-state theory to give microscopic insights into chemical
reactions results because the reaction coordinate macropath coincides with essentially

one (ensemble-averaged) micropath of the reacting molecules. This simplicity arises




21

because chemical bond energies are much greater than kT, so thermal variations
from the dominant micropathway are relatively unimportant for chemical reactions,
the traditional focus of Transition-State theory.

Two premises are needed to explain single-exponential kinetics in mass-action
models. First, the macrostates (D, I, T'S, for protein folding) are assumed to be time-
independent (for example, the denatured state is the same distribution of microstates
at the beginning of a folding experiment as at the end). Second, the interconversion
rate between the two states is described by a rate ‘constant’ that is independent
of time. Transition-State theory supposes that there is an equilibrium between the
reactants and the transition state, and that the population of the rare transition state
conformations are given by the Boltzmann distribution law. Much of the current
discourse on protein folding revolves around the theoretical and experimental search
to identify the microscopic conformations that comprise such a transition state [8, 9].
The idea is that identifying the slow steps will define the mechanism of protein folding.

But protein folding is rather different than simple chemical kinetics, and it is not so
clear that the transition state concept applies. First, transition state theory describes
an upper ‘speed limit’, kT'/h, where k is Boltzmann’s constant, T is temperature and
h is Planck’s constant (k7'/h = 0.2 psec for T = 300 K). The point of transition-state
theory is to explain why chemical reactions are slower than this speed limit. The
explanation is that there is a free energy barrier.

But the key problem in protein folding is to explain why it is fast, not why it
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is slow. A typical protein has hundreds of thousands of degrees of freedom, yet
some proteins can fold within 10 usec {10, 11]. Second, chemical reactions have
well- defined reactants (R) and products (P) that are interconnected along a single
microscopic reaction coordinate (describing specific structural changes). For proteins,
the product (native state, N) is well-defined, but the ‘reactant’ is the ensemble of all
non-native states, so there cannot be a single microscopic reaction coordinate from
R to P. A key point is that the macroscopic reaction coordinate for folding does not
coincide with any single microscopic trajectory. Protein folding from the denatured
state D to the native state IV is a many — one mapping, not a one — one mapping.
Third, theoretical studies show that the shape of the protein folding energy landscape
is funnel-like [12, 13, 14, 15, 16], for which there is no obvious energetic or entropic
barrier.

If 2-state protein folding does not involve a transition-state barrier or a single
microscopic reaction coordinate, how can we explain the single-exponential kinet-
ics? The funnel picture captures the fact that there are many high-energy (open,
unfolded) conformations of a protein and very few low-energy (compact, native-like)
conformations . The funnel picture resolves the Levinthal “paradox”, that a pro-
tein would not have enough time to find its native structure by a random search
through conformational space. On a funnel, there is an energetic bias driving the
protein downhill toward the more native-like structures. But a smooth funnel has

no obvious rate-limiting bottleneck step - energetic or entropic - that could explain
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single-exponential kinetics. A key question is how funnel-shaped energy landscapes
could give rise to single- exponential kinetics, and what protein conformations con-
stitute the rate-limiting step? This is the problem we address here.

We solve here a 2-dimensional Go lattice model [17], in full detail. Lattice models
have been a common method for modelling protein folding [18, 19, 20, 21] (See Dill,
et al. [22] for a review.) Such models are widely used because they are simple enough
that the full conformational space can be explored, yet they have the key features of
2-state protein folding [23, 24, 25, 26]: (1) a single native state in a conformational
space that grows exponentially with chain length, (2) they include chain connectiv-
ity, attractions, and excluded volume, (3) they have 2-state folding and unfolding
behavior. Conformations are shown in Figure 2.11.

To model folding, we start with a maximally denatured ensemble, which is the
equilibrium distribution when the contact energy is equal to zero. We initiate fold-
ing by setting the contact energy to a value that favors the native conformation
(¢ = —3.5kT). We then follow the kinetics. Three different sequences all show the
same behavior, so we focus only on a representative one here. As in previous stud-
ies [27], we find a wide range of time scales in the folding process. However, the
emergence of the native state is dominated by a single rate constant, as is often seen
in experiments (Figure 2.14.) There are many aspects of the folding process that
take place on time scales faster than that of the onset of the full native conforma-

tion. Indeed, there are significant rearrangements of the distribution of non-native
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conformations on a very fast time scale, sometimes called a ‘burst phase’. But folding
from that re-adjusted state appears then as a single exponential process because these

rearrangements happen significantly more quickly than overall time scale of folding.

2.2 The Eigenvalue Perspective: The Distribution

of Time Scales.

The present work is based on a general and rigorous way to identify the micro-
scopic conformations that define the rate-limiting step in folding. Our method is
different than traditional transition- state theory. Transition-State theory assumes:
(1) macrostates and rate constants are time- independent, (2) the rate of product for-
mation is proportional to a quasi-equilibrium population of transition-state molecules
that are rare, hence described by a free energy barrier, and (3) there is a dominant
micropathway that corresponds to the macroscopic reaction coordinate. Using fur-
ther assumptions about how to define the two states (D and N) [9], Pande et al. give
a way to identify transition state conformations. But such methods are not general
enough to apply to folding on funnel landscapes. We sought a true kinetic method
that would be rigorous, general, and not based on any of these assumptions, including
even the thermodynamic premise.

Our approach is based on eigenvector solutions to the Master Equation [28]. The

exact solution of the Master Equation of folding gives the full time course of folding.
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In addition, we use the eigenvectors and eigenvalues of the time-evolution matrix to
gain further insight into the origin of single exponential kinetics, and the values of rate
constants for folding. These methods have the advantage that we can treat the whole
ensemble of conformations. This is important here because we find that the essential
features of the folding kinetics are not a property of the individual trajectories, or even
ensemble averages over them. The present kinetics is characterized by the number
of trajectories, and how that number diminishes down the energy landscape, rather
than by the sizes of the barriers (energetic or entropic) along any one trajectory.
More specifically, the full conformational space is 740 conformations. The rate
matrix that describes all the conformation-to-conformation transitions is 740 x 740.
Therefore, 740 equations (in matrix form) describe the full time evolution of every
conformation. We solve this first-order time- dependent matrix differential equation
for its eigenvalues and eigenvectors. There is a dominant eigenvalue that rigorously
accounts for all the conformational dynamics responsible for the slowest (single-
exponential) step. The corresponding eigenvector gives the populations of all the
microstates that are responsible for the slowest step. This then defines the ‘apparent’
transition state, i.e. the rate-limiting steps. We use the word ‘apparent’ here be-
cause we find that it is not a traditional transition state, and is not due to a barrier.
The most striking result is that the apparent transition state is not distinct from the
denatured conformations, as is usually assumed. Rather, the chain conformations

that constitute the apparent transition state ensemble are the same microstates that
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comprise the denatured ensemble, but they have different statistical weights.

2.3 Results

2.3.1 Distribution of Eigenvalues and Leaving Rates

For a given monomer sequence, we obtain a distribution of eigenvalues. The time
course of the populations of conformation in the ensemble can be expressed exactly as
a sum of exponentials, with rate constants that are inverses of the eigenvalues. Mathe-
matically, there must be as many eigenvalues as conformations. Although degeneracy
is possible, we do not find any in our model. Figure 2.1 shows the distribution of
non- zero eigenvalues as a spectrum of rates for each of the sequences we studied, un-
der strong folding conditions. (One eigenvalue must be zero, because at equilibrium
there is no change, and hence one time scale of the ensemble must be infinite.) The
eigenvalues are distributed over several orders of magnitude, meaning that folding in-
volves a broad range of time scales. However, despite the existence of 740 relaxation
times for this system, the rate of emergence of the native conformation is dominated
by a single slowest non-zero eigenvalue, corresponding to single-exponential folding
kinetics.

What is the meaning of these eigenvalues? In general, it can be difficult to ratio-
nalize eigenvalues, because each one is a linear combination of all N2 elements in the

matrix. However, here we can attribute a physical meaning to them. The eigenvalues
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Figure 2.1: The spectra of non-zero eigenvalues for the three possible native structures
of length nine. In each case there is the slowest eigenvalue is significantly slower than
all others. The clustering corresponds to different energy levels of the landscape, as
described in the text.

(which have units of inverse time) correlate directly with the leaving rates, the rates
the protein molecules escape from the various conformations (figure 2.2.) Each leav-
ing rate is the inverse of the mean lifetime of a conformation. For any conformation,
this escape rate is the sum of all rates out to other conformations. These leaving rates
are the diagonals of the matrix K in the master equation, as shown in equation 2.3.
These diagonal elements are generally larger in magnitude than the off- diagonal el-
ements, for the simple reason that the magnitude of each diagonal element is the
sum of all the off- diagonal elements in its column. Physically, this means that that
the leaving rate from a conformation is fast relative to individual conformation-to-
conformation transition rates, since the leaving rate is a sum of all possible routes

out. Since the diagonal elements dominate the matrix, they approximately equal the
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eigenvalues, which, of course, are the diagonal elements of the diagonalized matrix.

We believe it may be a general principle that the master equation for a funnel
landscape may often be a nearly diagonal matrix because of the high multiplicity of
escape routes of most conformations at the top of the landscape.

Leaving rates are greatest at the top of the funnel: the most open conformations
have the largest numbers of escape routes (mostly downhill). Deeper down the funnel,
the chain is highly constrained, so only a few conformational transitions are viable
escape routes, and those are mostly uphill. To see this, we express the leaving rates
in terms of an effective free energy barrier. This barrier results from the ensemble of
transitions out of a conformation. The weighting of each member of this ensemble is

_AH,-‘j/kT’ where AH is given by equation 2.2. The free energy of the total

given by e
barrier to leave a given conformation is proportional to —kT ln Z;, where Z; is the

partition function of the escape ensemble for conformation i:
Z; = Z e-AH}j /KT
J

Figure 2.3 shows that escape becomes increasingly difficult toward the bottom
of the landscape (the free energy increases). The figure also shows the entropic and
energetic components of this barrier. It shows that the enthalpic component of the
barrier actually decreases with depth.

In contrast, the escape entropy becomes less favorable deeper in the landscape.
This entropy is a measure of the number of exit routes out of each conformation.

For conformations with few contacts, there are many ways out, resulting in short
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Figure 2.3: Size and components of total barriers to leaving conformations, as a
function of depth in the landscape. (For sequence ABCAXCXCB.) [This shows that
increase in leaving rate is due to a reduction in ways out. (The enthalpy is calculated
as the Boltzmann weighted average of AH;;, where AH;; is the barrier height for
jumping between a given conformation and all of the barriers to change to every
other conformation.) The entropy component of this barrier measures the number of
ways out, by indicating how many of the barriers in the transition state ensemble are
actually likely to be taken by the folding chain. This number goes down with depth in
the landscape. (The entropy is calculated by ¥; ki; In k;;, where k;; = exp(—AH;;).)]

lifetimes. The number of exit routes goes down with the number of native contacts.
Because of the funnel shape of the density of states, few conformational transitions
are possible deep in the landscape.

Hence the folding kinetics results from a balance of two factors. The conformation-
to-conformation transitions get faster deeper on the landscape because as the chain

becomes more native-like, smaller structural rearrangements are needed for the chain
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to become native. In this sense, folding is ‘cooperative’. On the other hand, deeper on
the landscape there are fewer routes to the native state. This entropic factor results
in a slowing at the bottom of the landscape.

Even so, finding viable moves is not an especially slow process, even at the end.
The probability of stepping to the native state is simply the probability of a particular
microscopic transition. The only reason that these late stages are rate limiting is
because the rates downhill from higher on the landscape are even faster. We refer to
the behavior at the top of the landscape as ‘entropic acceleration.” What we mean
by ‘acceleration’ is just that there is a multiplicity of microscopic trajectories, hence
a speed-up relative to a single trajectory. Here’s the basis for entropic acceleration.
Consider the folding of an unfolded chain. Suppose torsion angle j has an intrinsic
rate ko of converting to its native ¢y conformation. The whole chain can become
native-like much faster than this intrinsic rate because there are N different torsion
angles in the chain, all converting at a rate ko, so the overall rate downhill for the
chain is Nky. The overall flow downhill is faster than any one microscopic channel.
At the bottom of the landscape, the multiplicity of routes is much smaller than the
factor of N because the degrees of freedom become coupled.

Here’s the difference between barrier-based kinetics, on the one hand, and en-
tropic acceleration on the other hand. In barrier models, the smallest microscopic
step defines the upper speed limit, kT'/h. Barrier processes are slower than this in-

trinsic speed limit, approaching it only in the limit of high temperature, T — oo.
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But in a funnel, the overall rate of folding is faster than the intrinsic microscopic
conformation-to-conformation transition rate, because of the parallelization of mi-
croscopic trajectories. Such parallelization does not apply to classical processes that

have a single dominant micropathway.

2.3.2 Eigenvectors: the degrees of freedom of the ensemble.

How should we describe the time-evolution of the populations of microconforma-
tions? We do this using the eigenvectors of the master equation. Each eigenvector is
a vector of all the conformations, with specific weights. One eigenvector represents
the equilibrium distribution of microstates. Its associated eigenvalue is zero, because
that distribution is independent of time. All the other eigenvectors of the rate matrix
represent deviations from the equilibrium distribution. Unlike the population vec-
tor, the components of an eigenvector can be negative. If an eigenvector component
is positive, it means that conformation is more populated than in the equilibrium
distribution. A negative value means the conformation is less populated. Because
an eigenvector is only determined up to a scalar multiplier, the signs are arbitrary.
What is significant is that in every eigenvector, some conformations have weights of
opposite sign. For a system to be out of equilibrium, some conformations have to be
over-represented and some under- represented.'

The eigenvectors form a basis set for describing any population of microstates.

The special property of the eigenvectors as a basis set is that they each have a simple
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time dependence; their amplitudes all decay as single exponentials. The eigenvalue
that corresponds to each eigenvector indicates the rate of decay: the inverse of the
eigenvalue is the rate constant. So the relaxation process of a system can be viewed as
the single exponential decay of the eigenvectors, until only the equilibrium eigenvector

is left. Its amplitude does not decay with time because its eigenvalue is equal to zero.

An example

Here we give an example in a very simple system to illustrate the properties of
eigenvectors. Consider a system that has only two states. We call them D and N.
Any configuration of the system can be represented by indicating the population of
each state: e.g. .8D, .2N. In vector notation we can say the standard population basis
is D = (1,0) and N = (0,1). This means we can now represent the population, p(t)
as a vector, ppop(t) = (.8,.2). Next we generate a transition matrix for this system.
Suppose D has a relative free energy AG = Gp — Gy > 0 where Gy is the free
energy of the native state. Now apply the Metropolis criterion for a transition. That
is, k(N = D) = F and k(D — N) = Fe(-AG/FT) where F is the intrinsic rate of a
barrierless transition (the front factor in Transition State Theory.) This leads to the

transition matrix
—F  Fe(-AG/kT)
K=
F _Fe(—AG/kT)
The diagonal elements are the leaving rates, that is, the sum of all ways out. This can

be found by the negative sum of all elements in the column of that diagonal, which
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in this case is one element. To be more concrete, set F' = .1/(unittime) and AG/kT

to In.5, and F to 1/1.2:

-1 .05
K=

1 —.05

The Master Equation represented by the matrix K says that .1 of D goes to N per
unit time, and .05 of N goes to D per unit time. We now find the eigenvectors and

eigenvalues of this matrix:

K = M-'LM = M-! 15 0 11
00 -1 2

The diagonal elements of the matrix L are the eigenvalues, and the columns of the

matrix M are their associated eigenvectors:

/\1 =.15
/\0 =0
and
1D 1D
v = y Vo =
—-1N 2N

In this notation we have labeled the usual conformation vectors D and N. As expected
one eigenvalue is equal to zero. Its associated eigenvector (normalized) gives the
equilibrium distribution: (1/3D,2/3N). Also, the second eigenvalue reproduces the
standard kinetic result for the relaxation rate constant: A\; = .15 = kope = ks + ky =
.14 .05. So all of the conventional kinetic information is contained in the eigenvectors

in and eigenvalues.



35

But the eigenvectors also give additional information. In this case, the non-
equilibrium eigenvector reveals that the two-states are not kinetically independent.
The eigenvector v; = (1, —1) shows that any over-representation of D must be ex-
actly compensated for by a reduction in N. Taken together, the eigenvectors reveal
the underlying kinetics of the system. One eigenvector (with an eigenvalue equal to
zero) gives the equilibrium distribution of the system. The other eigenvector says
that the two states are linked, and that one decays into the other with the expected
rate constant. In contrast, if we use the untransformed conformations as the basis
set, we would have two independent quantities, D and N, and we need an extra equa-
tion (D + N = 1) to relate them. But this constraint relation is already contained
in the eigenvectors. In the eigenvector framework, the system has only one degree
of freedom (see Figure 2.4). Now we apply a similar analysis to our more complex

folding model having 740 conformations.

2.3.3 Ensemble vs. conformational degrees of freedom

The eigenvectors can provide information on the shape of the folding funnel. At
the top of the funnel, most of the degrees of freedom (bond angles) are independent
of each other; at the bottom (the native state), no conformational freedom remains.
Folding is a process by which the degrees of freedom become coupled to each other.
Said differently, the question of why protein folding kinetics is 2- state can be recast

as the question of why only one eigenvector dominates the rate of emergence of the
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native state. Since each eigenvector represents a degree of freedom of the ensemble,
apparent two-state folding is single- eigenvector folding.

To address this question, we develop a stré.tegy akin to the Boltzmann H-theorem
[29]. We determine the coupling of the degrees of freedom of the out-of- equilibrium

ensemble by an entropy-like quantity:

Siin(t) Z w;(t) Inw;(¢

where w;(t) is the weight of eigenvector ¢ at time ¢. We determine w;(t) by

@I
AR

wi(t) =
where ||v;(t)|| is the component of the ensemble in the direction of eigenvector i at
time ¢t. These magnitudes change with time, decaying, according to their eigenvalues,
from the initial values, which are determined by the initial ensemble. These weights
measure the displacement of the ensemble from equilibrium in various independent
directions. We label this Sy, because it reflects the number of degrees of freedom of
the ensemble that are significantly away from equilibrium. This is quite different from
the entropy in conformational space (Sconf = ¥ ; p; Inp;,) as can be seen in figure 2.5.
(We define the entropy of a non- equilibrium ensemble operationally by Scons above;
the time dependent p; are not Boltzmann weights either.) Physically, Sk gives a
measure of the number of “characteristic” directions in which ensemble differs from
equilibrium.

Figure 2.5 shows how degrees of freedom are lost from the ensemble with time. At
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loss of kinetic “entropy” with time
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Figure 2.5: Decay of the number of degrees of freedom relative to the decay of the
slowest degree of freedom.

early times, the ensemble is displaced from its native equilibrium in many directions
(large Skin.) As the system approaches equilibrium, only the directions with slow
relaxation rates (those with small eigenvalues) will remain significant. Most remark-
ably, the degrees of freedom become coupled much faster than the relaxation time of
the ensemble to the native state. At infinite time, the ensemble vector coincides with
the equilibrium ensemble vector, so Si;, =In1 = 0.

The fastest decaying eigenvectors mostly contain deviations from equilibrium
among the weights of conformations with the fastest leaving rates. The slower eigen-
vectors account for deviations from equilibrium in the weights of lower energy con-
formations, which have slower leaving rates (see Figure 2.6). We find that there can

be large changes in the ensemble very quickly. This is consistent with kinetic studies
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Figure 2.6: Relationship between the eigenvalue and the mean leaving rate of the dis-
tribution of conformations represented by their associated eigenvectors. Eigenvectors
with faster eigenvalues govern conformational distributions with higher mean leaving
rates.

that show much structural change in the dead time of re-folding experiments [30].

2.3.4 Why are rate constants constant?

Our model predicts chevron behavior, a key experimental result that has been
used as evidence for 2-state behavior. What is the physical basis for it, in this model?
We first address a more elementary issue. In 2-state models, rate coefficients such as
K forward OT Kreverse are independent of time. In a mass- action model, a rate coefficient

describes the ratio of the rate of approach towards equilibrium to the deviation from



40

equilibrium:

= kobs-

For a single exponential process this ratio is constant: the exponential time depen-
dence cancels with its derivative. The conventional physical explanation for single
exponential kinetics is that there is a free energy barrier high enough that it is pos-
sible for the configurations on either side of it to come to internal equilibrium faster
than they interconvert. But pre- equilibration is not required to get single- exponen-
tial kinetics.

Any distribution that deviates from equilibrium in such a way that the relaxation
back towards equilibrium goes at the same rate for conformations will give single-
exponential kinetics. Each of the eigenvectors represents just such a deviation from
equilibrium. Here we demonstrate that is the case. The “pre-equilibrium” distribu-
tion is not the only distribution that that will give rise to steady-state (i.e. single
exponential) kinetics. Consider a distribution that is perturbed from equilibrium
only along the direction of the slowest non-zero eigenvector. First note that, since

multiplying my the rate matrix is equivalent to taking the derivative:

ar®)  _ Kp()
p(oo) —p(t)  p(oo) — p(t)

We can deconvolve p(t) into the sum of the equilibrium distribution and the slowest

eigenvector multiplied by a time dependent factor a. We define v, as the equilibrium
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eigenvector, and v; as the eigenvector corresponding the first non-zero eigenvalue.:
p(t) = vo + a(t)vy = p(oo) + a(t)v:.

Substituting this in yields

2p(t)  Kuv+Ka(t)y

p(o0) = p(t) —a(t)vr.

But this can be simplified because Kvy = 0. Also, K is a linear operator, so the
a(t) in the numerator can be moved through and hence canceled with itself in the

numerator, removing the time dependence:

#p(t)  Kov
p(o0) — p(t) —u

Finally, Kv, = A;, and, rewriting the left hand side as kps:
kobs = —/\1.

So kops can be independent of time even when p(t) is not. The folding rate in this
case, with perturbations from equilibrium only in the direction of the slowest eigen-
vector, is given by the slowest eigenvalue. Even though there is not a large bar-
rier allowing for true pre-equilibration, exact single-exponential kinetics are achieved.
Pre-equilibration is not required to give a single- exponential folding.

In the slowest eigenvector, the lowest energy conformation will be of opposite sign
compared to all the other conformations (see Figure 2.7. This means that the folding

rate is determined by the average of folding rate of all non-native conformations.
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Figure 2.7: The slowest non-zero eigenvector. The large positive conformation in
the lowest energy conformation. All other conformations have opposite in sign to
this one, and hence this vector represents the interconversions between the native
configurations and all others.

That is:

ko = Yizn PikisN
d TignDi

where p; is the weight of the ith conformation in the vector v; These p;’s are the
deviations from the equilibrium values of the weights. This differs from the actual
time dependent weights of these conformations. Single exponential kinetics occurs
whenever these deviations all change by the same amount in proportion to their size,
irrespective of that size. ko, is independent of time, because the direction of the
deviation is independent of time, even though the magnitude of the deviation is not.

This means that the distribution of unfolded conformations changes with time. It re-
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laxes to the equilibrium distribution. The unfolding rate is simply ky, = — 3,2y knoi,
independent of time, and of the instantaneous distribution of conformations.

We are now in a position to rationalize the shapes of the chevron plots. The
observed relaxation rate is the sum of an unfolding rate and a folding rate. In our
model, the individual forward folding rate terms, k;_,n, are independent of contact
strength. They are based only on the configurational difference between the native
configuration and the ith configuration. What changes the folding rate are the p;
terms: the weight of each conformation in the refolding ensemble. The more the
refolding ensemble is biased towards conformations with greater geometric similarity
to the native state, the faster folding will be. The conformation-to- conformation
barriers get smaller as structures become more native-like.

The apparent transition state barrier is an average of all the k;_,n’s. How does
this apparent barrier change with denaturant or temperature? As external conditions
become increasingly native-like, the denatured ensemble becomes increasingly native-
like. Since the starting population is more native- like, folding is faster. As conditions
change, the Boltzmann distribution of denatured conformations changes. The appar-
ent transition state is a kinetic distribution that does not shift identically with the
Boltzmann distribution. Figure 2.7 shows a typical dominant eigenvector (apparent
transition state). It largely tracks the changes in the Boltzmann distribution in the
denatured state, except at the lowest energy non-native conformations, which are

slightly under-represented, even though they dominate the refolding ensemble.
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2.3.5 Chevron Plots

Our model predicts a “chevron” dependence on the strength of the contact energy
(Figure 2.8). The logarithm of the folding rates increases linearly as the contact
energy gets stronger, and the unfolding rate increases linearly with contact energy
above the denaturation midpoint. Under strongly native conditions, our chevron plots
roll-over, as in experiments [31, 8, 32].

Mass-action models assume that the two relevant states D and N are fixed, not
dependent on denaturant or temperature. Changing denaturant simply changes the
driving force for the D molecules to bury exposed hydrophobic surface area [33].
But in our model, the ensembles do change with contact strength. In our model,
the denatured ensemble changes more with denaturant than the transition state.
Figure 2.8 shows the dependence of the dominant relaxation rate on contact strength,
for the first native state depicted in Figure 2.11. (Other sequences produce similar

dependencies.)

Chevron plots and two-state folding

Observing chevron behavior is not proof that a system has two fixed states. For a
two-state system, the ratio the folding and unfolding rates must equal the equilibrium

constant, and their sum must equal the observed relaxation rate. That is, we have:

ke = Keqkobs
I 14Ky
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and

kobs
k, = .
1+ Keq

But if a system is not 2- state, these relations can be satisfied, even though they no

longer uniquely specify k, and kj.

Curved chevron plots do not necessarily mean intermediates.

Curves in chevron plots can be consistent with two- state equilibrium data[34].
In fact, any chevron plot can be consistent with equilibrium data. True two-state
folding means that k;/k, = K4, while ko = ks + k,. But it is always possible
to find a k; and k, such that this is true, because this is simply a case of two
equations and two unknowns: k; = kobsKeq/(1 + Keg), ku = Kobs/(1 + Keg). Thus,
observing a chevron plot is not proof of two-state folding. It has been suggested that
roll- over in chevron plots indicates the presence of an intermediate on the folding
pathway. The rationale is that if there was no intermediate, the transition state
barrier would continue to shrink with increasingly native conditions, and roll-over
would not appear[33, 35, 10, 36].

Roll-over occurs, too, in our simulations. It results from a saturation of the
non-native conformations that flow to the native structure. Ultimately, the whole
ensemble of non-native states becomes these ‘supply conformations’, and no further
population shifts are possible (see Figure 2.8).

Thus we find that time-scale separation is an inherent property of some funnel-
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Figure 2.8: Folding rate vs. contact strength. This figure shows the dependence of
the rate of equilibration on the strength of contacts (in units of k7".) This is analogous
to “chevron” plots of relaxation rate vs. denaturant concentration. The insets show
the nativeness of the denatured and refolding ensembles at several temperatures.

shaped landscapes, and that the model results are consistent with a key property

observed in experiments.
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2.3.6 The Search for a Free Energy Barrier

Figure 2.12 shows the free energy profiles as a function of the number of native
contacts, for different values of the contact strength, ¢/kT. When ¢/kT is small,
when only 20% of the ensemble is in the native conformation at equilibrium, there
is a barrier to folding. But under more native- like conditions, the figure shows
that the barrier disappears: folding is thermodynamically downhill. We find single-

exponential kinetics in both cases.

2.3.7 When Individual Trajectories Will Not Capture the
Kinetics

For proteins that fold when true barriers are present—energetic or entropic, then
studying one or more individual trajectories in molecular dynamics or Monte Carlo
modeling (37, 38, 39] can reveal the bottleneck conformations. On the other hand,
if 2- state protein folding is governed by entropic acceleration of the type described
here, then analyzing trajectories will not give much information about the rates. In
entropic acceleration, it is the number of trajectories, and the degree of parallelism of
the micropaths, and the reduction of that parallelism down the energy landscape, that
determines the kinetics, not barriers along any particular micropathway. Of course,
it is possible that both barrier processes and entropic acceleration can contribute to

the folding kinetics of any real protein.
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10

Figure 2.9: Conformations that are deeper in the landscape (i.e. those with more
native contacts) have exponentially longer lifetimes.

Our modeling shows that the deeper a conformation is on the energy landscape
(more native-like), the longer its lifetime. (See Figure 2.9.) It is interesting that in the
longest MD trajectory to date of a protein in explicit water [38], the most-native-like
structure observed was also the longest-lived.

Comparison with Transition State Theory

Transition-State theory or Kramers theory parse the rate constant into two factors:

k= fp(TS), (2.1)

where f, the front factor (usually kT'/h) is the rate of going forward, and p(T'S)
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is the very small probability that the system has reached this high-energy state TS,
p(TS) = exp(—AG/kgT), where AG is the free energy difference to the transition
state from the reactant. All the populations relevant to the kinetics are determined by
the thermodynamic premise, that the transition state acts like an equilibrium state.

Our simulations give a different interpretation. Ours is a kinetic model that does
not rest on a thermodynamic premise. Single- exponential kinetics arises here, even
in the absence of a pre- equilibration assumption. The ensemble of non-native con-
formations changes continuously with time, as they become increasingly native- like.
Neither the denatured state nor the apparent transition state are fixed unchanging
distributions, as would be associated with the symbols in mass-action model equa-
tions.

There are three ensembles that are often assumed to be the identical in mass-action
modelling of protein folding kinetics: (1) The Boltzmann ensemble of non-native con-
formations under the initial unfolding conditions, (2) The Boltzmann ensemble of
non-native conformations under the final folding conditions. Both of these are usually
taken to be essentially random coil distributions. (3) The distribution of conforma-
tions from which folding takes place, which is not an equilibrium ensemble. In short,
mass-action models envision macrostates that are specific invariant distributions of
microstates, and folding is seen as a flowing from one such macrostate to another.
Our model shows, instead, that the whole folding process is simply the continuous

time-evolution of a single ensemble, as the non-native microstates become native.
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2.3.8 Comparison to the nucleation-condensation model

The transition state of a protein has been called a ‘nucleus’, in analogy with
nucleation processes [4]. In this interpretation, the high energy barrier, by definition,
corresponds to the least-probable conformation of the molecule. Once a protein has
a nucleus of sufficient size (reaches the top of the barrier), folding proceeds rapidly
(condensation).

But that description is in terms of the reaction-coordinate diagram, not the mi-
croscopics as represented by the energy landscape. We find that the rate limiting
chain conformations are not necessarily rare. Rather, in the funnel model, these
rate-limiting conformations can be the most populated conformations in the unfolded
ensemble. On a relative basis, the populations can be small numbers, but since there
are 10'5 - 10%° possible conformations for a typical protein, these gateway confor-
mations can be the largest single conformations. Since they are less stable than the
ensemble of all other possible conformations, they would constitute a bottleneck on
the folding landscape. But their relative improbability is not necessary to generate
single exponential kinetics. And viewing them as points of maximum free energy
along a trajectory is misleading. These may be points of high free energy on a
reaction- coordinate diagram, if they are represented as a Transition State (TS) be-
tween all other non-native conformations (D) and the fully folded conformation (N).
But along a single trajectory they can have low free energy, second only to the native

conformation.
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2.4 Conclusions

Current explanations of 2-state protein folding kinetics are based on the idea that
there is a barrier—energetic or entropic—implying that there is some small set of
special transition-state conformations that are in low population and that govern the
rate of folding. Much effort has been invested in searching for these transition state
conformations. Here we develop a rigorous way to identify the rate-limiting steps
in processes like protein folding that involve multiple microscopic processes that can
happen in parallel. It gives a different explanation for single-exponential kinetics, and
for chevron plots, the main experimental fingerprints of 2-state processes. Two-state
kinetics is explained instead in terms of entropic acceleration. Folding happens faster
than intrinsic bond rotation rates because there are so many different bonds in the
chain that are free to change at the same time. Folding happens by parallel processing.
The multiplicity of routes means very fast flow at the top of energy landscapes, but
the multiplicity becomes smaller at the bottom. This gives a separation of time scales
that is dominated by a single- exponential. One implication is that studies of single

trajectories in models may not be sufficient to describe the kinetics.

2.5 Methods

Thermodynamics: Go6 potential. For structural and thermodynamic proper-

ties we use the Go model, in which proteins are modeled as two dimensional chains on
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A.

High probability of moving to another conformation.
High probability of making a contact..

Low probability of jumping to native.

B.

Lower probability of changing conformation.
Lower probability per unit time of making a new contact.

Role p
Lowest probability of changing conformation.

Highest probability that the change will be to native.

L

Figure 2.10: Summary: (A) Open conformations have a high probability of changing
to new conformations, and high probabilities of making contacts, because there are
many ways they can. (B) As the chain makes contacts, its motion becomes restricted.
This means that its probability of changing conformation is reduced, as many ran-
dom kicks would break favorable contacts, so it takes it longer to get pushed in an
acceptable direction. (C) As the chain gets very close to its native structure almost
all changes in conformation would take it uphill in energy. The rate of change at
this point reduces to the probability of the last move necessary to make it the native
structure. The folding rate will depend on the occupancy of these nearly folded states
in the refolding ensemble. If they are rare this reduces to the conventional transition
state picture. But it is not necessary to assume that they are rare. Even if they are
favored relative to more open states, one should see simple kinetics.



Figure 2.11: The three maximally compact configurations of chains with nine beads.
The letters on the beads indicate “residue types.” In the Go potential only residues
of the same type have favorable energy of interaction. (The blank beads make no
contacts in the native structure, and so have zero contact energy with all residue
types, including other blank beads.)

a square lattice [17]. Beads that occupy neighboring sites on the lattice, and are not
connected by links of the chain, are in contact. Contacts present in the native confor-
mation have a favorable contact energy, —e. All other contact interactions have zero
energy. With € > 3kT this potential generates “good” thermodynamic funnels for
all of the maximally compact conformations of a chain with nine beads. (Figure 2.11
shows these conformations) Under these conditions, the Go potential generates good
thermodynamic funnels because the entropy lost upon making a native contact is
always more than compensated by the favorable contact energy. Figure 2.12 shows
the free energy profiles for the energy landscape at different contact strengths.

To solve the kinetics, we use a Master Equation. The total conformational space
is 740 lattice conformers. The rate of transition between conformation ¢ and j is

determined by a set of elementary moves. Though there has been controversy in
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Free Energy (kT)

Figure 2.12: The free energy profiles at various contact strengths. The labels next to
each curve give the fraction the ensemble that is in the native conformation at each
contact strength. At unstable contact strengths the profiles show a barrier. Above
about 80% native stability this barrier flattens out. Folding, however, still obeys a
single exponential.

applying an equilibrium methodology to a kinetic process, and care must be taken to
ensure the validity of choices made in modelling microscopic kinetic events, [40, 41, 42]
these methods have proven to be useful. These transition probabilities taken together
determine a set of differential equations, collectively defining the Master Equation.
Master Equations are the most rigorous method for studying the relaxation of a
system [43] and have been increasingly applied to the protein folding problem [44, 45,
46, 2]. The solution to the Master Equation gives the distribution of probabilities in

the whole ensemble conformations, as a function of time, given an initial distribution.
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We find the solution numerically, in terms of the eigenvectors and eigenvalues of the
master equation matrix (28, 27]. This gives the full population kinetics, which is
equivalent to what is measured in refolding experiments [4].

Kinetics: transition probabilities. We model the barrier for the transition
from one conformation to another as being due to: (1) bond rotation barriers and
(2) motion through the solvent. For a protein to change to a new conformation it
must gain enough free energy to rotate bonds and displace the solvent. In addition,
the chain needs to gain enough free energy to disrupt any favorable contacts that are
broken in the transition. We assume that all changes are independent: the probability
of a move is the product of the probabilities of the individual changes necessary to
make it happen. We calculate the individual barriers in the following way: Each angle
that differs between two structures requires the surmounting of a rotation energy

barrier of height h. So the total barrier due to differences in angles is

N-2
A0 = b 3" 6(6m,030) = h2O,

n=1
where 6(0;n, 0;») is zero if (6;, = 0),) and 1 otherwise.
Similarly, the total barrier to a given displacement of bead positions is the sum of

the probabilities of each individual bead diffusing to its new position:
H(positions) _ _ \-
1 - —
AHGP®™™ = 4 3 ([Fin — Tinll*) = YARS
n=1

where < characterizes the viscosity of the solvent. The 7, are measured from the

center of mass of each conformation, after optimal alignment on the lattice.
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The total barrier height for each conformation-to-conformation transition is the
sum of all these changes:

hA®;; + YAR? + eAn;i; if eAn;; >0
AHY = ! N ’ N (2.2)

hA®;; + YAR; otherwise.

This barrier height can be converted to a first order rate constant for each micro-

scopic transition using transition state theory:
by = — AGY /KT
ij = ;—D-exp(— i/ KT).

This satisfies detailed balance because k;;/k;; = exp(—eAn;;/kT). The front factor,
7D, contains two terms. One is the absolute rate factor that serves to set the unit of
time (7). The other, D, is a diffusion constant, a normalization factor that is necessary
because the rate of a transition is not given simply by the the height of a barrier, but
also by the probability that the degrees of freedom are excited in the direction that
would lead to a particular jump. This reduces the overall rates. However, this term
must be the same for all conformations by microscopic reversibility, so we do not need
to know its actual value. We simply employ an arbitrary front factor F = 7D, which
sets the units of time. In practice we set F' equal to the number of conformations of
the chain. This insures that the sum of the rates out of any conformation is less than
one, so they can be represented as probabilities per unit time.

We chose h = .5kT and vy = .1kT, which gives relative transition probabilities

similar to those in traditional lattice Monte Carlo studies of folding. Traditional
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Monte Carlo move sets contain these barriers implicitly. Here we have made them
explicit functions of two parameters. This facilitates our calculation of transition
probabilities. Our goal is not to define the most accurate move set, but to explore
the consequences of a reasonable one.

Setting up the Master Equation. The master equation is a set of differential

equations, one for the rate of change of each conformation. It can be written in matrix

form: ) _
( D1 \ kin ki kiz -+ kig ( D1 \
P2 ka1 kap ka3 kaq P2
P3 ka1 ks ka3 ksq D3
4 _
dt -
PN kni kn2 knws kna PN
\Pa /] [ Kka ka2 kas -+ kea |\ Pa )

The diagonal elements of this matrix are given by:
ki ==Y kji, (2.3)
J#i
which insures that probability is conserved. Physically, k;; is the rate at which
conformation 7 would decline if no other conformations were converting into it. These
leaving rates play a vital role in determining the overall kinetics, as will be shown
below. A graphical representation of the entire equation is shown in Figure 2.13.

Equation 2.5 can be rewritten as a differential equation:
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more likely

Transition
Probability

less likely

100 200 300 400 500 600 700

Figure 2.13: This figure shows the entire master equation by color coding interconfor-
mational transition rates according to the log of their magnitude. The conformations
are ordered by leaving rate, with the fastest at zero, and native at 740. This correlates
with number of contacts. Conformations high on the landscape, with few contacts,
have many ways out, as indicated by the their columns being all red. As the chain
moves down in energy, a larger and larger fraction of transitions require breaking
favorable contacts. This can be seen by the yellow and blue regions in the columns
of conformations with more contacts.

d
P = Kp. (2.4)

The matrix K is equivalent to the T — I, where T is the Transition Matrix defined
in earlier work [40], and I is the identity matrix. The difference is simply whether
multiplying by the matrix gives the change in population (K), or the new population

(T).
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The general solution to this system of differential equations, together with an
initial condition (the population at time ¢ = 0), gives the fraction of the population
in each conformation at all times thereafter. To find the general solution we use the
method of eigenvalues and eigenvectors.

The master equation can be solved using the eigenvalue- eigenvector method be-

cause it is of the form

d
5P = Kp. (2.5)

This equation has solutions of the form e*'v. For every )\, v pair that satisfies:
Kv = \v.

The solution of the system in equation 2.5 can be written as a sum of the eigenvectors
of the master equation, multiplied by e* where ) is the eigenvalue associated with
a particular eigenvector. The initial amplitude, or weight, of each eigenvector is
determined by the initial conditions. We found the eigenvalues, eigenvectors, and
initial weights for our master equations numerically using QL decomposition after
Householder reduction to tridiagonal form [47]. We use algorithms for symmetric
matrices on a reduced form of our master equation. The reduction is performed by
multiplying each off-diagonal element by e~2F/2, This gives a symmetric matrix.

(The only asymmetric aspect of the matrix is the condition for detailed balance.)

This reduced matrix has the same eigenvalues as the original, and its eigenvectors
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can be converted back to those of the original matrix by multiplying each element by
e AEi [28].

The amplitude of each eigenvector at ¢ = 0 is determined by the initial probabil-
ity distribution. We initiate folding with each conformation having equal probability
at t = 0. This initial condition represents the distribution under strong denatur-
ing conditions. At equilibrium in an ideal denaturant, native contacts should have
no favorable energy of interaction, and all conformations have the same Boltzmann
weight.

To determine how single-exponential simplicity can emerge from a system of dif-
ferential equations containing 740%(= 547, 600) rate constants, we examine the prop-
erties of the eigenvectors and eigenvalues, as well as the underlying energy landscape,
as represented by the master equation itself.

We found that the fraction of the ensemble in the native conformation as a func-
tion of time is dominated by a single exponential. This is true for the three lattice
conformations we tested, under a wide range of kinetic and thermodynamic parame-
ters. Figure 2.14 shows a typical folding curve. (The results are similar under a wide
range of conditions, so for simplicity we present most results for just one conforma-
tion under one set of parameters.) The folding curve is generated by summing the
component of all eigenvectors that lie in the direction of the lowest energy (native)
conformation. The folding curves are dominated by the slowest eigenvalue, with a

small burst phase determined by the next faster eigenvalue. After a time interval that
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foiding of A-B-C-A-X-C-X-C-B

1 T L] 1

time

Figure 2.14: The fraction native as a function of time for ABCAXCXCB It is not
necessary to fit this curve to a function, because we know that it is a sum of ex-
ponentials. The rate constants of the exponentials are given by the inverses of the
eigenvalues. The initial value of each exponential is determined by the component of
its eigenvector in the direction of the native conformation, multiplied by the initial
amplitude of that eigenvector.

is very short relative to the slowest eigenvalue, the folding is is well represented by a
single rate constant. Most of the lag phase can be accounted for by only one other
rate constant. Thus the onset of the native state can be described by a simple mass
action kinetic equation.

When started from an ensemble with all configurations equally likely, the slowest
eigenvector typically accounts for 99.8 % of the time course for the onset of the lowest
energy conformation, over a range of contact energies. We calculate this number by

summing the contributions from all eigenvectors that give rise to an increase in the
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population of the native state, and determining what fraction of this total is due to
the each eigenvector. Single exponential folding kinetics, as defined here, was found
to occur in all three maximally compact nine-mer native conformations, and for a

variety of kinetic parameters (H = 1,.5,.2,.1,7p=.1,.2,.5,1.)
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