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Figure 3.5: (a) Algorithm block diagram. (b) Details of block labeled “(Adaptive)

Resampling, Equalization, CIR Estimation” in part (a). . . . . . . . . . . . . 78
Figure 3.6: Data set A. (a) Number of bit errors marked with text versus depth/sensor

on the vertical axis and transmission start time on the horizontal axis. (b)
Average Doppler shift measured by the algorithm: each dot corresponds to
one of the 32 sensors, horizontal axis is transmission start time. . . . . . . . . 86

Figure 3.7: Data set B. (a) Number of bit errors marked with text versus depth/sensor
on the vertical axis and transmission start time on the horizontal axis–pound
signs indicate algorithm failures. (b) Average Doppler shift measured by the
algorithm: each dot corresponds to one of the 32 sensors, horizontal axis is
transmission start time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 3.8: PSME variance for second iteration of algorithm for data set A: vertical axis
is sensor/depth, horizontal axis is transmission start time, grayscale intensity
is PSME variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 3.9: (a) Metric used to estimate Doppler shift: actual values computed are
shown with dots, gray curve is a CS through the values, extremum is marked
with a circle. (b) Magnitude of CIR estimate is shown with dots, gray curve
is a CIR measurement computed at high SNR. . . . . . . . . . . . . . . . . . 89

Figure 3.10: (a) Moving-average of squared-error in estimating CIR: top two curves are
first iteration, bottom two curves are last iteration, straight line is average am-
bient noise variance. (b) Moving-average ambient noise variance measurement.
(c) Magnitude of moving-average of symbol-quality statistic for last iteration. 90

Figure 3.11: (a,b,c) EOMP estimates: in (a) and (b) bottom curve is first iteration,
top curve is last iteration. (d,e) Magnitude and phase of moving-average of
symbol-quality statistic: in (d) bottom curve is first iteration, top curve is last
iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 3.12: (a) Mean squared-error of CIR estimation, normalized by average noise
variance, versus iteration. (b) Average SINR at equalizer output versus itera-
tion. (c) Mean absolute phase error versus iteration. (d) Number of bit errors
versus iteration. (e) PSME variance versus iteration. . . . . . . . . . . . . . . 93

Figure 3.13: EOMPs: upper curves are theoretical values calculated from CMP esti-
mates, lower curves are estimates obtained directly from equalizer output. . . 94

Figure 4.1: Experiment geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 4.2: (a) Coding Scheme. (b) Symbol Sequence Organization. . . . . . . . . . . 104
Figure 4.3: (a) Measured ambient noise variance versus depth, normalized so that the

noisiest sensor has unit variance. (b) Measured CIR energy versus depth,
normalized so that the strongest CIR has unit energy. (c) Magnitude of spatial
CIR: horizontal axis is delay, vertical axis is depth, gray-scale intensity is
magnitude in dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 4.4: (a) Algorithm block diagram. (b) Details of block labeled “(Adaptive)
Resampling, Equalization, CIR Estimation” in part (a). . . . . . . . . . . . . 109

Figure 4.5: Data set A. (a) Number of bit errors marked with text versus array location
on the vertical axis and transmission start time on the horizontal axis. (b)
Average Doppler shift measured by the algorithm: each dot corresponds to
one of the 3 array locations, horizontal axis is transmission start time. . . . . 118

Figure 4.6: Data set B. (a) Number of bit errors marked with text versus array location
on the vertical axis and transmission start time on the horizontal axis. (b)
Average Doppler shift measured by the algorithm: each dot corresponds to
one of the 3 array locations, horizontal axis is transmission start time. . . . . 119

ix



Figure 4.7: (a,b,c) EOMP estimates. (d,e) Magnitude and phase of moving-average
of symbol-quality statistic. In all cases, gray curves correspond to the first
iteration, black curves to the last iteration. . . . . . . . . . . . . . . . . . . . 121

Figure 4.8: (a) Normalized CIR error energy versus iteration. (b) Average SINR at
equalizer output versus iteration. (c) Mean absolute phase error versus iter-
ation. (d) Number of bit errors versus iteration. (e) PSME variance versus
iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

x



LIST OF TABLES

Table 2.1: Number of Bit Errors for Sensors with SNR Below 8 dB. . . . . . . . . . . . 55
Table 2.2: Performance Metrics for Sensors with Lowest SNR. . . . . . . . . . . . . . . 59

Table 3.1: Summary of Performance Results . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 4.1: Numbers of Training and Pilot Symbols . . . . . . . . . . . . . . . . . . . . 103
Table 4.2: System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 4.3: Array Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 4.4: SNR on Array used in Example . . . . . . . . . . . . . . . . . . . . . . . . . 119

xi



ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Professor Bill Hodgkiss, for his guidance, sup-

port and patience over these long years.

I also thank my co-advisor, Professor Larry Milstein, and the rest of my committee,

Professor Bill Kuperman, Professor Paul Siegel, Professor Ken Kreutz-Delgado, and Professor

John Proakis.

I am also indebted to the folks at MPL, in particular Dr. Heechun Song, for their help

and encouragement.

I am especially grateful to the NATO Undersea Research Center (NURC), who was

responsible for collecting the data used in this dissertation.

Finally, I want to thank my family and friends who have given me endless and invaluable

support and encouragement over the years.

This work was supported by the Office of Naval Research under Grant N00014-05-1-

0263.

Chapter 2, in full, is a reprint of the material as it appears in ”An Iterative Equalization

and Decoding Approach for Underwater Acoustic Communication”, J. F. Sifferlen, H. C. Song,

W. S. Hodgkiss, W. A. Kuperman, and J. M. Stevenson, IEEE Journal of Oceanic Engineering,

Vol. 33, No. 2, April 2008, pp. 182-197. The dissertation author was the primary investigator

and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in ”Iterative Equalization

and Decoding of Communication Data Received from a Moving Underwater Acoustic Source”,

J. F. Sifferlen, H. C. Song, W. S. Hodgkiss, W. A. Kuperman, and J. M. Stevenson, IEEE

Journal of Oceanic Engineering, submitted 23 July 2008. The dissertation author was the primary

investigator and author of this paper.

Chapter 4, in full, is a reprint of the material as it appears in ”Iterative Equalization

and Decoding of Underwater Acoustic Communication Data Using Array Observations”, J. F.

Sifferlen, H. C. Song, W. S. Hodgkiss, W. A. Kuperman, and J. M. Stevenson, IEEE Journal

of Oceanic Engineering, submitted 22 October 2008. The dissertation author was the primary

investigator and author of this paper.

xii



VITA

1995 B.S.E.E., Rensselaer Polytechnic Institute, Troy, NY

1995-2000 U.S. Marine Corps

2002 M.S.E.E., University of California, San Diego

2002-2008 Research Assistant, University of California, San Diego

2008 Ph.D.E.E., University of California, San Diego

xiii



ABSTRACT OF THE DISSERTATION

Iterative Equalization and Decoding Applied to Underwater Acoustic Communication

by

James F. Sifferlen

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2008

Professor William S. Hodgkiss, Chair

Professor Laurence B. Milstein, Co-Chair

This dissertation focuses on data communication over shallow, long-range underwater

acoustic (UWA) channels, which are characterized by relatively long, time-varying impulse re-

sponses and acute sensitivity to Doppler effects. The latter is a result of the slow speed of sound

in water, while the former is a consequence of the waveguide nature of shallow, long-range UWA

channels. A succession of novel receiver algorithms are developed which recover digital infor-

mation transmitted across such channels. The first considers the case of a single, fixed source

transducer transmitting information to a single, fixed receive hydrophone. The second extends

the first to allow nontrivial source motion, for instance, that of an autonomous undersea vehicle.

The third extends the second to allow processing of data received on an array of hydrophones.

The algorithms employ iterative detection. Iterative processing is creating a paradigm

shift in digital communication, made possible by ever-increasing computational capabilities.

There are two major components to the algorithms: an equalizer and a decoder. The main

focus of this dissertation is the former which, because of the features of the UWA channel, and

since the channel is not assumed known a priori at the receiver, entails adaptive resampling

to correct for Doppler distortion, adaptive filtering to estimate the time-varying channel, and

adaptive equalization to compensate for intersymbol interference produced by the long channel

impulse responses. While decoding is performed using standard methods, its role is nonetheless

crucial to the overall functioning of the algorithms. In fact, they rely on the iterative exchange

of information between equalizer and decoder, and the improvement of that information with

each iteration. Successful performance of the algorithms is demonstrated using data from at-sea

experiments.
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Introduction

This dissertation concerns the application of iterative equalization and decoding (IED)

to underwater acoustic (UWA) communication. Iterative processing is an emerging paradigm in

digital communication that encompasses powerful algorithms such as IED, which recover infor-

mation transmitted through noisy distorting communication channels. UWA communication, on

the other hand, has been an active area of research and development for decades. The focus is

wireless digital communication systems (DCSs) that utilize acoustic wave propagation. Such sys-

tems are employed to communicate information reliably between submerged sources and receivers

when it is impractical or undesirable to use wire connections. For example, autonomous undersea

vehicles (AUVs) gather data and use these systems to transmit information to research ships at

the sea surface. Having to use wire connections in such cases would be severely restrictive. The

use of acoustic vice electromagnetic (EM) wave propagation is necessary because EM energy is

severely attenuated in seawater. The nature of the UWA communication channel, particularly

in shallow regions, and the power and hardware limitations of data transmitters like those found

on AUVs, make UWA communication an ideal application for IED.

Fig. 1.1 shows the major components of conventional DCSs. At the transmitter, infor-

mation bits are first encoded and mapped into symbols. Channel coding introduces redundancy

and is necessary to protect against errors that inevitably occur when communicating through

noisy channels. As a simple example, each information bit could be duplicated three times so

that, at the receiver, a bit error occurs only if two or more of each trio of encoded bits are re-

covered erroneously. In some DCSs, symbol mapping and modulation are combined into a single

operation. In the system considered in this dissertation, however, they are separate. Specifically,

the encoded bit sequence is randomly permuted (the importance of which is discussed later),

then mapped pairwise into quadrature phase-shift keying (QPSK) symbols, the set of which

1
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Figure 1.1: Major components of conventional digital communication systems.

form the corners of a unit square centered at the origin in the complex number plane. Modula-

tion converts a symbol sequence into a continuous-time waveform that can physically propagate

through a particular communication channel. In the present case, the transmitted signal is the

product of a sinusoid at a given carrier frequency and a train of weighted and delayed pulses,

the weights being the symbols. This construction is called linear modulation. At the receiver,

the received wave field is first sampled. This procedure includes tasks such as detection of the

presence of a communication signal and synchronization. For distorting channels, such as the

UWA channel, equalization of the resulting data sequence is necessary to compensate for the

distorting effects of the channel. The equalizer produces symbol estimates which are de-mapped

and inverse-permuted into coded bits, then decoded into estimates of the information bits. Al-

though not represented in the figure, a recent development in DCSs is feedback of information

from the decoder to the equalizer. Simply stated, the idea is that information from the decoder

can improve the equalization process, which will in turn improve the decoding process, and so

on. Ideally, after some number of iterations of equalization and decoding, the receiver produces

information bit estimates of higher quality than without using IED.

Fig. 1.2 illustrates the performance benefits possible with IED. The red dashed curve

with dots is bit error rate (BER) versus input signal-to-noise ratio (SNR), computed via simula-

tion, for linearly modulated uncoded binary phase-shift keying (BPSK) symbols (i.e., information

bits are mapped directly into the binary symbols ±1) transmitted over a noisy distorting UWA

channel and processed a single time with the equalizer (but not the decoder, since there is no

coding) of an IED algorithm presented in a later chapter. The synthetic data used to produce
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Figure 1.2: Simulation BER curves: red dashed curve (no dots) corresponds to uncoded BPSK

symbols transmitted over non-distorting AWGN channel, red dashed curve with dots corresponds

to uncoded BPSK symbols transmitted over a noisy distorting UWA channel with one-time

equalization (no decoding), blue solid curves with dots correspond to coded QPSK symbols

transmitted over a noisy distorting UWA channel. The top blue solid curve corresponds to

a single equalization followed by a single decoding, the next curve below corresponds to two

iterations of equalization and decoding, and so forth.
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this curve was generated using measurements of an actual UWA channel, while the noise was

computer-generated additive white Gaussian noise (AWGN). The blue solid curves with dots are

BER versus input SNR, computed via simulation, for linearly modulated coded QPSK symbols

transmitted over the same noisy distorting UWA channel and processed with the same IED al-

gorithm for up to ten iterations: the top curve corresponds to a single equalization followed by a

single decoding (that is, conventional receiver processing), the next curve below corresponds to

two iterations of equalization and decoding, and so forth. The overall coding rate was one-half,

so each QPSK symbol carried one bit of information on average, which is the same as the un-

coded BPSK symbols. Consequently, both the uncoded BPSK and coded QPSK systems use the

same transmitter power and bandwidth. The performance of the coded system with only a single

iteration of equalization and decoding is worse than that of the uncoded system at lower SNRs,

where the coding by itself is not strong enough to overcome the disadvantage of using the more

tightly packed QPSK symbol constellation. However, this situation changes as the equalization

and decoding process is iterated, as evidenced by the increasing improvement in the correspond-

ing BER curves. Performing equalization and decoding multiple times in a cyclic manner, with

symbol information passed between the two components, ultimately produces a stronger system

than the comparable system that does not employ IED. After several iterations of IED the coded

system performs dramatically better than both the uncoded system and the coded system with

conventional detection (i.e., one-time equalization and decoding). This is the motivation for the

work presented in this dissertation.

Also shown in Fig. 1.2, with the red dashed curve without dots, is BER versus input

SNR for linearly modulated uncoded BPSK symbols transmitted over a non-distorting AWGN

channel (i.e., a channel that simply adds noise to the communication signal). After demodulation,

the binary symbols ±1 are embedded in complex AWGN with variance σ2
w – i.e. the SNR is

1
/
σ2

w . Since the symbols are antipodal, they only see one-half of the noise variance (since the

perpendicular complex dimension does not affect detection). The BER (i.e., the probability of

error) can be computed analytically as 1
2erfc

(√
SNR

)
, where erfc is the complementary error

function. Comparison with the red dashed curve with dots shows the price paid in transmitting

information across a distorting channel. Comparison with the blue solid curves, on the other

hand, shows that this price can be overcome by using a coded system and IED. The SNR

threshold for this particular example is just under 7 dB. This threshold depends upon channel

characteristics: in some cases the BER curves with dots are shifted to the left, other times they

are shifted to the right.
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1.1 Shallow Underwater Acoustic Channels

1.1.1 Measurements & Models

UWA channels vary greatly depending upon geometrical factors such as range, ocean

depth, and source and receiver depths, and environmental factors such as the variation of sound

speed with depth (and range), bottom properties, surface wave conditions, and so forth [1]. For

instance, a “vertical” channel in deep ocean where a source and receiver are located one above

the other will have very different properties than a shallow long-range channel. The latter type

of channel is considered in this dissertation. Fig. 1.3 shows the setup and key parameters of

the Focused Acoustic Fields 2004 (FAF04) experiment, where the data used in this dissertation

was collected. Note that the vertical receive array (VRA) of hydrophones spanned the lower

two-thirds of the water column, which corresponds to the region of slowest sound speed. Since

the nonuniform sound speed depth profile creates a refractive medium, and since sound bends

toward regions of slower speed, the VRA spans that portion of the water column corresponding

to the highest concentration of sound energy. The towed acoustic source simulated an AUV

transmitting information to a research vessel at the sea surface.

2.25 m/s

70 m

6

?120 m

6

?

3 - 10 km� -

Communication

Signal:

• 2 - 4 kHz frequency band

• 12 kHz sampling rate

• 1 kHz symbol rate

• 9006 symbols (∼9 sec)

VRA: • 32 sensors

• 2 m spacing

• #1 at 104 m

• #32 at 42 m

Figure 1.3: FAF04 experiment setup and key parameters. The sound speed depth profile is

overlayed.
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Figure 1.4: (a) Magnitude of CIR measured at 94 m depth (sensor 6, numbered from sea floor).

(b) Magnitude (color scale) of CIR measured across entire 32-sensor array, spanning 42 to 104

m depth (bottom depth is 120 m).

The UWA channel is modeled as a linear time-varying system. Linearity means that if

a superposition of signals is input to the system, then the output will be the superposition of

system responses obtained by considering each signal independently of the others. An arbitrary

band-limited signal can be decomposed into a superposition of weighted and delayed impulses,

so such a system is completely described by its channel impulse response (CIR). A snapshot of

typical CIRs is shown in Fig. 1.4. Part (a) shows the magnitude of the CIR measured at a depth

of 94 m: the many different pulses are the result of a single transmitted pulse traveling along mul-

tiple propagation paths from the transmission source to the particular receive hydrophone. Note

that the delay scale is also in units of symbol periods, since the symbol rate Rs = 1 symbol/msec.

Consequently, the transmitted pulses, which are essentially disjoint, become significantly overlap-

ping at the receiver: this is termed intersymbol interference (ISI). Part (b) shows the magnitudes

(on a color scale) of the CIRs connecting the single source transducer to all 32 sensors of the

VRA: one can clearly see the propagating wavefronts that moved through the VRA, which are

nearly plane-waves since the range was much greater than the depth. When the range is much

greater than the depth (by a factor of 30 to 100 for the data under consideration), the shallow

UWA channel acts like a waveguide–much like a fiber-optic cable does for EM waves. The CIR

in part (a) spans roughly 60 symbol periods. It is important to note that, while from a certain

perspective the CIRs may seem relatively sparse, in actuality the number of multipath arrivals

with significant energy is not small – i.e., they are on the order of tens of symbol periods for each
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CIR. Therefore, the CIRs considered in this dissertation are neither short nor sparse. Also note

that, as one can tell from the figure, the CIRs were measured at very high signal-to-noise ratios

(SNRs).
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Figure 1.5: Consequence of not resampling data received on sensor at 94 m depth. (a) Magnitude

of CIR measured at beginning of transmission. (b) Magnitude (color scale) of CIR measured

throughout 9-second transmission. (c) Magnitude of CIR measured at end of transmission.

Since UWA channels vary with time, so do the CIRs. Relative motion of source and

receiver cause the propagation paths connecting them to constantly vary in time. The motion

may be inadvertant, stemming from the ceaseless undulations of the ocean itself, or intentional

as in the case of an AUV which moves around while gathering information. Fig. 1.5 shows the

magnitudes of CIRs measured at 94 m depth over the duration of a single 9-second transmission.

Part (a) shows the CIR measured at the beginning of the transmission, part (c) shows the CIR

measured at the end, and part (b) shows the CIRs measured throughout. These CIRs were
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measured from the received data without resampling to correct for Doppler distortion. Note that

the CIRs appear to shift in delay over the course of the transmission (they are also stretched, but

so little that it is undetectable). This effect, which is discussed in more detail subsequently, is a

result of Doppler expansion of the received waveform relative to the transmitted waveform (since

the source was moving away from the receiver). This is a critical point: the wideband nature

of UWA communication signals results in Doppler compression/expansion, not just Doppler

frequency shift (which would be the case with narrowband signals). That UWA signals are

typically wideband is a consequence of the fact that signal attenuation increases as the square of

frequency [2].
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Figure 1.6: Dynamics of CIR measured from resampled data taken from sensor at 94 m depth,

over duration of 9-second transmission. (a) CIR RMS values. (b) Magnitude (color scale) of CIR

measured throughout transmission (compare with part (b) of Fig. 1.5). (c) and (d) Magnitude

and phase, respectively, of the five time-varying CIR gains identified by colored symbols in part

(a). (e) Energy in difference between each measured CIR and the first measured CIR, normalized

by the maximum CIR energy.

Fig. 1.6 shows the time-varying CIR measured at the same depth (94 m) and for the

same transmission as the one shown in Fig. 1.5. The important difference is that, while the

latter figure shows CIRs measured without resampling the received data, the former figure shows
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CIRs measured after resampling to correct for Doppler distortion. Comparison of part (b) of

the two figures illustrates a crucial point: resampling the received data to compensate Doppler

compression/expansion results in CIRs with drastically less time-variation than would result

without resampling – and the less time variation in the CIRs, the easier it is to recover the

digital information from the data. Part (a) of Fig. 1.6 shows the root-mean-square (RMS) values

of the CIR gains. As can be seen from part (b), proper resampling results in multipath arrivals

whose relative delays vary little over the duration of the 9-second transmission. Parts (c) and (d)

show the magnitude and phase variations, respectively, of the five particular multipath arrivals

indicated with colored symbols in part (a). For the most part, there is relatively little variation

in the magnitudes of the CIR gains, while the phases have much more significant time variation.

As one can see, the data was resampled so as to produce essentially zero phase variation on

the gain of the dominant CIR arrival. Part (e) of the figure shows the energy in the difference

between each measured CIR and the first measured CIR, normalized by the maximum CIR

energy: although the CIR gains vary primarily in phase only, the change is enough to cause the

CIR to be completely different at the end of the transmission than at the beginning. After one

second the CIR changes by an amount with 20% of the maximum energy.

The frequency offsets evidenced in Fig. 1.6(d) are the result of Doppler “spread”. That

is, the Doppler compression/expansion is actually different for different propagation paths. Since

the spread is small, the primary result is a slight frequency offset unique to each multipath.

The compression/expansion is modeled as warping the continuous time variable t into (1 + ν) t,

where the (generally time-varying) parameter ν is related to source and receiver speeds, as well

as motion of ocean currents and surface waves and so forth. Although each multipath experiences

its own Doppler “shift”, it is assumed that resampling the received data sequences to compensate

for an average Doppler shift results in time series accurately modeled with a slowly time-varying

CIR. The signal leaving the source transducer is twice the real part of

s (t) = exp (j2πfct)
∑

n

anh
Tx (t− n /Rs ) (1.1)

where fc is the carrier frequency, an are QPSK symbols, and hTx (t) is the band-limited transmit

pulse. The received communication signal, after resampling, is modeled as

s (k /Fs ) = exp (j2πfct)
∑

n

an exp

(
j2π

fc

Rs

∆νRst

)
h

(
t− n−∆νRst

Rs

, t

)∣∣∣∣∣
t=k/Fs

(1.2)

where Fs is the sampling frequency and h (τ, t) is the resulting time-varying CIR (τ is delay).

Since the actual Doppler shift is unknown and must be estimated, the residual Doppler shift

∆ν accounts for error in the estimation process. In the CIR measurements of Fig. 1.5(b), since

no resampling was performed, the residual Doppler shift is the actual Doppler shift, which was
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negative, so the delays of the CIR multipaths increased as modeled by (1.2) – that is, instead

of having delay n /Rs , the pulse weighted by the nth symbol has delay (n−∆νRst) /Rs . The

time-varying delay ∆νRst (in symbol periods) is small compared to the corresponding phase

rotation (fc /Rs ) ∆νRst (in cycles), which reflects the observations made earlier that the CIR

gains typically have less magnitude variation than phase variation. Finally, the resampled data

is modeled as

r(m)
n = w(m)

n + exp (jφn)

L−1∑

l=0

h
(m)
l,n an−l (1.3)

where L is the CIR span in symbol periods and, for the mth “subchannel”, w
(m)
n is AWGN with

variance
(
σ

(m)
w

)2

and h
(m)
l,n is the (slowly) time-varying CIR. If the resampling rate is 2Rs then

the sampling index k = m + 2n, where m ∈ {0, 1} are subchannels and n is time in symbol

periods. Subchannels are also created by using multiple receive sensors. The data considered

in this dissertation uses both types of subchannels and, since in both cases the subchannels

are assumed independent, there is no mathematical distinction and the subchannels are simply

indexed as m ∈ {1, . . . ,M}. As described previously, the phase term, which could be absorbed

into the complex-valued CIRs, reflects error in the resampling process. In particular,

φn − φn−1 = 2π (fc /Rs ) ∆ν (1.4)

where, although not explicitly denoted, ∆ν is time-varying. Note that there is an inherent

ambiguity in the model (1.3) since the phase term exp (jφn) could be absorbed into the time-

varying complex-valued CIRs. This ambiguity is resolved during CIR estimation, as discussed in

later chapters.

1.1.2 Channel Estimation

The IED algorithms described in later chapters utilize Kalman filter (KF) CIR esti-

mation [3]. Although the channel model parameters (CMPs) for the data considered in this

dissertation are deemed deterministic (but unknown and time-varying), the KF nevertheless per-

forms effective and easily-implemented CIR estimation. The underlying model for the “standard”

KF assumes an equal amount of variation on the real and imaginary parts of the gains of all CIR

arrivals. However, since the gains are expected to rotate more than change in magnitude, this

model is not appropriate: the resulting CIR estimates would be unnecessarily noisy. Noting that,

for a given amount of phase rotation, gains with larger magnitudes will vary more than smaller

ones, a modification can be made to the standard KF. This “modified” KF incorporates into its

state dynamics that CIR gains will have an amount of variation proportional to their magnitudes

(details of how this is accomplished are described in later chapters). The real and imaginary
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parts of the gains, however, would still have the same amounts of variation. An alternative is to

explicitly model the gains in polar form:

h
(m)
l,n = ρ

(m)
l,n exp

(
jθ

(m)
l,n

)
(1.5)

=
(
ρ́
(m)
l,n + ∆ρ

(m)
l,n

)
exp

(
j
(
θ́
(m)
l,n + ∆θ

(m)
l,n

))
(1.6)

∼= h́
(m)
l,n + exp

(
jθ́

(m)
l,n

)(
∆ρ

(m)
l,n + jρ́

(m)
l,n ∆θ

(m)
l,n

)
(1.7)

where ρ
(m)
l,n are the CIR gain magnitudes and θ

(m)
l,n are the phases. The quantities ρ́

(m)
l,n and

θ́
(m)
l,n are the predicted estimates of the gain magnitudes and phases, respectively, and ∆ρ

(m)
l,n

and ∆θ
(m)
l,n are the corresponding variations about the predicted values. The approximation in

(1.7) yields a linear model. Details of the resulting “extended” KF (EKF) can be found in later

chapters. The important point is that the EKF allows the radial and transverse components

of CIR gains to be controlled independently, so they can explicitly be restricted to change in

magnitude less than they rotate in phase – consistent with the model and assumptions.
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Figure 1.7: Comparison of KF implementations: (a) and (d) are “standard” KF, (b) and (e) are

“modified” KF, (c) and (f) are EKF.

Figs. 1.7 and 1.8 demonstrate the performance of the various KF implementations.
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The first of these shows the estimated time-varying gains of the three particular CIR arrivals

indicated with a solid circle, a triangle, and a square in Fig. 1.6(a). In Fig. 1.7, parts (a) and (d)

are for the standard KF, (b) and (e) are for the modified KF, and (c) and (f) are for the EKF.

Parts (a),(b), and (c) show the estimated gains, while (d), (e), and (f) show the phases. For some

data sequences it is better to use the modified KF during the first iteration of the IED algorithm

(even though doing so theoretically allows more noise to be projected onto the CIR estimates),

while for other data sequences it is better to use the EKF during the first iteration. For the

data presently under consideration, the KF worked best during the first iteration. Consequently,

to produce Fig. 1.7, the first iteration used the modified KF CIR estimation, while the second

and subsequent iterations used one of the three KF implementations described in the previous

paragraph. The results shown in the figure correspond to the second iteration. The standard

KF clearly performs worse than the other two methods. Note that the modified KF produces

roughly the same phase variations as the EKF, while the modified KF allows more magnitude

variations than the EKF – consistent with the underlying modeling assumptions for the two

implementations.
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Figure 1.8: Comparison of KF implementations. (a) and (c) are fraction of bit errors. (b) and

(d) are the magnitude of a symbol-quality statistic. (a) and (b) correspond to the single-sensor

example, (c) and (d) to the two-sensor example. In all cases, blue curves with triangles are

“modified” KF, red curves with circles are EKF.

Most important is how the various KF implementations impact the performance of the
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overall IED algorithm. This is shown in Fig. 1.8. Results for the standard KF are not shown,

since it resulted in divergence of the algorithm for both cases. Parts (a) and (b) are for the same

single-sensor case used in the preceeding paragraph, while parts (c) and (d) are for a two-sensor

case (using data from the same sensor as the single-sensor case in addition to data from the

sensor immediately below it). Parts (a) and (c) show the fraction of bit errors (there were 9006

information bits in each transmission). Parts (b) and (d) show the magnitude of a symbol-quality

statistic that is discussed in more detail later. It is the correlation between the true symbols and

symbol estimates produced by the algorithm. The important point is that the magnitude of

the statistic takes on values between zero and one, with zero reflecting complete lack of symbol

information and one reflecting perfect knowledge of the symbols. Results using the modified KF

are indicated with blue curves with triangles, while the EKF results are indicated with red curves

with circles. In both the single-sensor and two-sensor cases, using the EKF during the second

and subsequent iterations yields better results than using the modified KF. This is especially so

in the two-sensor case, where the IED algorithm did not even successfully recover the information

bits using the modified KF.

1.2 Channel Equalization

Channel equalization is the process of compensating for the distorting effects of a com-

munication channel. As discussed previously, there are two primary sources of distortion in the

shallow UWA channel: Doppler compression/expansion and multipath interference. Nonuniform

resampling is used to compensate for Doppler effects. The need for resampling was demonstrated

in the previous section – without it a channel varies at a much greater rate than necessary. The

idea of resampling is shown in Fig. 1.9. It is assumed that the sequence xk = x (tk), where x (t) is

a band-limited continuous-time signal and the sampling times tk are locally linear in the index k.

The value x (k /Fs ) is interpolated as follows. There is an index ḱ such that t
ḱ
≤ k /Fs < t

ḱ+1,

so x
ḱ+i
∼= x

(
t
ḱ

+ iT́k

)
, where T́k = t

ḱ+1 − tḱ approximates the instantaneous sampling period.

Consequently,

x (k /Fs ) ∼=
∑

i

x
ḱ+i

sinc
((
t− t

ḱ

)/
T́k − i

)∣∣∣∣∣
t=k/Fs

(1.8)

where sinc (κ) = sin (πκ) /(πκ) . Since sinc (κ) only decays as 1 /κ , in practice a faster-decaying

interpolation pulse is used – e.g., the Kaiser-windowed [4] sinc pulse used in the figure – so that

only a small number of terms need be used in the summation.

Distortion resulting from self-interference caused by multipath propagation can be com-

pensated in various ways. Short or sparse CIRs can be “equalized” using methods based on a
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(a)

(b)

time
indexḱ

xḱ−1

xḱ

xḱ+1

xḱ+2

tḱ − T́k tḱ tḱ + T́k

tḱ + 2T́k

k /Fs

x(k /Fs ) T́ = (1 + ν) /Fs

Figure 1.9: Illustration of resampling process. (a) a data sequence. (b) Details of obtaining a

resampled value (blue open circle) within the dotted box of part (a): the sampled values (black

solid circles) are interpolated using a superposition of weighted and shifted copies of a band-

limited pulse (dashed and gray curves) to obtain a value of the underlying continuous waveform

(blue open circle) at a time instant that does not correspond to one of the sampling times.

hidden Markov model (HMM) [3] of the channel [5]. Such methods are discussed in the next

section. The algorithms developed in later chapters use a method of equalization based on linear

filtering, which is explained presently.

For a block of data samples the model (1.3) becomes

r(m)
n =

[
r(m)
n , . . . , r

(m)
n+L−1

]T
(1.9)

= w(m)
n +




exp (jφn)

. . .

exp (jφn+L−1)







h
(m)
L−1,n · · · h

(m)
0,n

. . .
...

. . .

h
(m)
L−1,n+L−1 · · · h

(m)
0,n+L−1


 an(1.10)

where w
(m)
n is an AWGN vector and an = [an−L+1, . . . , an, . . . , an+L−1]

T
. It is assumed that

φn+i
∼= φn and h

(m)
l,n+i

∼= h
(m)
l,n , for i = 0, . . . , L− 1. Consequently,

r(m)
n

∼= w(m)
n + exp (jφn)H(m)

n an (1.11)

where H
(m)
n is the CIR convolution matrix in (1.10) with h

(m)
l,n+i replaced by h

(m)
l,n . A set of linear

filters f
(m)
n (expressed as row vectors) operate on the data vectors to form the filtered output
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Figure 1.10: Example of EIRs for cases of LE and DFE. (a) Magnitude of CIR measured at 94

m depth. (b) Magnitude of EIR for case of applying LE to CIR of part (a). (c) Magnitude of

EIR for case of applying DFE to CIR of part (a).

sequence

zn =
∑

m

f (m)
n r(m)

n (1.12)

∼= un + exp (jφn)

L−1∑

l=1−L

gl,nan−l (1.13)

gn =
∑

m

f (m)
n H(m)

n (1.14)

= [gL−1,n, . . . , g0,n, . . . , g1−L,n] (1.15)

where un =
∑

m f
(m)
n w

(m)
n and the sequence gl,n is the equalized impulse response (EIR). The

“linear” equalizer (LE) uses exp (−jφn) zn as a statistic to detect symbol an. Consequently, the

filters are chosen to minimize the noise-plus-interference (NPI) variance E |un|2 +
∑

l 6=0 |gl,n|2

subject to the constraint g0,n = 1. Fig. 1.10 shows an example: part (a) is the magnitude of the

CIR at depth 94 m and part (b) is the magnitude of the corresponding EIR for the LE.

In (1.13), for l > 0, gl,n multiplies symbols which preceed the current symbol an.

Another common method of filter construction assumes previous symbols are detected without

error and their contribution to the convolution sum in (1.13) can be cancelled. Letting ân−l, for

l > 0, denote “hard” symbol estimates, which are assumed correct, the output of the decision
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feedback equalizer (DFE) and its associated hard symbol estimate are, respectively,

zDFE
n = exp (−jφn) zn −

∑

l>0

gl,nân−l (1.16)

ân = arg min
α∈A

∣∣zDFE
n − α

∣∣ (1.17)

where A denotes the QPSK symbol alphabet. The DFE “forward” filters are chosen (under the

assumption that previous hard symbol estimates are correct) to minimize E |un|2 +
∑

l<0 |gl,n|2

subject to the constraint g0,n = 1. Fig. 1.10(c) shows the magnitude of the EIR for the DFE

associated with the CIR shown in part (a).

1.3 Receiver Algorithms

If an information bit sequence b is sent through a channel with model parameters P
and produces data D at a receiver, then the optimal information bit estimates are

b̂n = arg max
β∈{0,1}

∫ ∑

b:bn=β

p (b,P ,D) dP (1.18)

where p (b,P ,D) is the joint probability of the information bits, the CMPs, and the received

data. However, although simple to state, these optimal estimates are impossible to compute

directly given the modulation and channel considered in this dissertation. The reason being

that worthwhile channel coding requires the use of long information bit sequences and producing

a reasonable data rate results in ISI on the order of tens of symbol periods. Consequently

the resulting data pdf is too complicated. Instead, an indirect method is used to approximate

the optimal bit estimates. The method is “belief propagation”, in conjunction with suitable

approximations, and results in applying the sum-product algorithm (SPA) to a factor graph

(FG) representing the joint pdf of the bits, encoded bits, symbols, CMPs, and received data [6].

It is important to note that the overarching principle in detection of the information bits is the

marginalization of a very large, yet structured, probability density.

1.3.1 Factor Graphs and the Sum-Product Algorithm

Consider a HMM with initial state x−1, hidden states xn, and observations yn, for

n = 0, . . . , N − 1. The joint probability of the data y and states x can be factored as p (x, y) =

p (x−1)
∏N−1

n=0 p (xn, yn |xn−1 ). This product of conditional probabilities is depicted in the FG at

the top of Fig. 1.11. The boxes, or “nodes”, which represent the probabilities, are functions of the

variables connected to them. The connections, typically called “edges”, represent the variables.

The observations yn are constants, not variables. The dashed box at the right terminus is a
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function of the final state variable only. In the present case, where there is no a priori information

about the final state, the dashed box can simply be regarded as unity or, if more appropriate, a

Gaussian density with zero mean and large variance.

p (x−1)

x−1

p (y0, x0 |x−1 )

x0 rrr xn−1

p (yn, xn |xn−1 )

xn r r r xN−2

p (yN−1, xN−1 |xN−2 )

xN−1

p (yn, xn |xn−1 )

αn−1 (xn−1)
-

αn (xn)
-

p (yn+1, xn+1 |xn )

βn+1 (xn+1)
�

βn (xn)
�

Figure 1.11: HMM FG and message flow. Top: FG. Bottom left: forward messages. Bottom

right: backward messages.

There are two types of “messages” computed in this HMM example, as shown at the

bottom of Fig. 1.11. The initial “forward” message is simply α−1 (x−1) = p (x−1), and the

remaining ones are computed recursively as αn (xn) =
∑

xn−1
p (xn, yn |xn−1 )αn−1 (xn−1) (in

this expression and elsewhere, summation should be replaced with integration where necessary,

and vice versa). The initial (or final, depending upon one’s point of view) “backward” message

βN−1 (xN−1) is simply the function of xN−1 represented by the dashed box, and the remain-

ing ones are computed recursively as βn (xn) =
∑

xn+1
p (xn+1, yn+1 |xn ) βn+1 (xn+1). Note

that αn (xn) = p (xn, y
n
0 ) and βn (xn) = p

(
yN−1

n+1 |xn

)
, where yn2

n1
is shorthand for yn1 , . . . , yn2 .

Consequently, the joint probability of the nth state and the entire observation sequence is

p (xn, y) = αn (xn)βn (xn), i.e., the product of the corresponding forward and backward mes-

sages. Since the optimal estimate of each state is given by x̂n = arg maxxn
p (xn, y), the procedure

just outlined is an efficient method of performing the marginalizations of p (x, y) necessary to

obtain these maximum a posteriori (MAP) estimates.

A few comments are in order. Often it is not joint probabilities, e.g., p (xn, y
n
0 ) and

p (xn, y), that are of interest but, rather, conditional densities, e.g., p (xn |yn
0 ) and p (xn |y ).

However, the latter are obtained from the former simply by scaling: e.g., p (xn |yn
0 ) = p (xn, y

n
0 )

/∑
xn
p (xn, y

n
0 ) . The messages can be scaled accordingly, i.e., αn (xn)← αn (xn)

/∑
xn
αn (xn) .

Computing the messages to within an arbitrary scale factor is usually all that is necessary anyhow.

From a computational standpoint, scaling of some sort is necessary to prevent messages from

becoming too small. Also, different types of messages are often used to facilitate implementation

of the SPA, e.g., using the logarithm (or negative of the logarithm) of the messages described

above. The SPA can be performed in other commutative semirings (addition without requirement
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for additive inverses and commutative multiplication) than the standard one considered here [7],

e.g., the “max-sum” semiring can be used to derive the Viterbi algorithm [8]. Finally, it should

be remarked that for a given system there is often more than one FG associated with it (and, in

general, a given FG can lead to different instances of the SPA depending upon how the flow of

messages is controlled).

rrr xn−1
p (yn, xn |xn−1 )

xn r r r

p (un)

p (yn, xn |xn−1, un )

un

p (ẋn |xn−1 )
ẋn

=

p (yn |ẍn )

ẍn

�
�

�
�

�
�

�

�
�

�
�

�

@
@

@@

PPP
PPP

PPP
PPP

Figure 1.12: HMM FG block details. Top: FG block. Bottom left: BCJR algorithm block details.

Bottom right: Kalman algorithms block details.

The HMM considered above is more than just an illustrative example, it also represents

two major components of the receiver algorithms introduced in this dissertation. In particular,

the BCJR algorithm [9] is used in the algorithms’ decoders. It utilizes the HMM of Fig. 1.11,

with details of the basic FG block shown at the bottom left of Fig. 1.12. The forward and

backward messages are initialized as before, but their recursions now become

αn (xn) =
∑

un

∑

xn−1

p (xn, yn |xn−1, un )αn−1 (xn−1) p (un)

βn (xn) =
∑

un+1

∑

xn+1

p (xn+1, yn+1 |xn, un+1 )βn+1 (xn+1) p (un+1)

where the “inputs” un are the information bits and p (un) are their a priori probabilities, i.e., the

messages flowing out of the blocks with the selfsame labels (which may be constant functions,

indicating no prior knowledge about the bits). The joint probability of the observations and each

state remains p (xn, y) = αn (xn)βn (xn). A new type of message arises, namely, the conditional

probability of the observations given each bit (i.e., the bit “likelihood”)

p (y |un ) =
∑

xn−1

∑

xn

p (xn, yn |xn−1, un )αn−1 (xn−1)βn (xn)

These messages flow out of the p (xn, yn |xn−1, un ) blocks and into the p (un) blocks. The joint
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probability of the observations and each bit is thus computed as p (un, y) = p (y |un ) p (un), from

which MAP bit estimates are readily obtained.

The Kalman filtering and smoothing algorithms are also obtained using the HMM of

Fig. 1.11. The details of the basic FG block are shown at the bottom right of Fig. 1.12, which

represents the factorization p (yn, xn |xn−1 ) = p (yn |xn ) p (xn |xn−1 ). Since each state variable

is used more than two times, it is necessary to create the auxiliary variables ẋn and ẍn and

use the special node indicated with an equality symbol, which enforces equality among all the

variables connected to it – i.e., it represents the function δ (ẋn − ẍn) δ (ẍn − xn), where δ is

either the Kronecker or Dirac delta function. The messages entering the equality nodes from the

p (yn |ẍn ) nodes are just these probabilities themselves. The recursion for forward messages is

now computed in two steps,

α̇n (ẋn) =

∫
p (ẋn |xn−1 )αn−1 (xn−1) dxn−1

αn (xn) =

∫ ∫
δ (ẋn − ẍn) δ (ẍn − xn) p (yn |ẍn ) α̇n (ẋn) dẋn−1dẍn−1

= p (yn |xn ) α̇n (xn)

where the “prediction” messages α̇n (ẋn) flow out of the p (ẋn |xn−1 ) nodes into the equality

nodes. Note that α̇n (xn) = p
(
xn, y

n−1
0

)
. If the messages are normalized, e.g., αn (xn) ←

αn (xn)
/[∫

αn (xn) dxn

]
, then the computation of forward messages constitutes Kalman filtering.

Kalman smoothing is obtained by incorporating the backward messages, which are also computed

in two steps in a similar manner as the forward messages. The messages leaving the equality

nodes and entering the p (yn |ẍn ) nodes are

µ (ẍn) =

∫ ∫
δ (ẋn − ẍn) δ (ẍn − xn) α̇n (ẋn)βn (xn) dẋn−1dxn−1

= α̇n (ẍn)βn (ẍn)

which makes µ (xn) = p
(
xn, y

n−1
0 , yN−1

n+1

)
.

All SPAs have two fundamental components: message computation and message flow.

In principle, the former is simple as there is only a single rule for message computation: to

compute the message leaving a node along a particular edge, multiply the node’s function by

the incoming messages from the other edges and sum/integrate out all their variables. This

basic procedure can be verified in the message computations described earlier. Message flow or

“scheduling” is the other critical element of SPAs. In the HMM-based examples considered thus

far the scheduling has been fairly obvious: messages start at the ends of the FG and proceed

sequentially toward the opposite ends. In the case of the BCJR algorithm, “upward” messages

are computed by taking the corresponding forward and backward messages as inputs. Typically,

blocks at the periphery of a FG represent either prior probabilities or probabilities that are joint
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with observed data samples. The latter produce only output messages, namely the functions

they represent, while messages that flow into the former are usually the desired end result of

the processing, e.g., the joint probability of the data with each information bit. The FGs in the

HMM cases did not possess loops – i.e., one cannot trace a path on such a graph and end up

at the starting point without retracing part of the graph. For graphs without cycles the SPA is

exact. This is evident in the BCJR and Kalman algorithms, where the messages have very precise

interpretations – e.g., αn (xn) = p (xn, y
n
0 ) and βn (xn) = p

(
yN−1

n+1 |xn

)
. These algorithms are

signal processing workhorses and invaluable in their own right. However, the SPA also forms the

core of the most powerful decoding and receiver algorithms known, which all possess a common

trait: they are represented by FGs with loops and their implementations are all iterative. The

messages in such cases may not have such precise meanings as for the HMM-based cases, but

they usually have clear interpretations. The analysis of iterative SPAs on FGs with loops is an

area of active research, driven by the amazing success of such algorithms [10, 11].

1.3.2 Iterative Equalization and Decoding

The FGs of some now classic channel capacity-approaching codes are shown in Fig.

1.13. The nodes in part (c) marked with a plus sign enforce a zero-sum constraint on the

variables attached to them. The dashed boxes in parts (b) and (d) represent convolutional

codes (CCs), which have the HMM structure used to describe the BCJR algorithm. The oval

blocks marked with Π, “permuters”, perform (pseudo-)random permutations of their input bit

sequences. Consequently, they are simply message routers in SPAs. They are vitally important,

however: they effectively create long, random codes using easily decoded constituent codes. Long,

random codes are a necessary element of capacity-appoaching codes.

The performance of the original Turbo codes [12], i.e., parallel-concatenated CCs, using

iterative decoding was initially unbelievable. Their success prompted new interest in low-density

parity check (LDPC) codes [13], whose iterative decoding algorithm is similarly effective. There

now exist numerous other variations on this theme of powerful channel codes whose effective-

ness lies in iterative decoding algorithms. An important commonality was discovered among

the various algorithms, namely, that they are all instances of the SPA [14]. One crucial con-

cept that emerged with the introduction of Turbo codes is that of “extrinsic” information: each

message computed during the decoding algorithm, which can be interpreted as the probability

mass function (pmf) or likelihood of a given bit or symbol, must be independent of the incoming

information pertaining to that particular bit or symbol. If this condition is violated, the decod-

ing algorithms stagnate from recycling the same information over and over. This fundamental

concept is transparent in the SPA: its message computation rule produces exactly the extrin-
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Figure 1.13: (a) and (b) Parallel-concatenated Turbo code schematic and FG, respectively. (c)

LDPC Code FG. (d) Serial-concatenated Turbo code FG.
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sic information – of course, proper message flow and scheduling are also necessary to avoid the

recycling of old information and the accompanying ill effects.

The code depicted in Fig. 1.13(d) is of particular importance. It consists of the serial

concatenation of two CCs, separated by a permuter. An analogy was made between channel

codes of this type and a similar system where the “inner” CC is replaced by a channel with a

nontrivial CIR, which is also a type of convolutional code. Detection algorithms that apply IED

to this serial concatenation of channel code, permuter, and CIR are called “turbo” equalizers

[15, 16]. Originally the channel was assumed known at the receiver. Extension to channels with

parameterized models whose CMPs are not known at the receiver, and so must be estimated

in conjunction with equalization, is a relatively new area of research. The case of short or

sparse CIRs is fairly well developed. In such a case equalization can be performed using BCJR-

type algorithms with each state performing its own separate estimation of CMPs [17]. Another

approach in the case of channels with few CMPs is to expand the state to include the CMPs [18].

For example, if a hypothetical channel has a one-symbol memory and a single binary CMP, then

the state can be defined as the ordered pair of the symbol in memory and the value of the single

binary CMP. These two approaches, however, are not directly applicable to CIRs that are neither

short nor sparse. Various methods of state reduction have been proposed – such as filtering to

produce a more favorable EIR, cancelling the “tail” of the CIR/EIR using hard/soft symbol

estimates, and considering only a subset of all possible states in the HMM – but it is not clear

how such methods perform at SNRs low enough so that CIR estimation error is a significant

issue. The focus of this dissertation is IED at low SNR of unknown, time-varying CIRs that are

neither short nor sparse.

The IED algorithms developed in this dissertation are represented by the FGs and

message diagrams of Fig. 1.14. Part (a) shows the major system functions: the uppermost

block represents convolutionally encoding information bits, permuting the resulting sequence of

encoded bits, and mapping the latter into QPSK symbols; the “channel” block represents the

channel model (1.3) or (1.11); and the remaining blocks represent the Markov model (MM)

structures assumed for the time-varying phase φn and CIRs h
(m)
l,n . The details of these latter

blocks are similar to the HMM FG discussed previously. Part (b) shows details of the channel

block as applied to CIR estimation. Parts (c) and (d) show message flow for equalization and CIR

estimation, respectively, and part (e) shows the equivalent equalization FG after marginalizing

out all variables except the current symbol and equalizer output model parameters (EOMPs).

The focus of this dissertation is equalization in conjunction with channel estimation – i.e., the

computation of messages that flow between the lower blocks of part (a), and messages that flow

into the uppermost block from the channel block. The functions in the uppermost block, and
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Figure 1.14: (a) IED algorithm FG. (b) Details of “Channel” block for CIR estimation. (c)

Approximate equalization FG and messages. (d) CIR estimation messages. (e) Equalization FG

after marginalizing out all variables except current symbol and EOMPs.
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the computation of messages that flow within this block as well as down into the channel block,

are standard and described elsewhere [9, 19].

No information from previous iterations is stored in the FG. During CIR estimation,

therefore, symbol messages entering the channel block are simply duplicated by the equality-

constraint nodes and flow into the data pdf nodes. Consequently, including the incoming phase

messages, part (b) of Fig. 1.14 results in the message diagram of part (d). Since the CIRs of

interest contain many multipath arrivals, direct computation of outgoing CIR messages according

to the SPA is intractable. An approximation introduced by Tuchler, et al, is used instead [20,21].

Let

N (x; x̄, Cx) =
[
πLx det (Cx) exp

(
(x− x̄)H C−1

x (x− x̄)
)]−1

where Lx is the length of vector x. Symbol messages p (an), interpreted as a priori pmf’s provided

by the coding-permuting-mapping block, are replaced with suitable Gaussian pdf’s:

p̂ (an) = N
(
an; ān, σ

2
ā

)
(1.19)

ān =
∑

α∈A

αp (an = α) (1.20)

σ2
ā = 1−

〈
|ān|2

〉
(1.21)

where 〈·〉 indicates time-averaging and (1.21) follows from the unit-variance requirement on the

symbols. Tuchler’s approximation allows the outgoing message in part (d) to be computed as

p
(
r(m)
n

∣∣∣h(m)
:,n , φn

)
∼=

∫
· · ·
∫
N
(
r(m)
n ; exp (jφn)
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h
(m)
l,n an−l,

(
σ(m)

w

)2
)

L−1∏

l=0

p̂ (an−l) dan−l

= N
(
r(m)
n ; exp (jφn)

L−1∑

l=0

h
(m)
l,n ān−l,

(
σ(m)

w

)2

+ σ2
ā

L−1∑

l=0

∣∣∣h(m)
l,n

∣∣∣
2
)

p
(
r(m)
n

∣∣∣h(m)
:,n , . . .

)
=

∫
p
(
r(m)
n

∣∣∣h(m)
:,n , φn, . . .

)
p (φn |. . . ) dφn

where h
(m)
:,n =

[
h

(m)
0,n , . . . , h

(m)
L−1,n

]T
. A linear approximation is made for exp (jφn) to allow com-

putation of the final message in a closed form, which is amenable to subsequent use in Kalman

filter CIR estimation. The symbol mean estimates (SMEs) ān are an alternative to the “hard”

estimates ân = arg maxα p (an = α).

Tuchler’s approximation is also used during equalization [22, 23]. However, instead of

using the FG of Fig. 1.14(b), which represents the model (1.3), we use a FG that represents

the model (1.11). The corresponding message diagram is shown in part (c). The first step is to
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marginalize out the CIR estimates. Note that, in (1.11), the product H
(m)
n an = Anh

(m)
:,n , where

An =




an · · · an−L+1

...
. . .

...

an+L−1 · · · an




Consequently,
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where I is an identity matrix and p

(
h

(m)
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{
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, . . .
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are

the predicted CIR pdf’s supplied by KF CIR estimation. Computing

p

({
r(m)

n

}M

m=1
|φn, an

)
∼=

∫
· · ·
∫
p

({
r(m)

n

}M

m=1

∣∣∣{an−l}l6=0 , φn, an

)∏

l6=0

p̂ (an−l) dan−l

using Tuchler’s approximation for the incoming symbol messages is similar to the computation

of p
(
r
(m)
n

∣∣∣h(m)
:,n , φn

)
, except that the symbol an is not integrated out. The upshot is that the

IED algorithms use a LE during the first iteration, a matched-filter with hard-symbol-estimate

cancellation during later iterations, and a cross between the two during intermediate iterations.

Details are provided in subsequent chapters.

To complete the equalization process, symbol and phase messages could be computed

from p

({
r
(m)
n

}M

m=1
|φn, an

)
by marginalizing out each of the remaining variables. However, it

turns out to be more effective to proceed as follows. A model for the equalizer filter output is

zn = vn + exp (jφn) γnan (1.22)

ωn = 2
/

E |vn|2

where γn is the resulting gain and ωn is the reciprocal of one-half of the NPI variance. Define the

state vector of EOMPs XT
n = [ωn, γn, φn]. The additional variables γn and ωn are theoretically

computed as part of the procedure described in the previous paragraph. However, although

the error in the CIR estimates is taken into account via their covariance matrices, the resulting

“theory” values of gain and reciprocal-half-NPI variance are unavoidably skewed. Using biased
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values for these parameters produces symbol messages of poorer quality than would be obtained

using unbiased values. Consequently, we estimate these two additional EOMPs directly and thus

incorporate them into the FG block shown in Fig. 1.14(e). Details of the procedure for computing

the messages associated with this block are given in later chapters.
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Figure 1.15: Comparison of algorithm performance using theory values (blue curves with trian-

gles) and measured values (red curves with circles) of EOMPs. (a) and (b) Fraction of bit errors

and magnitude of PSME statistic χā (solid curves and symbols), respectively, for single-sensor

processing example. (c) and (d) Fraction of bit errors and magnitude of PSME statistic χā (solid

curves and symbols), respectively, for two-sensor processing example. In (b) and (d), the dashed

curves with open symbols correspond to the PSME statistic Eā (note, they are not visible in the

cases of measured values).

The benefit of including the additional EOMPs and measuring them directly, as opposed

to using theory values, is shown in Fig. 1.15. Two SME statistics first need to be defined:

Eā =
〈
|ān|2

〉

χā = 〈a∗nān〉

The first of these is simply the average energy in the SMEs. The second is the correlation

between the SMEs and the true symbols. Since it involves the true symbols, the latter statistic is

obviously not used within the IED algorithms. However, since the symbol sequences transmitted

during the experiment are known, this statistic is a useful diagnostic to monitor performance of
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the algorithms. Fig. 1.15 is similar to Fig. 1.8, which shows the benefits of using EKF CIR

estimation over the modified KF CIR estimation. In the present scenario, Fig. 1.15 shows the

impact of using theory versus measured values on the overall performance of the IED algorithm.

Parts (a) and (b) are for the single-sensor case, while parts (c) and (d) are for the two-sensor

case. Parts (a) and (c) show the fraction of bit errors (there were 9006 information bits in each

transmission) and parts (b) and (d) show |χā| (recall that |χā| = 0 implies complete lack of

symbol information, while |χā| = 1 reflects perfect knowledge of the symbols). Results using the

theory values for γn and ωn are indicated with solid blue curves with triangles, while those using

the measured values are indicated with solid red curves with circles. In both the single-sensor and

two-sensor cases, using the measured values yields better results than using the theory values.

The improvement is more pronounced in the two-sensor case, where measuring the values directly

saves five iterations of IED. Additionally, it should be the case that Eā = χā. Parts (b) and (d)

also show Eā, with dashed blue curves with triangles indicating the use of theory values and

dashed red curves with circles indicating the use of measured values. The two symbol statistics

are virtually identical during all iterations of the algorithm when using measured values. The

curves corresponding to using theory values, on the other hand, demonstrate that the theory

values are skewed and produce a mismatch between the statistics – especially during the early

iterations.

During the first iteration there is no symbol information available from the coding-

permuting-mapping block to assist CMP estimation. Nevertheless, updating the estimates of the

time-varying CMPs requires symbol information. This is accomplished in two ways. For one,

the actual systems interleave symbols known at the receiver into the symbol sequence for the

purpose of stabilizing CMP estimation. Additionally, during the first iteration only, the messages

produced by the equalizer – which are estimates of the likelihoods p

({
r
(m)
n

}M

m=1
|an

)
– are fed

back for CIR estimation by setting

p (an) = p

({
r(m)

n

}M

m=1
|an

)/∑

an

p

({
r(m)

n

}M

m=1
|an

)

which is an a posteriori probability with a neutral prior.

Near the lower SNR limit of successful performance of the IED algorithms, the symbol

information provided by the coding-permuting-mapping block during the second and subsequent

early iterations can have very small values for Eā
∼= χā, that is, very little energy. Instead of using

this information to estimate the CIRs, it may seem better to use the CIR estimates from the

previous iteration or, as is done in the first iteration, feed back the symbol information produced

by the equalizer during the current iteration to estimate the CIRs. Doing so, however, results in

stagnation of the algorithm and failure to improve symbol information beyond the first iteration.
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This situation reinforces the concept of extrinsic information. When the SME energy is very low,

it is all the more important to employ a method of CIR estimation that uses as few degrees of

freedom as possible. This is the purpose of the EKF CIR estimation, which is very well matched

to the channel dynamics.

It is important to distinguish between the strength of symbol information and its reli-

ability. Clearly χā (its magnitude, that is – its phase is assumed to be nearly zero) is a measure

of the strength of symbol information. The information is reliable, on the other hand, when

Eā ∼= χā. The latter condition is necessary to ensure unbiased CIR estimates and meeting this

condition drove many of the design choices in the algorithms. It was found, for instance, that

cancellation-based equalizers (i.e., DFEs or similar ones that employ cancellation with “soft”

symbol estimates [24]) violate the condition and produce biased CIR estimates. This is presum-

ably the result of recycling information. Additionally, “precoding” [25,26], i.e., the use of a rate-1

code prior to symbol mapping and modulation, which is reported to improve IED by creating a

recursive inner code, was found to destroy the equality of Eā and χā. Using precoding produces

serially-concatenated CCs. Other types of channel codes, such as LDPC codes, were also found

to produce inequality between the two symbol statistics. Puncturing – the discarding of encoded

bits to increase code rate – also resulted in inequality and is only used in one IED algorithm

where just 2% of the encoded bits are discarded. These matters all require further investigation.

Much more could be said about IED and UWA communication. The intent of this

chapter, however, is merely to provide the necessary background for the IED algorithms discussed

in later chapters. The next section gives overviews of these chapters.

1.4 Previews of Remaining Chapters

The remaining chapters are organized as follows: the middle three present a succession

of IED algorithms, while the last concludes the dissertation and suggests areas for future research.

Previews of the middle chapters are given presently.

The algorithm presented in Chapter 2 processes data transmitted from a single fixed

source transducer to a single fixed receive hydrophone. The communication signal frequency

band is 3-4 kHz, so the bandwidth is equal to the symbol rate of 1 kHz. The sampling frequency

was 12 kHz and the transmissions were 10 seconds in length. Performance results are presented

for a single transmission using data from each sensor of the 32-sensor VRA. Since there was

no deliberate source motion, a channel model was used that is more restrictive than the one

discussed previously in this chapter. In particular, the key assumption made is that proper

(nonuniform) resampling results in a time-invariant CIR. In other words, the channel model of
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(1.3) still applies, but there is no time index on the CIR multipath arrivals (and there is only a

single subchannel). Training symbols, i.e., symbols known to the receiver which are inserted at

the beginning of the communication signal, are used to obtain initial estimates of CMPs. When

using relatively few training symbols at low SNR, a tradeoff exists between estimating too many

CIR arrivals, which projects too much noise onto the resulting CIR estimate, and estimating too

few CIR arrivals, which discards available signal energy and allows it to act as interference. A

method referred to as CIR “framing” is developed that strikes a balance between the two ends

of this spectrum. The resampling procedure used in all the IED algorithms presented in this

dissertation is also developed in Chapter 2. On the other hand, as a consequence of the time-

invariant CIR assumption, an alternative strategy is used to perform CMP estimation. During

the first iteration the CIR is estimated using only the training symbols. The small average

Doppler shift is then estimated using a non-data-aided approach rooted in the equivalence of

the minimum mean-square error (MMSE) LE and the constant-modulus LE (both of which are

equivalent, to within a scale factor, to the minimum-variance distortionless response (MVDR) LE

discussed earlier in this chapter). Finally, the slowly-fluctuating portion of the Doppler shift is

estimated via estimation of the phase in (1.3), which is performed using a Viterbi-algorithm-like

procedure [3]. Chapter 2 also contains a derivation of Tuchler’s LE-based equalization procedure

that is a direct application of the SPA in conjunction with the Gaussian pdf approximation

for symbol messages. Additionally, the case is made for measuring the EOMPs directly vice

using theory values, and this is implemented in the IED algorithm. The algorithm was able to

successfully process data sequences with SNR around 6 dB.

The algorithm presented in Chapter 3 extends that of Chapter 2 in two major ways.

Most significantly, the new algorithm processes data transmitted from a moving source. The

source had a single transducer and the algorithm processes data from a single fixed receive

hydrophone. The algorithm of Chapter 3 also utilizes two subchannels, created by virtue of the

fact that the communication signal frequency band is 2-4 kHz, which is twice the symbol rate of 1

kHz. The sampling frequency remains 12 kHz, but the transmissions were just over 9 seconds in

length. Performance results are presented for processing data from each sensor of the 32-sensor

VRA for over 50 transmissions. The new algorithm implements a CIR framing method that

extends the one from Chapter 2 and performs sparse CIR estimation, that is, estimation of CIRs

over non-contiguous sets of delays. A CIR measuring and modeling section, similar to but more

thorough than the one in this chapter, motivates the modeling of CIR gains in polar form (1.5)

and the consequent development and implementation of the EKF routine used to estimate them.

The new algorithm uses pilot symbols in addition to training symbols to assist and stabilize CMP

estimation. Pilot symbols are known to the receiver and are interleaved with the data bearing
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symbols. The channel coding, however, is performed in such a manner that the information bits

are mapped into the same number of QPSK symbols – including training and pilot symbols.

Tuchler’s equalization procedure is implemented using the two subchannels. The procedure is

split into two stages: filtering the Doppler-compensated data, then estimating the EOMPs and

computing symbol a posteriori probability messages. Resampling is only performed during the

first iteration. However, it is performed adaptively, in conjunction with CIR estimation and

equalization, by using the estimated phase sequence φn as a control signal in accordance with

(1.4). The data collected during the experiment that contained communication signals was

at very high SNR. Consequently, these communication sequences were combined with suitably

scaled recordings of ambient noise to yield data with an SNR of 7 dB. Results are presented for

processing over 1,600 such data sequences that show high reliability and a low frequency of bit

errors.

The algorithm presented in Chapter 4 is an extension of the previous one that allows

the receiver to process array data. The system parameters are the same as in Chapter 3, since

the same data is used – that is, the data is similarly constructed by adding scaled ambient noise

recordings to high-SNR communication sequences. The algorithm processes data transmitted

from a single moving source transducer to the fixed VRA of hydrophones. The use of data

collected on an array should allow the receiver algorithm to operate at lower SNR per sensor

than would be the case using just a single sensor. Several modifications to the single-sensor

algorithm were necessary to accommodate lower SNRs on the sensors. A coherent method of

signal detection is implemented in the algorithm of Chapter 4, whereas the previous algorithms

were able to operate successfully using an incoherent method. The framing method of the previous

algorithm, which obtained a sparse CIR estimate, is not suitable when the SNRs on the sensors

are low. A different procedure is used whereby the CIR is estimated over a full fixed span, then

those multipath arrivals with insufficient energy are zeroed-out prior to being used to construct

equalizer filters. Also, since the linearization that is the basis for the EKF used in the previous

algorithm becomes questionable at low SNRs, a similar approach that avoids the linearization

is used to obtain an augmented KF. This new CIR estimation also independently controls the

radial and transverse variations of the CIR gains. Tuchler’s LE is implemented as a multi-sensor

equalizer and performed in two stages. However, a new procedure is developed for the second

stage, which performs the computation of symbol a posteriori messages and updates EOMP

estimates as a joint message-passing algorithm. Since the array sensors do not all have the same

SNR, in order to obtain a scalar value to describe the SNR of the entire array, the receiver

input SNR is defined as the array matched-filter output SNR – which is equal to the sum of the

SNRs on the individual sensors. The data was obtained by combining communication sequences



31

with ambient noise recordings to yield input SNRs of 6 and 7 dB, and results are presented for

processing data from subarrays of 5 and 10 sensors, taken from the top, middle, and bottom of

the full 32-sensor VRA. The algorithm performed successfully at 7 dB for the 10-sensor arrays

and at 6 and 7 dB for the 5-sensor arrays.
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An Iterative Equalization and

Decoding Approach for

Underwater Acoustic

Communication

We present an iterative approach for recovering information sent over a shallow un-

derwater acoustic communication channel. The procedure has three main tasks: estimation of

channel model parameters (CMPs), channel equalization, and decoding. These tasks are per-

formed cyclicly until the algorithm converges. Information bits are convolutionally encoded,

punctured and permuted, mapped into QPSK symbols, linearly modulated, and transmitted

through a downward-refracting ocean waveguide. Training symbols are prepended to the trans-

mitted sequence for initial estimation of CMPs. Our algorithm processes data from a single

receive sensor. Data is received on a vertical array and the performance of the algorithm for

each sensor in the array is examined. There is negligible Doppler spread in the received data.

However, difference between transmitter and receiver clocks, as well as slight motion of the re-

ceive array, produce a non-negligible compression of the received signals. Consequently there is

observable Doppler ”shift”. Nonuniform resampling of the data produces time series we model

as the output of a linear time-invariant system. Resampling and CMP estimation are done iter-

atively, in conjunction with equalization and decoding. The algorithm successfully processes the

data to yield few or no information bit errors.

32
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2.1 Introduction

Each communication channel has key characteristics that drive the design of information

transmission systems. The shallow underwater acoustic (UWA) channel has three. The first is

relatively long channel impulse responses (CIRs) which, for the data rate used in this paper,

causes intersymbol interference (ISI) to span tens of symbol periods. The second is sensitivity

to Doppler effects, since the ocean is an undulating medium and has a fairly slow sound speed.

The third is limited bandwidth, a result of the fact that signal attenuation increases with the

square of frequency. Details of the UWA channel and a survey of the efforts to communicate

through it can be found, for example, in [1] and [27–30]. The severity of these characteristics

and the degree to which they impact UWA telemetry depends upon factors such as range, depth,

surface interaction and conditions, sound speed depth profile, ocean floor properties, and so forth.

For the data used in this paper, there is no source or receiver motion other than that which is

unavoidable and a downward-refracting sound speed depth profile limits surface interaction.

It is commonly accepted that most UWA channels are “rapidly fading”. Owing to

factors mentioned above, and in particular when propagating signals have significant interaction

with rough surface waves, this can be true. (Additionally, source/receiver motion will create

a time-varying channel.) However, Yang has recently proposed that much of the perceived

ocean fluctuation is in fact caused by algorithmic rather than physical phenomena [31]. While

processing data transmitted through channels found by measurement to be slowly varying, he

observed adaptive equalizer filters varying rapidly and giving the appearance of rapid channel

fluctuations. The data used in this paper falls into such a category. If the data is “correctly”

resampled to compensate for sampling clock error and source/receiver drift, then a channel model

that assumes a fixed CIR is successfully employed. Failure to resample the data, or erroneous

resampling, produces an apparent phase rotation of the CIR.

The majority of work in UWA communication is based on a general time-varying chan-

nel model and is designed for high SNR [32]. Equalization and CIR estimation are typically

performed with the use of adaptive filters that often introduce more degrees of freedom than nec-

essary. Furthermore, it is customary to assume that equalizers produce symbol estimates that are

error-free and can be used as if they are the true symbols. Most schemes rely on correct symbol

estimates for use in updating estimates of channel model parameters (CMPs) or for cancellation

of ISI in decision feedback equalizers (DFEs). Additionally, the proposed receiver structures

predominantly adhere to a canonical sequential processing strategy of equalization followed by

decoding, with each operation performed a single time. The majority of radio communication

literature either does not deal with significant ISI or circumvents the issue by using modulation

formats that do not require equalization–for example, orthogonal frequency-division multiplexing
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(OFDM) [33] and impulse radio [34].

In this paper we pursue alternatives to the conventional approaches. We take advantage

of the true nature of our data and work within a channel model that captures the salient features of

the data without excessive over-parameterization. Since we attempt to communicate at relatively

low SNR, we do not assume symbol estimates are correct. Instead, we employ message-passing

(MP) techniques and iterative processing [16]. Imperfect symbol knowledge is explicitly modeled

and accounted for, and equalization and decoding are performed multiple times in an iterative

or “turbo” manner [35,36]. For other examples of iterative equalization and decoding applied to

UWA channels the reader is refered to [37–42].

The shift from sequential to iterative processing is becoming widespread. The over-

whelming success of Turbo codes, low-density parity check (LDPC) codes, Turbo equalization,

and so forth, make a strong case for the use of iterative algorithms [12, 13, 15]. While initially

developed for the decoding of channel codes, current research in iterative processing focuses on

incorporating MP techniques into equalization and CMP estimation. That is the basic idea pur-

sued here: decoding provides information about the transmitted symbols that can be used to

improve estimation of CMPs and equalization, which can then be used to improve decoding, and

so on.

Optimal equalization in the case of a known CIR with a short span is well estab-

lished [43]. But the CIR of interest here is neither known nor of short duration. Various modi-

fications of the optimum strategy have been proposed to deal with these shortcomings–notably

“per survivor processing” [17]. Since it is not clear whether these approaches out-perform simpler

ones that employ linear filters, one of the latter is adopted in this paper. In particular, we apply

concepts pioneered by Tuchler et al [22, 23, 44] to data transmitted through an UWA channel.

We use essentially the same equalizer filter, and use the same approximations to derive it, yet

our derivation is simpler as it is a direct application of the “sum-product” algorithm (SPA) [6].

Furthermore, our computation of symbol a posteriori probabilities (APPs) is different and more

accurate. Tuchler and others have also incorporated the use of “soft” symbol information into

CIR estimation [20, 21, 45]. We follow suit, but apply the concept to a different channel model

than the ones they consider.

In addition to implementing these “soft-in/soft-out” [46] equalization methods, we intro-

duce new procedures in our receiver algorithm. Most documented work in UWA communication

does not address the details of synchronization, despite the fact channel estimation is discussed.

However, synchronization and CIR estimation are inextricably linked: the latter involves mea-

suring not only the gains of impulse arrivals but their delays as well, which is precisely the

subject of the former. We implement a method of simultaneous synchronization/CIR estima-
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tion that we call “framing”. Our method of phase sequence estimation is unconventional since

standard approaches employing phase-locked loops (PLLs) require high SNR. We note the grow-

ing research in MP approaches to phase estimation and iterative timing recovery offer alternate

approaches [47–50].

The remainder of this paper is organized as follows. In Section II we describe the

Focused Acoustic Fields 2004 experiment, from which we obtained our data, and state our signal

and channel models and assumptions. The receiver algorithm is then explained in Section III. In

Section IV we present results from processing data collected during the experiment. We conclude

the paper in Section V.

2.2 Experiment Setup, Transmission Model and Assump-

tions

2.2.1 Experiment Setup

The experiment was conducted during July 2004 in a shallow water region north of

Elba Island, Italy. The experiment geometry is summarized in Fig. 2.1(b). A source at 110

m depth transmitted signals to a sensor array 10 km distant, through an ocean region 120 m

deep. There were 32 elements in the sensor array, numbered from the bottom. The first sensor

was at 104 m depth, there was 2 m spacing between sensors, and the 32nd sensor was at 42

m depth. Fig. 2.1(a) shows the measured sound speed versus depth. The experiment region

was downward-refracting and, since the range was much greater than the depth, signal energy

arriving at the array had little surface interaction and was concentrated toward the bottom of

the sensor array.
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Figure 2.1: (a) Measured sound speed depth profile. (b) Experiment geometry.
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2.2.2 Encoding, Permuting/Puncturing, and Mapping

The process of transforming bits b into symbols a is summarized in the Forney-style

factor graph (FFG) [7, 8] of Fig. 2.2(a). Information bits b = (b0, . . . , bNb−1), Nb = 10, 000,

are encoded into bits e =
(
e
(1)
0 , e

(2)
0 , . . . , e

(1)
Nb−1, e

(2)
Nb−1

)
using a rate- 1

2 convolutional code (CC)

with maximum free distance and constraint length 5 [51]. These bits are pseudo-randomly

(PR) punctured and permuted: e
Π−→ é =

(
é
(1)
0 , é

(2)
0 , . . . , é

(1)
Nd−1, é

(2)
Nd−1

)
, Nd = 9, 800 be-

ing the number of data-bearing symbols after QPSK mapping. The puncturing and permu-

tation, denoted by Π, is a variation of an “S-random” permutation [52] with S = 50. At

most one bit of each pair
(
e
(1)
n , e

(2)
n

)
is punctured. Each pair

(
é
(1)
n , é

(2)
n

)
is mapped into

aNt+n =
(
1
/√

2
) [(

2é
(1)
n − 1

)
+ j
(
2é

(2)
n − 1

)]
∈ A, where A is the QPSK alphabet. Insert-

ing Nt = 200 PR QPSK training symbols before the data symbols gives the transmitted symbol

sequence a = (a0, . . . , aNs−1), where Ns = Nt +Nd = 10, 000 is the total number of symbols per

transmission. The symbols have zero mean, unit variance and, by virtue of the PR permutation,

they are uncorrelated as well.

The scheme just described for generating a symbol sequence is statistically equivalent

to that used during the experiment. Yet there is a subtle difference we now explain. The

procedure stated above requires selecting the number of training symbols prior to transmission.

However, we chose not to commit to a particular number of training symbols (or a specific

coding scheme), so we transmitted an uncoded PR QPSK symbol sequence å. According to

the symbol mapping given above, this symbol sequence corresponds to an effective punctured

and permuted encoded bit sequence e̊. In general there is no information bit sequence and/or

puncturing/permutation that will produce b
CC−→ e

Π−→ é = e̊. Consequently we simply generate a

PR information bit sequence, encode, puncture and permute it as stated above, and define the set

S =
{

(n, j) : é
(j)
n 6= e̊

(j)
n

}
. This set represents the elements of e̊ that must be bit-complemented

to give é, and vice versa. If we insert a “scrambling” operation after the puncturing/permutation

and before the mapping, which complements the bits represented by S, then the system will

transform a given block of information bits into the symbol sequence actually transmitted during

the experiment. This additional operation has no effect from a statistical standpoint, and is

easily incorporated in a MP algorithm.

2.2.3 Signal Models and Assumptions

In this section we state the channel model and assumptions that drive our informa-

tion recovery algorithm. The data is modeled as the nonuniformly sampled output of a linear

time-invariant (LTI) system. We assume, with details discussed in Appendix 2A , that proper



37

(a)

é
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(2)
0

q qq q Mapping:

p (a |é)
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resampling/interpolation yields Doppler-compensated data that corresponds to a LTI system.

Furthermore, we assume this resampling/interpolation procedure, which we denote using the

operator R, can be performed with essentially no loss of information. Consequently, knowledge

of the data sampling times is required. We can only use estimates, however, whose error leads

to a phase-rotation of the Doppler-compensated data. (This is also discussed in Appendix 2A .)

Finally, we explain our model and assumptions for this phase sequence, and for the CIR as well.

The sequence {2Re [s̃Tx
k ]} is generated from the symbol sequence a, then converted to

an analog signal and transmitted from a single source transducer. (We use the notation {xk}
to denote the sequence (. . . , xk , . . .), where the initial and terminal indices are unspecified; the

notation does not indicate the set with single element xk.) We use linear modulation

s̃Tx
k = exp

(
j2π

fc

Fs

k

)∑

l

alh
Tx
k−(Fs/Rs )l

with center frequency fc = 3.5 kHz, sampling frequency Fs = 12 kHz, symbol rate Rs = 1

symbol/msec, and transmit pulse hTx
k . We used a pulse whose Fourier transform is a least-

squares (LS) fit to a square root raised-cosine spectrum [53], having approximately 99% of its

energy within a bandwidth equal to the symbol rate. Transmission through the UWA channel,

sampling the received signal at a single hydrophone sensor, and filtering to remove out-of-band

noise and negative-frequency signal components, results in a data sequence r̃ whose elements we

model as

r̃k = w̃k + s̃ (tk) (2.1)

s̃ (t) = exp (j2πfct)
∑

l

alh (t− l /Rs ) (2.2)

tk0+k = (1 + ν)
k

Fs

+ τk (2.3)

where w̃k is ambient noise, h (t) is an overall CIR, and k0 is a reference index for the sequence

of sampling times T = {tk}. The parameters ν and {τk} account for error between transmitter

and receiver clocks (which is indistinguishable from Doppler “shift”), slight motion of the sensor

array, and fluctuations in the ocean channel.

Fig. 2.3 shows SNR measured across the sensor array and CMP estimates for sensors

3, 21, and 32, obtained using all Ns = 10, 000 symbols. These three sensors are typical represen-

tatives from the bottom, middle and top of the array; sensors 21 and 32 will be examined closely

throughout the sequel. As sensor number increases (depth decreases), SNR tends to decrease and

the CIR becomes more complicated. For sensor 3, near the ocean floor, the CIR has a dominant

arrival and a short duration, while for sensor 32, at the top of the array, the CIR does not have

a dominant arrival and has a much longer duration. The CIR estimates are at symbol-rate (SR)
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Figure 2.3: (a) SNR measured across entire array. Left axis is sensor number, right axis is depth.

(b) CIR estimated for sensor 32. (c) Estimated sampling time offset δ̂k = t̂k0+k−k /Fs for sensor

32. Right axis shows corresponding phase rotation 2πfcδ̂k. (d,e) CIR and sampling time offset

for sensor 21. (f,g) CIR and sampling time offset for sensor 3.

and all three are relative to the same synchronization, but their values are normalized indepen-

dently. Also shown in the figure are estimates of the sampling time offsets δk = tk0+k − k /Fs .

Choosing not to resample a received data sequence would result in its CIR shifting by about 0.2

symbols over the duration of the transmission, and rotating by about 250◦. These effects result

from the fact

s̃ (tk0+k) = s̃

(
k

Fs

+ δk

)

= exp

(
j2π

fc

Fs

k

)∑

l

al

[
exp (j2πfcδk)h

(
δk +

k

Fs

− l

Rs

)]

.

We will use the notation x́k = R
(
{xk} , {tk} , t́k

)
as follows. The input sequence {xk} is

assumed to be the values of an underlying continuous function x (t) sampled at times {tk}. The

output value x́k is the approximation of x
(
t́k
)

obtained via resampling/interpolation as discussed

in Appendix 2A .

Doppler compression/expansion of the communication signal does not significantly change

its frequency band. Since the bandwidth is nearly equal to the symbol rate, we only need the

SR signal samples s̃ (n /Rs ). Given the sampling times T , we assume no loss of information in
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resampling/interpolating the data r̃ to obtain the following model:

rn (T ) = exp

(
−j2π

fc

Rs

n

)
R

(
r̃, T , n

Rs

)
(2.4)

∼= wn +

l2∑

l=l1

hlan−l (2.5)

p (D |a,P ) ≡
∏

n

pw

(
rn (T )−

l2∑

l=l1

hlan−l

∣∣∣∣∣σ
2
w

)
(2.6)

where wn is additive white Gaussian noise (AWGN) with probability density function (pdf)

pw

(
wn

∣∣σ2
w

)
=

(
πσ2

w

)−1
exp

(
− |wn|2

/
σ2

w

)

In (2.6) we consider using the pdf of the SR data {rn (T )} equivalent to using the pdf of the

original data r̃. Therefore the CMPs are the sampling times T , the CIR which has values hl and

is nonzero only for l1 ≤ l ≤ l2, and the AWGN variance σ2
w.

We use coherent signaling, which presumes the overall channel varies relatively slowly.

We incorporate this into our sampling times model in two ways. For the initial estimate, we

assume T is piecewise-linear over blocks that span N∆ = 1000 symbols. During the iterative

procedure, we update the estimate of T by measuring the phase sequence resulting from error

in the estimation of T (see Appendix 2A ). This phase sequence is described using cubic splines

(CS) with control points placed every N∆ symbols. Therefore, we effectively assume channel

fluctuations occur at frequencies below 1 Hz. Additionally, an upper bound on the CIR length

is needed, which we set to Lmax = 150 symbols.

2.3 Receiver Algorithm

The overall objective is recovery of information bits bn. Denoting the data by D and

the CMPs by P , we would like to compute b̂n = arg maxbn
[maxP p (D |bn,P )]. Since exact

computation is impossible we use MP techniques to obtain approximate solutions. Details of

iterative equalization and decoding can be found in references given in the introduction. The

main idea is that information–which can be interpreted as estimates of symbol probability mass

functions (pmf’s)–is cycled between an equalizer and a decoder, and the information quality

improves as the process is iterated. (By “decoder” we mean everything that takes place within the

dashed box in the FFG of Fig. 2.2(a).) We focus on performing equalization in conjunction with

CMP estimation; standard MP routines are used to perform decoding and are straightforward

applications of the SPA [9, 19]. Specifically, representing messages from the decoder by ξ and
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from the equalizer by ζ, we present approximations to the following:

P̂(i) = argmax
P

p (D |P )

∼= argmax
P

∑

a

p (D |a,P )
∏

n

ξ(i−1)
n (an) (2.7)

ζ(i)
n (α) ∝ p

(
D
∣∣∣an = α, P̂(i)

)

∼=
∑

{a:an=α}

p
(
D
∣∣∣a, P̂(i)

)∏

l6=n

ξ
(i−1)
l (al) (2.8)

where i is the iteration count. There is no prior symbol information available for the first iteration,

i.e. ξ
(0)
n (α) = 1 /|A| for n = Nt, . . . , Ns−1, so the initial CMP estimates P̂(1) are obtained using

only the training symbols a0, . . . , aNt−1.

A flow chart of the receiver algorithm is shown in Fig. 2.4. Asynchronous transmis-

sions are assumed, so the first step is to detect when a communication signal is present (vice

only ambient noise). This process also provides coarse synchronization. The training symbols

{an}Nt−1
n=0 are then used to fine-tune synchronization and obtain an initial CIR estimate ĥ(1) and

AWGN variance estimate
(
σ̂

(1)
w

)2

. A resampling/interpolation reference index k0 is also chosen.

These parameter estimates are used to compute a linear equalizer (LE) filter f (1), which is used

to process SR data and obtain an initial sampling times estimate T̂ (1). We then set the iteration

i = 1 and begin the iterative procedure.

Resampling r̃ according to T̂ (i), and shifting the resulting sequence to baseband, gives

SR data
{
r
(i)
n

}
. This data sequence is filtered with f (i) to produce soft symbol estimates

{
z
(i)
n

}Ns−1

n=0
, from which we compute symbol APP estimates ζ(i). If i = Niter, then the sym-

bol APP estimates are decoded to give bit decisions b̂ and the process is complete. Otherwise

we decode the symbol APP estimates to produce symbol prior probability estimates ξ(i). We set

i← i+ 1 and use ξ(i−1) to compute the symbol statistics

ā(i)
n =

∑

α∈A

αξ(i−1)
n (α)

(
σ

(i)
ā

)2

= 1− 1

Ns −Nt

Ns−1∑

n=Nt

∣∣∣ā(i)
n

∣∣∣
2

We then compute the CIR estimate ĥ(i). If our confidence in the symbol prior probability

estimates is high enough–i.e. if the average estimated symbol variance
(
σ

(i)
ā

)2

is low enough–

then we estimate the phase rotation {θ (n /Rs )} resulting from error in the estimated sampling

times T̂ (i−1), which allows us to compute T̂ (i); otherwise we set T̂ (i) = T̂ (i−1). Finally, we

estimate the AWGN variance
(
σ̂

(i)
w

)2

and construct a new LE f (i).
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2.3.1 Detection of Signal Presence and Coarse Synchronization

The model described by (2.5) applies when a resampling/interpolation reference index

k0 has been established. It incorporates fine synchronization into the CIR definition. During the

coarse synchronization and training procedures, however, it is convenient to use a different but

equivalent LTI model:

r(0) (n) =
[
r
(0)
n · · · r

(0)
n+Nt−1

]T
(2.9)

= w (n) +A (L)h (2.10)

A (L) =




a0

...
. . .

aL−1 · · · a0

...
...

aNt−1 · · · aNt−L




(2.11)

h =
[
h0 · · · hL−1

]T
(2.12)

where r
(0)
n = exp (−j2π (fc /Rs )n) R (r̃, {k /Fs } , n /Rs ) = exp (−j2π (fc /Rs )n) r̃(Fs/Rs )n, w (n)

is noise, and the CIR is causal and L symbols long. (The entries in the upper right corner of the

symbol convolution matrix A (L) are zero.)

To establish coarse synchronization we pose a binary hypothesis test: the vector r(0) (n)

is either the start of the communication sequence or it is just noise. The data pdf used to form

the test statistic is

p
(
r(0) (n)

∣∣∣Hη

)
∝

∫
p
(
r(0) (n)

∣∣∣Hη , h
)
p (h) dh

∝
∫

exp

(
−
∥∥∥r(0) (n)−A (L)h

∥∥∥
2 /
σ2

w − ‖h‖2
/
σ2

h

)
dh

∝ exp

(
−
∥∥∥r(0) (n)

∥∥∥
2

[σ2
wI+σ2

h
A(L)A(L)H]

−1

)

where Hη are the hypotheses and the prior pdf of the CIR vector assumes uncorrelated zero-mean

Gaussian elements with variance σ2
h. (The notation ‖v‖2M indicates the quadratic form vHMv.)

The null hypothesis H0 corresponds to setting A (L) = 0. Consequently the log-likelihood ratio

(LLR) is
∥∥r(0) (n)

∥∥2

M
, where M = I

/
σ2

w −
[
σ2

wI + σ2
hA (L)A (L)

H
]−1

, and the optimal test con-

sists of comparing this LLR with a suitable threshold. To keep computational complexity reason-

able we use various approximations for M . The crudest approximation is simply M
∼∝ I. We can

use the matrix inversion lemma to write M =
(
σ2

h

/
σ2

w

)
A (L)

[
σ2

wI + σ2
hA (L)

H
A (L)

]−1

A (L)
H
,

which results in the approximation M
∼∝ A (L)A (L)H. This latter approximation is most useful
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if we use the augmented matrix

Ă (L) =




a0

...
. . .

aL−1 · · · a0

...
...

aNt−1 · · · aNt−L

. . .
...

aNt−1




(2.13)

so that the LLR, which becomes
∥∥∥Ă (L)

H
r(0) (n)

∥∥∥
2

, can be calculated via correlation of the

data sequence r
(0)
n with the training sequence. (The entries in the upper right corner and lower

left corner of Ă (L) are zero.) Since the threshold is proportional to the noise variance, we

incorporate estimation of the latter by expressing the former as γ
∥∥ŕ(0) (n)

∥∥2
, where ŕ(0) (n) =[

r
(0)
n−Ng

· · · r
(0)
n−1

]T
for some guard interval Ng. For a given probability of false alarm pDOSP

FA ,

the parameter γ is the solution of pDOSP
FA = P

[
Φn ≥ γ

∣∣∣r(0)n
iid∼ pw

(
r
(0)
n

∣∣σ2
w

)]
, where we define

the test statistic (TS) Φn =
∥∥r(0) (n)

∥∥2

M

/∥∥ŕ(0) (n)
∥∥2

.

We used the crude approximation M
∼∝ I and set Ng = 100, Nt = 100 (just for this

procedure: Nt = 200 during training, etc.), and pDOSP
FA = 10−9, to generate Fig. 2.5. The figure

shows
∣∣∣r(0)n

∣∣∣, 10 log10 (Φn/ γ), and a CIR estimate obtained using all Ns = 10, 000 symbols, for

sensor 32. The TS is low prior to the start of the communication signal, reaches a peak that

coincides with the main energy of the CIR estimate, then becomes low again after the start of

the communication signal. It becomes low again because inside the communication signal the

two data vectors described above are both noise-like–albeit with higher variance–and the TS is

independent of the (ambient) noise variance. Consequently we obtain coarse SR synchronization

as follows: the TS becomes positive for some index n1, we then find an index n2 > n1 for which

the TS is negative again, finally we compute ň0 = arg maxn1≤n<n2 Φn. (An inverted hat over a

variable, as used here and henceforth, indicates a coarse estimate of that variable.)

We note that using the approximationM ∝ Ă (L) Ă (L)
H

yields a stronger, more reliable

test. However, the crude approximation works sufficiently well in the range of SNR we are

considering and is very simple to implement.

2.3.2 CMP Estimation via Training

We use the model and notation introduced in the previous subsection. If the CIR

length L were known, we could estimate the unknown parameters using the maximum likelihood
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approach–i.e. by maximizing the pdf

p
(
r(0) (n)

∣∣A (L) , h, σ2
w

)
=

(
πσ2

w

)−Nt
exp

(
−
∥∥∥r(0) (n)−A (L)h

∥∥∥
2 /
σ2

w

)
(2.14)

which is analogous to (2.6). With L unknown, it does not make sense to simply maximize over

this parameter as well. For given values of n and L, (2.14) is maximized by setting h = ĥ (n,L) =

A (L)
+
r(0) (n), where (·)+ denotes pseudo-inverse, which gives

p
(
r(0) (n)

∣∣∣A (L) , ĥ (n,L) , σ2
w

)
=

(
πσ2

w

)−Nt
exp

(
−
∥∥∥
[
I−A (L)A (L)+

]
r(0) (n)

∥∥∥
2 /
σ2

w

)

Consequently (2.14) is maximized by making the subspace spanned by the columns of A (L) as

large as possible, which means that L should be made as large as possible. The problem with

doing so, however, is that estimation error increases as L increases. This issue is not important

when the number of training symbols is much larger than the anticipated CIR length. But when

the training interval is relatively short, as in our case, then choosing L too large will project too

much noise onto the CIR estimate, and choosing L too small will project too little signal energy

onto the CIR estimate. We use the term “framing” to refer to the process of estimating the start

of a CIR (i.e. synchronization), in addition to its span and the gains of its multipath arrivals.

In Appendix 2B we motivate a cost function (CF) that alleviates the problems associated

with using (2.14):

σ2
eff (n,L) =

∥∥∥
[
I−A (L)A (L)+

]
r(0) (n)

∥∥∥
2

Nt − L

(
1 + tr

{[
A (L)

+
A (L)

+H
]−1
})

(2.15)

This expression is an effective noise variance. The data is modeled as rn = wn+hn∗an, where wn

is AWGN with variance σ2
w, hn is the CIR, an is the symbol sequence, and ∗ denotes convolution.

The CIR is divided into two parts: one is estimated and the other is treated as interference.

Consequently the data model becomes rn = ẃn +hsig
n ∗an, where ẃn = wn +hint

n ∗an. For values

of (n,L) where the CF is near its minimum value, hint
n contains only arrivals with relatively small

gains. Consequently hint
n ∗

(
hint
−n

)∗ '
∥∥hint

∥∥2
δn (Kronecker delta) and ẃn is well appoximated

as AWGN with variance σ2
w +

∥∥hint
∥∥2

, where
∥∥hint

∥∥2
=
∑

n

∣∣hint
n

∣∣2. The top line of (2.15) is

an unbiased estimate of this noise-plus-interference variance, while the bottom line accounts for

the projection of this effective noise onto the CIR estimate. Basically, some potential signal

energy is sacrificed because its meager energy is outweighed by the additional error variance that

would be incurred by estimating the corresponding multipath arrivals. Consequently we estimate

the desired parameters by minimizing σ2
eff (n,L). The upper term is made small by making the

subspace spanned by the columns of A (L) large, while the lower term is made small by keeping

this subspace small–so we achieve the desired balance between projecting enough signal energy

onto the CIR estimate, but not too much noise. To perform the minimization, we compute
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σ2
eff (n,L) for L ≤ Lmax and for values of n in a window about the coarse SR synchronization

index ň0:

{
n̂0, L̂

}
= arg min

n,L
σ2

eff (n,L) (2.16)

(
σ̂(1)

w

)2

= σ2
eff

(
n̂0, L̂

)
(2.17)

ĥ = A
(
L̂
)+

r(0) (n̂0) (2.18)

This procedure can be implemented efficiently using a QR decomposition of A (Lmax).
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Figure 2.6: (a) Histogram of CIR length and synchronization point estimates, obtained from

simulations using data generated from the CIR estimate of sensor 32 shown in Fig. 2.3(b). (b)

Rate of correct symbol decisions that results from using a LE computed from CIR and noise

variance estimates derived using various CIR lengths and synchronization points. (c) “Framing”

CF (dB) as a function of CIR length and synchronization point for experiment data from sensor

32. (d) The corresponding CIR estimate is shown in circles, an estimate obtained using all

Ns = 10, 000 symbols is shown in dots connected by solid lines. (e) Cumulative energy of the

latter CIR estimate.

We applied σ2
eff (n,L) in simulations using data generated from the sensor 32 CIR es-

timate of Fig. 2.3(b). Denote this ”true” CIR as h̊l and its length as L̊. Each data sequence

was generated as rn̊0+n = wn̊0+n +
∑L̊−1

l=0 h̊lan−l, where n̊0 is the true synchronization index, σ2
w

was chosen to give an SNR of 5 dB, and the symbol sequence was Ns = 10, 000 symbols long

and contained the same training sequence used in the experiment. For each data sequence we
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computed
{
n̂0, L̂

}
from (2.16). The histogram resulting from one million trials is shown in Fig.

2.6(a). For one thousand of these trials, and for each pair {n0, L}, we also did the following:

we computed ĥ (n0, L) = A (L)
+
r (n0) and σ̂2

w = σ2
eff (n0, L), then filtered the data with an LE

constructed as described in Appendix 2C , using σ2
a = 1 and substituting the CMP estimates for

true parameter values. The average ratio of correct to total symbols for each n0 and L is shown

in Fig. 2.6(b). It is clear from the figure that the CF σ2
eff (n0, L) selects n0 and L so as to yield

the best performance when using a LE computed from the resulting parameter estimates. In

Fig. 2.6(c) we show −10 log10

[
σ2

eff (n,L)
]

computed using experiment data from sensor 32. Part

(d) of the figure shows the resulting CIR estimate (in circles), along with an estimate obtained

using all Ns = 10, 000 symbols. Part (e) of the figure shows the normalized cumulative sum of

the energy of the latter CIR estimate. Comparing (d) and (e) shows the training CIR estimate,

although quite noisy, spans an interval containing about 95% of the energy in the CIR.

We complete the training procedure by setting the resampling/interpolation reference

sample k0 to coincide with the center of the energy distribution of the CIR estimate, and setting

the estimated CIR limits
(
l̂
(1)
1 , l̂

(2)
2

)
in a consistent manner:

k0 =
Fs

Rs

(
n̂0 + l̄

)
(2.19)

l̄ =


L̂−1∑

l=0

l
∣∣∣ĥl

∣∣∣
2
/∥∥∥ĥ

∥∥∥
2




(2.20)

[
ĥ

(1)

l̂
(1)
1

, . . . , ĥ
(1)

l̂
(1)
2

]T
= ĥ (2.21)

l̂
(1)
1 = −l̄ (2.22)

l̂
(1)
2 = −l̄ + L̂− 1 (2.23)

(The notation b·e denotes rounding the argument to the nearest integer.)

2.3.3 Initial Estimation of Received Signal Sampling Times

The sequence of sampling times T varies during a transmission, so it cannot be estimated

via training. We use the model (2.3) for the initial estimate; we first estimate the linear trend

ν, then the random fluctuations {τk}. A CF of ν is developed, which is then minimized over

a suitable set of values for ν. In particular, we used uniformly spaced values of ν with spacing

10−5, which corresponds to a rotation of ν (360◦) (fc /Rs ) (Ns) = 126◦ over the course of a

transmission. Since ν is too small to be estimated accurately using Nt = 200 training symbols,

we simply center our search about zero.

For each ν, let
{
ťk (ν)

}
be a rough estimate of the sequence of sampling times, with

ťk0+k (ν) = (1 + ν) k /Fs . The equivalence (to within a complex scaling) of the minimum
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mean-squared error (MMSE) LE and the constant modulus (CM) LE (under the assumption

of Gaussian-distributed LE output ISI) is established in [54]. Furthermore, the minimum vari-

ance distortionless response (MVDR) LE derived in Appendix 2C is simply a scaled version of

the MMSE LE. Let zn denote LE output. In [55] it is shown that the CM CF
∑

n

(
1− |zn|2

)2

is equivalent to the following CF:

JCM = µ4

/
µ2

2 (2.24)

µm =
1

Ns

Ns−1∑

n=0

|zn|m (2.25)

where µm is the sample mth-order absolute moment of the LE output. The important point is

that the CM criterion and the MVDR criterion are consistent. Instead of using the CM criterion

to construct a LE filter, we use it to measure the output of a LE created with the MVDR criterion.

For each ν, we compute

rn (ν) = exp

(
−j2π

fc

Rs

n

)
R

(
r̃,
{
ťk (ν)

}
,
n

Rs

)
(2.26)

zn (ν) =
∑

l

f
(1)
l rn−l (ν) (2.27)

JCM (ν) = µ4 (ν)
/

[µ2 (ν)]
2

(2.28)

where µm (ν) is (2.25) applied to the LE output {zn (ν)}, and f (1) is created according to Ap-

pendix 2C , using σ2
a = 1 and substituting CMP estimates for true parameter values. The LE

length was chosen to be F = 100. We then compute ν̂ = argminν J
CM (ν). Resampling the data

r̃ according to
{
ťk (ν̂)

}
, then filtering with f (1), produces the sequence with smallest deviation

from a CM, of the values considered for ν. In other words, the best value of ν will produce SR

data {rn (ν)} that is closest to LTI, which will produce LE output {zn (ν)} that is closest to

being MVDR and, based on the facts given above, is closest to being CM.

To estimate {τk}, we follow a procedure motivated by Subsection 2.2.3. Using
{
ťk (ν̂)

}

to resample the data r̃, as opposed to using the true sampling times, is modeled as producing a

rotation of the resulting SR data: rn (ν̂) ' wn + exp (jθn)
∑

l hlan−l. The phase θn is assumed

slowly-varying with index n, so we treat it as constant during each LE computation. Let zn =

zn (ν̂). We have the following model:

zn ' vn + g0 exp (jθn) an (2.29)

where vn is filtered AWGN plus residual ISI, and gl is the convolution of the CIR hl with the LE fil-

ter f (1). (In the absence of estimation error, g0 = 1.) Consider the LS CF
∑

n |zn − g0 exp (jθn) an|2

=
∑

n |zn|2 + g2
0

∑
n |an|2 − 2g0

∑
n Re [z∗n exp (jθn) an]. The term

∑
n |zn|2 is a constant and the

term g2
0

∑
n |an|2 depends only on g2

0 . We are only interested in {θn}, so we define the new
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CF JVA (θ, a) =
∑

n Re [z∗n exp (jθn) an], where θ = {θn}. Consequently we estimate the phase

sequence as

θ̂ = argmax
θ∈Θ

max
{an}Ns−1

n=Nt

JVA (θ, a) (2.30)

= argmax
θ∈Θ

{
Nt−1∑

n=0

Re [z∗n exp (jθn) an] +

Ns−1∑

n=Nt

max
an∈A

Re [z∗n exp (jθn) an]

}
(2.31)

where Θ is a set of admissible phase sequences. The set Θ is restricted by the assumption of

slowly-varying phase, and also by computational burden since there are Ns = 10, 000 samples

in each phase sequence. As illustrated in Fig. 2.7, we consider phase sequences that can be

described by a trellis: the trellis “state” is the discretized phase at the beginning of each block

of time, and the time intervals have length N∆ = 1, 000 symbols. The phase starts at zero and

either remains unchanged or increases or decreases by the amount θ∆ = 14◦ over each interval.

This choice of admissible phase sequences permits solution via reverse dynamic programming [3].

This method of phase estimation is chosen over one based on use of a PLL because the latter is

prone to “cycle slips” at low SNR.

As explained in Appendix 2A , we have θ̂n ' 2πfcε (n /Rs ), where ε (t) is sampling

times estimation error as a function of time. Since we need the sampling times error at the

estimated sampling times
{
ťk (ν̂)

}
, we resample/interpolate to obtain

τ̂k = R

({
θ̂n /(2πfc)

}
, {n /Rs } , ťk (ν̂)

)

In this case we use linear interpolation. Finally, we compute the initial estimate of the sampling

times t̂
(1)
k = ťk (ν̂) + τ̂k.
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Figure 2.7: Illustration of initial phase estimation trellis.



51

2.3.4 Iterative Procedure

Since the ultimate objective is recovery of information bits, we consider an iteration cycle

to end with the decoding task. A cycle thus consists of CMP estimation, followed by channel

equalization, and is completed with decoding. The first iteration does not have the benefit of

a priori symbol information other than the training sequence, so the initial CMP estimation

is handled differently than during the iterative procedure. Consequently we enter the iterative

procedure at the equalization step, and we find it natural to explain the procedure starting there.

Initial CMP estimates P̂(1) are obtained as described previously. We let i denote the iteration,

and set i = 1.

The goal of equalization is to compute the symbol APP estimates ζ
(i)
n . We use (2.6)

for the data pdf in (2.8), with SR data r
(i)
n = exp (−j2π (fc /Rs )n) R

(
r̃, T̂ (i), n /Rs

)
obtained

via the estimated sampling times T̂ (i). In Appendix 2C we derive the expression ζ
(i)
n (α) ∝

exp

(
−ρ(i)

∣∣∣α− z(i)
n

∣∣∣
2
)

, where z
(i)
n is the output of a MVDR LE, and ρ(i) is its corresponding

output signal to interference-plus-noise ratio (SINR). (The messages are normalized to sum to

one, consistent with their interpretation as probabilities.) Input to the LE are the SR data r
(i)
n

and the estimated symbol means ā
(i)
n . The LE and its output SINR ρ(i) are computed from

the CMP estimates l̂
(i)
1 , l̂

(i)
2 , ĥ(i), and σ̂

(i)
w , and the symbol statistic

(
σ

(i)
a

)2

. The LE output

z
(i)
n can be modeled as (2.29). Perfect CMP knowledge would give ejθn = 1, g0 = 1, and

σ2
v = E |vn|2 = 1

/
ρ(i) . The CMP estimates are not perfect, however, so the SINR is not ρ(i)

and the LE output z
(i)
n is not unbiased. Since we have a large number of LE output samples

(Ns = 10, 000), we instead measure ĝ0, and σ̂2
v directly from z

(i)
n , as discussed in Appendix 2D ,

then compute the equalizer messages as

ζ(i)
n (α) ∝ exp

(
−
∣∣∣z(i)

n − ĝ0α
∣∣∣
2
/
σ̂2

v

)
(2.32)

Given equalizer messages ζ
(i)
n , we next perform the decoding step. If i = Niter = 10,

then we compute information bit decisions and terminate the iterative procedure. (The value

Niter = 10 was obtained empirically.) Otherwise we compute symbol messages ξ
(i)
n , set i← i+1,

and continue by estimating the CMPs.

From (2.7), (2.5) and (2.6), and utilizing approximations similar to those used in Ap-
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pendix 2C , we obtain

P̂(i) ' arg max
P

σ
−2N+

s
w exp

(
−
∥∥r (T )− Āh

∥∥2 /
σ2

w

)
(2.33)

h = [hl1 , . . . , hl2 ]
T

(2.34)

Ā =




ā
(i)
0 · · · ā

(i)
l1−l2

...
...

ā
(i)
l2−l1+Ns−1 · · · ā

(i)
Ns−1


 (2.35)

r (T ) = [rl1 (T ) , . . . , rl2+Ns−1 (T )]T (2.36)

where N+
s = Ns + l2 − l1. In the above formulation we also assume σ2

ā ‖h‖2 � σ2
w, which

becomes true as the iterative process converges successfully. Our approach to CMP estimation

is cyclic [56]: we estimate the CIR using the previous sampling times estimate, then we update

the estimated sampling times and noise variance using the new CIR estimate.

Synchronization and CIR length are unknown and must be updated during each iter-

ation. Since we have a large number of symbols (Ns = 10, 000), we first estimate the CIR over

the span ľ1 = l̂
(i−1)
2 − Lmax + 1, . . . , ľ2 = l̂

(i−1)
1 + Lmax − 1, which gives ȟ =

[
ȟľ1
, . . . , ȟľ2

]T
=

Ā+
[
r
(i−1)

ľ1
, . . . , r

(i−1)

ľ2+Ns−1

]T
. The previous estimate had span l̂

(i−1)
1 , . . . , l̂

(i−1)
2 , which is contained

in the new span. We “frame” the CIR estimate by establishing a threshold below which ele-

ments of ȟ are considered noise, and above which elements of ȟ are considered CIR. This is

accomplished by sorting the elements of ȟ in order of increasing magnitude and calling the result

h́ =
[
h́0, . . . , h́ľ2−ľ1

]T
, i.e.

∣∣∣h́l

∣∣∣ ≤
∣∣∣h́l+1

∣∣∣. Let I be the mapping that takes ȟ into h́: h́l = ȟIl
. We

model h́ as unbiased with AWGN with variance σ2
η . For each index l we pose a binary hypothesis

test: h́0, . . . , h́l−1, h́l are just noise, or h́0, . . . , h́l−1 are noise and h́l is noise plus a CIR arrival.

Given a probability of false alarm pFrmg
FA (= 0.01), the threshold γl =

(
pFrmg

FA

)−1/l −1 is defined by

p
Frmg
FA = P

[∣∣∣h́l

∣∣∣
2

> γlχl

∣∣∣∣ h́l
iid∼ pw

(
h́l

∣∣σ2
η

)]
, where χl =

∑l−1
n=0

∣∣∣h́n

∣∣∣
2

. Let Ĺ =

{
l :
∣∣∣h́l

∣∣∣
2

> γlχl

}

and L =
{
Il : l ∈ Ĺ

}
. The set L corresponds to the “significant” portion of the CIR estimate ȟ.

If maxL−minL < Lmax then we set l̂
(i)
1 = minL and l̂

(i)
2 = maxL. Otherwise we determine l̂

(i)
1

and l̂
(i)
2 such that ĥ(i) comprises the Lmax contiguous elements of ȟ that are largest in magnitude.

Finally we set ĥ(i) =
[
ȟ

l̂
(i)
1
, . . . , ȟ

l̂
(i)
2

]T
.

Define the communication signal estimate x̂
(i)
n =

∑
l ĥ

(i)
l ā

(i)
n−l. If symbol information is

not reliable enough, which we decide to be the case when
(
σ

(i)
ā

)2

is greater than the threshold

(σmax
ā )

2
= 0.25, then we simply set T̂ (i) = T̂ (i−1). (The value (σmax

ā )
2

= 0.25 was obtained empir-

ically.) In this case the noise variance estimate is
(
σ̂

(i)
w

)2

=
∑l̂

(i)
2 +Ns−1

n=l̂
(i)
1

∣∣∣r(i−1)
n − x̂(i)

n

∣∣∣
2

/(Ns − 1) ,

which is an unbiased estimate when σ
(i)
ā → 0. If

(
σ

(i)
ā

)2

< (σmax
ā )2, then we are not afraid of

doing more harm than good by updating our estimate of the sampling times. We do so by

estimating a phase rotation of the SR data that, as explained in Appendix 2A , results from
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error in the previous estimate of the sampling times. Consequently we model the SR data as

r
(i−1)
n ' wn + exp (jθn) x̂

(i)
n . This gives the following vector model:

r(i−1) =

[
r
(i−1)

l̂
(i)
1

, . . . , r
(i−1)

l̂
(i)
2 +Ns−1

]T
(2.37)

= w +D
(
x̂(i)
)

exp (jθ) (2.38)

x̂(i) =

[
x̂

(i)

l̂
(i)
1

, . . . , x̂
(i)

l̂
(i)
2 +Ns−1

]T
(2.39)

θ =
[
θ

l̂
(i)
1
, . . . , θ

l̂
(i)
2 +Ns−1

]T
(2.40)

where w is noise, D (·) is a diagonal matrix constructed from its argument, and exp [j (·)] is

a vector whose elements are the indicated operation applied to the elements of its argument.

We use cubic splines to describe the variation in the phase vector θ; this gives θ = Cθ, where

θ = [θ0, θN∆ , . . . , θNs
]
T
, and C is a matrix such that θ is a cubic spline interpolation of θ.

Incorporating this into (2.38) motivates the LS CF JCS (θ) =
∥∥r(i−1) −D

(
x̂(i)
)
exp (jCθ)

∥∥2
.

We use Newton’s method to minimize this CF with respect to θ. Since we anticipate phase

variations about zero, that is where we evaluate the gradient and Hessian: ∇J (0) = CTIm [q]

and ∇2J (0) = CTD (Re [q])C, where q = D
(
x̂(i)
)H
r(i−1). We then estimate the phase rotation,

noise variance, and sampling times as follows:

θ̌ =
[
∇2J (0)

]−1∇J (0) (2.41)

θ̂ = θ̌ − θ̌0 (2.42)

θ̂ = Cθ̂ (2.43)
(
σ̂(i)

w

)2

=
1

Ns

∥∥∥r(i−1) −D
(
x̂(i)
)

exp
(
jθ̂
)∥∥∥

2

(2.44)

t̂
(i)
k = t̂

(i−1)
k + R

({
θ̂n

2πfc

}
,

{
n

Rs

}
, t̂

(i−1)
k

)
(2.45)

The resampling in (2.45) is performed using linear interpolation–i.e. linear combination of two

successive points–since the phase sequence is assumed to vary slowly.

Having completed the CMP estimation step of the iterative procedure, a new LE filter

and its output SINR are computed for use in the next equalization.

2.3.5 Computational Complexity

We briefly state the computational complexity of the main components of the algorithm.

Following common practice we approximate only the number of multiplications and higher-order

function evaluations.

• Coarse Synchronization (Subsection 2.3.1)

Each SR data sample requires two real multiplications (to compute squared magnitude
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of complex value) and one real division. (The unweighted moving-average filtering only

requires additions.)

• Framing from Training (Subsection 2.3.2)

We assume the QR decomposition A (Lmax) = UT , where U is unitary and T is upper

triangular with real entries on its main diagonal. These factors are stored at the receiver

along with

(
1 + tr

{[
A (L)

+
A (L)

+H
]−1
})

/(Nt − L) for L = 1, . . . , Lmax. Let Nn0 de-

note the number of synchronization points at which the framing CF is evaluated. It requires

Nn0 (2Nt + 3Lmax) real and Nn0L
maxNt complex multiplications to compute the framing

CF (2.15), and Lmax (Lmax − 1)/ 2 complex multiplications and Lmax real divisions to com-

pute the CIR estimate (2.18).

• Estimate of Doppler Linear Trend (Subsection 2.3.3)

Let Nν denote the number of values of ν at which the CF (2.28) is evaluated. Computing

the Nν resampled sequences requires 4NνNs complex and NνNs real multiplications, and

NνNs real divisions. A single LE filter is constructed using at most O
(
(Lmax)3

)
complex

multiplications/divisions. It then takes about NνFNs
∼= NνL

maxNs complex multiplica-

tions to perform the filtering and about 3NνNs real multiplications to compute the CF.

• Initial Phase Estimation (Subsection 2.3.3)

We give the number of computations needed for each “branch metric” evaluation (BME),

then the number of BMEs needed to estimate the phase sequence. Each BME requires N∆

evaluations of exp (jθn) (computing θn can be done with only additions) and (1 + |A|)N∆

complex multiplications, where |A| = 4 for the QPSK alphabet. Fig. 2.7 shows the number

of BMEs being equal to 3 (Ns/N∆)
2
, since two new states are created after each block.

However, the figure only shows the beginning of the trellis. At the end of the trellis the

number of states decreases to nine total states, since 9 · 14◦ = 126◦ is the effective gap

between the resampled sequences in the estimation of Doppler linear trend. Consequently

the number of BMEs is proportional to Ns/N∆, not its square, and the actual number of

BMEs is 246 ' 25 Ns/N∆. Therefore, 25Ns evaluations of exp (jθn) and 125Ns complex

multiplications are needed to estimate the phase sequence.

• Iterative Procedure (Subsection 2.3.4)

– Equalization

It takes at most O
(
(Lmax)

3
)

complex multiplications/divisions to construct the LE,

and about 2FNs complex multiplications to filter the data. Computing symbol APPs
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then requires relatively few operations, although |A|Ns exponentials must be evalu-

ated.

– De-mapping, Decoding, Mapping

These are standard operations whose computational complexity can be found in the

literature [9, 19].

– CMP Estimation

A LS CIR estimate is computed over a wide span, then framed. The LS estimate

ȟ = Ā+r is computed as ȟ =
(
ĀHĀ

)−1 (
ĀHr

)
, where the terms in parentheses are

computed as correlations and require about 2LmaxNs complex multiplications. The

matrix inversion requires at mostO
(
(Lmax)

3
)

complex multiplications/divisions. The

framing procedure requires comparatively few operations.

– Phase Estimation via Cubic Splines

Forming the statistic q (used to compute the gradient and Hessian) takes Ns complex

multiplications. Forming the gradient and Hessian takes 11Ns and
[
11 + (11)

2
]
Ns

real multiplications. Computation of the vector of cubic spline control points requires

O
(
(11)3

)
real multiplications/divisions. The remaining operations require relatively

few computations.

Table 2.1: Number of Bit Errors for Sensors with SNR Below 8 dB.

Sensor 21 22 26 29 30 31 32

Depth (m) 64 62 54 48 46 44 42

SNR (dB) 5.2 8.0 7.4 6.1 7.1 7.0 5.8

1 1315 710 618 2033 1217 448 2679

2 509 264 21 1110 281 12 2092

3 159 494 6 1346

4 32 155 739

5 12 16 267

It
er

a
ti
o
n

6 5 10 81

7 5 1

8 5

9 5

10 5

(Blank entries indicate zero errors)
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2.4 Results and Discussion

Overall system performance is the most important result. Table 2.1 shows the number

of bit errors, out of Nb = 10, 000, that would result if processing were terminated after each

iteration. Only sensors with SNR at or below 8 dB are included, since the data from all other

sensors causes the algorithm to converge with zero bit errors after two iterations. Sensor 21, with

lowest SNR of 5.2 dB, has data that converges with 5 bit errors. The other sensors have data

that converges to zero bit errors. We conclude the system operates at the limit of its reliable

performance for the sensors with SNR below about 6 dB.

Fig. 2.8 illustrates the point of the iterative algorithm. It shows LE output scatter

plots for the first three iterations using data from sensor 24. Successive improvement of the

equalization step of the processing is demonstrated via an increase in LE output SINR from

2.1 dB to 5.6 dB to 8.0 dB. Sensor 24, at 10 dB input SNR, was chosen because the scatter

plots obtained from processing its data clearly illustrate the point. However, the same successful

operation is achieved using data from sensors with lower SNR, even though the resulting scatter

plots would show less noticeable improvement as the iterations increase.

We introduce metrics with which to assess performance of the iterative algorithm. They

are functions of the iteration i, and are defined as follows:

M
(h)
i =

∑
l

∣∣∣ĥ(i)
l − ĥ

(Niter)
l

∣∣∣
2

∑
l

∣∣∣ĥ(Niter)
l

∣∣∣
2 (2.46)

M
(σ2

w)
i =

(
σ̂(i)

w

)2
/(

σ̂(Niter)
w

)2

(2.47)

M
(T )
i = 2πfc max

k

∣∣∣t̂(i)k − t̂
(Niter)
k

∣∣∣ (2.48)

M
(z)
i =

∣∣∣∣ 1
Ns

Ns−1∑
n=0

a∗nz
(i)
n

∣∣∣∣
2

1
Ns

Ns−1∑
n=0

∣∣∣z(i)
n

∣∣∣
2

−
∣∣∣∣ 1
Ns

Ns−1∑
n=0

a∗nz
(i)
n

∣∣∣∣
2 (2.49)

The first metric measures error in the CIR estimates. The second metric measures error in the

AWGN variance estimates. The third metric measures error in the sampling times estimates, but

expresses the result in terms of equivalent phase error (see Appendix 2A ). The fourth metric

is an estimate of the LE output SINR. The transmitted symbols are used in its computation.

The numerator is the squared norm of the LS projection of the LE output sequence onto the

symbol sequence; the denominator is the squared norm of the projection onto the orthogonal

subspace. We also consider as a metric the number of bit errors that would result if processing

were terminated after each iteration. This is the same information contained in Table 2.1. The
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Figure 2.8: Scatter plots of LE output for sensor 24, illustrating iterative improvement in the

equalization process. (a) First iteration: LE output SINR is 2.1 dB. (b) Second iteration: LE

output SINR is 5.6 dB. (c) Third iteration: LE output SINR is 8.0 dB.
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final metric we use is
(
σ

(i)
ā

)2

. It is a measure of the average uncertainty in the (data-bearing)

symbols at the start of each cycle. It is unity for the first iteration, reflecting an initial absence

of symbol information. Ideally
(
σ

(i)
ā

)2

tends to zero as i increases to Niter.

Table 2.2 shows plots of the six metrics computed using data from sensors 21, 29, and

32–the three sensors with lowest SNR. The majority of plots demonstrate successful convergence

of the iterative algorithm. Even for sensor 21, the only sensor whose data converges with nonzero

bit errors, every metric is well behaved as the iterations increase. The CIR estimates for sensor 32

show much more error than for the other two sensors, but the error is apparently not large enough

to prevent successful recovery of the information bits. The jump in estimated AWGN variance

during the second iteration is anticipated: the algorithm cannot prevent error from estimating the

other parameters, and from symbol uncertainty, from distorting the AWGN variance estimate.

The sampling times metrics show an initial maximum phase deviation of about 15◦. This is the

maximum, however, and the average phase error is likely less than 5◦ for the first few iterations.

As the algorithm converges, the measurable phase error is negligible. It takes 3-5 iterations before(
σ

(i)
ā

)2

is low enough for the sampling times estimates to be updated. Once the first updates

occur, there is a large decrease in phase error, which indicates the threshold (σmax
ā )

2
= 0.25

is possibly too low. Finally, we observe the average symbol variance
(
σ

(i)
ā

)2

drops below 0.01.

Therefore, equalization essentially becomes matched-filtering followed by interference cancellation

using hard symbol decisions. (This is apparent in the development of Appendix 2C .) In other

words, the algorithm effectively becomes a two-sided DFE whose forward filter is a matched-filter.

2.5 Conclusion

In this paper we introduced an iterative detection algorithm and applied it to UWA

communication data. The data was modeled as the nonuniformly sampled output of a LTI sys-

tem. Channel equalization was achieved by first interpolating/resampling the received data, then

filtering the Doppler-compensated data with a LE to obtain symbol information. The symbol

information was then decoded to produce improved symbol information, which was then used to

improve channel equalization, and so forth. Therefore, the process had three main tasks: esti-

mation of CMPs to enable channel equalization, equalization to produce symbol APP estimates,

and decoding to produce symbol prior probability estimates. These tasks were performed cyclicly

until the process converged. On the last iteration, information bit decisions were computed. The

algorithm produced few or zero bit errors for the data considered.

Iterative algorithms, in particular MP or “belief-propagation” algorithms, are a growing

trend in the digital communication/storage and signal processing fields. While the original algo-



59

Table 2.2: Performance Metrics for Sensors with Lowest SNR.
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rithms were applied to the decoding of channel codes, they have been extended to all manner of

estimation and detection problems. We have applied these concepts to the problem of recovering

digital information transmitted over an UWA channel. The initial “Turbo” equalization methods

assumed CMPs to be known at a receiver. Iterative equalization and decoding of data sent over

a channel with unknown parameters is a relatively new subject. However, the great success of

established MP algorithms, along with the constant advancement in computational capability,

motivates the application of iterative algorithms to the UWA communication problem.

Iterative detection is an active field of research and, in particular, we again draw at-

tention to the work of Tuchler and his colleagues. Many aspects of our algorithm are similar to

techniques employed by these and other researchers. However, we have attempted to present a

comprehensive solution to our specific problem. In particular, synchronization is a critical task

that is often not addressed, and we have presented an explicit procedure for performing it. Also,

while it is common to model phase variation using an auto-regressive random process and employ

causal PLLs for phase estimation, we have instead modeled phase variation using cubic splines

with unknown control points and used noncausal estimation of the unknown parameters. Finally,

given that our symbol sequence is long, we showed it is better to directly measure the gain and

noise-plus-ISI variance of the equalizer output, rather than rely on indirect theoretical values.

While more challenging channels exist, we have nonetheless endeavored to present a complete

answer to our fixed-source/fixed-receiver problem.
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2A Resampling/Interpolation Model and Assumptions

There is several times over-sampling (Fs /Rs = 12), so we assume the communication

signal s̃ (t) can be reconstructed with negligible distortion via interpolation of its samples s̃ (tk)
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as follows:

s̃ (t) ∼=
Lint−1∑

l=−Lint

s̃ (tk−l)h
int
q(t)+lQint (2.50)

where tk ≤ t < tk+1 for some k, q (t) =
⌊
Qint (t− tk) /(tk+1 − tk)

⌉
, Qint is an upsampling factor,

and hint
q is an interpolating pulse that is nonzero only for −LintQint < q < LintQint. (The no-

tation b·e denotes rounding the argument to the nearest integer.) This interpolation expression

is essentially a “polyphase” implementation [57]: it makes a linear approximation to the sam-

pling times (tk−Lint+1, . . . , tk+Lint)–using 1 /(tk+1 − tk) as instantaneous sampling frequency–

upsamples by the factor Qint, then uses nearest-neighbor interpolation at the higher sampling

rate. The pulse spectrum is ideally flat and zero-phase over the frequency band with edges

(fc ± Rs/ 2)
/(
QintFs

)
and has the Nyquist property hint

lQint =





1, l = 0

0, l 6= 0
. We used a Kaiser-

windowed sinc pulse shifted to the ideal center frequency fc

/(
QintFs

)
, with Qint = 100 and

Lint = 2 (i.e. 4 samples were used to compute each interpolated value).

We examine the effects of resampling/interpolating the data r̃ using estimated sampling

times
{
t̂k
}
, which is an important part of the iterative algorithm. Denote by ˆ̃s (t) the approx-

imation of s̃ (t) made using (2.50) with
{
t̂k
}

replacing the true sampling times. We assume

the sampling time estimates are accurate enough that t̂k+1 − t̂k ∼= tk+1 − tk for some desired

time t and index k with t̂k ≤ t < t̂k+1. Consequently, q̂ (t) =
⌊
Qint

(
t− t̂k

) /(
t̂k+1 − t̂k

)⌉ ∼=
⌊
Qint

(
t+ tk − t̂k − tk

)
/(tk+1 − tk)

⌉
= q

(
t+ tk − t̂k

)
, so that

ˆ̃s (t) =

Lint−1∑

l=−Lint

s̃ (tk−l)h
int
q̂(t)+lQint (2.51)

∼=
Lint−1∑

l=−Lint

s̃ (tk−l)h
int
q(t+tk−t̂k)+lQint (2.52)

∼= s̃
(
t+ tk − t̂k

)
(2.53)

Fig. 2.9 illustrates this scenario for t = n /Rs : the value ˆ̃s (n /Rs ) is approximately equal to

s̃

(
n

Rs

+ ε

(
n

Rs

))
= exp

(
j2π

fc

Rs

n

)∑

l

al

[
exp

(
j2πfcε

(
n

Rs

))
h

(
ε

(
n

Rs

)
+
n− l
Rs

)]

where ε (t) is error in sampling time estimation as a function of time. Consequently there are

two effects caused by error in estimating the sampling times: rotation of the CIR by the angle

θ (t) = 2πfcε (t) and delay of the CIR by the amount ε (t). Noting that a delay of ε symbols

corresponds to a rotation of (fc /Rs ) ε cycles, and assuming the estimated sampling times are

accurate enough that the rotation is well under a full cycle, the delay term can be ignored and

the effect of sampling time estimation error simply treated as a rotation of the CIR. For instance,
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since fc /Rs = 3.5 cycles/symbol, a rotation of 1 /3 cycles corresponds to a delay of less than

1 /10 symbols.
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Figure 2.9: Illustration of sampling time estimation error.

2B Training “Framing” Cost Function

We use the model and notation of Subsection 2.3.2, but we drop the superscript on

the SR data. The symbol convolution matrix A (L) is full (column) rank, so the pseudo-inverse

A (L)
+

=
[
A (L)

H
A (L)

]−1

A (L)
H
. Given n and L, the noise vector estimate is ŵ (n,L) =

r (n) − A (L) ĥ (n,L) =
[
I−A (L)A (L)

+
]
w (n), where the last line assumes the CIR estimate

is unbiased. Consequently, E ‖ŵ (n,L)‖2 = σ2
w (Nt − L) and an unbiased estimate of the noise

variance is

σ̂2
w =

1

Nt − L
∥∥∥
[
I−A (L)A (L)

+
]
r (n)

∥∥∥
2

(2.54)

The SR data model (2.5) can be written as rn = wn +
∑

l

(
hl − ĥl

)
an−l +

∑
l ĥlan−l.

The middle term on the right hand side represents the error incurred by using the CIR training

estimate instead of the true CIR. It has zero mean and variance σ2
wtr

{[
A (L)

+
A (L)

+H
]−1
}

,

where we again assume the CIR estimate is unbiased. This CIR estimation error term is indepen-

dent of the ambient noise, the total effective noise variance is σ2
w

(
1 + tr

{[
A (L)

+
A (L)

+H
]−1
})

.

Inserting the ambient noise variance estimate (2.54) into the last expression gives the result (2.15).

2C LE Derivation

We use the SR data model (2.5), but without explicitly showing the functional depen-

dence of the SR data on the sampling times. We first make a series of definitions that are needed

to derive the MVDR LE:
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rn (δ) = [rn+δ−F+1, . . . , rn+δ ]
T

(2.55)

= wn +Han (δ) (2.56)

H = [Hl2+F−1−δ (δ) , . . . , Hl1−δ (δ)] (2.57)

Hl (δ) = [hl+δ−F+1, . . . , hl+δ]
T (2.58)

an (δ) = [an+δ−F+1−l2 , . . . , an+δ−l1 ]
T

(2.59)

Han (δ) = H0 (δ) an (δ) +H0 (δ) an (2.60)

H0 (δ) = [. . . , H1 (δ) , H−1 (δ) , . . .] (2.61)

an (δ) = [. . . , an−1, an+1, . . .]
T

(2.62)

I (δ) = {l1 − δ, . . . , l2 + F − 1− δ} − {0} (2.63)

The parameters F and δ are the length and delay of the LE filter. The vector wn is ambient noise

and has covariance Cw = σ2
wI. The matrix H0 (δ) is the matrix H with the column vector H0 (δ)

removed. Note that H does not depend upon the delay δ, while H0 (δ) and H0 (δ) do. Similarly,

the vector an (δ) is the vector an (δ) with the element an removed. As is done throughout the

paper, overbar will be used to indicate expectation with respect to the symbol prior probability

estimates ξn.

Fig. 2.2(b) shows the flow of messages in and out of the equalizer. Starting from (2.8)

we obtain

ζn (α)
∼∝

∫

{al}l6=n

p
(
D| an = α, {al}l6=n ,P

)∏

l6=n

pw

(
al − āl

∣∣σ2
ā

)
dal (2.64)

∼=
∫

an(δ)

p (rn (δ)| an = α, an (δ) ,P)
∏

l∈I(δ)

pw

(
an−l − ān−l

∣∣σ2
ā

)
dan (δ) (2.65)

∝
∫

an(δ)

exp
(
−‖rn (δ)−H0 (δ)α−H0 (δ) an (δ)‖2C−1

w

− ‖an (δ)− ān (δ)‖2
/
σ2

ā

)
dan (δ) (2.66)

∝ exp
(
−ρ (δ) |α− zn (δ)|2

)
(2.67)

ρ (δ) =
H0 (δ)HQ−1H0 (δ)

1− σ2
āH0 (δ)

H
Q−1H0 (δ)

(2.68)

Q = Cw + σ2
āHH

H (2.69)

zn (δ) = ān + f (δ) [rn (δ)−H ān (δ)] (2.70)

f (δ) =
H0 (δ)

H
Q−1

H0 (δ)
H
Q−1H0 (δ)

(2.71)

The notation ‖·‖2C−1
w

denotes the quadratic form (·)H C−1
w (·). The first approximation above

converts an intractable sum into an integral that can be expressed in closed-form. The second
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approximation simply reduces the integral over the entire symbol sequence to an integral over

symbols within a window about the target symbol an. The output SINR ρ (δ) is a function of

filter decision delay, so we choose δ to maximize this term: δopt = arg maxδ ρ (δ). The resulting

filter produces the MVDR linear estimate of the error an − ān, for the given filter length F .

Consequently we have

[fF−1−δ, . . . , f−δ] = f
(
δopt

)
(2.72)

zn = ān +
∑

l

fl (rn−l − x̄n−l) (2.73)

x̄n =
∑

l

hlān−l (2.74)

where zn is the filter output and x̄n is the “known” portion of the communication signal. As

σ2
ā → 0, we obtain a matched filter; the filter length F need not be longer that the CIR if the

ambient noise is white.

2D Estimation of LE Output Statistics

We model LE output using (2.29), and set θn = 0. The noise+ISI vn is assumed

Gaussian with variance σ2
v . It is straightforward to show the second and fourth moments of zn,

defined by (2.25), behave as follows when Ns →∞:

µ2 → σ2
v + g2

0 (2.75)

2µ2
2 → 2σ4

v + 4σ2
vg

2
0 + 2g4

0 (2.76)

µ4 → 2σ4
v + 4σ2

vg
2
0 + g4

0 (2.77)

Consequently, for large Ns, 2µ2
2 − µ4

∼= g4
0 . Therefore we estimate the LE output gain and

noise+ISI variance as ĝ0 =
(
2µ2

2 − µ4

)1/4
and σ̂2

v = µ2 − ĝ2
0 .

Ideally, the LE output is unbiased, i.e. g0 = 1, and σ2
v is known. CMP knowledge

is imperfect, however, so this is not the case. We ran simulations to compare the accuracy of

the theoretical values derived in Appendix 2C with values estimated using the expressions given

above. We generated data using the sensor 21 CIR estimate of Fig. 2.3(d) and assumed perfect

knowledge of the ambient noise variance σ2
w . We also set the prior symbol variance σ2

ā = 1.

Denote the true CIR by h̊. We avoided issues of synchronization and CIR length estimation by

truncating the CIR length to 55 symbol intervals (from index −14 through 40 in the figure) and

taking this to be known. We modeled the CIR estimate as ĥl = ηl + h̊l, where ηl is AWGN

with variance σ2
η = σ2

w /Ntrng . This represents an idealized training estimate. For each trial we

generated data for Ns = 10, 000 symbols and a CIR estimate. We then computed an MVDR LE
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filter as described in Appendix 2C , using the CIR estimate ĥ instead of the true value. Let ∗
denote convolution. We have the following:

r = w + h̊ ∗ a (2.78)

z = f ∗ r (2.79)

= f ∗ w + g̊ ∗ a (2.80)

g̊ = f ∗ h̊ (2.81)

zn = vn + g̊0an (2.82)

vn =
∑

l

flwn−l +
∑

l6=0

g̊lan−l (2.83)

The actual LE gain is g̊0 and the actual noise+ISI variance is σ̊2
v = ‖f‖2 σ2

w +
∑

l6=0 |̊gl|2. Since

these quantities vary with each trial, we are interested in the ratios 1 /̊g0 , ĝ0 /̊g0 , ρ (δopt)
−1 /

σ̊2
v ,

and σ̂2
v

/
σ̊2

v , where ĝ0 and σ̂2
v are computed as described in the preceding paragraph. We show

the results from 1 million trials in Fig. 2.10. We actually show the magnitude of the gain ratios,

since the phase variation is negligible. It is clear the theoretical values are biased and have larger

error variance than the estimated values. Therefore, computing equalizer messages using (2.67)

with δ = δopt, instead of using (2.32), would result in less reliable information being sent to the

decoder.
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Figure 2.10: Simulation results. (a) Ratio of theoretical gain to actual gain. (b) Ratio of

estimated gain to actual gain. (c) Ratio of theoretical noise variance to actual noise variance.

(d) Ratio of estimated noise variance to actual noise variance.
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Iterative Equalization and

Decoding of Communication Data

Received from a Moving

Underwater Acoustic Source

We present a novel algorithm that recovers information transmitted from a moving

source through a shallow underwater acoustic communication channel. The algorithm utilizes

“turbo equalization”. The three main tasks–estimating channel model parameters, equalization,

and decoding–are performed iteratively until the process converges. The communication sequence

is organized into a packet structure with training symbols inserted at the front and pilot symbols

interleaved with data-bearing symbols. However, coding is performed in a manner such that

information bits are mapped into an equal number of QPSK symbols, including training and pilot.

Since we use a bandwidth equal to twice the symbol rate, our spectral efficiency is 0.5 bits/sec/Hz.

Our algorithm uses data from a single receive sensor. Doppler effects caused primarily by source

motion are compensated by adaptive (nonuniform) resampling. Extended Kalman filtering is

used to estimate the time-varying channel impulse response. Data obtained during an at-sea

experiment is combined with suitably scaled ambient noise sequences, which were also collected

during the experiment. We present results of processing over 1,600 sequences at an SNR of 7 dB

which show high reliability and low bit error frequency.

66
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3.1 Introduction

A growing number of industrial, military, and marine research applications require re-

liable high-rate systems to receive data from remote sensors and autonomous undersea vehi-

cles (AUVs). These data sources usually have strict power and processing limitations, while

receivers such as surface ships typically do not. Consequently powerful signal processing tech-

niques such as “turbo equalization” [15, 16] are ideally suited for underwater acoustic (UWA)

communication [27–30], yet they have only just begun to receive attention in the UWA research

community [37–42].

The shallow UWA channel has three dominant features: long channel impulse responses

(CIRs), acute Doppler sensitivity, and limited bandwidth [1]. The communication system pre-

sented in this paper addresses these channel characteristics as follows. Coding is an integral part

of any reliable communication system but it introduces redundancy, so we use QPSK symbols

which compensate for this redundancy without requiring additional bandwidth. Doppler effects

are particularly significant in the data used in this paper because the transmission source was

moving, these effects are compensated by nonuniform resampling of the data. The dispersive

nature of the shallow UWA channel necessitates equalization, and the severity of the spreading

of the CIR makes equalization a critical task which we accomplish using iterative equalization

and decoding (IED). Iterative algorithms that utilize the sum-product algorithm (SPA) [6] are

an emerging paradigm in digital communication [7,58]. The premise is cooperative and iterative

exchange of information between algorithm components.

We employ standard coding methods and focus our attention on the equalization aspect

of IED. The case of short CIRs is well developed [17,43], the corresponding equalization methods

typically employ hidden Markov models (HMMs) and consequently have complexity exponential

in the CIR length measured in symbol periods. Since the CIRs we consider in this paper are

prohibitively long for such methods, we adopt an approach pioneered by Tuchler et al [22, 23].

The basic idea is to approximate symbol probability mass functions (pmf’s), which are computed

over the finite symbol alphabet, with suitable Gaussian probability density functions (pdf’s).

This allows intractable summations that result from application of the SPA to be replaced with

integrals that can be evaluated in closed-form. The end result is equalization performed with

linear filters and, to within a multiplicative factor, the filters are equivalent to those obtained

using the minimum mean squared-error (MMSE) criterion [3]. The approximation is used dur-

ing CIR estimation as well, which is also developed by Tuchler and his colleagues [20, 21, 45].

The approximation leads to an interesting interpretation: instead of using symbol “hard” esti-

mates obtained by mapping the “soft” equalizer output into the symbol alphabet, we use symbol

“mean” estimates (SMEs) obtained by averaging the symbols with the estimated pmf’s com-
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puted as messages in the SPA. In particular, we have prior SMEs (PSMEs) and a posteriori

SMEs (ASMEs).

In this paper we present an IED algorithm with several novel aspects. First, we introduce

a comprehensive strategy for synchronization and CIR arrival selection (or “sparsing”). Second,

since a receiver algorithm’s performance is ultimately determined by its ability to strike a balance

between having enough degrees of freedom to accurately describe the data but not so many as

to suffer excessively noisy channel estimates, we exploit a method of CIR estimation which

achieves such a balance. Third, we show the drawback of using channel model parameter (CMP)

estimates to compute subordinate quantities such as the gain and effective noise variance at the

output of the equalizer, and propose an original method of estimating these quantities directly.

Finally, although resampling to compensate for Doppler effects has already been addressed in

the literature [59–61], our approach is particularly effective.

The remainder of this paper is organized as follows. In Section II we describe the

Focused Acoustic Fields 2004 experiment, from which we obtained our data, and state our signal

and channel models and assumptions. The receiver algorithm is then explained in Section III. In

Section IV we present results from processing data collected during the experiment. We conclude

the paper in Section V.

3.2 Experiment Setup, Models and Assumptions

3.2.1 Experiment Setup

The experiment was conducted during July 2004 in a shallow water region north of

Elba Island, Italy. The experiment geometry is summarized in Fig. 3.1. The NRV Alliance

towed an acoustic source–simulating an AUV–at approximately 70 m depth and transmitted

communication signals through an ocean region 120 m deep to a vertical receive array (VRA).

The VRA consisted of 32 sensors with 2 m spacing between elements, element #1 was at depth

104 m and #32 was at depth 42 m. Transmissions were just over 9 seconds in duration and made

at 20 sec intervals. Two sets of data are considered in this paper. The first set, denoted “A”,

corresponds to data received while the source was moving directly away from the VRA at a speed

of about 4 knots and a distance of about 7 km. There are 24 separate transmissions associated

with this data set. The second set, denoted “B”, corresponds to data received while the source

was moving in a direction nearly perpendicular to the direction from source to VRA at a speed of

about 3.5 knots and a distance of about 11 km. There are 27 separate transmissions associated

with this data set. The experiment region was downward-refracting, the measured sound speed

as a function of depth can be found in [62].
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Figure 3.1: Experiment geometry.

3.2.2 Encoding, Permuting, and Mapping

The process of transforming information bits into a symbol sequence is summarized in

Fig. 3.2. Information bits b are interleaved with dummy bits–i.e. bits containing no information

and which are known at the receiver–and then encoded using a rate- 2
3 convolutional code (CC)

with a maximum free distance of 7 and a constraint length of 4 [53]. The encoded bits are S-

randomly permuted [52] and mapped (pairwise) into Nd = 7836 QPSK symbols. The symbols are

zero-mean, unit-variance and, by virtue of the pseudo-random (PR) permutation, uncorrelated.

Inserting Nt = 300 training symbols at the beginning of the sequence and interleaving Np =

870 pilot symbols throughout the remainder of the sequence produces the transmitted symbol

sequence a = (a0, . . . , aNs−1), where Ns = Nt +Np +Nd = 9, 006. We use the same number of

information bits as symbols. The pilot symbols stabilize the tracking of time-varying CMPs. As

explained in [62], though not shown in Fig. 3.2(a), a “scrambling” operation is inserted between

the permutation and mapping which has no effect from a statistical standpoint and is easily

incorporated in a MPA.

3.2.3 Signal Models and Assumptions

We model the received signal as a noisy superposition of distorted replicas of the trans-

mitted signal, each of which travels along a separate propagation path from source to receiver. We
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use linear modulation and QPSK symbols so the transmitted signal is a train of phase-shifted

pulses. Each ray-path distorts and delays the transmitted pulses independently. Source mo-

tion causes the delays to vary with time since the ray-paths change as source position changes.

Moreover, source velocity effectively stretches/compresses the signal traveling along each ray-

path because of Doppler effects. The amount of stretching/compression depends upon source

(and receiver) speed and direction and channel properties and varies with time. For example, a

source moving away from a receiver will produce a received signal which appears to be stretched

compared to the transmitted signal. We assume proper resampling/interpolation produces data

accurately modeled by a slowly time-varying CIR. We make working definitions of Doppler “shift”

and “spread”. Our algorithm can handle any Doppler shift, but a key assumption is that the

Doppler spread is small.

The signal 2Re
[
s̃(0) (t)

]
is transmitted from a single transducer, with

s̃(p) (t) = exp (j2πfct)
∑

l

alh
(p) (t− l /Rs ) (3.1)

The transmit pulse h(0) (t) has bandwidth 2 kHz, the symbol rate Rs = 1 symbol/msec, and the

carrier frequency fc = 3 kHz. The received signal minus noise is 2Re
[∑P

p=1 s̃
(p)
(
t́(p) (t)

)]
, where

P is the number of propagation paths and t́(p) (t) accounts for stretching/compression caused by

Doppler effects. For example, constant source and receiver velocities in freespace would result

in a single path with t́ (t) = t́ (0) + (1 + ν) t, where ν is a function of the source and receiver

velocities. More generally we define the Doppler “shift” ν(p) (t) = d
dt
t́(p) (t) − 1 and Doppler

“spread” χ (t) = maxp1,p2

∣∣ν(p1) (t)− ν(p2) (t)
∣∣. Note these two quantities are dimensionless and

if the transmitted signal were narrowband then the Doppler frequency shift would be fcν
(p) (t) and

the associated frequency spread among the ray-paths would be fcχ (t). We make no restrictions

on any particular Doppler shift ν(p) (t), but we assume χ (t) < 1 /Ns . In other words, as long as

the Doppler effects on the separate ray-paths are not too different then resampling can correct for

an arbitrary average Doppler shift and yield a slowly time-varying CIR. The pulses h(p) (t), p =

1, . . . , P , are time-varying but this is not explicitly denoted (since the single variable argument

represents delay). Changes to the signal frequency band resulting from Doppler effects are

considered negligible.

The received signal is sampled by a single hydrophone at the rate Fs = 12 samples/msec,

then filtered to give complex data r̃k in the frequency band 2-4 kHz. Anticipating the need to

resample/interpolate the data to compensate for Doppler effects, we model the received data

sequence as r̃k = w̃k + s̃
(
t́ (k /Fs )

)
, where w̃k is noise, s̃ is the communication signal and

t́ (t) accounts for an average Doppler shift. In a previous paper [62] we introduced a resam-

pling/interpolation technique which we also use in this paper. The process is assumed informa-
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tion lossless. We showed that if a signal x (t) is sampled at times tk to produce the sequence

xk = x (tk), and this sequence is used in conjunction with estimated sampling times t̂k to com-

pute interpolated values x̂ (t), then x̂ (t) ∼= x
(
t+ tk − t̂k

)
. Likewise, associating t̂k with t́ (k /Fs )

and tk with t́(p) (k /Fs ) and defining τ
(p)
k = t́(p) (k /(2Rs) ) − t́ (k /(2Rs) ), we approximate the

resampled/interpolated communication signal as

s̃

(
k

2Rs

)
∼=

P∑

p=1

s̃(p)

(
k

2Rs

+ τ
(p)
k

)
(3.2)

= exp

(
j2πfc

k

2Rs

)∑

l

al

P∑

p=1

exp
(
j2πfcτ

(p)
k

)
h(p)

(
τ

(p)
k +

k − 2l

2Rs

)
(3.3)

The interpolated samples are computed at twice the symbol rate because that is the communi-

cation signal bandwidth. The mismatch τ
(p)
k between the actual Doppler distortion of the pth

path and the average estimated distortion manifests itself by phase-rotating the pulse h(p) (t) by

fcτ
(p)
k cycles and delaying it by Rsτ

(p)
k symbols. Assuming the mismatch is small, i.e., assum-

ing the sampling times t́
(

k
Fs

)
are estimated properly, the assumption of small Doppler spread

makes the former effect most significant. Consequently it is desirable to express the CIR as

exp (jθδ,k)h (δ /(2Rs) ), where δ indexes delay (and k indexes time) and again we suppress the

inherent time-variation of h. The critical point is that h varies with time at a much slower

rate than the phase rotations θδ,k. It is convenient to express the time index as k = m + 2n,

m ∈ {0, 1}, which gives

exp

(
−j2πfc

m+ 2n

2Rs

)
s̃

(
m+ 2n

2Rs

)
=

∑

l

an−l exp (jθm+2l,m+2n) h

(
m+ 2l

2Rs

)
(3.4)

where a change of variable in the summation index of the convolution sum has been made.

Fig. 3.3 shows a typical CIR. It was measured using the true symbols and the SNR is

above 30 dB. The received data samples, originally sampled at 12 kHz, were resampled/interpolated

at approximately 2 kHz in such a manner that the phase of the strongest CIR arrival (at de-

lay 0 msec) is approximately zero during the nine second transmission. The CIR is about 80

symbols in length and was measured using rectangular-windowed least-squares (RWLS) with a

window length of 450 symbols. Part (a) shows the magnitude in dB of the time-varying CIR

plotted as gray-scale intensity with delay on the vertical axis and time on the horizontal axis.

The assumption of small Doppler spread is clearly met and proper resampling results in an ef-

fective CIR whose arrivals vary little in delay and magnitude. Part (b) shows magnitude versus

time for five particular values of delay: those corresponding to the three strongest peaks as

well as the first and last significant peaks–they are indicated with dots in part (a). The arrival

at 6.5 msec, marked with triangles, is the only one to show considerable change in magnitude

during the transmission. Part (c) shows phase in degrees for the same five CIR peaks. The
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between CIR estimates and initial CIR estimate, normalized by maximum CIR energy.
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phases vary independently and significantly and are a manifestation of Doppler spread. Part

(d) shows the energy of the difference between the time-varying CIR estimates and the earliest

CIR estimate, normalized by the energy of the largest CIR estimate. After one second the CIR

changes by an amount with energy equal to about 20% of the maximum CIR energy, and the

CIR is completely different at the end of the transmission than at the beginning. So, while

most CIR arrivals exhibit little variation in magnitude, the phase variation is sufficient to cause

significant change in the CIR. The data used to generate this figure was obtained from the sen-

sor at 94 m depth (sensor 6) at the very beginning of data set A. The measured Doppler shift

did not vary significantly from an average value of −0.001543 over the duration of the data se-

quence. Note that resampling is entirely necessary in this case since otherwise the CIR would

shift in delay by about (−0.001543)(80 symbols) = −0.123 symbols and rotate in phase by about

(−0.123 symbols) (fc /Rs ) = −133degrees during each interval of time equal to its span, making

it impossible to estimate the CIR using RWLS.

The discussion above motivates the following model:

r(m)
n = w(m)

n + exp

(
−j2πfc

m+ 2n

2Rs

)
s̃

(
m+ 2n

2Rs

)
(3.5)

= w(m)
n + exp (jφn)

∑

l

an−lρ
(m)
l,n exp

(
jθ

(m)
l,n

)
(3.6)

E
∣∣∣w(m)

n

∣∣∣
2

=
(
σ(m)

w

)2

(3.7)

The data samples r
(m)
n are obtained by resampling/interpolating the original data samples r̃k

using estimated sampling times t́ (k /Fs ). The two “subchannels”, i.e., m ∈ {0, 1}, result from

resampling at twice the symbol rate. They are assumed independent because they result from

resampling at a rate equal to the signal bandwidth. The noise samples w
(m)
n are modeled as white

and Gaussian. Both subchannels have the same variance σ2
w, but we model them as possibly being

different. The CIR gains h
(m)
l,n = ρ

(m)
l,n exp

(
jθ

(m)
l,n

)
are modeled in polar form to allow for different

rates of change in the phases than in the amplitudes. Note that, for two nonzero vectors x and

y, ‖y − x exp (jφ)‖2 = ‖y‖2 +‖x‖2−2Re
[(
xHy

)∗
exp (jφ)

]
≥ ‖y‖2 +‖x‖2−2

∣∣xHy
∣∣ with equality

when exp (jφ) = xHy
/∣∣xHy

∣∣ , which implies that the least-squares (LS) estimate of phase rotation

between two vectors is zero if the imaginary part of their inner product is zero. We constrain the

inner product between successive CIR estimates (expressed as vectors) to have zero imaginary

part. This forces error in the sampling times, i.e., mismatch between the true and estimated

Doppler shift, to appear in the phase φn. We estimate the phase φn at the equalizer output and

use it as an error signal to control estimation of the sampling times. We also assume the span of

the CIR does not exceed Lmax = 100 symbols.
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3.2.4 Equalizer Output Model

The receiver algorithm uses linear filtering to perform equalization. The filters are

constructed from estimates of the CIR and noise variance as described in Appendix 3B . The

“equalization filter” f
(m)
l,n operates on the resampled/interpolated data and the “cancellation

filter” gl,n operates on the PSMEs ān. We assume the phase rotation φn varies slowly and we

use the following equalizer output model

zn =

1∑

m=0

∑

l

f
(m)
l,n r

(m)
n−l (3.8)

= vn + exp (jφn) γnan + qn (3.9)

ωn = 2
/

E |vn|2 (3.10)

qn =
∑

l6=0

gl,nān−l (3.11)

The (symbol-rate) sequence zn is the output of the equalization filter and qn is the output

of the cancellation filter. The noise vn is not white–it is the combination of filtered ambient

noise, residual ISI, and additional noise caused by estimation error–but is modeled as such for

tractability. It is convenient to define the parameter ωn as the reciprocal of half this noise

variance. In the absence of channel estimation error, ωn and the gain γn would be known

exactly. The gain γn is complex-valued, but its angle is smaller than can be accurately estimated

so we model it as real-valued. Therefore the equalizer output model parameters (EOMPs) are

the real variables ωn, γn, φn.

3.2.5 SMEs and Associated Statistics

Approximating symbol pmf’s with Gaussian pdf’s requires SMEs and symbol variances.

The SMEs are computed as

ān =
∑

α∈A

αp̂n (α) (3.12)

where p̂n (α) are either prior probability or a posteriori probability (APP) estimates, and A is

the QPSK alphabet. Consistent with (3.12) we could compute symbol variances as

∑

α∈A

|α− ān|2 p̂n (α) = 1− |ān|2 (3.13)

We use a statistical interpretation instead. For PSMEs we argue that the PR permutation

in the decoding process effectively gives them uniform variance equal to σ2
ā = 1 − Eā, where

Eā = E |ān|2 ∼= (1 /Nd )
∑

n∈Id
|ān|2, where Id is the set of indices of data-bearing symbols. For

ASMEs, on the other hand, there is no expectation that their variance is constant. We could
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filter the ASME energy |ān|2 in order to estimate Eā, but we use a different approach. We

note the signal to interference-plus-noise ratio (SINR) at the equalizer output is approximately

(1 /2) ω̂γ̂2, and we empirically compute the functional relationship between the SINR and Eā

(assuming AWGN) shown in Fig. 3.4. Consequently, during the first iteration of the algorithm

when PSMEs are not available, the ASME variance is obtained directly from the EOMPs.
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Figure 3.4: Functional relationship between SINR and ASME energy Eā.

We introduce one final statistic: χā = E [a∗nān]. In principle it should be the case that

χā = Eā. This condition would ensure unbiased CIR estimates when using SMEs. (Note that

this condition cannot hold when using symbol “hard” estimates unless they are without error.)

Puncturing a rate- 1
2 CC–instead of using dummy bits with a rate- 2

3 CC, as is done in the algorithm

presented in this paper–resulted in the relationship χā = (1− λ) Eā, where 0.5 < λ < 1 is the

fraction of punctured encoded bits. For this reason we use the latter method vice the former.

3.2.6 Input SNR

Data collected during the experiment that contains communication signals is at very

high SNR, so we ignore the ambient noise present in this data. Also collected during the experi-

ment were recordings of ambient noise without any signals present. The data used in this paper

was obtained by scaling the ambient noise sequences and adding them to the communication

sequences to yield an SNR, as defined below, of 7 dB.

We define the input SNR as the SNR at the output of a matched-filter:

SNRin = SNRMF

=
∑

m

∥∥∥h(m)
∥∥∥

2 /
σ2

w

=
∑

m

SNR
(m)
MF

where SNR
(m)
MF =

∥∥h(m)
∥∥2
/(

σ
(m)
w

)2

and
∥∥h(m)

∥∥2
=
∑

l

∣∣∣h(m)
l,n

∣∣∣
2

. Since the subchannel energy

∥∥h(m)
∥∥2

technically varies with time, as does the noise variance, the definition of input SNR is

used in a time-averaged sense.
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Recall that each hydrophone sampled the acoustic field at approximately the rate Fs =

12 samples/msec, then filtered the resulting sequence to produce a complex sequence in the

frequency band 2-4 kHz. Let s̃k denote a communication sequence obtained in this manner, and

w̃k denote an ambient noise sequence. Also, let 〈xk〉(k) denote the time-average of the sequence

xk (with respect to the index k). Based on our signal and channel models and assumptions we

have

〈
|s̃k|2

〉
(k)

∼= 1

2

1∑

m=0

〈∑

l

∣∣∣h(m)
l,n

∣∣∣
2
〉

(n)〈
|w̃k|2

〉
(k)

∼= σ2
w

where the summand is the average energy in the mth subchannel. Consequently, to generate the

data used in this paper, we scale the noise sequences so that 2
〈
|s̃k|2

〉
(k)

/〈
|w̃k|2

〉
(k)

are the

desired input SNR, that is, 7 dB.

3.3 Receiver Algorithm

3.3.1 Overview

The receiver algorithm utilizes IED and the focus of this paper is on equalization. We

use the term “decoding” to refer to all the operations identified in Fig. 3.2(a) which transform

a sequence of information bits into a symbol sequence. As shown in the figure this entails more

than just decoding of the constituent CC. We interpret the messages passed between equalizer

and decoder as estimates of symbol pmf’s. More specifically, the messages output from the

equalizer are estimates of symbol APPs–i.e. pmf’s conditioned on the received data–whereas

the messages output from the decoder serve as estimates of symbol prior probabilities. In this

section we explain how we compute the former. Computation of the latter, and of all other

messages involved with decoding, are straightforward applications of the SPA and are explained

thoroughly elsewhere [9, 19] and are not discussed in this paper.

Ideally we would use only messages passed from the decoder to estimate CMPs and then

perform equalization. However, this is not possible during the first iteration since no information

is available from the decoder. Consequently, during the first iteration, the time-varying nature

of the channel necessitates utilizing feedback of symbol APPs produced by the equalizer–i.e.

messages that are passed from the equalizer to the decoder–for the purpose of propagating CMP

estimates. In other words, the first iteration is necessarily performed differently from subsequent

iterations.

Block diagrams of the receiver algorithm are shown in Fig. 3.5. Asynchronous transmis-
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sions are assumed, so the first step is to detect when a communication signal is present (vice only

ambient noise). This process also establishes coarse synchronization–denoted by n̂0 in the figure.

The training symbols are then used to fine-tune synchronization and obtain initial estimates of

the other key CMPs–namely the Doppler shift, the CIR, and the AWGN variance. A resam-

pling/interpolation reference index is also chosen. These CMP estimates are used to initialize

the following recursion, which is illustrated in Fig. 3.5(b). The current estimate of Doppler shift

controls the resampling process that produces new Doppler-corrected data at twice the symbol

rate. This new data enters the equalization filter which is constructed based on the current

CIR and AWGN variance estimates. The filter output is first used to update EOMP estimates,

and then used in conjunction with these parameter estimates to compute a new symbol APP

and ASME. The phase estimate is also used to control the Doppler shift estimate. Feedback of

ASMEs is used to propagate the CIR estimate. Once APPs are obtained for all the symbols

they are passed to the Decoder. Additionally, the estimated sampling times are smoothed and

a final resampling is performed for use in later iterations. The sampling times could be itera-

tively improved after each iteration but, in practice, the refinement would be minimal and is not

worthwhile.

The decoder can produce two types of output: estimates of the information bits and

estimates of the symbol prior probabilities. On the last iteration of the algorithm the former

is desired. Otherwise the latter is produced and used as follows. The same tasks performed

in the first iteration are repeated in subsequent iterations–except for estimating Doppler shift

and resampling–but they are performed sequentially instead of simultaneously. The symbol

prior probability estimates are used to compute PSMEs and the PSME variance, which are then

used to estimate the time-varying CIR. The channel estimate and PSME variance are used to

create equalizer filters which operate on the data and PSMEs. The EOMPs are estimated using

the equalizer output and the symbol prior probability estimates. Finally, new symbol APPs are

computed from the EOMPs and equalizer output. There are two ways to terminate the algorithm:

processing can be stopped once a prescribed number of iterations are completed, or the PSME

variance can be monitored and the processing stopped when a steady-state condition is reached.

The latter method can also be used to determine if the algorithm has failed and retransmission

is necessary–i.e. if the PSME variance does not approach zero then the algorithm has failed.

We use the same method to detect the presence of a communication signal as is used

in [62]. The method there was described for the case of symbol-rate sampling, but extends in

a straightforward manner to the present case of two samples per symbol period. Consequently

we do not discuss it further in this paper, other than to reiterate the procedure also establishes

coarse synchronization which is needed for the training routine.
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3.3.2 Training Routine

In [62] a training routine is developed which simultaneously refines coarse synchroniza-

tion and produces symbol-rate estimates of the CIR and noise variance. The procedure is built

around a cost function (CF)–an effective noise variance–which strikes a balance between estimat-

ing the CIR at too many delays, and thus projecting too much noise onto the signal subspace,

and estimating the CIR at too few delays, which would not only be wasting signal energy but

allowing it to act as interference–effectively additional noise. In this subsection we modify the

approach to accomodate Doppler-distorted data that is resampled at twice the symbol rate.

We need the following definitions:

r(m) (ν, n) =
[
r
(m)
n (ν) · · · r

(m)
n+Nt−1 (ν)

]T
(3.14)

= w(m) (ν, n) +A (L)h
(m)
L (3.15)

A (Lmax) =




a0

...
. . .

aLmax−1 · · · a0

...
...

aNt−1 · · · aNt−Lmax




(3.16)

h
(m)
Lmax =

[
h

(m)
0 · · · h

(m)
Lmax−1

]T
(3.17)

ĥ
(m)
L (ν, n,L) = A (L)

+
r(m) (ν, n) (3.18)

ŵ(m) (ν, n,L) =
[
I−A (L)A (L)+

]
r(m) (ν, n) (3.19)

[
σ̂(m)

w (ν, n,L)
]2

=

∥∥ŵ(m) (ν, n,L)
∥∥2

Nt − |L|
(3.20)

[
σ

(m)
eff (ν, n,L)

]2
=

[
σ̂(m)

w (ν, n,L)
]2(

1 + tr

{[
A (L)

+
A (L)

+H
]−1
})

(3.21)

J
(
ν, n(0),L(0), n(1),L(1)

)
=

1∑

m=0

∥∥∥r(m)
(
0, n

(m)
3

)∥∥∥
2

[
σ

(m)
eff

(
ν, n(m),L(m)

)]2 (3.22)

The Doppler shift ν and CIR h
(m)
l are assumed time-invariant during the training period. The

data samples r
(m)
n (ν) are obtained by resampling/interpolating the received data to compensate

for the indicated Doppler shift. (Details of this process are given in [62].) The AWGN vector

w(m) (ν, n) is assumed to have statistics independent of the parameters ν, n,m. The index set

Lmax = {0, . . . , Lmax − 1} and 0 ∈ L ⊂ Lmax. The matrix A (L) is composed of those columns

of A (Lmax) corresponding to the index set L, and h
(m)
L is the vector of CIR gains associated
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with these delays. The product A (L)h
(m)
L is the convolution of the training symbols with the

CIR. This formulation, although notationally burdensome, allows for estimating the CIR on

noncontiguous sets of delays–i.e. “sparse” CIR estimation. The CIR estimate (3.18) is LS, where

(·)+ denotes pseudo-inverse, and (3.19) is the corresponding noise vector estimate whose elements

have the unbiased variance estimate (3.20), where |L| denotes the number of elements in the set

L. The effective variance (3.21) is discussed in detail in [62]–basically the multiplicative factor

accounts for the projection of noise onto the CIR estimate.

The CF (3.22) extends the CF (3.21) by accommodating multiple subchannels and

allows the CIR subchannels to be estimated on different sets of delays. It would need to be

evaluated for sets of values of its arguments. In particular, we would have n
(m)
1 ≤ n(m) ≤ n

(m)
2

for some n
(m)
1 , n

(m)
2 derived from the coarse synchronization index n̂0. The value n

(m)
3 > n

(m)
2 is

such that
∥∥∥r(m)

(
0, n

(m)
3

)∥∥∥
2 ∼= Nt

[(
σ

(m)
w

)2

+
∥∥h(m)

∥∥2
]
. Consequently J /Nt − 2 represents an

effective matched-filter SNR–i.e. the sum of the individual subchannel SNRs–which is consistent

with the input SNR discussed in Subsection 3.2.6. Ideally the parameter estimates would be

chosen to maximize J . However, it is not clear how to efficiently search the parameter space of

this general expression, so we impose various constraints and adopt the following strategy.

We constrain n(0) = n(1) = n and L(0) = L(1) = L. Initially we also set L = Lmax. We

could compute J (ν, n) = J (ν, n,Lmax, n,Lmax) but, given that
(
σ

(0)
w

)2

=
(
σ

(1)
w

)2

, we instead

compute

[σ̂w (ν, n)]2 =
1

2

1∑

m=0

[
σ̂(m)

w (ν, n,Lmax)
]2

(3.23)

over a coarse grid of values for ν, n. We do not constrain the subchannel noise variances to be

equal in the CF (3.22) because in general they include effects of CIR estimation error in addition

to the ambient noise variance. We maximize [σ̂w (ν, n)]
2

over n and maximize a cubic spline (CS)

fit over ν to obtain ν̂. At this point we compute a rough CIR estimate by which we establish

a final resampling reference index k0. Its value is not crucial, but we try to select it so that

reference time t = 0 lies in the middle of the CIR corresponding to the first transmitted symbol.

Next we resample to obtain data r
(m)
n = r

(m)
n (ν̂) and compute the CF J (ν̂, n) over a finer grid

for n, which we maximize over n to refine the synchronization index n̂0.

The CF J (L) = J (ν̂, n̂,LL, n̂,LL) can be efficiently computed for the subsets LL =

{0, . . . , L− 1} by utilizing a QR decomposition of A (Lmax). This motivates the following

procedure. We estimate the CIR over the full span Lmax and compute the statistic ψl =

maxm

[∣∣∣ĥ(m)
l

∣∣∣
2
/
χ̂

(m)
l

]
, where χ̂

(m)
l is an estimate of the noise variance projected onto the CIR

estimate–i.e. the diagonal of
[
σ̂

(m)
w (ν̂, n̂,Lmax)

]2 [
A (Lmax)

+
A (Lmax)

+H
]−1

. We then use this

statistic to reorder the columns of A (Lmax) so that we can evaluate the CF using the subsets
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LL. We basically reorder the columns of A (Lmax), from left to right, corresponding to decreasing

values of ψl. However, if we select a particular column of A (Lmax), then we first place its imme-

diately adjacent columns in the reordered matrix (unless they have already been taken). Since

we assume small but nonzero Doppler spread, this additional requirement allows CIR arrivals to

shift relative to one another by up to one symbol without having to update the set of delays at

which the CIR is estimated. Once this procedure is completed, the CIR and the diagonal of its

covariance matrix are estimated for use in the first iteration–we adjust the index sets and so forth

such that the symbol convolution matrix used in the CIR estimate contains the first column of

A (Lmax). We also compute the noise variance estimates
(
σ̂

(m)
w

)2

.

3.3.3 Operations Performed During Equalization

As stated at the beginning of this section, these operations are performed simultane-

ously during the first iteration, then sequentially during subsequent iterations. The resampling

procedure is explained thoroughly in [62].

CIR Estimation

This operation has two key elements: determining which CIR arrivals are significant,

and estimating the gains of those CIR arrivals. The training routine performs both these func-

tions together at the beginning of the first iteration, while subsequent iterations perform them

separately as described in the next paragraph. During every iteration the set of delays at which

the CIR is estimated is held fixed. Details of the procedure for estimating the gains of the CIR ar-

rivals are given in Appendix 3A . The upshot is the channel model (3.6) is put in vector form and

linearized about the current CIR estimate to obtain an extended Kalman filter (EKF) [3], and

the complex gains are constrained to have a different rate of time variation in their phases than

in their amplitudes–consistent with the model developed in Subsection 3.2.3. We incorporate the

SMEs into the channel model according to the following rationale that we state symbolically:

r = w+h ∗ (ā+ ∆a) = (w + h ∗∆a) +h ∗ ā, where ∗ denotes convolution and ∆a represents the

error in the SMEs. Consequently in the appendix we use SMEs in the symbol regression vector

and
(
σ̂

(m)
w

)2

+ σ2
ā

̂∥∥h(m)
∥∥2

as the observation noise variance, where
̂∥∥h(m)

∥∥2
is a (theoretically)

unbiased estimate of the CIR energy–i.e. it is the squared norm of the CIR estimate minus the

trace of the CIR covariance matrix. For the phase random walk variance we use σ2
∆θ = 3× 10−4

and for the amplitude we use σ2
∆ρ =

(
10−6

) ̂∥∥∥h(m)
Trng

∥∥∥
2

, where
̂∥∥∥h(m)
Trng

∥∥∥
2

is the energy in the train-

ing CIR estimate. The EKF we implement has complexity linear in the number of arrivals at

which the CIR is estimated.

A different process is used for iterations after the first. The CIR is estimated over the
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full span of Lmax symbols and we toggle the span so that for even iterations the first estimated

delay is the same as in the previous iteration, while for odd iterations the last estimated delay is

the same as in the previous iteration. We then estimate the CIR gains as explained above and in

Appendix 3A , using PSMEs instead of ASMEs and using the training symbols and corresponding

data for initialization. Once the time-varying CIR is estimated, we form the statistic ψl =

maxm

[
(1 /|I| )∑n∈I

(∣∣∣ĥ(m)
l,n

∣∣∣
2
/
c
(m)
l,n

)]
, where c

(m)
l,n is the variance of ĥ

(m)
l,n computed by the

EKF routine and I is an index set which selects every 100th symbol. The statistic is compared to

the threshold
(
1− σ2

ā

)
[1]+σ2

ā [1.2] to select the estimated CIR arrivals to be used in constructing

the equalizer filters. The procedure limits the impact of CIR estimation error by only selecting

those arrivals with significant energy.

Equalization

This operation has several components. First is construction of the equalizer filters–

details of which are provided in Appendix 3B . We note the “equalization” or “forward” filter,

which operates on the data, is simply a linear equalizer and consequently can be computed

efficiently. Also, given the rate of time-variation of the channel it is sufficient to update the

equalizer filters every Lmax symbols–i.e. every 100 msec. Since no information is available from

the decoder during the first iteration there is consequently no “cancellation” filter. During sub-

sequent iterations, however, and assuming successful performance of the algorithm, the “equal-

ization” filter tends toward a matched-filter and the equalizer as a whole becomes essentially a

soft-output two-sided decision-feedback equalizer (DFE) [53]. We incorporate CIR estimation

error into the channel model according to the following rationale that we state symbolically:

r = w+
(
ĥ+ ∆h

)
∗a = (w + ∆h ∗ a)+ ĥ∗a, where ∆h represents the error in the CIR estimate.

Consequently in the appendix we use
(
σ̂

(m)
w

)2

+ E
∥∥∆h(m)

∥∥2
as the observation noise variance,

where the rightmost summand is the trace of Cov
[
ĥ

(m)

n

]
which is obtained from the EKF.

The second component of equalization is actually filtering the Doppler-compensated

data with the “equalization” filter and filtering the PSMEs with the “cancellation” filter.

The third component is estimating the EOMPs. As noted in Subsection 3.2.4, if the

CMPs were known exactly then the gain and effective noise variance at the equalizer output

would also be known exactly, and could be computed as shown in Appendix 3B . Details of the

procedure for estimating the EOMPs are given in Appendix 3C . The basic idea is Gaussian

approximations for pdf’s produce an EKF-like algorithm. The random-walk variances for the

EOMPs are σ2
∆ω =

(
10−4

)
ω̂2

n, σ2
∆γ = 10−5, and σ2

∆φ = 10−3.

The final component of equalization is computing symbol APPs which are passed to

the decoder. We define the equalizer “soft” output ãn = exp
(
−jφ̂n

)
zn − qn and estimate the
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symbol APPs as

p̂ (an = α |· ) ∝ exp

(
−1

2
ω̂n |γ̂nα− ãn|2

)
(3.24)

∝ exp (ω̂nγ̂nRe [ã∗nα]) (3.25)

where the last expression is a consequence of the symbol alphabet having constant amplitude.

(The symbol APP’s are normalized to have unit sum.)

Doppler Shift Updating

During the first iteration we update the Doppler Shift estimate by using proportional-

integral (PI) control of the change in phase rotation ∆φ̂n = φ̂n − φ̂n−1:

ν̂n = ν̂n−1 +Kprop∆φ̂n +Kintegφ̂n (3.26)

whereKprop = 10−4 and Kinteg = 10−7.

Final Resampling

After the first equalization is complete, the sampling times estimates are smoothed and a

final resampling/interpolation of the data is performed. The sampling times estimates computed

as part of the Doppler shift tracking procedure are simply smoothed forward and backward with

an IIR filter, with care taken at the ends, and then adjusted using the estimated phase sequence

in the manner described in Subsection III-D of [62].

3.4 Results and Discussion

The algorithm processes data received on a single sensor. There were 32 sensors in the

receive sensor array and 51 total transmissions, so there are 1,632 total sequences available for

processing. A summary of the results of processing all of these sequences is shown in Table 3.1.

The algorithm did not fail for any of the 768 sequences from data set A, it did fail 4 times out

of the 864 sequences in data set B–which is slightly less than 0.5%. By “failure” we mean the

algorithm does not converge and essentially no information is extracted from a particular data

packet. We consider the algorithm “successful” if it recovers the transmitted information with a

small number of bit errors. For the cases of successful processing for both data sets the frequency

of bit errors was less than 1 error in 100,000 bits. Fig. 3.6 shows details of the processing

results for data set A. (Note: there is no data corresponding to time 7:40.) Part (a) of the figure

shows the number of bit errors produced by the algorithm marked in text, with the vertical axis

indicating sensor/depth and the horizontal axis indicating the start time of the transmission.
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There is no apparent pattern to the distribution of errors and the maximum number of errors

in any transmission is nine–or about 1 error per 1000 bits. Part (b) of the figure shows the

average Doppler shift measured by the algorithm, each of the 32 sensors corresponds to a dot

which is plotted against the transmission start time. The lack of variability in the Doppler shift

measurements reflects the near constant velocity of the transmission source during this period of

time. Fig. 3.7 shows the same processing details for data set B. In part (a) of the figure the pound

signs indicate failure of the algorithm. Again there is no apparent pattern to the distribution

of errors–or failures. Part (b) of the figure reflects the fact that the radial component of the

source velocity increases during this time period, which agrees with the source track for data set

B shown in Fig. 3.1.

Table 3.1: Summary of Performance Results

Data Set A Data Set B

Number of

Transmissions
24 27

Total Number of

Sequences
768 864

Number of Sequence

Failures
0 4

Sequence Failure Rate 0% 0.5%

Number of Successful

Sequences with Bit

Errors

12 9

Total Number of Bit

Errors for Successful

Sequences

49 28

Total Number of Bits

in Successful

Sequences

6,916,608 7,745,160

Bit Error Frequency 7.1× 10−6 3.6× 10−6
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Figure 3.6: Data set A. (a) Number of bit errors marked with text versus depth/sensor on

the vertical axis and transmission start time on the horizontal axis. (b) Average Doppler shift

measured by the algorithm: each dot corresponds to one of the 32 sensors, horizontal axis is

transmission start time.
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Figure 3.7: Data set B. (a) Number of bit errors marked with text versus depth/sensor on the

vertical axis and transmission start time on the horizontal axis–pound signs indicate algorithm

failures. (b) Average Doppler shift measured by the algorithm: each dot corresponds to one of

the 32 sensors, horizontal axis is transmission start time.
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The four instances of algorithm failure reported above were closely examined by moni-

toring various measures of system performance. It was ascertained the failures did not stem from

break-down of the phase-tracking/Doppler-tracking procedure or any other specific task within

the algorithm. Rather, in each of the four cases the equalizer output SINR was simply too low

for the algorithm to start converging to a successful steady-state. The particular combination

of channel and noise conditions produced inadequate equalizer output in these four cases. Since

there is nothing to be gleaned from examining the various measures of system performance in

these four cases–other than that the algorithm simply failed to iteratively improve its knowl-

edge of the bits, symbols and CMPs–we will instead focus on a case where the algorithm was

successful.

Having shown results of overall system performance for the aggragate data, we now

show detailed results of processing one particular data sequence. That data sequence is the same

one considered in Subsection 3.2.3 (sensor 6, at 94 m depth, at the very beginning of data set A),

where its time-varying CIR was measured and discussed. This data sequence is not necessarily

“typical” but, rather, appears to be close to the threshold of what the algorithm can process

successfully. Fig. 3.8 elucidates this last statement. It shows the PSME variance for the second

iteration of the algorithm for data set A (recall that the PSME variance is unity for the first

iteration), with the vertical axis indicating sensor/depth and the horizontal axis indicating the

start time of the transmission. (The corresponding graphic for data set B is essentially the same

and is not provided.) Not only do the PSME variances virtually cover the entire range of possible

values from zero to one, but their distribution is apparently random. Considering the particular

data sequence to be considered forthwith, located at time zero and depth 94 m, its PSME variance

is close to unity–indicating very weak symbol information–while those corresponding to the same

sensor at later times is much lower. There is not even a pattern along this single row. In any

case, the selected data sequence clearly demonstrates the performance of the iterative algorithm.

Fig. 3.9 shows initial CMP estimates produced by the training routine. Part (a) is the

CF (3.23) normalized by the true noise variance, used to estimate the Doppler shift–assumed

constant during the training period–together with a CS fitted through the points at which the

CF is evaluated, and the extremum marked with a circle. Part (b) shows, marked with dots, the

magnitude of the CIR estimate used to initialize the EKF, with a high-SNR CIR measurement

shown as a solid curve for comparison. The routine discussed in Subsection 3.3.2 does a reasonable

job of capturing the significant portions of the CIR. Some energy near delays -12 msec and 32

msec is missed, but it is not substantial, and there is a false detection near delay 63 msec.

Fig. 3.10(a) shows the CIR estimation error for the first and last iterations of the algo-

rithm. The top two curves (one for each “over-sampled subchannel”) are the result of applying a
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Figure 3.8: PSME variance for second iteration of algorithm for data set A: vertical axis is

sensor/depth, horizontal axis is transmission start time, grayscale intensity is PSME variance.
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of CIR estimate is shown with dots, gray curve is a CIR measurement computed at high SNR.
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iteration, bottom two curves are last iteration, straight line is average ambient noise variance.

(b) Moving-average ambient noise variance measurement. (c) Magnitude of moving-average of

symbol-quality statistic for last iteration.
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rectangular moving-average filter of length 501 symbols to the squared-error in the CIR estimates

produced during the first iteration, the bottom two curves are for the last iteration. The true

symbols were used in these computations. The solid line is the (true) average ambient noise

variance. Although not shown, the estimation error for intermediate iterations falls between

these two sets of curves. The dramatic improvement in quality of the CIR estimates is evident

and, as shown below, this improvement directly affects the strength of the symbol information.

Part (b) of the figure shows moving-average measurements of the ambient noise variance (for the

two subchannels) obtained directly from the associated noise sequence. Comparing these two

curves with the two curves in part (a) corresponding to the last iteration, it can be seen that the

CIR estimation routine tracks the channel fairly well, albeit with small estimation error. Part

(c) is the magnitude of the moving-average of the ASME statistic a∗nān (computed using only

data-bearing symbols). It is included for comparison with the CIR estimation error of the last

iteration: the major valleys in the curve from part (c) correspond to the major peaks in the

curves from part (a).

Fig. 3.11 shows the performance of the EOMP tracking routine for the first and last

iterations. In parts (a) and (b) there is clear improvement in the quality of the equalizer output:

the bottom curves correspond to the first iteration and the top curves to the last. Part (c) shows

the phase estimated during the first iteration (it is not estimated in subsequent iterations). Parts

(d) and (e) show the magnitude and phase of the moving-average of the ASME statistic a∗nān

(computed using only data-bearing symbols). Again the improvement in equalization from the

first iteration to the last is clear: the magnitude of the statistic increases from below 0.5 to above

0.9 and the phase fluctuations decrease from 15 degrees to just a few degrees.

A summary of the performance of the algorithm for the selected data sequence is shown

in Fig. 3.12. Part (a) is a synopsis of the CIR estimation error produced during each iteration

of the algorithm: it is the average squared-error normalized by the average noise variance. Using

the true symbols we made RWLS estimates of the complex gain γn exp (jφn) and effective noise

variance E |vn|2 at the output of the equalizer filter. The squared magnitude of the former divided

by the latter is a measure of the output SINR, and the mean of this quantity is shown for each

iteration in part (b) of the figure. The SINR steadily increases with iteration until reaching

a plateau just below the input SNR. Part (c) shows the average of the absolute value of the

phase of the gain estimates and it too demonstrates fairly steady improvement with iteration.

(The zigzag behavior is a result of the resynchronization procedure discussed in part 3.3.3 of this

paper.) Part (d) of the figure shows the number of bit errors that would result if the algorithm

were terminated at the end of each iteration, and part (e) shows the PSME variance for each

iteration. Overall the algorithm steadily improves knowledge of the bits, symbols, and CMPs
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Figure 3.11: (a,b,c) EOMP estimates: in (a) and (b) bottom curve is first iteration, top curve is

last iteration. (d,e) Magnitude and phase of moving-average of symbol-quality statistic: in (d)

bottom curve is first iteration, top curve is last iteration.
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with each iteration.
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Figure 3.13: EOMPs: upper curves are theoretical values calculated from CMP estimates, lower

curves are estimates obtained directly from equalizer output.

The importance of estimating the EOMPs directly as opposed to using the theoretical

quantities derived in Appendix 3B is demonstrated in Fig. 3.13. Part (a) of the figure shows the

noise statistic computed during the first iteration of the algorithm and part (b) shows the gain.

In both parts the upper curves are theoretical values while the lower curves are direct estimates.

The output SINR is approximately (1 /2) ω̂γ̂2, which is about (1 /2) (11) (0.75)
2

= 3.1 or 4.9 dB

in the former case, and (1 /2) (8) (0.5)
2

= 1 or 0 dB in the latter case. From measuring the output

SINR using the true symbols we know the latter SINR estimate is correct. Consequently, using

the theoretical values in this case would result in overestimating the SINR by about 5 dB, which

would significantly reduce the reliability of the symbol APP estimates passed to the decoder.

3.5 Conclusion

In this paper we introduced an IED algorithm and applied it to communication data

received from a moving UWA source. The algorithm is an instance of “turbo equalization”,

which represents a powerful technique in signal processing. Consequently the algorithm is well-

matched to one of the main characteristics of the shallow UWA channel–namely, CIRs with

large delay spread. The other characteristics–Doppler distortion and bandwidth limitations–

the system addresses by resampling to compensate for the former and using QPSK modulation

to efficiently utilize the latter. Additionally, we developed and implemented a CIR estimation
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scheme closely matched to the actual time-variation observed in the data. The algorithm has

several novel aspects, which include its method of synchronization and CIR estimation, as well

as its computation of symbol APPs, estimation of Doppler shift, and nonuniform resampling to

compensate for Doppler distortion.

The algorithm was used to process over 1,600 data sequences and performed with a high

degree of success. Only four times did the algorithm fail to recover the transmitted bit sequence

with few or no errors. For the cases of successful operation, the algorithm achieved a bit error

frequency of less than 1 error in 100,000 bits, with no more than 1 error per 1,000 bits in any

single case. Numerous figures detail the performance of processing one particular data sequence.

They clearly demonstrate the iterative improvement in knowledge of the transmitted bits and

symbols and all the various model parameters needed to implement the equalization process. For

the given example, the algorithm displayed steady improvement with each iteration.
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3A CIR EKF Routine

The model (3.6) is expressed in vector form as exp (−jφn) r
(m)
n = w

(m)
n + aT

nh
(m)
n . We

ignore phase rotation of the noise sample since it is assumed circularly symmetric, an is a vector

of symbols and h(m)
n is a vector of CIR arrivals with elements h

(m)
l,n = ρ

(m)
l,n exp

(
jθ

(m)
l,n

)
. We define

the “state” vector x
(m)
n =

[
ρ

(m)
n ; θ(m)

n

]
, where the semicolon indicates vertically concatenating

the two constituent vectors. Given a prediction of the CIR h́
(m)

n we make the linear approximation

aT
nh(m)

n
∼= aT

n h́
(m)

n +
(
b
(m)
n

)T

∆x
(m)
n , where ∆x

(m)
n is the variation of the state vector about its

predicted value x́
(m)
n . The vector b

(m)
n =

[
D (an) exp

(
jθ́

(m)

n

)
; jD (an) h́

(m)

n

]
, where D (·) is the

diagonal matrix constructed from its vector argument and the exponential function is applied to
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each element of its vector argument. The following state-space model results:

y(m)
n =


 Re

[
exp (−jφn) r

(m)
n − aT

n h́
(m)

n

]

Im
[
exp (−jφn) r

(m)
n − aT

n h́
(m)

n

]

 (3.27)

∼= ẅ(m)
n +

(
B(m)

n

)T

∆x(m)
n (3.28)

B(m)
n =

[
Re
[
b(m)
n

]
, Im

[
b(m)
n

]]
(3.29)

ẅ(m)
n =

[
Re
[
w(m)

n

]
; Im

[
w(m)

n

]]
(3.30)

Cov
[
ẅ(m)

n

]
=

1

2


 1 0

0 1


E

∣∣∣w(m)
n

∣∣∣
2

(3.31)

Given a covariance matrix Ć
(m)
n of the predicted state we compute the state correction

and covariance as

∆̂x
(m)

n = K(m)
n y(m)

n (3.32)

C(m)
n = Ć(m)

n −K(m)
n

(
B(m)

n

)T

Ć(m)
n (3.33)

K(m)
n = Ć(m)

n B(m)
n

[
Cov

[
ẅ(m)

n

]
+
(
B(m)

n

)T

Ć(m)
n B(m)

n

]−1

(3.34)

where K
(m)
n is the Kalman gain matrix. During the second and subsequent iterations of the

algorithm we compute the corrected state as x̂
(m)
n = x́

(m)
n + ∆̂x

(m)

n . During the first itera-

tion, however, we want to prevent bulk phase rotation of the CIR. Consequently we replace

∆̂θn =

[
∆̂θ

(0)

n ; ∆̂θ
(1)

n

]
with ∆̂θn − 1∆φn, where 1 (boldface) is a vector all of whose ele-

ments are one. Based on discussion in Section 3.2.3, we choose ∆φn such that the inner prod-

uct of the predicted and corrected CIR estimates has zero imaginary part. Since h́
H

n ĥn
∼=

ρ́
T
n

{
I + j

[
D
(
∆̂θn

)
− I∆φn

]}
ρ́n, where the vectors include both subchannel components (hence

no superscripts) and we make use of the small angle approximation exp [j (·)] ∼= 1 + j (·), then

∆φn = ρ́
T
nD
(
∆̂θn

)
ρ́n

/
‖ρ́n‖2 .

We assume no predictable state dynamics so the prediction step is simply x́
(m)
n = x̂

(m)
n−1

and Ć
(m)
n = C

(m)
n−1 + D

([
1σ2

∆ρ;1σ
2
∆θ

])
, where σ2

∆ρ and σ2
∆θ are the random walk variances for

the magnitude and phase components of the CIR.

Since the symbol sequence input to the EKF is white the covariance matrices are nearly

diagonal, which presents a natural low-complexity implementation. We simply force the covari-

ance matrices to be diagonal and make the necessary approximations. None are required in

the prediction step since the update to the covariance matrix affects only the diagonal, nor in

the Kalman gain matrix equation (3.34). With Ć
(m)
n = D

(
ć
(m)
n

)
and C

(m)
n = D

(
c
(m)
n

)
the

covariance correction (3.33) becomes

c(m)
n = ć(m)

n −
[
K(m)

n �
(
Ć(m)

n B(m)
n

)]
[1; 1] (3.35)
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where � represents multiplying the two matrices element-by-element. The expression (3.35)

simply computes the diagonal of the exact expression.

The training symbols and corresponding data provide initial estimates of the symbol-

rate subchannel noise variances and CIRs and their covariance matrices. Letting ĥ
(m)

n = ρ̂
(m)
n �

exp
(
jθ̂

(m)

n

)
= h(m)

n + δh(m)
n and likewise for ρ̂

(m)
n and θ̂

(m)

n , we have δh(m)
n
∼= exp

(
jθ(m)

n

)
�

(
δρ

(m)
n + jρ

(m)
n � δθ(m)

n

)
. We further approximate the initial CIR covariance matrices as diag-

onal and circularly symmetric–i.e. uncorrelated real and imaginary parts–and so we obtain the

following initial state covariance matrices

1

2


 Cov

[
ĥ

(m)

0

]
0

0 D
(
ρ̂

(m)
0

)−2

Cov
[
ĥ

(m)

0

]




We also have need for the CIR covariance matrices throughout the iterative algorithm and com-

pute them as Cov
[
ĥ

(m)

n

]
∼= D

([
I,D

(
ρ̂

(m)
n

)2
]
c
(m)
n

)
.

3B Equalizer Filters

The model (3.8) is expressed as zn = fnrn, where fn =
[
f (0)

n ,f (1)
n

]
, rn =

[
r

(0)
n ; r

(1)
n

]

and f (m)
n =

[
f

(m)

l
EQ
2 ,n

, . . . , f
(m)

l
EQ
1 ,n

]
, r

(m)
n =

[
r
(m)

n−l
EQ
2

; . . . ; r
(m)

n−l
EQ
1

]
. (We use semicolons to denote ver-

tical concatenation–i.e. [x; y] =
[
xT, yT

]T
.) Similarly the model (3.6) can be expressed as rn

∼=
wn + exp (jφn)Hnan, where wn =

[
w

(0)
n ; w

(1)
n

]
is noise, an =

[
a

n−l2−l
′

2
; . . . ; an; . . . ; a

n−l1−l
′

1

]
,

and Hn =
[
H

(0)
n ;H

(1)
n

]
with H

(m)
n representing convolution matrices for the two subchannels.

With these definitions we could follow the derivation given in [62] to obtain the equalizer filters

by directly applying the SPA in conjunction with certain approximations. However, the results

so obtained are equivalent (to within a multiplicative factor) to the MMSE equalizer filters we

derive below, and we choose the latter for simplicity.

We need several additional definitions. Let the row vector e and matrix E be such that

ean = an and Ean =
[
a

n−l2−l
′

2
; . . . ; an−1; an+1; . . . ; an−l1−l

′

1

]
–i.e. E is an identity matrix with a

particular row e removed. Note that EeT = 0 (zero vector). We also use Eā = E |ān|2 and χā =

E [a∗nān] defined in Subsection 3.2.5. Denoting the cancellation filter output as
∑

l6=0 ǵl,nān−l =

ǵnE
TEān, the equalizer “soft” output is ãn = exp (−jφn) zn − ǵnE

TEān. The error can be

expressed as ãn − an
∼= fnwn + (fnHn − e) an − ǵnE

TEān, where we ignore phase rotation

of the noise vector because its elements are assumed circularly symmetric. Consequently the
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MMSE is obtained from

E |ãn − an|2 ∼= fnCwfH
n + ‖fnHn − e‖2 + EāǵnE

TEǵ
H
n − 2Re

[
χāǵnE

TE (fnHn)
H
]

≥ fnCwfH
n + ‖fnHn − e‖2 −

|χā|2
Eā

∥∥fnHnE
T
∥∥2

= 1 + fnQnfH
n − 2Re

[
fnHne

T
]

≥ 1− g0,n

where Cw is the noise covariance matrix, Qn = Cw + HnH
H
n −

(
|χā|2

/
Eā
)
HnE

TEHH
n , and

g0,n = gne
T with gn = fnHn. The first inequality above follows from completing the square in

ǵn and equality is achieved by setting ǵn = (χ∗
ā/Eā) gn. The second inequality above follows

from completing the square in fn and equality is achieved by setting fn = eHH
n Q

−1
n .

It is straightforward to show that ãn = vn + g0,nan, with vn = fnwn + gnE
TEan −

ǵnE
TEān and E |vn|2 = g0,n − g2

0,n. Also, using the matrix inversion lemma [3] we can express

the equalization filter as fn = eHH
n Q́

−1
n

/[
1 +

(
|χā|2

/
Eā
)
eHH

n Q́
−1
n Hne

T
]

with Q́n = Cw +
(
1− |χā|2

/
Eā
)
HnH

H
n . Furthermore, if χā = Eā then ǵn = gn and, since Eā = 1− σ2

ā for PSK

symbol alphabets, fn = eHH
n Q́

−1
n

/[
1 +

(
1− σ2

ā

)
eHH

n Q́
−1
n Hne

T
]

and Q́n = Cw + σ2
āHnH

H
n .

3C EOMP Tracking

We define the “state” as xn = [ωn, γn, φn]
T

and use the shorthand Zn ≡ {zl}nl=0

and likewise for Qn. We assume AWGN at the equalization filter output. At (symbol) time

n − 1 we have p (xn−1 |Zn−1, Qn−1 )
∼∝ exp

(
− (1 /2) ‖xn−1 − x̂n−1‖2C−1

n−1

)
, where the notation

‖v‖2M represents the quadratic form vHMv. The “prediction” step is p (xn |Zn−1, Qn−1 ) =
∫
p (xn |xn−1 ) p (xn−1 |Zn−1, Qn−1 ) dxn−1

∼∝ exp
(
− (1 /2) ‖xn − x́n‖2Ć−1

n

)
, where x́n = x̂n−1

and Ćn = Cn−1 + diag
[
σ2

∆ω, σ
2
∆γ , σ

2
∆φ

]
. This results because there are no predictable state

dynamics. The “propagation” step is p (xn |Zn, Qn )
∼∝ p (zn |xn, qn ) p (xn |Zn−1, Qn−1 ), where

p (zn |xn, qn ) =
∑

α∈A

p (an = α) p (zn |an = α, xn, qn )

with p (zn |an = α, xn, qn ) ∝ ωn exp
(
− (1 /2)ωn |zn − exp (jφn) (γnα+ qn)|2

)
. Let f (xn) =

p (zn |xn, qn ) and g (xn) = log [f (xn)] ∼= g (x́n)+(xn − x́n)
T∇g (x́n)−(1 /2) ‖xn − x́n‖2Ωn

, where

Ωn is the positive semidefinite matrix closest (in spectral norm) to the negative of the Hessian of

g evaluated at x́n. Then p (xn |Zn, Qn )
∼∝ exp

(
− (1 /2)

[
‖xn − x́n‖2Ωn

− 2 (xn − x́n)
T∇g (x́n) +

‖xn − x́n‖2Ć−1
n

])
∝ exp

(
− (1 /2) ‖xn − x̂n‖2C−1

n

)
, x̂n = x́n + Cn∇g (x́n), Cn =

(
Ć−1

n + Ωn

)−1

.

The gradient of g is∇g = ∇f /f and the negative Hessian is Υ /f+(∇g) (∇g)T, where Υ

is the negative Hessian of f . With the definitions µ (γn, φn;α) = (1 /2) |γnα+ qn − exp (−jφn) zn|2
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and ψ (xn;α) = p (an = α) exp [−ωnµ (γn, φn;α)], we have f (xn) =
∑

α∈A ωnψ (xn;α). Compu-

tation of the required derivatives is straightforward.

To initialize the EOMPs we assume they are constant during the training period.

Consequently we have p (x |a, z, q ) ∝ exp [f (x)], where f (x) = Nt log (ω) − ωµ (γ, φ) with

µ (γ, φ) = (1 /2) ‖aγ + q − z exp (−jφn)‖2, and a, z and q are column vectors of the train-

ing symbols, the first Nt equalization filter output samples and the first Nt cancellation fil-

ter output samples, respectively. Following a procedure similar to the one discussed above,

and assuming φ̂ ∼= 0, we obtain ω̂ ∼=
[
(1 /2) ‖aγ̂ + q − z‖2

/
Nt

]−1

, γ̂ ∼= Re
[
aH (z − q)

]/
Nt,

Var [ω̂] ∼= ω̂2
/
Nt, Var [γ̂] ∼= 1 /ω̂/Nt, Var

[
φ̂
]
∼= 1 /ω̂/ Re

[
(aγ̂ + q)

H
z
]
. Instead of obtain-

ing the desired quantities by actually computing the outputs of the equalizer filters, we in-

stead substitute theoretical values. In the absence of channel estimation error we would ide-

ally have γ̂ = g0,0, ω̂ =
[
(1 /2) E |vn|2

]−1

= 2
/(
g0,0 − g2

0,0

)
, and Re

[
(aγ̂ + q)H z

]/
Nt →

E |g0,0an + qn|2 = g2
0,0 + Eā

∑
l6=0 |gl,0|2, where we use the notation from the previous appendix.

The estimates become unbiased during the training period.
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Iterative Equalization and

Decoding of Underwater Acoustic

Communication Data Using

Array Observations

We present a receiver algorithm that processes communication data sampled on a hy-

drophone array. Communication signals are transmitted acoustically from the single transducer

of a moving source, and propagate through a shallow underwater channel. The communication

signals are created by convolutional coding of information bits, followed by pseudo-random per-

mutation, mapping into QPSK symbols, and linear modulation. Adaptive resampling of received

data sequences compensates for Doppler effects caused primarily by source motion. Multichannel

equalization focuses and combines signal energy distorted by waveguide multipath propagation.

Kalman filtering provides channel impulse response estimates used to construct the equalizer

filters. Channel estimation and equalization are performed iteratively in conjunction with de-

coding, so the receiver implements “turbo equalization”. Communication signals received during

an at-sea experiment are combined with ambient noise recordings to give input SNRs of 6 and

7 dB (defined as the SNR at the output of an array matched-filter). The results of processing

over 50 transmissions using various array configurations show high reliability and low bit error

frequency.

100
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4.1 Introduction

In a previous paper [63], we introduced a novel algorithm that recovers information

transmitted from a moving source through a shallow underwater acoustic (UWA) channel. That

algorithm processed data received on a single hydrophone only. However, using multiple sensors

should allow a receiver to operate successfully at significantly lower SNR per sensor than using

just a single sensor. This should, in turn, allow a data source, such as an autonomous undersea

vehicle (AUV) that has strict power limitations, to transmit signals at lower power. The reason

being that a hydrophone array should be able to recombine signal energy that is dispersed by

the UWA channel. Actually achieving the anticipated “array gain”, however, requires several

modifications to the single-sensor algorithm of [63], which is the subject of this paper.

Pulse spreading is the primary feature of the shallow UWA channel [1]. Consequently,

equalization is a critical task of high-symbol-rate UWA receivers [27–30]. Iterative equalization

and decoding (IED), or “turbo” equalization [15,16], comprises powerful algorithms that process

data distorted by delay-spread channels. In particular, methods developed by Tuchler and his

colleagues [20–23, 45] are appropriate for channels with long delay spreads. Since the channel

impulse responses (CIRs) considered in this paper are on the order of tens of symbol periods, we

incorporate these methods into our receiver algorithm. Another key chararcteristic of the UWA

channel is acute sensitivity to Doppler effects. Doppler distortion is compensated by resampling

the received data sequences. The resampling process and the overall structure of the receiver

algorithm are the same as in [63], where the interested reader can find details not repeated in

this paper. The present paper focuses on aspects of the new algorithm that enable processing of

array data. For other examples of IED applied to UWA channels the reader is referred to [37–42].

Modifications to the single-hydrophone algorithm include the following. The incoherent

method used for detection of signal presence (DOSP) in [63] does not work at low SNR, so we use

a coherent method instead. Also, the extended Kalman filter (EKF) CIR estimation used in [63]

is questionable at low SNR, since it requires linearization of a nonlinear function about very noisy

estimates, so we use an augmented Kalman filter that does not require linearization. A method

of CIR arrival selection (or “sparsing”) used in [63], to reduce the impact of CIR estimation error,

is similarly questionable at low SNR, so it is replaced with a more robust method. As with the

former algorithm, equalization is performed in two steps: filtering and combining the Doppler-

compensated data, followed by estimation of the parameters of the resulting ISI-free output and

computation of soft symbol information. Slight modifications are made to the implementation

of the first step, while the second step is performed using an altogether different method.

The remainder of this paper is organized as follows. In Section II we summarize the

Focused Acoustic Fields 2004 experiment, from which we obtained our data, and our signal and
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channel models and assumptions. The receiver algorithm is then described in Section III. In

Section IV we present results from processing data collected during the experiment, using arrays

with five and ten sensors. We conclude the paper in Section V.

4.2 Experiment Setup, Models and Assumptions

4.2.1 Experiment Setup

The experiment was conducted during July 2004 in a shallow water region north of

Elba Island, Italy. The experiment geometry is summarized in Fig. 4.1 [63]. Transmissions of

duration just over 9 s were made at intervals of 20 s, from a towed acoustic source (simulating

an AUV) at a depth of 70 m, through an ocean region of 120 m depth, and received on a moored

vertical receive array (VRA). The VRA consisted of 32 sensors with a spacing of 2 m, numbered

from the bottom, with sensor #1 at a depth of 104 m and #32 at a depth of 42 m. There

are two datasets, denoted “A” and “B”. The 24 transmissions of dataset A were recorded while

the source was moving directly away from the VRA at a speed of about 4 knots and a distance

of about 7 km. The 27 transmissions of dataset B were recorded while the source was moving

nearly transverse to the VRA at a speed of about 3.5 knots and a distance of about 11 km. The

sound speed environment was downward-refracting, the measured sound speed versus depth can

be found in [62].

4.2.2 Encoding, Permuting, and Mapping

The process of transforming information bits into a symbol sequence is summarized in

Fig. 4.2 [63]. As shown in part (a), information bits are interleaved with “dummy” bits (i.e., bits

known to the receiver), encoded with a convolutional code (CC), pseudo-randomly permuted,

then mapped pair-wise into QPSK symbols. Part (b) shows that the resulting sequence of Nd

symbols is then interleaved with Np pilot symbols and prepended with Nt training symbols to

create the transmitted sequence of Ns = Nt + Np + Nd = 9, 006 symbols. We use the same

number of information bits as symbols, so the data rate is equal to the symbol rate. The values

of Nt and Np for the cases of 5 and 10 sensors, along with the single-sensor values from [63],

are given in Table 4.1. As explained in [62], though not shown in Fig. 4.2(a), a “scrambling”

operation is inserted between the permutation and mapping which has no effect from a statistical

standpoint and is easily incorporated in a message-passing algorithm.
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Figure 4.1: Experiment geometry.

Table 4.1: Numbers of Training and Pilot Symbols

Nsen Nt Np % of Ns

1 300 870 13.0 %

5 600 840 16.0 %

10 1000 801 20.0 %

Note: Nsen = 1 results reported in [63].

Table 4.2: System Parameters

Sampling Frequency 12 kHz

Center Frequency 3 kHz

Signal Bandwidth 2 kHz

Symbol Rate 1 kHz
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Figure 4.2: (a) Coding Scheme. (b) Symbol Sequence Organization.
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4.2.3 Signal Models and Assumptions

Details of the signal and channel models and assumptions can be found in [63] and key

system parameters are listed in Table 4.2. The appropriate symbol-rate (SR) model is

r(m)
n = w(m)

n + exp (jφn)
∑

l

h
(m)
l,n an−l (4.1)

E
∣∣∣w(m)

n

∣∣∣
2

=
(
σ(m)

w

)2

(4.2)

where, for themth “subchannel”, r
(m)
n is the resampled data, w

(m)
n is AWGN, and h

(m)
l,n is the CIR.

As discussed in [62, 63], the phase φn is a manifestation of error in the resampling process, i.e.,

error in the estimation of the Doppler expansion/compression. Estimation of this phase is used

as an error signal to adapt the resampling rate. There are M = 2Nsen “subchannels”, since the

signal on each of theNsen receive array sensors is downsampled to the rate of 2 samples per symbol

during the resampling process. Since the noise is assumed both spatially and temporally white

and the CIR gains h
(m)
l,n are all assumed independent, there is no mathematical distinction between

the two sources of the subchannels. Consequently we use the single index m ∈ {1, . . . ,M} to

denote them. As explained in [63], each complex CIR gain is more likely to rotate than change in

magnitude. In that paper the CIR gains were modeled in polar form as h
(m)
l,n = ρ

(m)
l,n exp

(
jθ

(m)
l,n

)
,

and EKF channel estimation was used to constrain the magnitudes and phases to change at

different rates. We use a similar procedure in this paper, discussed in Subsection 4.3.4, except that

instead of magnitude and phase the CIR gains are expressed as radial and transverse components,

which is more stable at low SNR. (Ambiguity between the CIR phases θ
(m)
l,n and the phase φn

is resolved during channel estimation.) We also assume the span of the CIRs does not exceed

Lmax = 100 symbols.

In Fig. 3 of [63] we illustrate the temporal variation of a typical CIR on a single sensor.

In Fig. 4.3 of this paper we show a typical spatial variation of CIRs on the full receive array.

Part (c) shows a snapshot of the CIRs connecting the source to each of the 32 receive array

sensors, with delay on the horizontal axis, depth on the vertical axis, and magnitude as gray-

scale intensity. The multipath wavefronts are clearly visible, although they do interfere around

reference time zero. In part (b) we show the energy associated with each measured CIR. There

is a fair amount of variation in signal energy as a function of depth. Part (a) shows the ambient

noise variance measured on each sensor, there is also a fair amount of variation with depth.

4.2.4 Input SNR

Communication system performance is bounded by that of the matched-filter receiver

under the assumption that a single symbol is transmitted (the “matched-filter bound”). If a single
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Figure 4.3: (a) Measured ambient noise variance versus depth, normalized so that the noisiest

sensor has unit variance. (b) Measured CIR energy versus depth, normalized so that the strongest

CIR has unit energy. (c) Magnitude of spatial CIR: horizontal axis is delay, vertical axis is depth,

gray-scale intensity is magnitude in dB.

symbol is transmitted, and assuming the CIRs are constant, then the model (4.1) can be written

as r(m) = w(m) +h(m)a, where the subchannel data, noise and CIRs are vectors, and the symbol

a is a scalar. By vertically concatenating the subchannel vectors we have r = w + ha, where

the noise covariance Cw is block-diagonal, with subchannel covariances
(
σ

(m)
w

)2

I. The matched-

filter output SNR is SNRMF = hHC−1
w h =

∑
m SNR

(m)
MF , where SNR

(m)
MF =

∥∥h(m)
∥∥2
/(

σ
(m)
w

)2

is the subchannel matched-filter output SNR. We adopt this quantity as our definition of the

communication system’s input SNR, which makes sense for several reasons. First, this definition

forces the output SNR of our communication system to be at most equal to the input SNR.

Second, the definition reduces to the only meaningful definition of input SNR in the single-

channel case, i.e., the ratio of CIR energy to noise variance. Third, we deal with an array of

receive sensors which do not necessarily all have the same SNR, so this definition captures the

input SNR of the entire array in a scalar quantity. Fourth, as is clear in subsequent discussion,

if the receiver algorithm had perfect noise variance and CIR estimates then, assuming successful

convergence of the iterative procedure, this SNR would actually be achieved at the system output,

making it the natural choice for comparision to output SNR.

Data collected during the experiment that contains communication signals is at very

high SNR, so we ignore the ambient noise present in this data. Also collected during the experi-

ment were recordings of ambient noise without any signals present. Using a procedure analogous
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to the one described in [63], we obtained the data used in this paper by scaling the ambient noise

sequences and adding them to the communication sequences to yield an input SNR, as defined

previously, of either 6 or 7 dB. Since the subchannel energies
∥∥h(m)

∥∥2
vary with time, as do the

noise variances, the input SNR values should be considered in an average sense, that is, averaged

over the duration of a single transmission.

4.2.5 Equalizer Output Model

Linear filtering and combining is used in the equalization process. The filters are con-

structed from estimates of the CIRs and noise variances. In the absence of channel estimation

error, the gain and noise-plus-interference (NPI) variance at the filtering and combining output

would be known exactly, as there are closed-form expressions for these parameters. Since this

is not the case, we estimate the values of these parameters in conjunction with computing soft

symbol information. The appropriate ISI-free model at the filtering and combining output is

zn = vn + exp (jφn) γnan (4.3)

ωn = 2
/

E |vn|2 (4.4)

where zn is the output, vn is NPI (filtered ambient noise, residual ISI, channel estimation error,

etc.) with variance 2 /ωn , and γn and φn are the magnitude and phase, respectively, of the

complex gain that multiplies the symbol an. The noise vn is not white, but is modeled as such

for tractability. Therefore, the equalizer output model parameters (EOMPs) are the real variables

ωn, γn, φn.

4.2.6 SMEs and Associated Statistics

As discussed in detail in [62,63], the soft symbol information we use can be interpreted

as estimates of symbol probability mass functions (pmf’s). The methods developed by Tuchler

et al approximate these symbol pmf’s with Gaussian probability density functions (pdf’s), thus

converting intractable sums that result from application of the sum-product algorithm (SPA) [6]

into integrals that can be evaluated in closed-form. The approximation requires symbol mean

estimates (SMEs) computed as

ān =
∑

α∈A

αp (an = α) (4.5)

where A is the QPSK symbol alphabet and p (an = α) is an estimated probability that symbol an

has value α ∈ A. Depending upon whether the probabilities are estimates of prior or a posteriori

pmf’s, they are prior SMEs (PSMEs) or a posteriori SMEs (ASMEs), respectively. The SME



108

variance σ2
ā = 1−Eā, where Eā = E |ān|2, is the other component needed to approximate symbol

pmf’s with Gaussian pdf’s. It is initially unity, reflecting an initial absence of information from

the decoder, then converges to nearly zero as the algorithm converges successfully. Another

important statistic is χā = E [a∗nān]. Since this statistic requires knowledge of the true symbols,

it is not used within the algorithm itself. However, we use it as a diagnostic measure of algorithm

convergence: χā = 0 implies complete lack of symbol information, while χā = 1 implies total

certainty. Ideally we have χā = Eā at all times during the algorithm. The PSME and ASME

variance is measured as described in [63].

4.3 Receiver Algorithm

4.3.1 Overview

This paper focuses on equalization, that is, the computation of symbol pmf’s that

are input to the decoder as part of IED. By “coder”/“decoder” we refer to all the various

operations shown in Fig. 4.2(a), i.e., QPSK symbol mapping/de-mapping, permutation, and CC

decoding, that transform an information bit sequence into a symbol sequence and vice versa.

Application of the SPA to these operations is straightforward and is explained thoroughly in

[9,19]. CIR estimation and equalization are performed simultaneoustly during the first iteration,

when no information is available from the decoder and thus symbol pmf estimates computed

during equalization must be fed-back for CIR estimation, then sequentially during subsequent

iterations. Block diagrams of the algorithm are shown in Fig. 4.4 [63]. We now give a brief

overview of the algorithm.

We assume asynchronous transmissions, so the receiver’s first task is DOSP which, as

indicated by n̂0 in part (a) of Fig. 4.4, also provides initial synchronization. Next, the training

symbols are used to refine synchronization and initialize the adaptive estimation of Doppler shift

(indicated by ν̂) and the CIRs. The following recursion is then performed on a symbol-by-symbol

basis: the received data r̃k is resampled according to the Doppler shift estimate, the resulting

Doppler-compensated data r
(m)
n is equalized using multichannel filters constructed from the CIR

and noise variance estimates, the equalizer output zn is used to compute symbol a posteriori

probabilities (APPs) p̂ (an = α| ·) and, as a byproduct, the phase estimate φ̂n is used to update

the Doppler shift estimate, and the new ASME and ASME variance are fed-back to update the

CIR estimates. When APPs are obtained for all the symbols then they are passed to the decoder.

Additionally, the sampling times computed during the resampling process are smoothed and a

final resampling is performed for use in subsequent iterations. (Although the sampling times

could be iteratively refined, in practice the refinements are insignificant and not worthwhile.)
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ĥ

(m)
l,n

6

r

??

r

Figure 4.4: (a) Algorithm block diagram. (b) Details of block labeled “(Adaptive) Resampling,

Equalization, CIR Estimation” in part (a).
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During subsequent iterations the following operations are performed sequentially: the symbol

prior pmf’s p̂ (an = α) supplied by the decoder are used to estimate the CIRs and noise variances,

the prior pmf’s are then used in conjunction with filters obtained from the channel estimates to

equalize the Doppler-compensated data, the prior pmf’s are finally used in conjunction with

the equalizer output to compute symbol APPs, which are passed to the decoder. On the final

iteration, information bit estimates b̂n are computed instead of symbol prior pmf’s.

The resampling process is explained thoroughly in [62], while details of other algorithm

components can be found in [63]. The remainder of this section is devoted to describing aspects

of the algorithm that are different from [62,63] or are new.

4.3.2 Detection of Signal Presence

We develop a cost function (CF) with which to perform DOSP. The CF is derived as a

binary hypothesis test statistic: either a given segment of data sequence is just noise or it addi-

tionally contains the start of a communication signal. The incoherent method used in [63] does

not work for multiple sensors at low SNR. Consequently we employ a coherent method which

utilizes training symbols and, as such, the CF is a function of Doppler compression/expansion as

well as time. For initial synchronization we maximize out the Doppler variable and compare the

resulting time series to a detection threshold. We find consecutive crossings of this threshold and

search for a peak within the interval. The threshold is obtained by considering the case of false

alarm. A byproduct of the procedure is a coarse estimate of Doppler compression/expansion.

Both synchronization and Doppler estimation are subsequently refined during the training rou-

tine.

In model (4.1) the delay index l ∈ {l1, . . . , l2}, where the endpoints l1 and l2 vary with

each iteration as the algorithm attempts to find the best values for these parameters. For DOSP,

we simply set l1 = 0 and l2 = Lmax− 1. We assume the Doppler effects and CIRs are essentially

constant during that part of the data sequence corresponding to the first NDOSP ≤ Nt training
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symbols. We then have the following model:

r(m) (ν, n) =
[
r
(m)
n (ν) · · · r

(m)
n+NDOSP−1 (ν)

]T
(4.6)

= w(m) + s(m) (4.7)

s(m) = Ah(m) (4.8)

A =




a0

...
. . .

aLmax−1 · · · a0

...
...

aNDOSP−1 · · · aNDOSP−Lmax




(4.9)

h(m) =
[
h

(m)
0 · · · h

(m)
Lmax−1

]T
(4.10)

where w(m) is AWGN with variance
(
σ

(m)
w

)2

and s(m) is communication signal, which is the

product of the symbol convolution matrix A with the CIR h(m). The Doppler parameter ν rep-

resents the compression/expansion of the received signal relative to the transmitted signal. For

each value of ν the data is resampled in such a manner (refer to [63]) that the samples r
(m)
n (ν)

compensate for the Doppler effects represented by ν. Let r (ν, n) =
[
r(1) (ν, n) ; . . . ; r(M) (ν, n)

]
,

where semicolons represent vertical concatenation of the constituent vectors, and likewise con-

struct the vectors w, s and h from their subchannel components. Define AM = IM⊗A (Kronecker

product), where IM is the M -by-M identity matrix. We then have r (ν, n) = w + s, s = AMh.

The covariance matrix of w is Cw = Σ2
w ⊗ INDOSP , where Σ2

w is a diagonal matrix containing the

subchannel noise variances.

The pdf of the data conditioned on hypothesis Hη is

p (r (ν, n) |Hη , Cw ) =

∫
p (r (ν, n) |h,Cw ) p (h |Hη ) dh (4.11)

We will later substitute an estimate for Cw. The null hypothesisH0 has CIR prior pdf p (h |H0 ) =

δ (h) (Dirac delta function), i.e., the CIR is certain to be zero in this case. The alternative hy-

pothesis H1 has the CIR prior pdf p (h |H1 ) = Nc

(
h; 0, Ćh

)
, where the latter notation indicates

a circularly-symmetric complex Gaussian pdf with mean 0 and covariance Ćh. The data pdf is

p (r (ν, n) |h,Cw ) = Nc (r (ν, n) ;AMh,Cw), which is identical to p (r (ν, n) |H0, Cw ). Since the

integrand in the alternative case is equal to Nc

(
r (ν, n) ; 0, Cw +AM ĆhA

H
M

)
Nc

(
h; ĥ (ν, n) , Ch

)
,

where ĥ (ν, n) = ChA
H
MC−1

w r (ν, n) and Ch =
(
Ć−1

h +AH
MC−1

w AM

)−1

, then p (r (ν, n) |H1, Cw )

is equal to the first term in this product. We let Ć−1
h → 0, i.e., an uninformative prior. It fol-

lows that ‖r (ν, n)‖2(Cw+AM ĆhAH
M)

−1 → ‖ŝ (ν, n)‖2C−1
w
−‖r (ν, n)‖2C−1

w
, where ŝ (ν, n) = AM ĥ (ν, n).

Consequently, to within an additive constant, the log-likelihood ratio (LLR) is ‖ŝ (ν, n)‖2
C

−1
w

=
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∑M
m=1

∥∥ŝ(m) (ν, n)
∥∥2
/(

σ
(m)
w

)2

. Because the noise is white in both space and time, the various

estimates decompose into separate subchannel estimates. We have ĥ(m) (ν, n) = A+r(m) (ν, n),

where A+ =
(
AHA

)−1
AH (Moore-Penrose pseudo-inverse), and ŝ(m) (ν, n) = Aĥ(m) (ν, n) =

PAr
(m) (ν, n), where PA = AA+ is the orthogonal projection matrix onto the signal subspace

spanned by the columns of A. Let ŵ(m) (ν, n) = r(m) (ν, n) − ŝ(m) (ν, n) = (I− PA) r(m) (ν, n)

and
(
σ̂

(m)
w

)2

=
∥∥ŵ(m) (ν, n)

∥∥2
/(

NDOSP − Lmax
)
. Note that E

[(
σ̂

(m)
w

)2
]

=
(
σ

(m)
w

)2

, so

∥∥ŵ(m) (ν, n)
∥∥2

is proportional to an unbiased estimate of
(
σ

(m)
w

)2

. Consequently our CF is

JDOSP (ν, n) =

M∑

m=1

∥∥∥ŝ(m) (ν, n)
∥∥∥

2
/∥∥∥ŵ(m) (ν, n)

∥∥∥
2

(4.12)

Consider the statistic vHr (ν, n). For a given signal vector s, the vector v which maximizes the as-

sociated SNR
∣∣vHs

∣∣2
/

E
∣∣vHw

∣∣2 is v = C−1
w s, and the corresponding statistic is sHC−1

w r (ν, n) =

∑M
m=1

(
s(m)

)H
r(m) (ν, n)

/(
σ

(m)
w

)2

. Using estimates in place of the unknown signal vectors

and noise variances, and noting that
(
ŝ(m) (ν, n)

)H
r(m) (ν, n) =

∥∥ŝ(m) (ν, n)
∥∥2

, this expression

becomes proportional to the CF (4.12). Thus the CF can be interpreted as matched-filter detec-

tion using estimates in place of unknown quantities. The CF can also be regarded as an estimate,

to within a multiplicative factor, of the input SNR as defined in Subsection 4.2.4.

The CF (4.12) is evaluated on a coarse grid of values for ν at synchronization time

increments of Lmax /2 symbol periods. The limits of the grid of values for ν depends upon

the anticipated maximum source velocity, but the spacing of the values is 0.5 (Rs /fc )
/
NDOSP ,

which is like Nyquist sampling for Doppler and corresponds to a phase rotation of one-half cycle

over a duration of NDOSP symbols. Initially we compute maxν J
DOSP (ν, n) and look for a peak

in the resultant time series. Once this initial synchronization is established, we curve-fit the

associated function of ν to obtain a coarse Doppler estimate. To implement the procedure,

we store the Gram-Schmidt decomposition A = UT at the receiver, where U has orthonormal

columns and T is upper triangular. Consequently
∥∥ŝ(m) (ν, n)

∥∥2
=
∥∥UHr(m) (ν, n)

∥∥2
. (The

CIR estimates need not be computed.) Since the CF is evaluated every Lmax /2 symbols, the

computational complexity per value of ν per subchannel per symbol period is 2NDOSP. Note that

the processing lends itself to massive parallelization. A similar CF based on using correlation-

based CIR estimates, implemented via FFTs, may be less computationally expensive at the price

of reduced performance, but the issue is not considered in this paper.

To find the peak of maxν J
DOSP (ν, n) we employ a detection threshold. We find con-

secutive crossings of this threshold and search for the peak within this interval. The threshold is

obtained by considering the case of false alarm, i.e., the case where r(m) (ν, n) is just noise. By

the properties of projection matrices, and since the noise is assumed white Gaussian, in this case
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the squared norms of the signal and noise vector estimates are independent chi-squared random

variables (rv’s) with Lmax and NDOSP − Lmax degrees of freedom, respectively. Their ratios

(independent of the noise variances) are independent and identically distributed (iid) rv’s with

pdf

p(x) =

(
NDOSP − 1

)
!

(Lmax − 1)! (NDOSP − Lmax − 1)!

xLmax−1

(1 + x)
NDOSP (4.13)

. Unfortunately we know of no closed-form expression for the pdf of the sum of M of these

iid rv’s and, since the pdf p (x) does not decay exponentially, Chernoff bound cannot be used.

Using the identity
∫∞

0 xP dx
/

(1 + x)
Q

= P ! (Q− P − 2)! /(Q− 1)! we obtain the mean µ =

Lmax
/(
NDOSP − Lmax − 1

)
and standard deviation

σ =
√
Lmax (NDOSP − 1) /(NDOSP − Lmax − 2)

/(
NDOSP − Lmax − 1

)

Consequently, when only noise is present, the mean and standard deviation of JDOSP (ν, n) are

Mµ and Mσ, respectively. We set the threshold at M (µ+ κσ), with κ = 2.5.

4.3.3 Training Routine

Using the notation from the previous subsection, define the CF

JTrng (ν, n) =

M∑

m=1

∥∥∥r(m) (ν̌, n∗)
∥∥∥

2
/∥∥∥ŵ(m) (ν, n)

∥∥∥
2

(4.14)

Replacing ν̌ with ν and n∗ with n would result in JTrng (ν, n) = M + JDOSP (ν, n), since
∥∥r(m) (ν, n)

∥∥2
=
∥∥ŵ(m) (ν, n)

∥∥2
+
∥∥ŝ(m) (ν, n)

∥∥2
. Instead, ν̌ is the coarse Doppler estimate ob-

tained in the previous subsection, and n∗ is the time index Lmax symbols after the corresponding

initial synchronization index. In either case the CF (4.14) can be regarded as an affine transfor-

mation of an input SNR estimate. The reason for using this CF is that fixing the numerators of

the summands eliminates additional sources of variability. During the training routine the CF

(4.14) is used with all Nt training symbols vice the NDOSP symbols used for DOSP.

Effective CIR estimation strikes a balance between estimating too many multipath

arrivals, thus projecting too much noise onto the estimate, and estimating too few multipath

arrivals, thus allowing unaccounted-for signal energy to act as interference. In other words,

the typical CIR contains multipath arrivals that, for a given SNR, contain too little energy for

their estimation to be worthwhile. In [63] we develop a method that incorporates the set of

delays at which CIR gains are estimated as a parameter to be estimated in addition to Doppler

and synchronization. In that paper the set of delays is selected during the training routine

and held fixed during the first iteration. In the present case, where the SNR on each sensor is

anticipated to be much lower than in the single-sensor case, we use an alternative strategy. We
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estimate the CIRs over the full span of Lmax symbols then, prior to using the CIR estimates to

compute equalizer filters, we set to zero those CIR gains with too little energy. Consequently,

synchronization and Doppler are the two key parameters to be estimated at this point in the

algorithm.

The parameter space of synchronization and Doppler is first searched, as part of DOSP,

on a coarse grid of values for both parameters using the CF (4.12). This parameter space is next

searched using the CF (4.14) on a finer grid of Doppler values with spacing (15 /360) (Rs /fc ) /Nt ,

which corresponds to 15◦ phase rotation over theNt training symbols, and on a slightly less coarse

grid of synchronization values with a spacing of Lmax /4. We evaluate maxn J
Trng (ν, n) until we

obtain three points with which to fit a parabola. Call the resulting refined Doppler estimate ν̂.

At this point we fix the resampling reference point and time reference point as described in [63].

To fine-tune the synchronization, we evaluate JTrng (ν̂, n) over a finer grid of synchronization

values with spacing of Lmax /10. We then compute CIR and noise variance estimates to initialize

the equalization process.

4.3.4 Channel Estimation and Equalization

There are two main pieces to the equalization process: channel estimation and soft

symbol information computation, where the latter utilizes the former. The method of CIR

estimation in [63] models each CIR gain in polar form, i.e., magnitude and phase, and linearizes

the polar component variables about their current estimates. This linearization is questionable

at low SNR, however, so we use a different implementation that is consistent with the channel

model. We continue to compute symbol APPs in two steps: filtering and combining the data to

remove ISI, followed by estimation of the EOMPs and computation of symbol pmf’s therefrom.

We briefly comment on the former step, which utilizes a multi-channel linear equalizer and is the

natural extension of the method used in [62, 63], and describe a different implementation of the

latter step.

CIR Estimation

According to the channel model, the CIR gains are more likely to rotate than change

in magnitude. Consequently we model each CIR gain as

h
(m)
l,n = exp

(
jθ́

(m)
l,n

)(
ρ́
(m)
l,n + ∆ρ

(m)
l,n + j∆χ

(m)
l,n

)
(4.15)

where h́
(m)
l,n = ρ́

(m)
l,n exp

(
jθ́

(m)
l,n

)
is the predicted value of the CIR gain (at time n, using data up

to time n − 1), and ∆ρ
(m)
l,n and ∆χ

(m)
l,n are the radial and transverse components of the error,

respectively. (There are no predictable CIR dynamics, so h́
(m)
l,n = ĥ

(m)
l,n−1.) This decomposition
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allows us to enforce the requirement that the CIR gains change in magnitude less than they

rotate, but without requiring linearization of the phase term as is done in [63]. Expressing the

model (4.1) in vector form, we define ŕ
(m)
n = exp (−jφn) r

(m)
n − aT

n h́
(m)
:,n , where an is the vector

of symbols involved in the convolution sum and h́
(m)
:,n (with a colon in place of the delay index)

is the corresponding vector of predicted CIR gains. The previous decomposition then gives

ŕ(m)
n = w(m)

n +


 án

ján




T 
 ∆ρ

(m)
:,n

∆χ
(m)
:,n


 (4.16)

where ∆ρ
(m)
:,n and ∆χ

(m)
:,n are the vector components of the CIR error and án = D

[
exp

(
jθ́

(m)
:,n

)]
an.

(We use D [v] to denote the diagonal matrix formed from the vector v.) If we define y
(m)
n =[

Re
[
ŕ
(m)
n

]
, Im

[
ŕ
(m)
n

]]T
, then we have

y(m)
n =


 Re

[
w

(m)
n

]

Im
[
w

(m)
n

]

+


 Re [án] Im [án]

−Im [án] Re [án]




T 
 ∆ρ

(m)
:,n

∆χ
(m)
:,n


 (4.17)

where the noise vector has covariance

[(
σ

(m)
w

)2

/2

]
I. Standard Kalman filtering gives the up-

dates ∆̂ρ
(m)

:,n and ∆̂χ
(m)

:,n , from which we form the update ∆̂h
(m)

l,n = exp
(
jθ́

(m)
l,n

)(
∆̂ρ

(m)

l,n + j∆̂χ
(m)

l,n

)
.

The Kalman filter’s “prediction” step allows the rates of change of the radial and transverse com-

ponents to be controlled separately, i.e., by adding different amounts to the diagonals of their

respective covariance matrices. Since, for a given (small) amount of rotation, the change in

a (complex-valued) CIR gain is proportional to its magnitude, we add
(
10−5

) ∣∣∣h́(m)
l,n

∣∣∣
2

to the

corresponding diagonal entry of the transverse covariance. We also do the same for the radial

covariance, but use the smaller value 10−6 instead of 10−5. Let C
(m)
n denote the CIR covari-

ances, which are the sum of the radial and transverse covariances computed by the Kalman filter.

During the first iteration the CIR updates are adjusted as follows:

∆̂h
(m)

:,n ← ∆̂h
(m)

:,n − jIm [λn] h́(m)
:,n (4.18)

λn =

∑
m

(
h́

(m)
:,n

)H (
C

(m)
n

)−1

∆̂h
(m)

:,n

∑
m

(
h́

(m)
:,n

)H (
C

(m)
n

)−1

h́
(m)
:,n

(4.19)

As explained in Appendix 4A , this adjustment prevents bulk phase rotation of the CIR estimates.

Consequently, potential phase rotation of the CIR gains due to error in the resampling process is

absorbed in the phase φn, which is estimated after the filtering and combining equalization step.

The CIR estimates are updated as ĥ
(m)
l,n =

[
1− 0.5

(
∆̂χ

(m)

l,n

)2/∣∣∣h́(m)
l,n

∣∣∣
2
]
h́

(m)
l,n + ∆̂h

(m)

l,n , where

the scaling of the predicted CIR gains accounts for the fact that the transverse updates do not

produce pure rotation of the CIR gains.
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In the preceeding formulation, we use SMEs in place of true symbols and use an estimate

for the phase φn. Also, in a manner similar to that employed in [63], we use effective noise

variances in place of estimates of
(
σ

(m)
w

)2

. (The effective noise variances additionally account

for uncertainty in the SMEs.) Instead of using exact Kalman filtering, we use and update only the

diagonals of the covariance matrices. Let c
(m)
l,n denote the diagonal entries of the CIR covariance

matrices C
(m)
n . Before using the CIR estimates to compute equalizer filters, we first set to zero

those elements with
∣∣∣ĥ(m)

l,n

∣∣∣
2/

c
(m)
l,n > 3. If ĥ

(m)
l,n were just AWGN with variance c

(m)
l,n , then the

probability of its squared magnitude being greater than 3c
(m)
l,n would be 1.2×10−4. In other words,

we zero-out those CIR gains that contain insignificant amounts of signal energy and would only

serve to worsen the equalization filters computed from the CIR estimates. The synchronization

is re-estimated during each iteration after the first in a manner similar to that employed in [63].

Equalization

The model (4.1) can be expressed as r
(m)
n = w

(m)
n + exp (jφn)H

(m)
n an, where r

(m)
n

is a vector of data samples, w
(m)
n is a vector of AWGN, H

(m)
n is a CIR convolution matrix,

and an is a vector of symbols which contains the symbol an in the middle. The phase φn is

assumed to vary slowly enough that it is essentially constant over the time span of interest. The

length of r
(m)
n is taken to be Lmax. By vertically concatenating the subchannel data vectors,

noise vectors and CIR convolution matrices we have rn = wn + exp (jφn)Hnan, where wn

has covariance matrix Cw = Σ2
w ⊗ I. (The diagonal matrix Σ2

w contains the subchannel noise

variances.) Let hn be the middle column of Hn. The same procedure used in Appendix 2C ,

there applied to a single (sub)channel, can be used to express the row vector of equalization filters

as fn = hH
nQ

−1
n

/(
hH

nQ
−1
n hn

)
, where Qn = Cw + σ2

āHnH
H
n . During the first iteration, when

there is no symbol information available from the decoder, the equalizer filtering and combining

output is zn = fnrn. During subsequent iterations the output is zn = ān + fn (rn −Hnān),

where ān is a corresponding vector of PSMEs. In either case, the output zn is modeled according

to (4.3). For the first iteration the phase φn reflects error in the resampling process and is used

as a control variable. For subsequent iterations the phase φn is simply the phase of the complex

gain at the equalizer output. We use CIR estimates in place of the unknown true values, and we

use effective noise variance estimates in place of the unknown ambient noise variances, which are

computed as is done in [63].

Let xn = [γn, φn]T and Zn = {z0, . . . , zn}. Based on the model and assumptions given in

Subsection 4.2.5, we have p (ωn, xn |Zn ) ∝ p (zn |ωn, xn ) p (ωn, xn |Zn−1 ), where p (zn |ωn, xn ) =
∑

an
p (an) p (zn |ωn, xn, an ) and

p (zn |ωn, xn, an ) =
1

π

ω

2
exp

(
−ω

2
|zn − exp (jφn) γnan|2

)
(4.20)
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In [63] we make an approximation to p (zn |ωn, xn ) such that assuming a Gaussian density for

p (ωn, xn |Zn−1 ) produces a Gaussian density for p (ωn, xn |Zn ). In this paper, also assuming a

Gaussian density for p (ωn, xn |Zn−1 ), a Gaussian approximation for p (zn, ωn, xn |an, Zn−1 ) =

p (zn |ωn, xn, an ) p (ωn, xn |Zn−1 ) is made. The result is a Gaussian mixture representation for

p (ωn, xn |Zn ), which we then replace with a single Gaussian density with identical mean and

covariance. Additionally, the Gaussian approximation for p (zn, ωn, xn |an, Zn−1 ) is used to com-

pute the symbol APP p̂ (an = α| ·) ∝ p (zn |an, Zn−1 ) by marginalizing-out the EOMPs, which

is easy because the density is Gaussian. The details are provided in Appendix 4B .

4.4 Results and Discussion

There were 32 sensors in the full receive array used to collect data during the experiment.

For the results presented in this paper, however, we processed data from smaller arrays of five

and ten consecutive sensors, located at the top, middle, and bottom of the full receive array. The

configurations of these arrays are listed in Table 4.3. Since there were 51 total transmissions,

we obtained results for 153 trials for each array size. For the ten-sensor arrays, there were zero

bit errors in all 153 trials at an input SNR of 7 dB (recall, the system input SNR is defined

in Subsection 4.2.4 as the array matched-filter output SNR). At an input SNR of 6 dB, on the

other hand, many trials had insufficient SNR at the equalizer output and were unable to recover

the information bits with few errors. Consequently, based on this limited number of trials, we

conclude that the algorithm’s lower limit of operation is at an input SNR of just below 7 dB for

an array size of ten sensors.

Table 4.3: Array Configurations

Number of Sensors in Array

5 10

Top Sensors: #28 - 32

Depths: 50 - 42 m

Sensors: #23 - 32

Depths: 60 - 42 m

Mid. Sensors: #15 - 19

Depths: 76 - 68 m

Sensors: #12 - 21

Depths: 82 - 64 m

Bot. Sensors: #1 - 5

Depths: 104 - 96 m

Sensors: #1 - 10

Depths: 104 - 86 m

For the five-sensor arrays, there were zero bit errors in all 153 trials at an input SNR of

7 dB. At an input SNR of 6 dB, while all 153 trials were processed successfully by the algorithm,

there were bit errors for some of the trials. For the 72 trials in dataset A, there were 71 total bit

errors and an average bit error frequency of 1.1×10−4. For the 81 trials in dataset B, there were
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12 total bit errors and an average bit error frequency of 1.6× 10−5. Fig. 4.5 shows details of the

processing results for data set A (note that there is no data corresponding to time 7:40), and Fig.

4.6 shows the same processing details for data set B. Part (a) of the figures show the number of bit

errors produced by the algorithm marked in text, with the vertical axis indicating array location

(i.e., top, middle, bottom) and the horizontal axis indicating the start time of the transmission.

There is no apparent pattern to the distribution of errors and the maximum number of errors in

any transmission is nine–or about 1 error per 1000 bits. Part (b) of the figure shows the average

Doppler shift measured by the algorithm, each of the 3 array locations corresponds to a dot

which is plotted against the transmission start time. For dataset B the Doppler shift increases

in magnitude with time and is consistent with the source track of Fig. 4.1, which shows that the

radial component of the source velocity increases with time. For dataset A the Doppler shift is

relatively constant, which is also consistent with its source track. The algorithm’s lower limit of

operation appears to be at an input SNR of nearly 6 dB for an array size of five sensors.
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Figure 4.5: Data set A. (a) Number of bit errors marked with text versus array location on

the vertical axis and transmission start time on the horizontal axis. (b) Average Doppler shift

measured by the algorithm: each dot corresponds to one of the 3 array locations, horizontal axis

is transmission start time.

We now discuss the processing of one particular trial, using data from the top five

sensors of the full receive array, starting at the 2-minute mark of dataset A. The sensor depths
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Figure 4.6: Data set B. (a) Number of bit errors marked with text versus array location on

the vertical axis and transmission start time on the horizontal axis. (b) Average Doppler shift

measured by the algorithm: each dot corresponds to one of the 3 array locations, horizontal axis

is transmission start time.

Table 4.4: SNR on Array used in Example

Sensor # 28 29 30 31 32

Depth (m) 50 48 46 44 42

SNR (dB) -4.7 -0.3 -0.6 -1.0 0.2
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and measured SNR on each sensor is listed in Table 4.4, the input SNR is 6 dB. The CIRs on

the full receive array at the start of this transmission are the ones shown in Fig. 4.3, where it

can be seen that most of the CIR energy is concentrated in a span of about 25 symbol periods.

Fig. 4.7 shows the equalizer performance for the first (plotted in gray) and last (plotted in black)

iterations of the algorithm. Parts (a), (b), and (c) show the estimated EOMPs, there is clear

improvement in the quality of the equalizer output: both the inverse noise variance and gain

magnitude increase significantly, and the phase variation decreases markedly. Parts (d) and (e)

show the magnitude and phase of the moving-average of the ASME statistic a∗nān (computed

using only data-bearing symbols). Again the improvement in equalization from the first iteration

to the last is clear: the magnitude of the statistic increases from an average of about 0.5 to about

0.9 and the phase fluctuations decrease from more than 10 degrees to just a couple degrees.

A summary of the performance of the algorithm for the particular trial is shown in

Fig. 4.8. Part (a) shows the decrease in CIR estimation error as the algorithm iterates: we

plot the energy in the difference between the algorithm’s CIR estimates and the measured CIRs

(using the true symbols and noiseless data), normalized by the energy of the measured CIRs.

Using the true symbols we made rectangular-window least-squares estimates of the complex gain

γn exp (jφn) and effective noise variance E |vn|2 of the model (4.3). The squared magnitude of

the former divided by the latter is a measure of the output signal-to-interference-plus-noise-ratio

(SINR), and the mean of this quantity is shown for each iteration in part (b) of the figure. The

SINR steadily increases during the first five iterations, then plateaus at a value just below the

input SNR. Part (c) shows the average of the absolute value of the phase of the gain estimates

and it too demonstrates steady improvement as a function of iteration. Part (d) of the figure

shows the number of bit errors that would result if the algorithm were terminated at the end of

each iteration, and part (e) shows the PSME variance for each iteration. Overall the algorithm

steadily improves knowledge of the bits, symbols, and channel model parameters until reaching

a steady state.

4.5 Conclusion

In this paper we presented an IED algorithm that processes multisensor data received

from a moving UWA source, and applied the algorithm to data obtained during an at-sea ex-

periment. The same data was processed by a single-sensor IED algorithm introduced in [63].

Although that algorithm shares the same overall structure as the algorithm presented in this

paper, the multisensor algorithm possesses several modifications. The method of DOSP used

in [63], for example, fails at low SNR, so a stronger method was developed in this paper. Sim-
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Figure 4.7: (a,b,c) EOMP estimates. (d,e) Magnitude and phase of moving-average of symbol-

quality statistic. In all cases, gray curves correspond to the first iteration, black curves to the

last iteration.
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ilarly, the method of CIR estimation used in [63] breaks down at low SNR, so a more robust

method is employed in the present algorithm. The equalization process has also been modified,

including an original method of symbol APP computation that is a closer approximation to the

SPA.

The algorithm was used to process over 50 transmissions for various array configurations

at various SNRs, and performed with a high degree of success. The algorithm achieved a bit

error frequency of nearly 1.0 × 10−4 using five-sensor arrays at an input (i.e., matched-filter

output) SNR of 6 dB, and had zero errors at 7 dB using both five- and ten-sensor arrays. Several

performance plots detail the processing of one particular transmission. They clearly demonstrate

the iterative improvement in knowledge of the transmitted bits and symbols and all the various

model parameters needed to implement the equalization process. For the given example, the

algorithm displayed steady improvement with each iteration. The lower limit of operation for

the single-sensor algorithm of [63] appeared to be at an input SNR of about 7 dB, which is about

the same as the lower limit of operation of the present algorithm using ten-sensor arrays. For

five-sensor arrays, on the other hand, the lower limit of operation appears to be at an input SNR

of about 6 dB. We conclude that the detriment of increased error in the CIR estimates, which

results from operating at lower SNR per sensor, is compensated by the benefit of spatial diversity

provided by using multiple sensors. In fact, for the five-sensor arrays, spatial diversity more than

compensated for the increased error in the CIR estimates.
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4A Preventing Bulk Phase Rotation of CIR Estimates

Using the notation of Subsection 4.3.4, let h́n, ∆̂hn, and ĥn = h́n +∆̂hn be the vectors

formed by vertically concatenating the respective subchannel vectors, and let Cn be the block-

diagonal matrix formed from the subchannel CIR covariances. We define the phase rotation of ĥn
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relative to h́n, under the weighting C−1
n , as ∆̂φn = arg min∆φ

∥∥∥ĥn − exp (j∆φ) h́n

∥∥∥
2

C
−1
n

, where

‖v‖2M denotes the quadratic form vHMv. Consequently, exp
(
j∆̂φn

)
= h́

H

nC
−1
n ĥn

/∣∣∣h́H

nC
−1
n ĥn

∣∣∣ ,

which implies that to have zero phase rotation the weighted inner-product h́
H

nC
−1
n ĥn should be a

real number. Let ∆hn = ∆̂hn− jIm [λn] h́n, hn = h́n +∆hn, and λn = h́
H

nC
−1
n ∆̂hn

/∥∥∥h́n

∥∥∥
2

C−1
n

.

Then h́
H

nC
−1
n hn =

∥∥∥h́n

∥∥∥
2

C
−1
n

+ Re
[
h́

H

nC
−1
n ∆̂hn

]
is real and so hn has zero rotation relative to

the predicted estimate h́n. Note that ĥn − hn = ∆̂hn −∆hn = jIm [λn] h́n. For all h such that

h́
H

nC
−1
n h is real,

(
ĥn − hn

)H

C−1
n

(
hn − h

)
= −jIm [λn]

(
h́

H

nC
−1
n hn − h́

H

nC
−1
n h

)
is imaginary,

so
∥∥∥ĥn − h

∥∥∥
2

=
∥∥∥ĥn − hn

∥∥∥
2

+
∥∥hn − h

∥∥2
. Therefore, hn is the vector closest to ĥn, in the

weighted LS sense, that has zero rotation relative to h́n, and so we use it in place of ĥn for the

CIR update.

4B Estimation of EOMPs and Computation of Symbol

APPs

We use the notation introduced in Subsection 4.3.4. Let N (x; x̄, C) denote the real

Gaussian pdf in the variable x with mean x̄ and covariance C. Making the linear approxima-

tion exp (jφn) γn
∼= exp

(
jφ́n

)
(γ́n + ∆γn + jγ́n∆φn), where φ́n and γ́n are predicted estimates,

and letting źn = exp
(
−jφ́n

)
zn − γ́nan and yn = [Re [źn] , Im [źn]]

T
gives p (zn |ωn, xn, an ) ∼=

N
(
yn;BT

n ∆xn, I /ωn

)
, where ∆xn = [∆γn,∆φn]

T
and

Bn =


 Re [an] Im [an]

−γ́nIm [an] γ́nRe [an]


 (4.21)

Note that, although not explicitly denoted, yn and Bn are functions of an. Let ώn be the

predicted value of ωn and ∆ωn = ωn − ώn. We assume a Gaussian prior for p (ωn, xn |Zn−1 ),

which can be expressed as N
(
∆ωn; 0, Ćω

n

)
N
(
∆xn; ψ́n∆ωn, Ć

x|ω
n

)
, where ψ́n = Ćxω

n

/
Ćω

n and

Ć
x|ω
n = Ćx

n − Ćxω
n

(
Ćxω

n

)T/
Ćω

n . Consequently,

p (zn, ωn, xn |an, Zn−1 ) ∼= N
(
∆ωn; 0, Ćω

n

)
N
(
yn;BT

n ψ́n∆ωn,Υn (∆ωn)
)

×N
(
∆xn; ∆̂xn (∆ωn; an) , Cx|ω

n (∆ωn; an)
)

(4.22)

Υn (∆ωn) = I /(ώn + ∆ωn) +BT
n Ć

x|ω
n Bn (4.23)

∆̂xn (∆ωn; an) = ψ́n∆ωn + Ćx|ω
n Bn [Υn (∆ωn)]

−1
(
yn −BT

n ψ́n∆ωn

)
(4.24)

Cx|ω
n (∆ωn; an) = Ćx|ω

n − Ćx|ω
n Bn [Υn (∆ωn)]−1

BT
n Ć

x|ω
n (4.25)

We say N
(
∆ωn; 0, Ćω

n

)
N
(
yn;BT

n ψ́n∆ωn,Υn (∆ωn)
)
∼= ζn (an)N

(
∆ωn; ∆̂ωn (an) , Cω

n (an)
)

for each an ∈ A. (We do this by fitting a parabola to the logarithm of the former product, and
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setting ζn (an) = 0 if ώn + ∆̂ωn (α) < 0.) The term ζn (an) approximates the symbol likelihood

p (zn |an, Zn−1 ), so we scale it to have unit sum and use it as soft symbol information. Let

C
x|ω
n (an) = C

x|ω
n

(
∆̂ωn (an) ; an

)
and ∆̂xn (an) = ∆̂xn

(
∆̂ωn (an) ; an

)
. Then

∆̂xn (∆ωn; an) ∼= ∆̂xn (an) + ψn (an)
(
∆ωn − ∆̂ωn (an)

)
(4.26)

ψn (an) = ψ́n − Ćx|ω
n Bn

[
Υn

(
∆̂ωn (an)

)]−1

BT
n ψ́n (4.27)

Therefore, letting ∆XT
n =

[
∆ωn,∆x

T
n

]
, p (ωn, xn |an, Zn ) ∼= N

(
∆Xn; ∆̂Xn (an) , CX

n (an)
)
,

(
∆̂Xn (an)

)T

=

[
∆̂ωn (an) ,

(
∆̂xn (an)

)T
]
, Cxω

n (an) = ψn (an)Cω
n (an), Cx

n (an) = C
x|ω
n (an) +

Cxω
n (an) (Cxω

n (an))
T

/Cω
n (an) , and

CX
n (an) =


 Cω

n (an) (Cxω
n (an))T

Cxω
n (an) Cx

n (an)


 (4.28)

Also, given the symbol prior pmf p (an), p (an |Zn ) ∼= p (an) ζn (an) /[
∑

α p (an = α) ζn (α)] . Con-

sequently, the updated EOMPs’ pdf is p (ωn, xn |Zn ) ∼= N
(
∆Xn; ∆̂Xn, C

X
n

)
, where

∆̂Xn =
∑

α

p (an |Zn ) ∆̂Xn (an) (4.29)

CX
n =

∑

α

p (an |Zn )

[
CX

n (an) +
(
∆̂Xn − ∆̂Xn (an)

)(
∆̂Xn − ∆̂Xn (an)

)T
]

(4.30)

For the “prediction” step of this EKF-like algorithm we add
(
10−4

)
ω̂2

n−1,
(
10−5

)
γ̂2

n−1, and 10−3

to the respective diagonal entries of the covariance matrix. We assume the EOMPs are constant

over a short span of training symbols and initialize the EOMPs with LS estimates as is done

in [63].
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Conclusion and Future Research

5.1 Conclusion

This dissertation has detailed the author’s research efforts in the area of IED applied

to UWA communication – specifically, to data corresponding to unknown, time-varying, severely

delay-spread channels. The first chapter provided necessary background material about shal-

low UWA channels, equalization, and iterative detection. The remaining chapters presented a

succession of IED algorithms, with each algorithm other than the initial one extending its pre-

decessor. Each algorithm was developed with the mindset that an actual prototype system was

being designed. The corresponding chapters all present performance results for the respective

algorithms using data obtained during at-sea experiments. It was endeavored to produce receiver

algorithms that can operate at low SNR. The initial algorithm (Chapter 2) processes data pro-

duced by a single, fixed source transducer and received on a single, fixed receive hydrophone.

The data model (1.3) is used, but the CIRs are assumed time-invariant after proper nonuniform

resampling. The next algorithm (Chapter 3) extends the initial one by incorporating source

motion. Even with the use of nonuniform resampling to compensate for the consequent Doppler

compression/expansion, the resulting CIRs vary significantly during the course of a transmission.

This necessitated a very different approach to equalization and, of course, channel estimation.

The final algorithm (Chapter 4) extends its antecedent by using data received on an array of

sensors. The use of array data allows the receiver algorithm to operate at lower SNR per sensor

than when using only a single sensor. This required modifications to be made to many receiver

tasks to allow for the lower sensor SNRs.

The major contributions made in this dissertation are summarized as follows:

• The focal point of the research was data obtained from at-sea experiments.
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• Extensive measuring and modeling of the shallow UWA channel was performed. Since the

performance of a receiver algorithm that lacks the benefit of a priori channel knowledge

is ultimately limited by the projection of noise onto the subspace of CMPs, obtaining a

channel model that accurately describes the data with as few degrees of freedom as possible

is crucially important. The models used in this dissertation, and which drove the design of

the receiver algorithms, were developed with this in mind.

• Successful receiver algorithms for unknown, time-varying, severely delay-spread UWA chan-

nels were designed, implemented, and evaluated using data obtained from at-sea experi-

ments. The algorithms were comprehensive and incorporated all necessary receiver tasks.

While this may sound unremarkable, it is common practice to assume that synchronization,

resampling, channel estimation, or other receiver functions have been performed before the

analysis begins. Furthermore, it is also common to assume, for example, that channel or

symbol estimates are without error and to use off-line channel measurements or the actual

symbols when evaluating receiver performance.

• Graphical modeling and iterative message-passing were applied. Iterative processing is

an emerging paradigm in digital communication which encompasses the most powerful

detection and decoding algorithms known. The application of these concepts and methods

in the receiver algorithms developed in this dissertation represents an effort to bring to

bear the best known techniques of information recovery.

• A method of CIR “framing” was developed. Framing refers to simultaneous synchronization

and CIR estimation: it incorporates not only the estimation of the gains of CIR multipath

arrivals, but also the determination of which arrivals possess significant energy such that

their gains should be estimated. It addresses the tradeoff between estimating the gains

of too many multipath arrivals, thus projecting too much noise onto the CIR estimates,

and estimating the gains of too few arrivals, thus losing signal energy and allowing the lost

energy to act as interference. A cost function was introduced which quantifies this tradeoff.

• An EKF was derived for CIR estimation. Having observed that the gains of CIR multipath

arrivals typically vary less in magnitude than in phase rotation, consistent with the under-

lying model of Doppler spread among the multipaths, the CIR gains were modeled in polar

form. Expressing the gains in this manner enables independent control of the variation

allowed on their radial and transverse components. Consequently, the CIR gains can be

forced to change in magnitude less than they rotate, thus eliminating unnecessary degrees

of freedom and, ultimately, yielding improved performance of the overall algorithms.
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• The ambiguity between phase rotation caused by Doppler shift estimation error and phase

rotation of the time-varying complex-valued CIR gains was resolved. Recall that Doppler

shift estimation error manifests itself by phase-rotating and delay-shifting the CIRs. Con-

sequently, if the CIR gains are allowed to phase rotate unnecessarily, then they are also

shifting in delay unnecessarily. Since it is desirable to have CIRs with the least amount of

time variation, the methods devised in preceeding chapters that prevent unnecessary CIR

dynamics are important.

• Effective and efficient nonuniform resampling was employed. This task is essential when

there is significant relative motion between source and receiver, as there is for most of the

data considered in this dissertation. In such cases, assuming the motion is unpredictable

and unrestricted, it is necessary to perform the resampling in an adaptive manner to track

possibly time-varying Doppler shift. This was accomplished by using the phase rotation

caused by Doppler shift estimation error as an error signal to control the resampling.

• Tuchler’s linear filter-based equalization method was derived directly from the SPA, us-

ing the approximation of symbol pmf’s by suitable Gaussian pdf’s. The implementation,

however, is performed in a different manner – namely, it is implemented as a two-stage

procedure. The first stage is linear filtering. Although CIR estimation error is theoretically

taken into account in the process, the fact is that the filters are constructed from noisy

CIR estimates instead of the true unknown CIRs. It was found to be better to estimate

the gain and NPI variance (or, rather, the reciprocal of half this quantity) directly than to

rely on the “theory” values.

• New methods of phase tracking were created. There are various ways of estimating the

phase rotation caused by Doppler shift estimation error. Some methods, for example,

estimate this phase directly from the data model (1.3) using estimates of the CIRs and

symbols in place of the unknown true values. The IED algorithms of this dissertation, on

the other hand, employ a different method. The details are presented earlier, the upshot

is that the phase is estimated after equalization filtering, in conjunction with the other

EOMPs and computation of the symbol a posteriori messages.

5.2 Future Research

Numerous extensions of the research related in this dissertation are possible. The area

of wireless communication, even restricted to the shallow, long-range UWA channel, represents

a vast research landscape. Some suggested directions for further investigation are listed below.
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• The algorithms described in previous chapters do not store CIR estimates from previous

iterations. However, if the CIR estimates are smoothed and stored after each iteration,

then the next iteration can subtract off the stored CIR and estimate the residual. The

advantage of doing so is that the residual should exhibit much less time variation. The

drawback, of course, is storage.

• Other modulation strategies could be investigated. For instance, a multicarrier approach

could be taken. The algorithms considered in this dissertation employ single-carrier mod-

ulation. On the other hand is orthogonal frequency-division multiplexing (OFDM), which

subdivides a given frequency band into many sub-bands and consequently uses many sub-

carriers. The sub-bands are ideally frequency-flat, so that the corresponding CIRs are ISI-

free. Splitting the band into too many sub-bands results in a significant loss of available

bandwidth, however, since OFDM implementations typically require spacing, i.e., “guard

bands”, between the sub-bands. A compromise would be a multicarrier approach which

uses a moderate number of subcarriers and allows ISI on the order of, say, five symbol

periods (as opposed to 50 or more, which is the case considered in this dissertation). The

resulting “partial response” CIRs could then be equalized using HMM-based methods.

• As another example of a different modulation strategy, not exclusive of others, is the use of

trellis-coded modulation (TCM) (or, to be consistent with the terminology used through-

out this dissertation, trellis-coded mapping). For instance, if used in conjunction with

a multicarrier approach, a HMM-based procedure could be used to perform simultaneous

equalization and de-mapping using a symbol state that spans both the memory of the TCM

and the CIRs. Additionally, different types of channel coding could be investigated – e.g.,

LDPC or Turbo codes.

• The algorithms developed in this dissertation, and future ones suggested above, could be

compared with previously reported algorithms. The focus of this dissertation has been the

introduction of a new approach to equalization of UWA communication data. A natural

next step would be the comparison of these algorithms with existing ones.

• The research detailed in this dissertation has concentrated on implementing algorithms

that recover information from data collected during at-sea experiments. An extension of

this research would be analysis of the overall algorithms and their various components.

Because of the complexity of the algorithms – the adaptive resampling, channel estimation,

and equalization – this would most likely involve simulations and Monte Carlo methods.

In particular, one could examine the symbol messages that are passed around during the

algorithms.
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• It would be interesting to see the algorithms developed in this dissertation applied to other

communication channels with CIRs of similar length. For instance, would they be able to

process data transmitted over a wideband EM radio channel?
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