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Abstract

Preclinical models of diabetic retinopathy are indispensable in the drug discovery and 

development of new therapies. They are, however, imperfect facsimiles of diabetic retinopathy in 

humans. This chapter discusses the advantages, limitations, physiological and pathological 

relevance pre-clinical models of diabetic retinopathy. The judicious interpretation and 

extrapolation of data derived from these models to humans, and a correspondingly greater 

emphasis placed on translational medical research in early stage clinical trials, are essential to 

more successfully inhibit the development and progression of diabetic retinopathy in the future.

It is generally accepted that animal models do not perfectly represent human conditions, and 

this is true also for diabetic retinopathy. Thus, a reasonable question is how closely the 

laboratory models of diabetic retinopathy mimic the human disease, and how that influences 

our willingness to use and believe data from such animal models. Animal models do have 

important advantages in providing mechanistic insight and when assessing potential new 

treatments with unknown long-term adverse effects. However when a proposed treatment is 

known to be essentially free of safety concerns or adverse effects (such as an off-label use of 

an FDA approved drug), it can be validly questioned as to why laboratory animal models 

should be used.

Specifically with respect to diabetic retinopathy, the deficiencies of most species of small 

animals used for laboratory research include the apparent failure to develop diabetes-induced 

pre-retinal neovascularization and clinically meaningful stages of the retinopathy, the lack of 

a macula, and the apparent failure of most models to develop diabetes-induced retinal/

macular thickening and edema. Other potential weaknesses compared to humans include the 

fundamental difference that most rodents are nocturnal, have a short lifespan (which affects 
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the development of disease severity), have a very small retina, lack many of the lifestyle 

factors that can adversely affect human disease, and are unable to communicate about what 

they are or are not seeing (visual function).

Animal models do have important advantages, however. They require much less time and 

effort to obtain results than human clinical trials, and are considerably less expensive to 

conduct. Those potential advantages are not meaningful, however, unless the disease 

processes leading to retinopathy in animals are generally similar to those in diabetic patients

The available evidence suggests that the steps along the progression of diabetic retinopathy 

in the animal species tested are similar to humans, except that the animals do not progress as 

far along those steps as the longer-lived humans (Fig 1). Capillary degeneration, loss of 

pericytes, thickening of vascular basement membranes, as well as functional changes 

including changes in blood flow, visual function and vascular permeability develop in 

diabetic rodents, just as they do in longer-lived diabetic dogs, and even longer-lived diabetic 

primates and patients. Larger and longer-lived species (dogs [1–3], cats [4], primates [5,6] 

and humans) progress beyond those early lesions, and also develop microaneurysms, cotton-

wool spots, IRMA, and at least in diabetic dogs [7] and primates [8,9], also retinal edema 

and/or intra-retinal neovascularization. To date, only humans have been found to develop 

pre-retinal neovascularization due to diabetes, typically after durations of diabetes that are 

considerably longer than can be studied in any animal species.

Have animal studies of diabetic retinopathy been reliable at predicting the response of 

diabetic patients to disease or therapy? Animal models have been studied using similar 

therapies as diabetic patients in only a limited number of cases (in large part due to the 

extraordinary cost of clinical trials related to diabetic retinopathy), but some comparisons 

can be made. A good example of animal studies predicting the response of diabetic patients 

to therapy is the demonstration of the beneficial effect of glycemic control on diabetic 

retinopathy in 5 year studies of diabetic dogs, which pre-dated the later demonstration of a 

similar benefit of glycemic control in diabetic patients by more than a decade [10]. Studies 

in dogs [11,12] and then also rats [13,14] demonstrated a resistance of the retinopathy to 

arrest with treatment once the retinopathy had been initiated (later known as metabolic 

memory) that was found also in humans [15]. Studies in diabetic dogs [16] as well as 

diabetic patients [17] also showed no beneficial effect of an aldose reductase inhibitor to 

inhibit initiation or progression of the microaneurysms and capillary degeneration that 

characterize diabetic retinopathy. However, results related to aldose reductase and 

retinopathy differed from human findings in diabetic mice [18,19] or some [20–22] (but not 

all [16,23]) galactose-feeding studies. Administration of aspirin was reported to inhibit the 

development or progression of diabetic retinopathy in dogs and rats [24,25] and in one study 

of diabetic patients [26], but not in another 2 year clinical study (Early Treatment of 

Diabetic Retinopathy; ETDRS) [27]. This difference might have been due to experimental 

design, because the animal studies showing a beneficial effect of the aspirin used higher 

(potentially anti-inflammatory) doses of the drug than the ETDRS study, which used only a 

lower (anti-platelet) dose.
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All-in-all, the evidence suggests that at least dogs and perhaps other long-lived mammals 

have shown value in terms of predicting the outcome of similar studies in diabetic patients, 

suggesting that the pathogenesis of the retinopathy in those species is similar to that in 

human patients.

The evidence that rodents show the same predictive ability with respect to the effect of a 

therapy on the development of retinal histopathology is less compelling, but there is 

evidence that diabetes induces abnormalities in retinal vascular permeability and visual 

function like those seen in diabetic patients. Also, molecular abnormalities in the retina are 

shared in common between diabetic patients and diabetic rodents. Moreover, diabetes-

induced alterations in visual function (which has not been measured to date in large animals) 

becomes impaired in diabetic rodents [28,29], as it does in diabetic patients, providing some 

evidence that the rodent animal models also offer a meaningful opportunity to investigate the 

pathogenesis and treatment of the retinopathy that develops in diabetic patients.

A significant value of animal models is their use to clarify molecular mechanisms by which 

diseases progress and to provide insight into molecular mechanisms underlying effects of a 

therapy. Accordingly, what have animal studies revealed about the pathogenesis and 

pathophysiology of diabetic retinopathy? Initial studies using experimental hyperglycemia 

(such as with fructose [30,31] or galactose feeding [16,32–36]) clearly showed that 

hyperglycemia (as opposed to the insulin resistance or deficiency) plays a major role in the 

pathogenesis of the retinopathy in a way that could not be demonstrated in diabetic patients. 

Beyond that, many biochemical abnormalities have been detected in retinas of diabetic 

animals, presumably developing as a result of abnormalities in substrate availability (glucose 

and lipids) and hormonal abnormalities (insulin, growth hormone) acting systemically as 

well as on the retina [37–42], and the animal models clearly are central in elucidating the 

potential importance of these abnormalities in the development of the retinopathy. In 

addition, the development of the retinal vasculature after birth in the mouse combined with 

the development of endothelial specific Cre recombinases has provided an unprecedented 

opportunity to explore retinal vascular development and differentiation, thus providing the 

mechanistic framework from which therapies targeting vessel growth and remodeling have 

been made. Additional studies into the mechanisms of retinal function, signal transduction 

and differentiation continue to provide novel insight.

Probably the most impressive success story in the past decades with regard to diabetic 

retinopathy has been the remarkable effects of anti-VEGF (vascular endothelial growth 

factor) therapies to inhibit retinal neovascularization and reverse macular edema in diabetes 

and other diseases. These therapies currently are the only approved intervention for existing 

advanced diabetic retinopathy. Clinical research played a large role in identifying how best 

to use this therapeutic approach, but animal research played a huge role in identifying and 

characterizing VEGF, and demonstrating the relationship between VEGF and ischemia [43–

48]. These therapies were developed largely as anti-cancer drugs, but were found to be 

effective in models of neovascularization in mice, and were supported by years of 

angiogenesis research including gene deletion studies and the use of VEGF-binding 

antibodies and soluble receptors [49].
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A previously mentioned proof-of principal study was the demonstration of the beneficial 

effect of good glycemic control on the development of diabetic retinopathy prior to 

comparable convincing data in humans. A good example of animal studies demonstrating 

the molecular mechanisms underlying a therapy is the work that was done to understand the 

unexpected finding that diabetic retinopathy was significantly inhibited in patients treated 

with fibrates [50,51]. The mechanism of effect was judged not to be via lowering of lipids 

(as originally assumed), and subsequent animal studies demonstrated a variety actions of the 

fibrates on metabolism and transcription factors, as well as anti-oxidant and anti-

inflammatory actions [52–56]. Animal models are providing insight also into the role of 

photoreceptors in the pathogenesis of both to the early and late stages of diabetic retinopathy 

(in part via release of soluble factors [57–61]), which follows from the clinical recognition 

that diabetic patients with retinitis pigmentosa seemed protected from the development of 

diabetic retinopathy [62].

For many years, many therapeutic studies were conducted in animal models with the 

assumption that a single (unidentified) molecular defect or pathway occurring in the retina in 

diabetes was a major cause of the retinopathy, and that inhibition of that abnormality or 

pathway would lead to inhibition of the retinopathy [16,24,25,63–77]. Indeed, a large 

number of animal studies using systemic pharmacologic therapies or genetically modified 

animals have demonstrated impressive inhibition of diabetes-induced abnormalities in retinal 

function or capillary permeability or degeneration at a particular duration of diabetes.

Should confidence in the animal models be reduced by the fact that many experimental 

therapies administered to animal models reportedly show a beneficial effect on lesions of the 

retinopathy, compared to the paucity of beneficial therapies clinically to inhibit early stages 

of the retinopathy? Caution is obviously warranted, since most studies neither tested the 

longevity of the beneficial effect, nor the effect of the therapy on the spectrum of other 

lesions or abnormalities that are part of the clinically-defined “diabetic retinopathy”. On the 

other hand, perhaps this can be explained by the possibility that pre-clinical researchers now 

are testing therapies that are closer to the actual molecular mechanism by which retinopathy 

can be inhibited than we were previously. An example of this is the strong research focus on 

anti-inflammatory approaches to inhibit the retinopathy, which is supported by the clearly 

beneficial effect on DME by corticosteroids in diabetic patients.

Very important insight has been provided recently by increasing evidence that essentially all 

retinal cell types become abnormal in diabetes, and that many of those cells participate in 

the development of diabetic retinopathy. For example, deletion of VEGF only from Muller 

cells markedly inhibits diabetes- induced abnormalities in retinal vascular function [78] and 

permeability [79]. Likewise, inhibiting phototransduction in photoreceptors [60,80] or 

slowing visual cycle activity by inhibiting RPE65 activity in retinal pigment epithelium [81] 

significantly inhibits the diabetes-induced increase in capillary leakage and degeneration. 

Even cells that are not part of the retina, such as leukocytes [82,83] and stem/progenitor 

cells [84] now are known to participate in the development of the vascular complications of 

diabetic retinopathy, or at least to fail to repair lesions that are developing due to diabetes. 

Evidence also suggests that multiple pathogenic processes are involved in the pathogenesis 
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of the retinopathy, and those signaling pathways can persist, converge, and change as 

glycemia fluctuates, and probably also change during different stages of the retinopathy.

Considering the myriad of different functions of those various cell-types and the different 

signaling pathways that are active in those different cells, the concept that the inhibition of a 

single pathway should be adequate to inhibit the development of the retinopathy seems much 

less promising than it once did. Proteomic and transcriptomic studies have indicated that 

single therapies administered to diabetic mice corrected only a fraction of the molecular 

defects in retina due to diabetes [85]. Thus, combinations of drugs that therapeutically 

modulate multiple mechanistic nodes within multiple cells or stabilize networks between 

different signaling pathways may enable better outcomes than treating with a single drug. 

Such approaches now are being tested for diabetic macular edema, but there is a strong 

rationale also for extending this to pre-clinical studies attempting to inhibit the earlier stages 

of the retinopathy [29].

Modern “-omic” profiling can enhance the pre-clinical development of therapies for the 

treatment of diabetic retinopathy or other diseases by providing a global assessment of the 

alterations in signaling systems caused by disease, and by providing a quantitative and 

unbiased assessment of how well a therapy returns that abnormal cell landscape to normal. 

The presumption of such an approach is that the therapies that best restore the transcriptome 

or other systems to normal are likely to be the best inhibitors of the retinopathy. Such an 

unbiased approach to therapy does not require prior knowledge (or bias) about which 

pathway or cell type(s) are involved or dominant in the progression of disease.

Animal models have provided tremendous insight into the pathogenesis of diabetic 

retinopathy to date, and are expected to continue to do so in the future, Nevertheless, there 

are steps that can be taken to make animal pre-clinical studies more relevant to clinical 

research and care, and thus, more useful.

One problem that impairs the clinical translation of results from animal studies of diabetic 

retinopathy (and other diseases) is that the endpoints used in the animal studies are not the 

same as those used in clinical studies. Thus, it has been difficult or impossible to verify that 

the effects of therapy in pre-clinical animal studies are (or are not) occurring also in similar 

clinical studies. For example, both clinicians and basic researchers agree that degeneration 

of retinal capillaries in diabetes is a powerful stimulus for retinal ischemia and eventual 

development of pre-retinal neovascularization. However, most animal studies evaluating the 

effect of a therapy on that retinal histopathology evaluate and quantitate the capillary 

degeneration microscopically at very high resolution after removal of the neural retina 

(“trypsin digest” method), whereas clinical evaluation of capillary degeneration in patients 

has been graded at low resolution using fluorescein angiography until now. New techniques 

are now available that can provide the same information in animals and in patients, and 

incorporation of optical coherence tomography (OCT), OCT-angiography (OCTA), 2-photon 

microscopy, and magnetic resonance imaging should allow direct comparison between the 

animal and patient studies using common techniques.
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Another important difference between clinical and animal studies of diabetic retinopathy is 

that clinical studies place a priority on preserving or regaining vision in diabetes, but this has 

not been incorporated in many animal studies. Since there now is recognition that both 

vascular and neural abnormalities participate in the spectrum of abnormalities which make 

up diabetic retinopathy, animal studies need to measure both retinal histopathology and 

visual function, not one or the other. Finally, animal studies demonstrating reproducibility 

across different laboratories and in various species, multiple interventions targeting a 

common pathway yielding similar results and genetic data combined with therapeutic 

intervention all provide the best possibility of producing significant and reproducible results 

in humans.

Future animal studies also might follow-up on clinical observations that might provide novel 

insight into the pathogenesis of the retinopathy. For example, how does high myopia [86–88] 

inhibit the development of diabetic retinopathy? What are the mechanisms behind the 

development of diabetic-like retinopathy following radiation [89,90]?
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Fig 1. 
Vascular histopathology of diabetic retinopathy progression is similar between species, 

differing mainly in the severity of the retinopathy that they develop (likely due at least in 

part to differences in life span). Diabetic patients can develop substantial microvascular 

pathology, including microaneurysms and degenerate capillaries, and in some cases, pre-

retinal neovascularization. Similar lesions develop in large animal models of diabetic 

retinopathy, except that they have not been observed to develop pre-retinal 

neovascularization in the 5+ years of diabetes that they have been studied. Rodents develop 

predominantly only degenerate capillaries (large arrow) and pericyte ghosts (small arrow) 

and basement membrane thickening (not shown) in their limited lifetime. The duration of 

time needed for the various stages of the retinopathy in the different species are indicated in 

parentheses.
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