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Purpose 

 To study the variability in volume change estimates of pulmonary nodules due to 

segmentation approaches used across several algorithms and to evaluate these effects on 

the ability to predict nodule malignancy. 

 

Methods  

 We obtained 100 patient image datasets from the National Lung Screening Trial (NLST) that 

had a nodule detected on each of two consecutive low dose computed tomography (LDCT) 

scans, with an equal proportion of malignant and benign cases (50 malignant, 50 benign). 

Information about the nodule location for the cases was provided by a screen capture with a 

bounding box and its axial location was indicated. Five participating Quantitative Imaging 

Network (QIN) institutions performed nodule segmentation using their preferred semi-

automated algorithms with no manual correction; teams were allowed to provide additional 

manually corrected segmentations (analyzed separately). The teams were asked to provide 

segmentation masks for each nodule at both time points. From these masks, the volume 

was estimated for the nodule at each time point; the change in volume (absolute and percent 

change) across time points was estimated as well. 

      We used the concordance correlation coefficient (CCC) to compare the similarity of 

computed nodule volumes (absolute and percent change) across algorithms. We used 

Logistic regression model on the change in volume (absolute change and percent change) of 

the nodules to predict the malignancy status, the area under the receiver operating 

characteristic curve (AUROC) and confidence intervals were reported. Because the size of 

nodules was expected to have a substantial effect on segmentation variability, analysis of 

change in volumes was stratified by lesion size, where lesions were grouped into those with 

a longest diameter of <8mm and those with longest diameter ≥ 8mm.  

 

Results 

 We find that segmentation of the nodules shows substantial variability across algorithms, 

with the CCC ranging from 0.56 to 0.95 for change in volume (percent change in volume 

range was [0.15 to 0.86] ) across the nodules. When examining nodules based on their 
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longest diameter, we find the CCC had higher values for large nodules with a range of [0.54 

to 0.93] among the algorithms, while percent change in volume was [0.3 to 0.95]. Compared 

to that of smaller nodules which had a range of [-0.0038 to 0.69] and percent change in 

volume was [-0.039 to 0.92].  The malignancy prediction results showed fairly consistent 

results across the institutions, the AUC using change in volume ranged from 0.65 to 0.89 

(Percent change in volume was 0.64 to 0.86) for entire nodule range. Prediction improves for 

large nodule range (≥ 8mm) with AUC range 0.75 to 0.90 (percent change in volume was 

0.74 to 0.92). Compared to smaller nodule range (<8mm) with AUC range 0.57 to 0.78 

(percent change in volume was 0.59 to 0.77).  

 

 

Conclusions 

 We find there is a fairly high concordance in the size measurements for larger nodules 

(≥8mm) than the lower sizes (<8mm) across algorithms. We find the change in nodule 

volume (absolute and percent change) were consistent predictors of malignancy across 

institutions, despite using different segmentation algorithms. Using volume change estimates 

without corrections shows slightly lower predictability (for two teams). 

 

1. INTRODUCTION 

 Lung cancer is the leading cause of cancer deaths in the US (1). However, early detection 

with low dose CT (LDCT) was shown to reduce lung cancer specific mortality by the National 

Lung screening Trial (NLST) (2). These effects are also being investigated in another 

ongoing international effort, the Dutch-Belgian randomized lung cancer (NELSON) Trial (3).  

Specifically, the results of NLST study showed a 20% relative reduction in lung cancer 

related mortality compared with screening using chest radiography (4). This resulted the 

Center for Medicare and Medicaid Services (CMS) to recommend the use of low dose CT for 

lung cancer screening (5).  Other organizations, such as the American College of Radiology 

(ACR) followed suite to provide resources to those centers wishing to perform imaging  

studies (6). Though the use of LDCT led to the detection of more nodules compared to chest 

radiographs, and which may aid early diagnosis of lung cancer, but the trial also showed 

higher incidence of false positives (7).     

Identification of a nodule on an LDCT screening exam can represent a positive image 

finding based on the size of the nodule, which may then be followed up by a secondary 

confirmation procedure to determine malignancy of the nodule. To date clinically, screen 

detected positivity is based on size of the nodule; for example in the ACR Lung CT 

Screening Reporting and Data System (Lung-RADS), solid nodules with a diameter <6mm 
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are considered to be negative, risk cannot be ascertained or Lung-RADS category 1(8) . 

Estimating the size of these lung nodules during the screening intervals is an important 

clinical factor in the determination of patient’s follow-up procedure. Recent studies have 

shown the utility of tumor volume as a better estimator of tumor growth (9) and it has shown 

to be more useful than the conventional unidimensional (diameter) measurements. It has 

been suggested that doubling time based on nodule volume may also be used as a 

predictive measure of malignancy (10). Recently doubling time was used to suggest a  risk 

stratification for screening patients (11).   

 It is essential to accurately measure the nodule size, which can have direct clinical 

implications, including the selection of treatment procedures. There have been many studies 

that focused on nodule size estimation in the past (12, 13), which investigated the bias and 

variability issues in the size measurements. 

In an effort to quantify variability among different segmentation algorithms to delineate the 

nodules identified over two screening intervals, we proposed a multi-institutional study with 

members of the Quantitative Imaging Network (QIN) to estimate variability in size/volume 

estimation using their preferred methods using current advancements in segmentation 

methods.  We hypothesize that any fixed biases that may exist in single time point 

segmentations for a method would be offset with a subsequent segmentation and computing 

change estimates, in size/volume for a nodule. 

 

In this study, we used the data from the National Lung Screening Trial (NLST) and 

assembled a cohort of patients with nodules that were identified across screening time 

points (7,8). We had five participating sites (MCC/USF: Moffitt Cancer Center/University of 

South Florida, CUMC: Columbia University Medical Center, UMICH: University of Michigan, 

DFCC: Dana Farber Cancer Center, UCLA: University of California at Los Angeles) that 

used different segmentation algorithms for performing the nodule delineation, and two 

additional sites participating with their analytics expertise (SU:Stanford University, 

MGH:Massachusetts General Hospital). The teams were allowed to use local expertise and 

preferred segmentation procedures and report back the segmentation masks. 

 In our analysis we evaluated similarity in the segmentations by computing the 

concordance correlation on the volume and change in volume estimations across the five 

participants. We then built independent prediction model using logistic regression to relate 

volume change and percent volume change estimates obtained from the segmentation 

masks to the nodules malignancy status. We then compared ability of each site’s volume 

estimates (and change in volume) to predict the malignancy using Area Under the receiver 

operating characteristic Curve or AUC. We further divided the cohort based on nodule size 

ranges (baseline size ≥ 8mm, < 8mm) and repeated the predictive analysis based on the 
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nodule volumes and change in volumes across time. Our study work flow is shown in Figure 

1 with an example pulmonary nodule across time points. 

2. MATERIAL AND METHODS 

 

2.1 NLST Study Design and data access 

   The National Lung Screening Trial was the largest clinical trial in the U.S with an 

enrollment of 53,439 participants, of which half the population was randomly assigned to 

LDCT study arm and the other half was randomized to chest radiography. The participants 

were between 55 to 74 years of age and were high risk individuals that were either current or 

former smokers with a 30+ pack-year smoking history (former smokers had to have quit 

smoking in the last 15 years).  These participants were enrolled across 33 U.S institutions 

and were screened at baseline (T0) and annually for two additional years (T1 and T2).  For 

those participants randomized to the CT arm of the study, a low dose lung cancer screening 

CT was performed according to a specified imaging protocol (14). The study defined a 

positive screen as a non-calcified nodule (NCN) ≥ 4mm in diameter. The NLST radiologist 

reported the location, composition (solid, part-solid, ground-glass), margin and other 

observed characteristics for all identified nodules.  

  The patient records from the NLST were obtained from the CDAS (Cancer Data Access 

System) and the imaging data through the TCIA (The Cancer Imaging Archive), after starting 

a study protocol at the Moffitt Cancer Center. All the participants of the study were added to 

the protocol and the participants of the study executed a data transfer agreement (DTA) at 

their respective institutions with the National Cancer Institute (NCI). The study was approved 

by the University of South Florida’s Institutional Review Board (IRB) to lead the investigation 

at Moffitt Cancer Center and each of the participating institutions obtained de-identified 

patient records, which waives the need for individual institutional review.  

 

2.2 Interval Challenge Study Cohort 

    We identified 100 subjects with nodules identified on CT scans at baseline and follow up, 

making a total of 200 CT image datasets. Each selected case had at least one nodule that 

met the NLST protocol guidelines (≥ 4mm) (2). In our study, we selected equal number of 

cases that were confirmed to be cancer and those confirmed to be non-cancerous or nodule-

positive benign (50 cancer subjects and 50 benign subjects). Our resident radiologists 

verified the NLST provided information for the entire cohort used for the study. The cases 

included in the study were followed across available screening intervals and were verified 

the location on the scan. We selected one nodule per patient that had largest measured 
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diameter following the NLST study criteria (≥ 4mm).  For the benign cases, we used the 

baseline and the follow up scans to identify stable (non-growing) nodules in the cohort. The 

nodule size distribution is shown in Table 1.  

    The identified nodule in the study cohort was provided to the participants with an axial 

slice location (need not be the center) and an identifying box over the nodule. The clinical 

diagnosis and exact coordinates including nodule centers were not disclosed. This was done 

to avoid potential bias in the segmentation procedures between participants. The teams 

were asked to segment the nodules in each of the 100 cases using their preferred 

segmentation approach. We allowed fully automated or semi-automated procedures for this 

effort, where no restriction was placed on the seeding information for the teams respective 

algorithms. We did not allow complete manual segmentation procedure in this study. Each 

participating site agreed to submit at least one set of segmentation results without any 

manual editing of the resulting nodule contours. Sites were provided an option to submit 

additional results where editing of the nodule boundaries was allowed and these were 

analyzed separately. Figure 1b shows two sample patients with diagnosed cancer and 

benign nodules at two consecutive time intervals.  

 

 

  2.3 Multi-Institutional Collaborative Study 

All the participants were part of the quantitative imaging network (QIN) funded 

institutions. Because of the diversity of available tools and approaches, the study group 

collaboratively reached agreement on several key technical details and procedures to 

facilitate the study’s goals. These included agreeing on image data format (DICOM), case 

and nodule information provided to participants (as described above), segmentation 

procedures allowed (as described above), annotation formats allowed (DICOM-SEG and 

NIFTI) as well as an analysis study document describing the study analyses to be 

performed. Although there are number of medical imaging formats being available (15). As 

part of these agreed on procedures, the organizing team withheld the diagnostic information 

and provided approximate location (need not be nodule center) to the participants to avoid 

undue biases in region delineation. The group maintained a project description document 

that outlined the study goals, with an analysis plan. This document was hosted on a shared 

platform at the NCIPHUB (URL below). The teams had regular teleconferences to allow 

interaction among the participants and to follow up on the group effort. We first conducted a 

dry run to make sure the input data and output results are compatible across the teams. 

After successful completion of the trial run, data for the cohort was released with screen 

shots of the nodules and the description on the data with the time line.  The teams challenge 
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(or dry run) was conducted and the results of the effort were reported back to the NCIPHUB 

project page. The details of the challenge have been made available at the URL: 

https://nciphub.org/publications/20/versions?v=1,while the original data and the delineations 

are restricted to the participants who executed the National Cancer Institute’s Data Transfer 

Agreement. 

 

2.4 Nodule Segmentation Software and Size Measurement  

We allowed the participating teams to decide on the segmentation procedures. Most 

of the participants had existing research efforts at their respective institutions that involved 

lung nodule segmentation on CT image data. We describe a brief overview of the 

approaches used by each of the participants including any known limitations for their 

approaches.  

Team 1: the first team used semi-automated segmentation procedure customized to 

institutional need based on a commercial medical imaging suite (16), the method needs a 

seed point. The single click segmentation procedure was expanded to ensemble procedure 

to cover the volume region of the nodule, which was done to cover the heterogeneous 

region. There are known challenges with the segmentation method, especially when the 

nodule is attached to pleural wall or the vessel structure. In this study we did not correct the 

semi-automated segmentation output. The procedure has been tested and shown an 

improved performance compared to conventional method (radiologist delineation and the 

level set method).   

Team 2: the second team employed a semi-automatic segmentation algorithm that was 

implemented on the Chest Imaging Platform (CIP) on the 3D Slicer, version 4.5 (17, 18). The 

segmentation algorithm is based on a level-set front propagation from a seed point located 

at the centroid of each nodule. The propagated segmentation was constrained to prevent 

including non-nodular tissues, such as chest wall, airway walls, or regions that resembled 

vessel-like structures. Recently, it was demonstrated that the CIP segmentation algorithm 

can potentially reduce physician workload in nodule segmentation by providing reliable 

preliminary contours as starting point. However, manual adjustment of the CIP segmentation 

may be needed for small nodules and part-/non-solid nodules with poorly defined 

boundaries. In this study the automatic output was not corrected.  

Team 3: the third team used their in-house segmentation algorithm that has been developed 

based on active contour method and integrated into an imaging analysis platform built upon 

an open source Weasis (19, 20). The algorithm required the user to specify a region-of-

interest enclosing the lesion to initiate the segmentation. A marker-controlled watershed 

transform was then applied with automatically derived internal and external markers, 
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followed by the geometric active contour with a strengthened potential well and a volume-

preserving mean curvature flow term to evolve the contour to the final location. There was no 

correction allowed for the computer-generated segmentation results.  

An experienced radiologist reviewed the computer-generated tumor contours 

overlapped on the axial planes.   Using the editing tools integrated into their Weasis-

based imaging platform, corrected suboptimal contour segments were obtained. The 

team provided additional manual corrected results along with semi-automated 

segmentation boundary.  

Team 4: This team used essentially a semi-automated contouring method. In this approach, 

the user clicks on a voxel located inside the tumor of interest and then drags a line to the 

outside of the tumor (to the background). The voxels along that line are sampled and a 

histogram of intensities (Hounsfield Units) is created. A statistical method is employed to 

determine the threshold that best separates the two distributions (tumor and background) in 

that histogram. Once that threshold is determined, the software employs a 3-D (or if selected 

a 2-D) seeded region growing using the initial voxel selected as the point inside the tumor 

and the threshold determined from the histogram analysis. The workflow is such that each 

contour is automatically stored in a database linked to the experiment along with metadata 

such as patient id, contouring individual’s id, etc. Each contoured object has a unique id that 

is linked to the series uid (unique DICOM identifier) to maintain its identity. The software also 

provides several user editing tools such as adding and erasing voxels from the contour, etc. 

Therefore this team provided both the semi-automated segmentation results with no editing 

as well as an additional set of results that employed manual editing of the semi-automated 

segmentation boundary. 

Team 5: The system designed by Team 5 segmented the nodule from its surrounding 

structured background in a local volume of interest identified by a user-input box. Image 

segmentation is then performed automatically with a three-dimensional (3D) active contour 

(AC) method. The 3D AC model is based on two-dimensional AC with the addition of three 

new energy components to take advantage of 3D information: (a) 3D gradient, which guides 

the active contour to seek the object surface, (b) 3D curvature, which imposes a smoothness 

constraint in the z direction, and (c) mask energy, which penalizes contours that grow 

beyond the pleura or lung field boundary.  The lung field segmentation method is designed 

to be fully automatic; however, if the segmentation is unsuccessful they are manually 

corrected.  Other than the user-input seeding, actual nodule region identification is fully 

automatic. In this reporting, the nodule regions were not edited after the run.  Details of the 

methodology are deferred to the team’s publication. 
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We decided to maintain anonymity of the participating teams to its algorithm choices, 

so as to avoid any unfair inference of this study results to the individual group’s activity. The 

individual teams published references for the segmentation algorithms are collectively 

provided (17-19, 21-27). We used the LDCT images along with segmented masks provided 

by the teams to compute the volume of the nodule (in pixel units and mm3) and change in 

volume (absolute and percent change). The nodule measurements were carried out by one 

analysis team, based on the submitted segmentation masks this would avoid any biases in 

volume computations. 

The analysis plan that was developed to accomplish the study goals was the 

following: (a) The comparison of  segmentations among teams was performed by calculating 

the DICE coefficient (28) between the teams segmentation masks, across the patients; (b) 

The volume comparisons were determined by computing volume from the segmentation 

masks submitted by each team across the study population; (c) the change in volume 

comparisons were carried out by computing volumes difference across the time interval for 

each patient using the masks submitted by each team across the study population; both 

absolute change in volume and percent change in volume were evaluated; (d) the predictive 

analysis was carried out to relate volume change (absolute and percent change) to subject’s 

clinical diagnosis (benign/malignant).  For these studies, an ROC analysis was performed 

using the volume change as the predictor and the performance was measure by computing 

AUC and confidence limits for the predictor; (e) finally, dependency due to nodule size was 

evaluated. The cohort was stratified by the nodule’s longest diameter (small (< 8) and larger 

(≥ 8 mm),at baseline ) and the analyses related to concordance of volume change estimates 

and prediction analyses were repeated.  Figure 2 shows a representative nodule segmented 

by different algorithms in two consecutive screening time interval. 

 

2.5 Comparison of Segmentation Methods 

In this preliminary effort, we compared different semi-automated segmentation 

algorithms, operator expertise used by five research institutions to segment nodules across 

two consecutive time points. We proposed to compare tumor volume change estimates 

against single time point size or volume estimates, as the change measures by definition 

would offset any fixed biases that may exist in the methodologies followed by the teams.  

In this effort, two teams (Team 1 and Team 2) used single seed point to initiate the 

algorithm, while others used a line (Team 4) or a 2D-box (Team 3, Team 5) to contain the 

nodule region of interest. Team 1 used a single click and populated multiple seed point 

across different slices.  Two other teams (Team 3 and 5) used active contour as their 
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underlying segmentation approach with different set of customized initialization and region 

convergence procedures.  

Team 2’s prior work has shown the CIP segmentations had excellent agreement for 

large nodules with the expert radiologist drawn segmentation. But the CIP algorithm has not 

been optimized for smaller nodules and the regions often included normal surrounding 

tissues. We find Team 2’s segmentation shows good concordance with other teams for large 

nodules (≥ 8mm) and moderate concordance correlation for smaller nodules (<8mm). 

 Team 3 and Team 4 use manual over read on their semi-automated segmentation 

workflow. Comparing un-corrected segmentations between them showed lower concordance 

compared to other teams. The concordance between Team 3 and 4 improves using their 

corrected segmentations.  

Inference of these methods poses significant challenges in comparing methodologies 

as each approach poses competing merits. In our approach, we compared the change in 

volume estimates against the diagnostic truth, which provides utility in the clinical imaging 

measurements.  Table 2 contrasts different teams’ segmentation algorithms and seeding 

requirements.  

 

3. RESULTS 

The size characteristics of the nodules for the selected 100 cases are presented in 

Table 1. The cohort demonstrates that the cases are not only were evenly distributed by 

patient diagnosis (cancer, not cancer), but they were evenly distributed between the smaller 

(< 8mm diameter) group and the larger (≥8mm diameter) nodule sized group. This table also 

shows that the smaller nodules tended to be benign, but were not exclusively so.  

In terms of the overall agreement of segmentation results, Figure 3a demonstrates 

that overall we found moderate overlap in the results across all teams with a mean DICE 

coefficient of 0.48 [Range: 0.12 to 0.97]. Figure 3b&c shows some examples of comparing 

segmentation results between: (i) two semi-automated methods and (ii) two semi-automated 

methods without manual editing.  For all the cases and segmentation methods, we 

computed the tumor volume across time points and compared the absolute and percent 

change in volumes. The Table 3 shows the concordance correlation coefficients for the 

study teams across all the nodules, regardless of size. Using absolute volume, we find a 

concordance correlation across all possible team comparison range between 0.56-0.95 with 

a median value of 0.83. We find the concordance correlation decreased to a range of 0.15-

0.89, with a median of 0.55 for percent volume change. When the manually corrected 
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segmentation was removed, the concordance correlation for absolute volume change 

ranged between 0.56-0.89 with a median of 0.80. While the percent volume change ranged 

from 0.15-0.83 with a median value of 0.44.  

To evaluate the effects of nodule size on the results, we repeated the analysis to 

compare volume estimates across time intervals for nodules less than 8mm in longest 

diameter and greater than or equal to 8mm measured at baseline. Table 3B shows that we 

find the concordance correlation for <8mm, ranged between -0.0038-0.385 for absolute 

volume with a median of 0.3 and a range of -0.039-0.59 with a median of 0.29 for percent 

volume change. Removing manually corrected cases, the absolute volume ranged between -

0.0038-0.27 with a median of 0.26. The percent volume ranged between -0.039-0.38 with a 

median of 0.27. For larger nodules (≥8mm diameter), Table 3C shows the concordance 

improves, with the absolute volume values ranged between 0.54-0.85 with a median of 0.85, 

while the percent volume ranged between 0.3-0.78 with a median of 0.75.  When the 

manually corrected cases were removed the concordance for absolute volume ranged 0.54-

0.80 with a median of 0.78, while percent volume ranged 0.3-0.67 with a median of 0.61.  

We then repeated the analysis by partitioning the cohort with diagnostic labels as 

shown in Tables 3 (D&E). For benign nodules the absolute volume change had a 

concordance ranged between 0.48-0.91 with a median of 0.8, while percent volume was 

between 0.099-0.11 with a median of 0.059. After manual correction the concordance, the 

correlation ranged between 0.4-0.82 with a median of 0.76 for absolute volume. The percent 

volume change ranged between 0.028-0.11 with a median of 0.037. While for malignant 

nodules, the absolute volume estimates concordance range between 0.55-0.87 with a 

median of 0.86. The percent volume measure did not show any improvement, which had a 

range of 0.12-0.63 with a median of 0.5. 

 The volumes estimate does not improve after removing manually corrected cases, 

the absolute volume ranged 0.55-0.81 with a median of 0.797, while the percent volume 

ranged between 0.12-0.51 with a median of 0.5. Figure 4 shows comparison of volume 

estimates between two selected sites. 

We used change in volume estimates, both absolute change and percent change, for 

the teams to predict the malignancy status of the nodules. For absolute volume change, the 

area under the receiver operator curve ranged between 0.65-0.89 across methods. For 

percent change in volume, the prediction scores ranged between 0.64-0.86 across methods. 

For the cohort of nodules <8mm, the AUC was between 0.57-0.80 for absolute volume and 

the AUC was in the range between 0.59-0.77 for percent volume. While for the larger 

nodules (longest diameter ≥ 8mm), the AUC ranged between 0.75-0.9 using absolute 

volume and using percent volume the AUC ranged between 0.74-0.89. Detailed prediction 
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results are presented in Table 4. The Figure 5 shows the AUC using absolute volume and 

percent volume computed between the screening intervals for the teams. 

 When considering the entire nodule size range, Team 1 and 2 showed statistically 

comparable AUCs with overlapping confidence range [0.78, 0,86] and [0.73, 0.83]. Team 

3A’s (corrected) AUC was superior to any other teams with a confidence limits of [0.86, 

0.92], while their uncorrected AUC showed slightly lower performance that was comparable 

with other teams [0.82, 0.90]. Team 4’s corrected estimates’ AUC was in the range of [0.79, 

0.87], while their uncorrected AUC showed lower average AUC with a confidence range of 

[0.59, 0.71]. Team 5’s average AUC was in the middle compared to others uncorrected 

estimates, with confidence limits of [0.72, 0.83]. It is interesting to note that, most semi-

automated AUC’s showed slightly superior performance compared to radiologist delineated 

contours, whose average AUC was 0.78 with a confidence range of [0.73, 0.83]. When 

nodule sizes were restricted to smaller size (<8mm), Team 1, 3 and 5’s predictor AUC 

confidence ranges are comparable. Teams 2 and 4 AUC performances were lower 

compared to other teams.  

 

4. DISCUSSION 

In this retrospective study we compared the segmentation results across five different 

institutions with varied algorithmic approaches to delineate the pulmonary nodules in 

screening setting. We evaluated the concordance between the participating teams’ 

estimates of nodule volume change across two time intervals and used the measure to 

predict the malignancy status. We then compared prediction results using the individual 

volume change estimates obtained from the segmentations provided by the institutions. 

There have been number of studies that showed volume of pulmonary nodules to be a better 

estimate to assess growth over time and few studies have shown its ability to predict 

malignancy (27, 31, 32). 

In our current study, we find the concordance of absolute volume across time points 

between the teams (median of 0.83) is better than the percent volume change, median 

concordance of 0.55. While the concordance drops further (0.80 for absolute volume and 

0.44 percent volume) after removing manually corrected cases. The segmentation difference 

across time points is higher in the percent volume change compared to absolute volume 

change, which we believe is exacerbated by a factor defined by the in-plane and inter-slice 

resolution.  As expected the concordance across teams was lower for smaller nodules (< 

8mm), median value between teams was 0.31 and 0.29 for absolute and percent volume 

change, respectively. This was expected as the delineation of missed or added boundaries 
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is greater for smaller nodules, where a region of about 16x16 pixels (about 0.5x0.5 mm, in-

plane resolution) is relatively smaller regions, which increases the probability of errors.  As 

expected, the concordance between the teams is higher for larger size nodules of ≥8mm 

(median between teams was 0.85 and 0.75 for absolute volume and % volume change). We 

find the concordance between the teams is lower for benign nodules (median between the 

groups of 0.8), while it improves for malignant nodules (median between the groups of 0.86). 

It is clear that the malignant nodules are larger in size compared to benign ones (see Table 

1).  

The Federal Drug Administration (FDA) sponsored studies have created lung 

phantom with artificial nodules of different shapes for the community to compare size 

estimates (33). Recently these nodules were given to a clinical radiologist to assess the 

sizes and volume estimation, a variability of 3.9 to 28% has been reported, they have shown 

a higher variability for smaller nodules (34). Interestingly the authors report a repeatability 

coefficient in the size estimation to be in the range of 6.2% to 40%. 

We further use the volume change estimates from each of the teams to assess the 

malignancy prediction. We find the prediction AUC was high (median of 0.82) using all the 

nodules, while the AUC was slightly lower for smaller size (<8mm) nodules, median AUC of 

0.8 compared to large size nodules (≥8mm), median AUC of 0.84. We find most teams were 

able to predict malignancy with fairly higher AUC, though the concordance correlation of 

volume change between the groups shows a wide range.  

   Estimation the volume of pulmonary nodules across centers with varied imaging 

expertise, algorithms and software implementation has been a persistent issue in medical 

imaging. In a recent community driven challenge (35) organized by Quantitative Imaging 

Biomarker Alliance (QIBA), proposed to use phantoms as their study subjects. The study 

reports eighty-four percent of volume measurement were within 15% of the true volume and 

the variability ranges from 66% to 93% across algorithms. While the 61% 

of volume measurements for all tumors ranged from 37% to 84%. QIBA study claims 

algorithm type did not affect bias substantially and reports algorithm precision was notably 

better as tumor size increases and worsen when the nodules were  irregular. They also 

report 18.4 % overall repeatability coefficient for their study. 

Our study effort was motivated by the clinical use of the tumor measurement, 

especially change in volume across time points which may be relevant for screening exams. 

There is certainly high clinical benefit to find concordance in measuring change in volume 

estimate across institutions that use different delineation algorithms. We used real patient 

images with no true estimate of tumor volume.  

The community could also benefit in adopting variability standards in the use of 

outcome prediction that was reported by comparing different sites, expertise and with the 
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use of imaging algorithms tested on a diverse patient cohorts obtained from the NLST trial. 

The teams agreed on certain limitations in the group effort. These included allowing multiple 

independent user inputs to seed segmentation algorithms as well as   allowing variability in 

the location and size of the seeds (length of the bounding box, length of the seed line). 

Best Practices for volume measurements and lessons learnt:   

 

• It is important to avoid biases in size and volume measurements. Some common 

biases include use of any clinical diagnostics and or radiological observational 

intuition prior to delineate the region of interest. In a clinical setting, most focus is to 

improve true positive detection. Prior diagnostic information strongly impact true 

assessment of nodules size or volume measurements.   

• Most often clinical radiologists are influenced by the nodules shape characteristics. 

Recently, some of these shape characteristics have been used to provide clinical risk 

decision (36). It becomes imperative that region of interest is delineated prior to 

assessment of shape characteristics.  

• Some known variations are attributed to the segmentation algorithms and the 

imaging suites methodologies, which show differences due to numerical rounding 

and different ways to deal with boundary voxels.  

• Variability due to nodules morphology, density variation (including nodule solidity) 

affects the segmentation algorithms performance.  

• There are few others variability sources caused by scanner parameters and 

reconstruction methods which influence the image intensity. Where small regional 

difference could lead to large size/volume changes. 

 

5. CONCLUSION 

 

In this study we compared the volume assessment of pulmonary nodules across two 

screening interval between five institutions. We find a range of concordance between 

institutions that used varied software and clinical expertise. We find that prediction of 

malignancy shows acceptable values across institutions. The nodules predictions across the 

teams are higher for larger nodules compared to smaller nodules. We find variability in 

volume change is well reproducible across algorithms (median concordance over 0.75). 
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Table 1. Pulmonary nodule characteristics for the patient cohort across the screening time 
points.  

 

 

Categories 

(Longest 
diameter*) 

Total Cancer+ Benign+ 

Baseline 
(T0) 

Follow-
Up (T1) 

Baseline 
(T0) 

Follow-
Up (T1) 

Baseline 
(T0) 

Follow-
Up (T1) 

All Nodules 100 100 50 50 50 50 

< 8mm 50 44 18 9 32 35 

≥ 8mm 50 56 32 41 18 15 

       

*Based on Team 3A’s size estimates.  

+ Based on diagnosis at follow-up time point (T1). 
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Table 2. Comparison of segmentation algorithms used by the participating teams with 
respective initialization requirement and reported comments. 

    

# Institutions Segmentation Inputs Software Reported Remarks 

1 Team 1 Single click seeding. 
Automatically creates 
multiple clicks across  slices. 

Custom routines on 
Commercial platform 
(16) 

May include 
additional regions 
when nodules 
attached to pleura. 
Need manual over 
read. 

2 Team 2 Single click seeding, 
automatically finds the 
centroid in a 3D region. 

Open Source, 3D 
Slicer (29)  

Known issues with 
small nodules. Need 
manual over read 

3 Team 3 2D box region Custom routines 
based on C/C++. 

Manual over read 
needed in some 
situations. 

4 Team 4 Click and drag to: (a) create 
a seed point and (b) a line 
which is used to determine 
the threshold separating 
object from background. 

Custom routines, 
based on ITK tools 
(30). 

It needs manual over 
read and editing. 

5 Team 5 2D box region Custom routines 
based on ITK tools 
(30). 

Manual over read in 
some situations. 
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Table 3. Concordance in the volume change computation between two consecutive 
screening time instances measured as absolute volume and percent volume change, 
compared across the teams. Categorized based on baseline size range and diagnosis at 
follow-up: a) All sizes b) Below 8mm, c) Above 8bm, d) malignant nodule and e) benign 
nodules. Concordance is measured by concordance correlation coefficient. 

A) All size rage 

CCC on Absolute Volume  (All Sizes) 

  

Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 
Correcti
on 

None With 
Correction 

Team 1  0.88 0.66 0.95 0.85 0.89 0.74 1 

Team 2  0.82 0.56 0.75 0.83 0.77 1 0.74 

Team 3 

 

A 

(With 
Correction) 0.92 0.76 0.92 0.94 1 0.77 0.89 

B (None) 0.89 0.67 0.89 1 0.94 0.83 0.85 

Team 4 

 

A  

(With 
Correction) 0.89 0.71 1 0.89 0.92 0.75 0.95 

B (None) 0.78 1 0.71 0.67 0.76 0.56 0.66 

Team 5  1 0.78 0.89 0.89 0.92 0.82 0.88 

 

 

CCC on Percent Volume  (All Sizes) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 
Correcti
on 

None With 
Correction 

Team 1  0.83 0.24 0.78 0.55 0.8 0.46 1 

Team 2  0.44 0.32 0.47 0.28 0.42 1 0.46 

Team 3 

 

A 

(With 
Correction) 0.89 0.3 0.82 0.89 1 0.42 0.8 

B (None) 0.55 0.15 0.63 1 0.89 0.28 0.55 

Team 4 A (With 0.86 0.55 1 0.63 0.82 0.47 0.78 
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 Correction)

B (None) 0.59 1 0.55 0.15 0.3 0.32 0.24 

Team 5  1 0.59 0.86 0.55 0.89 0.44 0.83 

 

 

B) < 8mm  

CCC on Absolute Volume  (< 8mm) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 
Correct
ion 

None With 
Correction 

Team 1  0.34 0.15 0.47 0.23 0.3 0.068 1 

Team 2  

0.037 

-
0.003
8 0.056 0.061 0.038 1 0.068 

Team 3 

 

A (With 
Correction) 0.61 0.34 0.5 0.61 1 0.038 0.3 

B (None) 0.64 0.27 0.5 1 0.61 0.061 0.23 

Team 4 

 

A (With 
Correction) 0.69 0.24 1 0.5 0.5 0.056 0.47 

B (None) 0.38 1 0.24 0.27 0.34 -0.0038 0.15 

Team 5  1 0.38 0.69 0.64 0.61 0.037 0.34 

 

 

 

CCC on Percent Volume  (< 8mm) 

 Team 5 

 

Team 4 Team 3 Team 2 

 

Team 1

 None With 
Correct
ion 

None With 
Correction 

Team 1  
0.92 

0.001
8 0.73 0.29 0.83 0.46 1 

Team 2  
0.24 

-
0.039 0.22 0.074 0.29 1 0.46 

Team 3 A  

(With 
0.88 

-
0.004 0.72 0.88 1 0.29 0.83 
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 Correction) 

B (None) 
0.47 

-
0.015 0.5 1 0.88 0.074 0.29 

Team 4 

 

A  

(With 
Correction) 0.75 0.032 1 0.5 0.72 0.22 0.73 

B (None) 0.15 1 0.032 -0.015 -0.004 -0.039 0.0018 

Team 5  1 0.15 0.75 0.47 0.88 0.24 0.92 

 

C) Long Diameter, ≥ 8mm 

CCC on Absolute Volume  (≥ 8mm) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 
Correctio
n 

None With 
Correction 

Team 1  0.85 0.59 0.93 0.81 0.86 0.74 1 

Team 2  0.85 0.54 0.76 0.85 0.79 1 0.74 

Team 3 

 

A (With 
Correcti
on) 0.89 0.7 0.9 0.92 1 0.79 0.86 

B 
(None) 0.86 0.6 0.85 1 0.92 0.85 0.81 

Team 4 

 

A (With 
Correcti
on) 0.85 0.64 1 0.85 0.9 0.76 0.93 

B 
(None) 0.73 1 0.64 0.6 0.7 0.54 0.59 

Team 5        1 0.73 0.85 0.86 0.89 0.85 0.85 
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CCC on Percent Volume  (≥ 8mm) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 Non
e 

With 
Correction 

None With 
Correction 

Team 1  0.75 0.3 0.8 0.61 0.76 0.55 1 

Team 2  0.8 0.58 0.77 0.81 0.86 1 0.55 

Team 3 

 

A (With 
Correction) 0.88 0.6 0.88 0.89 1 0.86 0.76 

B (None) 0.73 0.46 0.75 1 0.89 0.81 0.61 

Team 4 

 

A (With 
Correction) 0.95 0.69 1 0.75 0.88 0.77 0.8 

B (None) 0.67 1 0.69 0.46 0.6 0.58 0.3 

Team 5  1 0.67 0.95 0.73 0.88 0.8 0.75 

 

 

D) All Benign Cases 

CCC on Absolute Volume  (Benign Nodules)

 Team 
5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 
Correction 

None With 
Correction 

Team 1  0.92 0.75 0.94 0.89 0.96 0.63 1 

Team 2  0.67 0.48 0.63 0.62 0.62 1 0.63 

Team 
3 

 

A(With 
Correction) 0.95 0.8 0.95 0.95 1 0.62 0.96 

B (None) 0.89 0.91 0.78 1 0.95 0.62 0.89 

Team 
4 

 

A(With 
Correction) 0.92 0.71 1 0.91 0.95 0.63 0.94 

B (None) 0.77 1 0.72 0.78 0.8 0.48 0.75 

Team 5  1 0.77 0.92 0.89 0.95 0.67 0.92 
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CCC on Percent Volume  (Benign Nodules) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 
Correcti
on 

None With 
Correction 

Team 1  0.21 0.0034 -0.052 0.037 0.32 0.019 1 

Team 2  
-0.11 

-
0.0096 -0.0096 0.15 -0.036 1 0.019 

Team 3 

 

A(With 
Correction) 0.16 0.059 0.059 0.21 1 -0.036 0.32 

B (None) 0.22 0.45 0.45 1 0.21 0.15 0.037 

Team 4 

 

A (With 
Correction) 0.14 0.018 1 0.45 0.059 -0.0096 -0.052 

B (None) 0.1 1 0.018 -0.0081 0.042 -0.072 0.0034 

Team 5  1 0.14 0.14 0.22 0.16 -0.11 0.21 

 

E) All Malignant Cases 

 

CCC on Absolute Volume  (Malignant Nodules) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 
Correction 

None With 
Correction 

Team 1  0.86 0.61 0.94 0.83 0.87 0.75 1 

Team 2  0.86 0.55 0.78 0.88 0.81 1 0.75 

Team 3 

 

A  

(With 
Correcti
on) 0.9 0.71 0.91 0.93 1 0.81 0.87 

B 
(None) 0.88 0.62 0.87 1 0.93 0.88 0.83 

Team 4 

 

A (With 
Correcti
on) 0.87 0.68 1 0.87 0.91 0.78 0.94 

B 
(None) 0.76 1 0.68 0.62 0.72 0.55 0.61 

Team 5  1 0.76 0.87 0.88 0.9 0.86 0.86 
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CCC on Percent Volume  (Malignant Nodules) 

 Team 5 

 

Team 4  Team 3 Team 2 

 

Team 1 

 None With 
Correction 

None With 
Correction 

Team 1  0.83 0.23 0.75 0.49 0.77 0.51 1 

Team 2  0.51 0.66 0.52 0.27 0.48 1 0.51 

Team 3 

 

A (With 
Correctio
n) 0.89 0.3 0.8 0.89 1 0.48 0.77 

B (None) 0.51 0.12 0.57 1 0.89 0.27 0.49 

Team 4 

 

A (With 
Correctio
n) 0.85 0.59 1 0.57 0.8 0.52 0.75 

B (None) 0.63 1 0.59 0.12 0.3 0.66 0.23 

Team 5  1 0.63 0.85 0.51 0.89 0.51 0.83 

 

Table 4.  Prediction performance (Area under the curve, AUC) of malignant nodule 
characterization using volume estimates (absolute volume change & percent volume 
change) obtained from segmentations provided by the teams. Results categorized based on 
a) All sizes b) Below 8mm, c) Above 8mm.  

a) All size rage 

ROC Characterization : 

 Absolute Volume  Percent Volume 

 AUC (95% 
CI) 

#sample
s 

AUC (95% CI) #sample
s 

Team 1  0.82 

[0.78, 0.86] 100 

0.82 

[0.78, 0.86] 

100 

Team 2  0.78 

[0.73, 0.83] 100 

0.73 

[0.68,0.78] 

98 

Team 3 

 

A (With 
Correcti
on) 

0.89 

[0.86,0.92] 100 

0.86 

[0.82,0.90] 

100 

B 
(None) 

0.86 

[0.82,0.90] 100 

0.82 

[0.78,0.86] 

100 

 

Team 4 

 

A (With 
Correcti
on) 

0.83 

[0.79,0.87] 100 

0.82 

[0.78,0.86] 

100 
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B 
(None) 

0.65 

[0.59,0.71] 80 

0.64 

[0.58,0.70] 

80 

Team 5  0.76 

[0.73, 0.83] 100 

0.76 

[0.72,0.81] 

100 

Longest Diameter  

Radiologist 
Measured 

0.78  

[0.73,0.83] 

  0.81 

[0.85, 0.77] 

 
b) Diameter < 8mm 

ROC Characterization : 

 Absolute Volume  Percent Volume 

 AUC #samples AUC #samples 

Team 1  0.80 50 0.77 50 

Team 2  0.63 49 0.60 49 

Team 3 

 

A  

(With 
Correction) 0.78 50 

0.75 50 

B (None) 0.80 50 0.77 50 

Team 4 

 

A (With 
Correction) 0.76 50 

0.77 50 

B (None) 0.57 39 0.59 39 

Team 5  0.79 50 0.76 50 

 

 

 

c) Long Diameter ≥ 8mm 

ROC Characterization : 

 Absolute Volume  Percent Volume 

 AUC #samples AUC #samples 

Team 1          0.83 
49 

                        
0.81 

49 

Team 2  0.84 49 0.84 49 
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Team 3 

 

With 
Correcti
on 0.90 49 

0.92 49 

None 0.90 49 0.88 49 

Team 4 

 

With 
Correcti
on 0.88 49 

0.89 49 

None 0.75 40 0.74 40 

Team 5  0.81 49 0.76 49 
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