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We thank Miao et al. (1) for an excellent, enlightening,
and forward-looking commentary on our paper (2). We are
grateful to them for pointing out that all need not be lost
when a variable required for an analysis is not directly
measured in the primary data. Methods for data fusion,
which is an active area of statistical research, attempt to
solve precisely this problem. Miao et al. propose 3 ingenious
approaches to data fusion (1).

The first method, estimation with a nonlinear imputation
model, describes a setting in which the common current
practice that we critiqued in our paper (2) is in fact valid. In
other words, the approach they describe is another answer to
the question we posed in our paper: When is it acceptable to
use estimates from auxiliary regression models? Recall that
V is a variable that is required for the primary analysis but
not available in the primary data, and Z is the collection of
auxiliary data covariates used as independent variables in the
model for V . Miao et al. demonstrated (1) that it is acceptable
to use estimates from auxiliary regression models when 1) V
is an exposure or covariate; 2) the true relationship between
the outcome, V , and Z is linear with no V-Z interaction;
3) all covariates in the primary analysis are available in the
auxiliary data and included in Z; 4) the joint distribution of
V and Z is the same in the primary and auxiliary data; and
5) the true relationship between V and Z and the model g(Z)
used to estimate V in the auxiliary data are both nonlinear.
This method hinges on the linearity of the outcome in V
and Z contrasted with the nonlinearity of the relationship
between V and Z, and in the applications that we reference
in our paper (2), we are skeptical that this contrast could be
strongly justified on scientific bases. In particular, we are
skeptical that the outcome would be linear in V and Z in
most epidemiologic settings of interest. (Note that it does
not suffice to be interested in estimating a linear model in
the primary analysis; the linear model must capture the true
relationship between the outcome and V and Z.) Miao et al.
express a similar skepticism in their conclusion (1).

The second method, estimation with validation data, relies
on a second auxiliary data set. Typically, the auxiliary data

set includes V and Z but not other variables W required
for the primary analysis. (If it did, researchers could simply
use the auxiliary data to run the primary analysis without
worrying about estimating V .) If another data set is available
with data W and V , then it may be possible to correct the
biases that we describe in our paper. Miao et al. show that
this is indeed the case when 1) the relationship between
V , W, and Z is linear and 2) the mean of the product of
W and V , E[WV], is the same in the primary data and the
second auxiliary data set (1). We remain skeptical that the
assumption of linearity will hold in most epidemiologic
settings, and it could also be difficult for researchers to find
a second auxiliary data set meeting the requirements for this
method.

Finally, the third method derives bounds for the associ-
ation or effect of interest. This strikes us as an extremely
fruitful and promising direction for further research. When
reasonable assumptions do not suffice to identify an esti-
mand of interest, it may still be the case that the set of
assumptions implies a feasible region for the estimand: a set
of values guaranteed to contain its true value. In this case,
the feasible region is given by upper and lower bounds on
the truth; we can be confident that under our assumptions,
the truth lies between these 2 bounds. Miao et al. derive
bounds under the assumption of linearity of the relationship
between V , W, and Z, but we echo their optimism that similar
bounds could be found even if the assumption of linearity
were relaxed or replaced. We agree with Miao et al. that the
bounding approach is very promising and deserving of more
attention (1). We look forward to following their future work
in this direction.

As Miao et al. readily admit, none of their 3 approaches
is a panacea. These methods require more care, more work,
and more data than the existing (flawed) practice of simply
replacing V with predictions from the auxiliary model. They
probably would require researchers to have access to the
auxiliary data, or the ability to request specific analyses
using the auxiliary data, which currently is frequently infea-
sible. They rely on the true relationship between W, V ,
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and Z being linear and additive. This is a major limitation;
even when researchers are interested in the parameters in
such a linear model, it may not be the correct structural
model. However, our primary takeaway from Miao et al.’s
commentary is optimism that more general methods for data
fusion may be available soon, and we look forward very
much to following the work of these insightful researchers.
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