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Shared E-Scooter Trajectory Analysis
During the COVID-19 Pandemic in
Austin, Texas

Matthew D. Dean1 and Natalia Zuniga-Garcia1

Abstract
By March of 2020, most cities worldwide had enacted stay-at-home public health orders to slow the spread of COVID-19.
Restrictions on nonessential travel had extensive impacts across the transportation sector in the short term. This study
explores the effects of COVID-19 on shared e-scooters by analyzing route trajectory data in the pre- and during-pandemic
periods in Austin, TX, from a single provider. Although total shared e-scooter trips decreased during the pandemic, partially
owing to vendors pulling out of the market, this study found average trip length increased, and temporal patterns of this
mode did not meaningfully change. A count model of average daily trips by road segment found more trips on segments with
sidewalks and bus stops during the pandemic than beforehand. More trips were observed on roads with lower vehicle miles
traveled and fewer lanes, which might suggest more cautious travel behavior since there were fewer trips in residential neigh-
borhoods. Stay-at-home orders and vendor e-scooter rebalancing operations inherently influence and can limit trip demand,
but the unique trajectory data set and analysis provide cities with information on the road design preferences of vulnerable
road users.
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The global COVID-19 pandemic has had a large-scale
impact on the transportation sector. Concerns about
virus transmissibility, work-from-home (WFH) policies,
and supply-side adjustments affecting modal availability
contributed to a decline in travel, particularly following
the passage of stay-at-home orders (also called shelter-in-
place) that closed nonessential businesses (1). In Austin,
TX, the first two presumptive positive cases of COVID-
19 in the public health region were reported on March
13, 2020, coinciding with the cancellation of in-person
classes across universities, colleges, and school districts.
Table 1 provides an overview of several key public health
emergency orders or actions taken in response to the pan-
demic. The result was a significant change to everyday
activities under stay-at-home orders followed by a gra-
dual return as businesses reopened (2–5). Figure 1 shows
the relative change of trips ending at a destination type to
baseline conditions in the Austin region in early 2020 (6).
More trips ended at residential locations, suggesting a
rise in home-based trips (i.e., ‘‘unlinking’’ of activities),
whereas other destinations had varied declines. The most

significant decline in trips was to transit stations and
workplaces. Relative to prepandemic times, the initial
lockdown period led to more time spent at home, though
that gradually declined, whereas visits to parks recovered
more quickly than indoor destinations.

Although public transit was most affected in this
mobility analysis and the regional provider, Capital
Metropolitan Transportation Authority (CapMetro),
instituted service reduction measures across many routes
(10), reductions in personal vehicle travel (11), and ride-
sharing vehicles (12) was also observed. Transportation
mode choice is determined in part by mode availability,
and the decrease in the supply of public transit and ride-
sharing may have forced zero-vehicle households (i.e.,
captive transit riders) to switch to other modes like
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shared micromobility, active transportation, or to aban-
don trips entirely. However, secondary effects of reduced
vehicle travel may also influence active transportation
users, such as those using shared e-scooters. One might
expect that a reduction in traffic volumes during the pan-
demic could reduce the perceived risk of using shared e-
scooters on previously busy streets, especially for risk-
averse users. On the other hand, increases in vehicle
speeds may push users to low-traffic, smaller roads (13).

Several studies investigate the association between
COVID-19 and traveler activities, behavior, and percep-
tions of risk (3–5, 14–16), whereas others focus on the
pandemic’s effect on shared micromobility and public
transit (1, 17–24). However, few examine shared e-
scooters (15, 22), which are a relatively new phenom-
enon. Although those studying shared micromobility
modes have access to anonymized trip data but neither
route choice nor trip purpose by destination type, there
have been efforts to impute trip activities from prior

GPS-logged trip surveys (22). Since e-scooters tend to
orient themselves to casual riders for short trips (25, 26),
their usage under emergency public health orders and in-
person restrictions for nonessential businesses is not well
understood. Additionally, only three prior studies were
given access to e-scooter trajectory data, with one focus-
ing on identifying trip distance spent on sidewalks, bike
lanes, and roadways (27). As a result, there is a gap in
the knowledge of how shared e-scooter trips changed
during the COVID-19 pandemic compared with the
months preceding the pandemic.

To this end, we made use of shared e-scooter trajec-
tory data, representing a sample of 1.4% of the total
trips made in Austin, TX, before the pandemic and up to
60% of the trips during the reopening phase of the pan-
demic. Trip information was paired with other sources,
such as roadway infrastructure inventory and demo-
graphic information, to analyze the characteristics of
observed roadway design preferences. A negative bino-
mial (NB) count model was developed to analyze the
average number of e-scooter trips along 0.1-mi roadway
segments. By examining this unique trajectory data, this
study explored the following research questions: (1) How
have shared e-scooter trip characteristics changed during
the pandemic? (2) Where did users of shared e-scooters
travel during the pandemic? (3) What are the conclusions
for cities in building a sustainable, equitable transporta-
tion system, given the observed roadway design prefer-
ences of shared e-scooter users?

Literature Review

Shared e-scooters are a nascent mode within the rela-
tively new field of shared micromobility. Most studies to

Table 1. Timeline of Lockdown and Reopening COVID-19 Pandemic Events in Austin, TX

Date Event

March 6, 2020 Local state of disaster declared
March 12, 2020 Local disaster declaration extended indefinitely
March 13, 2020 Austin Public Health announces two presumptive positive cases; UT Austin, St. Edward’s University, Austin

Community College, and Austin Independent School District cancel classes
March 14, 2020 Ban on gatherings with 250 or more persons
March 19, 2020 Ban on gatherings with 10 or more persons in a confined space; closure of dining at restaurants and bars; Austin

Public Health announces evidence of community spread
March 20, 2020 Austin adopts Texas social distancing and gathering requirements
March 24, 2020 Austin adopts a stay-at-home order (includes ban of nonfamily gatherings)
April 27, 2020 Phase One Opening of select businesses (at 25% capacity)
May 1, 2020 Expiration of stay-at-home order
May 18, 2020 Phase Two Reopening of select businesses (at 50% capacity)
June 3, 2020 Phase Three Reopening of businesses (no capacity requirements)
July 2, 2020 Face covering requirement

Note: UT = University of Texas.

Source: Limón (7); Villalpando (8); Texas Department of State Health Services (9).

Figure 1. Daily mobility trends for the Austin region.
Source: Google LLC.
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date have focused on the difference between this mode
and other forms of shared micromobility, including look-
ing at who uses these devices, what the trip purpose is,
and understanding their spatiotemporal demand.
Whereas early studies on shared micromobility have
found users are mostly well-educated young adults with-
out children, and with access to multiple modes of trans-
portation, there is anecdotal evidence to suggest a more
diverse user set than previously identified (28). However,
provider service areas can exclude equitable access to
diverse groups of people by manipulating service areas
to dilute high-demand areas and meet legal density caps
(29). The difficulty of obtaining rider demographics
through opt-in forms and data sharing with mobility
providers has often led to information on shared e-
scooters users coming from intercept surveys (or other
survey methods).

Most spatial analyses of shared micromobility focus
on station-based or dockless bike-share systems (22). For
example, one study compared shared e-scooters with
station-based bike-share trips in Washington, D.C., and
found that casual bike-share riders behave more similarly
to dockless e-scooter users than bike-share members (30).
Shared e-scooter trips in Austin, TX, were studied using
a spatial error model to understand interactions with bus
service at both trip ends (31). They found no evidence
within their framework of first- and last-mile interactions
but found that population density and the University of
Texas at Austin (UT Austin) campus had a positive influ-
ence on total trips. They paired this analysis with a sur-
vey of mostly students, finding 44% of respondents had
used an e-scooter in the past to attend class, 17% to
attend a meeting, 15% for social trips, and 11% to go to
work. Nearly half of the respondents used this mode
instead of walking, whereas a fifth used it to replace a
bus trip. A descriptive analysis of the same data set in
Austin also observed a correlation between trips and
student-housing neighborhoods (29).

Since the start of the pandemic, research has focused
on more popular and established travel modes (e.g., per-
sonal cars and public transit) and understanding how
travel behavior may change in the long-term as cities
reopen. The remaining portion of this section first sum-
marizes studies that evaluated COVID-19 impacts on
shared mobility, with an emphasis on shared e-scooters,
and then summarizes studies that have analyzed micro-
mobility patterns using trajectory data (to study route
choice and segment-level preferences).

Prior COVID-19 Shared Micromobility Work

The focus in the literature has centered on docked bike-
share systems using publicly available trip data to study
ridership trends (i.e., time-series data) within or across

cities. In New York City, a 9-month time-series analysis
of the station-based bike-share system, Citi Bike, showed
that trip duration increased significantly compared with
the prior year (24). The effect of the stay-at-home order
had a significant negative effect on subscriber trips,
which remained lower than 2019 levels throughout the
pandemic, but no effect was found for casual trips, which
increased during the pandemic. Compared with the city-
wide subway system, bike-share use had a less severe
decline in ridership and may have even captured former
subway riders, though this study only captured data in
February and March 2020 (19). In Chicago, the station-
based bike-share system, DIVVY, exhibited a similar
shift from commuter to casual users, a faster rebound in
bike-share trips than transit, and an increase in average
trip duration (21). This analysis found that usage during
the pandemic correlated well with the existing riders of
micromobility (e.g., Caucasian, high income, residing in
high-density areas). A comparison between New York
City, Chicago, and Boston observed increases in average
trip duration across all cities, especially following the ini-
tial peak in local COVID-19 cases (17).

An early study outside the United States conducted a
1-month before–during analysis of Zurich micromobility
trips from four services (i.e., docked bike, docked e-bike,
dockless e-bike, dockless e-scooter) (22). As expected,
they observed a reduction in workday trips from station-
based services (which captures more commuting trips).
At the same time, the trip duration of all bike modes
increased, which the authors speculate is a result of a
switch from other public modes to bike-share. They
observed an 8%, 13%, and 20% decrease in e-scooter
origins at imputed work, shopping, and leisure places of
interest, respectively (attributed to the lockdowns).

A few recent studies include the results from surveys
of shared micromobility riders. A survey of San Antonio
bike-share members found that COVID-19 had not dis-
rupted half of the respondents’ use of the system.
Interestingly, those not working because of the pandemic
reported using the bike-share more frequently than
before the pandemic (20). One study had shared
e-scooter companies operating in Chicago distribute a
survey to users to understand trip frequency and mode
substitution during COVID-19 (18). Most respondents
(59%) took between one and three trips in the previous
month, whereas a small share (8.5%) took more than 10
trips. The study developed an order probit model to
explain trip frequency. They found reduced-fee transit
access, Chicago’s bike-share (DIVVY) membership,
zero- or one-vehicle households, household incomes less
than $50,000, and young adults (aged 18 to 35) all
increased shared e-scooter trips. A little more than one-
third (36%) of respondents used this mode to get to/from
transit service (bus or rail), whereas 22% said they often
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used e-scooters to avoid transit entirely. Interestingly,
50% of respondents said they had never used an e-
scooter before.

In short, ridership across several U.S. station-based
bike-share systems declined by an average of 44% from
March to May 2020 compared with the same period in
2019 (32). As noted in research by Hu et al. (21) and
Wang and Noland (24), bike-share ridership rebounded
to prepandemic levels in the summer of 2020 and was
more resilient than other shared modes, such as public
transit. There is evidence that e-scooters support casual
riders and more leisure trips, and that during the pan-
demic station-based bike-share programs had more
casual riders. This could be in part a result of (1) pro-
grams to give healthcare workers/essential workers free
bike-share passes (33), (2) a reduction in the availability
of dockless e-scooters after some providers suspended
operations (34), and (3) a mode shift from other shared
modes, like public transit (34, 35).

Prior Trajectory Analysis and Route Choice Modeling
Work

The authors are aware of only three studies that
obtained trajectory data from shared micromobility
trips. Each study explored a different micromobility
type—dockless and docked bike-share and e-scooters—
and employed different methodologies for examining
route choice preferences. The first study classified each
trip into path archetypes and developed a discrete route
choice model (36), whereas the second and third studies
solely used a map-matching process to classify infrastruc-
ture usage and user type differences (27, 37). The studies
were given access to trajectory data but not rider demo-
graphic information. However, an evaluation of demand
across a region could give insights into potential user
types and route preferences based on roadway segment
characteristics.

Over 9,100 trips were analyzed from Phoenix, AZ’s
bike-share system in 2014 to 2015 to determine cyclist
route preferences by user type (e.g., member or casual)
through a path size logit modeling approach (36). A
map-matching algorithm combined proximity-based
alignment and route continuity checks to identify the
actual path taken and five alternatives, if plausible.
Members took more direct routes and preferred roads
with less traffic and tended to avoid one-way streets.
Although station-based, riders are permitted to park the
bicycle outside of a station for an added fee. A study in
Washington, D.C. also compared member and casual
trips (37). Nearly 3,600 trips from 94 station-based bikes
were captured in the spring of 2017 to compare trip
lengths, between-station dwell times, and the proportion

of mileage on infrastructure types. Casual riders took
trips that were nearly twice as long in distance and three
times longer in duration than members. A heat map for
trajectory points showed casual riders visited tourist
points of interest, resulting in over 60% of their mileage
being on parkland. In contrast, 50% of mileage by mem-
bers was on roads without bicycle infrastructure and
33% with infrastructure.

The third study obtained nearly 80,000 e-scooter trips
in Austin and used a proximity-based mapping algo-
rithm to identify where users traveled on the road (27).
On average, 18% of an average trip was spent on side-
walks, 11% on bike lanes, and 33% on travel lanes in
mixed traffic—the other 38% was unclassified (i.e., park-
ing lots and parks). Surprisingly, 60% of trips taken on
travel lanes were on principal arterials, suggesting riders
take possibly more direct, unimpeded, broad roads when
traveling on the road. Median speed varied by infrastruc-
ture type but was around 10mph (16km/h).

As mentioned in Wergin and Buehler, GPS trajectory
data has advantages over stated and revealed preference
surveys when studying route preferences, namely by
removing respondent recollection error and respondent
behavioral changes from tracking (37). However, the
process of mapping trajectory data to geographic infor-
mation system network data is laborious and requires
data filtering and an appropriate mapping algorithm
(36). Map-matching was not performed in Wergin and
Buehler owing to casual users’ circuitous routes and high
utilization of park trails, paths, and sidewalks (37). Data
filtering varies by study. Very short and long trips by
duration and distance are often excluded, as are trips
with abnormal speeds (27, 36). Trips with faulty points
can be identified by line segment lengths that exceed the
trip’s mean by a few standard deviations (37).

Background

Data Description and Processing

A licensed shared e-scooter vendor operating about
1,000 devices in Austin, TX (Spin) provided trip and tra-
jectory data for a prior study (27). The data set com-
prised records from February 14, 2019, to June 3, 2020,
for a total of 96,000 trips. Each trip comes with a unique
trip identification (ID) number, start and end time, start
and end location (latitude and longitude), trip duration,
and trip distance. Trajectory data for each unique trip
ID provided location points (latitude and longitude) in
decimal degrees to five decimal places, corresponding to
a precision of 1.1132m at the equator. The trajectory
information was recorded every 5 s for a total of more
than 11 million data points during the period of analysis.
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Data Filtering Methodology

The raw trip records underwent a filtering process to
remove trips with faulty trajectory recordings and trips
under a certain distance. The developed filtering algo-
rithm first calculated the distance traveled between two
consecutive points of the same trip. If the estimated
speed exceeded 20mph and the distance traveled between
consecutive points was greater than 30m, the trip was
removed from the study owing to concerns about data
accuracy (38). The purpose was to remove accidental
trips such as when the e-scooter is moved to a charging
depot or where trip speeds are unreasonable.

For the first part of this analysis (i.e., pick-up and
drop-off locations), the study included ‘‘unproductive’’
trips (i.e., the user decides to cancel the ride after noticing
an issue with the device a few seconds into the trip). This
preserved actual demand for this mode from the data set,
though one cannot determine whether the user ultimately
took another e-scooter, took an alternative mode, or
abandoned the trip altogether. The second part of this
analysis looked at trip duration and route preferences.
For this section, we used Austin’s roadway network to
aggregate e-scooter trajectory data into 0.1-mi roadway
segments. The roadway network came from the Texas
Department of Transportation (TxDOT) roadway inven-
tory and was converted into uniform roadway segments
of 0.1mi, resulting in nearly 10,000 segments (Figure 2a).
The resulting network aligned well with the service regions
of the shared e-scooter providers in town and did not
include highway links where e-scooters are prohibited.

To match trajectories with roadway segments, we
developed a geometric map-matching algorithm to find
the nearest roadway segment for each trajectory point
and estimate the distance between the trajectory point
and the closest roadway segment (36). Only trajectories
within a buffer region of 5m from the roadway network
were considered. It is important to note that users can
ride e-scooters outside the roadway network (e.g., parks,
sidewalks, and parking lots). However, in this study, the
route choice was analyzed from a roadway usage per-
spective. For example, Figure 2b depicts a fake trajectory
along Austin’s Shoal Creek Trail. The filtering algorithm
only captured roadway segments at the southern end
that followed the gridded roadway network. This proce-
dure attempted to accurately match trajectory points to
roadway segments and allow for the exclusion of the
occasional trajectory point outside of the 5-m buffer.

Map-matching to count process:

� Each trajectory point is uniquely indexed with a
trip ID number and a sequence number. Similarly,
the 1-mi roadway segments are indexed with a
unique identifier.

� The shortest distance between the trajectory points
and the roadway segments is estimated using
PostGIS.

� The roadway ID of the closest segment to each
trajectory point is assigned.

� Trajectory points with a distance greater than 5m
are filtered.

Figure 2. (a) Map of Austin, Texas’ roadway network used in this analysis (0.1-mi segments) and (b) fictitious trajectory along Austin’s
Shoal Creek Trail and simplified roadway network.
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� The number of unique trajectory trips per road-
way segment per day are counted.

� The count of unique trajectory trips per day per
segment are averaged, according to each period
(pre- and during-pandemic).

Additional Data Sources

To explain changes in pick-up and drop-off locations and
roadway usage, this study obtained roadway, socioeco-
nomic, and transit information from five sources:
TxDOT, City of Austin, American Community Survey
(ACS), Capital Area Metropolitan Planning Organization
(CAMPO), and CapMetro. TxDOT supplied roadway
inventory information from the year 2018, which included
administrative, geometric, and traffic variables.
Socioeconomic information from 2019 was transformed
from census block groups and applied to traffic analysis
zones (TAZs). The 2018 ACS 1-year Estimates was used
to select population density, job density, household size
and incomes, and general demographics (e.g., age, gender,
and race). The City of Austin provided sidewalk and bike
lane information and e-scooter count data aggregated by
census tract. Lastly, CAMPO provided TAZ records from
2018, and CapMetro provided bus stop location data
from 2020. All information was joined to the individual
roadway segments in Austin, TX. Table 2 lists the sum-
mary statistics of all variables that were tested for inclu-
sion in statistical modeling.

Methods

The first research aim was to explore the spatiotemporal
differences in shared e-scooter trips before and during

the pandemic. The second aim was to analyze changes in
shared e-scooter trip counts by roadway segment to
understand how the pandemic may have affected the
route choice of this mode. Bike-share users take more
direct routes (36), and casual users’ trips are twice as long
as those of bike-share members (37). Shared e-scooter
users are casual riders (25, 26) undertaking recreational
trips; this represents a challenge for modelers wishing to
use discrete route choice models given the circuitous and
indirect paths typically associated with this trip type.
Although people make route choices, this understudied
mode might reveal roadway design preferences from real-
world route choices. Trips were divided by the two time
periods using March 13 as the start of the pandemic locally
in Austin, TX. Although this date was a week after a local
disaster was declared, it was the date when the Austin
Public Health declared two presumptive positive cases (i.e.,
when the pandemic ‘‘arrived’’). As a result of the pan-
demic, the shared e-scooter company paused operations in
Austin, TX, on March 27, 2020, and resumed operations
on April 22, 2020 (39). Figure 3, a to d, respectively show
a temporal plot of total trips for all shared e-scooter trips
in Austin; for all trips provided by Spin in the data set;
Spin’s market share by trips; and periods during the pan-
demic, as determined by key dates in Table 1.

The spatiotemporal analysis used basic summary sta-
tistics to qualitatively report the changes in trip depar-
ture times, duration, and trip ends. For this section of
the study, we used an equal prepandemic period as the
total during-pandemic period to remove biases in the
growth of e-scooter use. Maps with overlaid trip routes
across a pre- and during-pandemic period were used to
supplement findings. Statistical analysis was conducted
in R and maps were generated using TransCAD.

Table 2. Summary Statistics of Variables for Road Segments (n = 8,915)

Variable Mean SD Min. Median Max.

Average daily trip counts (prepandemic) 0.23 1.08 0.00 0.01 22.47
Average daily trip counts (during pandemic) 0.48 2.37 0.00 0.00 47.68
Daily vehicle miles traveled (VMT) 2,694.21 6,165.76 3.18 217.89 51,075.37
Number of lanes 2.30 0.75 1.00 2.00 6.00
Shoulder width (ft) 0.11 0.94 0.00 0.00 18.00
Speed limit (mph) 55.66 7.38 10.00 59.50 60.00
Truck percentage 3.30 0.63 0.00 3.20 12.50
Sidewalk within a 50-ft buffer (indicator) 0.60 0.49 0.00 1.00 1.00
Bike lane within a 50-ft buffer (indicator) 0.30 0.46 0.00 1.00 1.00
Number of transit stops within a 0.1-mi buffer 5.98 4.58 0.00 5.00 30.00
Population density (per mi2) 5,899.00 4,265.24 0.00 5,325.00 64,812.00
Total employment density (per mi2) 5,758.70 16,142.61 0.00 2,239.50 419,402.70
Retail employment density (per mi2) 1,116.50 3,479.85 0.00 446.10 120,286.60
Residential density (per mi2) 2,727.00 2,186.34 0.00 2,366.00 46,386.00
Household size 2.22 0.66 0.00 2.16 4.06
Median income ($10,000) 4.55 2.51 0.00 3.98 16.58

Note: SD = standard deviation; Min. = minimum; Max. = maximum.
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Finally, an NB count model was used to analyze the
average number of e-scooter trips along 0.1-mi roadway
segments during two periods: before the pandemic and
during the reopening period. This modeling structure
allows for an analysis of the covariates during different
periods by isolating their effect in a before-and-after
setting.

The expected number of daily trip counts, E Yið Þ, along
the ith segment is expressed as follows:

E Yið Þ= exp b0 +
X

k
xikbk + ei

� �
,

where
bk is the kth covariate;

ei is a random error term, which follows a Gamma distri-
bution, ei;Gamma(g, g);
Yi represents the average daily e-scooter trip count with
mean E Yið Þ=mi and variance Var(Yi)=mi + rm2

i , and
r is the dispersion parameter (r= 0 for a Poisson
model).

Additionally, a sensitivity analysis was applied to the
NB estimates to understand the covariates’ effects in the
before-and-after periods’ models. Specifically, for each
covariate, one standard deviation or binary change was
applied. The modified variables were passed to the model
to calculate the prediction. Then, the difference between
the mean of original prediction and permuted prediction
was calculated to represent the contribution of that cov-
ariate (i.e., practical significance). The sensitivity analysis

Figure 3. (a) Daily e-scooter trips in Austin (all companies), (b) daily e-scooter trips by the provider company, (c) daily percentage of
market share of the provider company, and (d) timeline of defined periods.
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allowed for a deeper understanding of the magnitude of
the covariates used in the models, and facilitated inter-
pretation of the results.

Results

Temporal Changes

Literature on COVID-19 effects on shared micromobility
found that trips became longer in length and duration
whereas departure times shifted away from traditional
peak periods. Figure 4, a and b, indicate that weekends

have higher daytime trip counts and that users are more
active on shared e-scooters on Friday evenings than dur-
ing any other period. Before the pandemic, trips tended
to peak in the afternoon hours, especially on the week-
end. During the pandemic (across both the lockdown
and reopening phases), there was a decrease in daytime
trips and a shift in the peak from afternoon to late-night
and early morning hours, at least on the weekend. The
former could indicate the effectiveness of stay-at-home
orders and WFH policies, which both decreased overall
mobility and increased the relative number of leisure
activities (40). The shift to more late-night trips during

Figure 4. (a) Count of hourly trips by day of week (prepandemic), (b) count of hourly trips by day of week (during pandemic), (c) trip
duration, and (d) trip distance.
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the pandemic may be attributed to activity-time shiftsor
a mode shift from ride-hailing to shared e-scooters to
avoid contact with members outside of one’s household
(5); however, the alignment of these trips with nighttime
social activities suggests that COVID-19 precautions
may not have been the motivating factor.

To understand changes in trip length, trip duration
and trip distance variables were partitioned into four
categories: before versus during the pandemic crossed
with weekday versus weekend (Figure 4, c and d). In gen-
eral, users spent more time on shared e-scooters during
weekends than on weekdays, probably owing to more
flexible schedules. The pandemic seems to have attracted
longer trips in both time and distance. There was a slight
decrease in the number of shorter trips (by distance),
which could be explained by a growth in outdoor exercise
and general physical activity during the lockdown that
may have replaced shorter shared e-scooter trips. At the
same time, longer trips could be an indicator of a willing-
ness to avoid shared modes (e.g., transit and ride-hail-
ing), as suggested by respondents in research by Rahimi
et al. (18).

Spatial Changes

In addition to changes in trip length and departure times,
there were changes in origin and destinations for trips
and trip routes taken before and during the pandemic.
Figure 5a plots all trips that start or end in central Austin
before and during the pandemic. Though Spin paused
operations between lockdown and reopening, there was

still a significant number of trip ends during the pan-
demic as in an equal number of days beforehand. The
map shows a decline in trip ends in the pandemic outside
the downtown gridded street network, namely in the
north and southwest quadrants of the map. The northern
cluster is centered around multifamily apartment build-
ings that predominantly serve university students. The
pandemic shut down the UT Austin campus and moved
classes online, reducing the need for e-scooters to/from
class (a frequent trip purpose found in a previous study
by Zuniga-Garcia and Machemehl [31]). Students may
have also relocated to their primary residence at the start
of the pandemic. The southwestern cluster includes resi-
dential neighborhoods and parkland. This suggests that
people were staying at home and not using e-scooters for
short trips. It also suggests a decline in e-scooters starting
or ending at parks, which aligned with findings from Li
et al. (22). Observations from trip ends alone are biased
by the availability of e-scooters near one’s origin and the
likelihood of finding one at the intended destination (if
making a roundtrip). The provider’s relocation of devices
may therefore have influenced trip-making patterns,
especially if the provider changed their strategy under
uncertain and unpredictable changes in demand during
the pandemic.

To understand whether users were still traveling
through these neighborhoods with lower origins and des-
tinations, we created a map with pandemic trip routes
(1,287) overlaid on prepandemic trip routes (2,360),
shown in Figure 5b. The inset map shows trips made in
the student-housing neighborhood (called West Campus)

Figure 5. (a) Change in trip ends by time period and (b) change in overlaid trip trajectories by time period.
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and the UT Austin campus. There was a noticeable
decline in on-campus and intra-West Campus e-scooter
trips during the pandemic. The second observation from
the larger map is that trips tended to be centered around
the downtown gridded network. This means that
although trips were longer during the pandemic, they
were more concentrated in the downtown region.
Moreover, whereas there were fewer trip ends at parks,

the trip trajectory data showed trips taking trails and
paths in parks while en route to their destination.

To better understand changes between trip ends, we
created maps showing average trip count by road seg-
ment (Figure 6, a and b) and desire lines between TAZ
centroids (Figure 6, c and d). Before the pandemic, trips
tended to be distinctly separated between UT Austin and
the downtown core. During the pandemic there seemed

Figure 6. (a) Average daily trips (prepandemic), (b) average daily trips (during pandemic), (c) desire lines (prepandemic), and (d) desire
lines (during pandemic).
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to be a greater link between West Campus/UT Austin
and downtown, perhaps a result of mode shifting.
Second, there were fewer trips made between residential
areas and the downtown and fewer trips within down-
town. Interestingly, there was an increase in east–west
trips between two TAZs south of downtown that was
not apparent beforehand. One explanation is that the
pandemic led to more local travel, and that e-scooter use
reflected this switch in destination choice behavior. A
third observation was a decrease in the number of trips
to/from nightlife hotspots. Before COVID-19, the
Rainey Street TAZ (orange dot, Figure 6c) had at least
five lines of medium thickness (i.e., five trips). Since bars
and indoor dining of restaurants were shuttered or
severely restricted in capacity during reopening, it is no
surprise that a decrease in trips was observed.

Trip ends were joined with TAZ socioeconomic vari-
ables to explain changes in trip end counts between the
two periods. Although 2010 TAZ shapefiles were used,
this analysis used 2020 estimates of all variables. Table 3
compares TAZs experiencing an increase in either trip
origins or destinations during the pandemic with TAZs
having any e-scooter trip before the pandemic. Zones
with an increase in trips were more populated than zones
with any recorded trips. Zones with more destination trip
ends than before the pandemic had more residents, larger
household sizes, and higher median incomes than TAZs
with increased trip origins. This suggests that this mode
was used to travel home during the pandemic rather than
between activities outside the home. Zones with increased
trip origins had smaller average household sizes and med-
ian household incomes than zones with any recorded
trips. Zones with increased destination trip ends were
concentrated closer to downtown, whereas zones with
increased origin ends included a portion of West Campus
where students reside, which could explain the lower
average household size and income variables.

One would also expect to see an increase in trips from
zones with fewer jobs since more people were working

from home. Although this hypothesis was true for total
employment, it varied by type of employment. TAZs
with higher destination numbers tended to have fewer
jobs, especially less basic and retail employment. Zones
with high non-UT Austin university employment did not
see an increase in e-scooter trip activity. All of these
results make intuitive sense given the impact of the pan-
demic on certain economic sectors.

Analysis of Roadway Choice

Two NB count models were developed to understand
roadway choice between the pre- and during-pandemic
periods. Table 4 presents the parameter estimates and
Figure 7 shows the parameters’ sensitivity analysis. The
sensitivity plots show how average daily trip counts
would change on a percentage basis if the data were to be
moved by one standard deviation (or a binary change),
all other conditions held constant. Table 4 indicates that
the dispersion parameters (r) for both models were
greater than zero, indicating that the data were overdis-
persed and an NB model was preferred over the Poisson
regression model.

In relation to covariate analysis, the segments’ daily
VMT coefficient indicated that fewer e-scooter trips were
expected on roadways with higher vehicle volumes. The
sensitivity analysis showed that an increment of 6,000
daily VMT (roughly one standard deviation) led to a
reduction of 10% in the average daily e-scooter trip
count during the prepandemic period. During the pan-
demic, this reduction was higher (20%) indicating that
users were traveling across roadway segments with lower
vehicle volumes during this period. Similarly, the greater
the posted speed limit and share of trucks, the less likely
that roadway was to see a shared e-scooter trip. For
example, an increment of 7mph (approximately one stan-
dard deviation) in the posted speed led to a reduction of
15% of e-scooter trips during both periods. Interestingly,
the greater the number of lanes and shoulder width, the

Table 3. TAZ Socioeconomic Attributes Explaining Increased Trip Ends (Average)

Name TAZs with any trips Increase in origins Increase in destinations

Population 669 751 852
Households 322 339 383
Household size (average) 1.63 1.50 1.64
Household income (median) $40,800 $40,300 $43,600
Total employment 793 697 614
Basic employment 52.8 69.3 30.8
Retail employment 158 143 130
Service employment 466 390 437
University employment (non-UT) 104 88.7 7.96

Note: TAZ = traffic analysis zone; UT = University of Texas.
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higher the count of shared e-scooter trips. One additional
lane increased the number of trips by more than 10%
(prepandemic) and 5% (during pandemic). The results
suggest that users were more cautious during the reopen-
ing period, with a preference for roadways with less vehi-
cle volume and fewer lanes. Even as traffic volumes fell
during the pandemic and e-scooters could take up more
roadway space, they were less likely to take roads with
more lanes (i.e., with higher expected VMT).

There were higher average daily trip counts on road
segments with nonmotorized infrastructure (sidewalks

and bike lanes). Predictably, the decline in traffic during
the pandemic increased average vehicle speeds, which
could explain why the coefficient for sidewalks increased
from 0.75 to 1.08 and bike lanes decreased from 0.70 to
0.47. If so, e-scooter users preferred roadway segments
with separated sidewalks to on-road bike lanes, even if
they were protected. The number of transit stops, an indi-
cator of pedestrian activity, presented a highly significant
effect in the models, based on the sensitivity analysis. The
results indicated that 4.5 more stops (one standard devia-
tion) in the roadway segment led to an increment of 60%

Table 4. Estimation Results of Negative Binomial for Daily e-Scooter Trip Counts per Roadway Segments

Trips prepandemic Trips during-pandemic

Coeff. SE P-value Coeff. SE P-value

VMT 21.87E-05 5.95E-06 0.00 23.86E-05 6.12E-06 0.00
Number of lanes 0.13 0.04 0.00 0.08 0.04 0.04
Shoulder width (ft) 0.07 0.03 0.02 0.07 0.03 0.04
Speed Limit (mph) 20.02 0.00 0.00 20.02 0.00 0.00
Truck percentage 20.14 0.05 0.00 20.06 0.04 0.15
Sidewalk (indicator) 0.75 0.09 0.00 1.08 0.08 0.00
Bikelane (indicator) 0.70 0.07 0.00 0.47 0.06 0.00
Number of transit stops 0.10 0.01 0.00 0.12 0.01 0.00
Population density (per mi2) 25.77E-06 2.03E-05 0.78 4.50E-06 1.93E-05 0.82
Total employment density (per mi2) 8.41E-06 9.49E-07 0.00 1.23E-05 1.06E-06 0.00
Retail employment density (per mi2) 6.39E-05 3.76E-06 0.00 8.61E-05 4.36E-06 0.00
Residential density (per mi2) 9.90E-05 3.44E-05 0.00 6.67E-05 3.40E-05 0.05
Household size 20.88 0.06 0.00 20.92 0.05 0.00
Median income ($10,000) 0.08 0.01 0.00 0.09 0.01 0.00
Intercept 21.08 0.36 0.00 20.82 0.34 0.02
No. of observations 8,915 na na na na na
Dispersion parameter ( r): 1.04 na na 0.69 na na
McFadden’s R2 0.50 na na 0.54 na na
Likelihood ratio test ( x2) 2,997 na na 3,888 na na
Prob . x2 0.00 na na 0.00 na na
2 3 loglikelihood 26,793 na na 29,898 na na

Note: VMT = vehicle miles traveled; Coeff. = coefficient; SE = standard error; P-value= probability value; na = not applicable.

Figure 7. (a) Sensitivity analysis (prepandemic) and (b) sensitivity analysis (during pandemic).
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in the number of e-scooter trips during the prepandemic
period and 70% for the reopening period. This finding
suggests that users were highly attracted to traversing
segments with more pedestrian infrastructure (in addition
to sidewalks) and that this effect increased during the
pandemic.

The population density variable was not statistically
significant at a 10% level. However, it remained in the
model owing to the relevance of this variable in the
demand of other modes. The sensitivity analysis also
indicated that this variable did not have a high influence
in the models. During the pandemic, fewer trips passed
through more densely populated residential areas. For
example, the sensitivity analysis showed that one stan-
dard deviation increment resulted in 25% more trips pre-
pandemic and only 15% during the pandemic. Also,
roads in TAZs with larger average household sizes
showed fewer trips, but of greater magnitude during the
pandemic. This could indicate the effectiveness of stay-
at-home and WFH policies in reducing average daily trip
counts. Job density had a positive effect on trip counts;
the sensitivity analysis indicated that one would expect
more e-scooter trips in areas with higher job densities
during the pandemic than before. Perhaps this was a
result of operational policies of positioning e-scooters in
downtown areas where jobs are centrally located, and
not necessarily indicative of the effectiveness of WFH
policies. Roadway segments in areas with an increase of
$40,000 in median income could expect 22% (prepan-
demic) and 26% (during pandemic) more e-scooter trips,
suggesting that a greater number of trips were made in
higher-income areas during the pandemic.

The effect of the pandemic on daily e-scooter trends
obtained from the regression models differed in certain
aspects from the daily mobility trends observed in the
Austin region, as shown in Figure 1. Specifically, there
were 10% more e-scooter trips in segments with a high
number of transit stations, whereas the mobility trend
showed a reduction of trips ending at transit stations
compared with the baseline. Similarly, the model sug-
gested that there were fewer trips in residential areas,
whereas the mobility study suggested higher activity in
these areas. However, it is important to highlight that
the demand for e-scooters was not directly captured by
the trajectory data. The data analyzed in this study cor-
responded to the observed trips, which were influenced
by the device reposition strategy of the company.

Limitations

This study obtained trip and trajectory data from a single
provider operating in Austin, TX. Spin has the second-
smallest fleet size, accounting for about 6% of the 15,850
devices (41). Though the market share by fleet size was

small, this provider had unusually high market share by
trips during the reopening phase (20% to 60%), owing to
the hesitancy of other vendors to restart operations (34).
Since the availability of a device influences willingness to
take a shared e-scooter, this analysis of trip and trajec-
tory data representing user demand for this mode and
route choice was inherently influenced by operational
decisions (e.g., rebalancing). An absence of trips for a
given spatiotemporal combination is not indicative of an
absence of demand for shared e-scooters since if there are
no devices within a customer’s maximum access distance
then an alternative mode is chosen or the trip foregone.

Exclusively using trip data potentially ignores valu-
able research questions, specifically, who used shared e-
scooters during the pandemic, was a use change
observed, and if so, why? The authors acknowledge these
questions and encourage additional research in ensuring
equitable access to this mode. Second, the data set of tra-
jectories relies on the assumption that the devices’ units
are accurately collecting location data. The authors used
a filtering approach to remove specific trips that may
have biased the results, and suggest research in alterna-
tive computer-aided approaches using validated e-
scooter data to filter out false data. The use of a road
segment count model also ignored routes that used trails,
paths, and private parking lots, which are observable in
real life and in Figure 2b. Nevertheless, most direct
routes use roadway or adjacent sidewalk and bike lane
infrastructure. The count model of trips by roadway seg-
ment will capture these routes.

This study chose a segment-level count model to
explain route choice behavior given the difficulty in gen-
erating choice sets in discrete choice models for a casual
mode oriented for recreational trip purposes. Future
work should use a modeling approach with unrestrictive
choice sets and use the roadway design variables from
this study that explained the changes in roadway segment
usage. The models developed in this study did not
account for spatial autocorrelation. It is therefore recom-
mended that future research in the topic evaluate spatial
count models for overdispersed data. Furthermore, the
models did not include weather variables. Research into
the topic has found that weather influences e-scooter
demand (27, 42), therefore, analysis of e-scooter route
choice in relation to weather effects is also recommended.

Conclusion

This study examined shared e-scooter trip and trajectory
data in Austin, TX, before and during the COVID-19
pandemic. Our data confirmed that average shared e-
scooter trip length (in time and distance) increased dur-
ing the pandemic, and that temporal trends with this
mode were largely undisturbed (i.e., increased trips and
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trip lengths during the weekend compared with week-
days). Unlike prior work, this unique data set included
trajectories, which allowed for a finer analysis of route
choice preferences before and during the pandemic. We
built an NB count model to statistically investigate these
route preferences in addition to zonal-level before–during
exploratory analyses with maps.

The count model included segment-level built environ-
ment variables as well as zonal-level demographic data,
including density attributes. A before-and-after pandemic
modeling setting was implemented to isolate effects in
these periods and to provide a sensitivity analysis com-
parison. The results suggested that riders may have been
more cautious during the pandemic. There were more
average daily trips on road segments with lower annual
vehicle volume (prepandemic levels) and fewer lanes dur-
ing the pandemic. Also, more e-scooter trips were taken
on roads with pedestrian infrastructure (such as side-
walks and bus stops) during the pandemic than before.
Roads with dedicated bike lanes did not play as large a
role in route choice, which aligned with the finding that
less trafficked roads may not have separated travel and
bike lanes. Interestingly, riders made fewer trips in areas
with larger household sizes and higher residential densi-
ties, which could be related to the effectiveness of stay-at-
home and WFH policies in reducing average daily trip
counts.

Our analysis suggested that shared e-scooter users are
still attracted to sidewalk infrastructure, even though
curb use policies often prohibit riding on sidewalks.
Adding bike lanes as traffic levels return to prepandemic
levels may help to keep scooters off sidewalks and help in
attracting e-scooter users to these roads. The recovery for
shared modes like public transit has been slow. E-scooter
trips take road segments with transit routes, or at least
transit stops. Given the need to address first- and last-
mile connections, public transit agencies could experi-
ment with free transfer passes to attract riders.

Exploratory zonal-level maps indicated that shared e-
scooter demand fell during the pandemic in and around
the main university, UT Austin, and to/from nightlife
areas. This is partially explained by Spin pausing opera-
tions during the initial lockdown phase of the pandemic.
There also appeared to be a decline in the number of
trips made at parks, though users continued to use park
infrastructure (e.g., trails, pedestrian bridges) to travel
between places. Transportation officials may overlook
the use of parks as active transportation assets. This tra-
jectory data revealed that urban trails do attract e-
scooter users, even if these are just leisure trips.
Enforcing existing trail etiquette and rules and planning
for a mix of trails and traditional bicycle/pedestrian
infrastructure could attract many active transportation
road users.

Data showed greater e-scooter connectivity during the
pandemic between neighborhoods in South Austin (rela-
tive to downtown) and between West Campus/UT
Austin and the downtown area. A plausible explanation
for an increase in these trips is mode switching or the
desire for recreation or to shop locally at destinations
served by shared e-scooters, as suggested by the
decreased daily travel distance observed in longitudinal
mobility surveys (40). However, this study does not pre-
suppose who these riders are or why they chose to use
this mode (i.e., mode shifting analysis) and leaves this
research question unanswered.

The results and methods used in this research effort
could serve multiple purposes. From the policy perspec-
tive, this analysis helps to understand the effectiveness of
policies aimed at reducing social contact during the pan-
demic. Regulations to discourage social gatherings in
confined spaces, such as in nightlife districts, appear to
have diminished total trips.

From the transportation point of view, this study has
provided an analysis of the impact of the pandemic on
shared micromobility usage, both spatially and tempo-
rally. As vehicle volumes return to (or exceed) prepan-
demic levels, it is critical to study and reflect on how to
encourage riders to return to shared modes, like public
transit and micromobility, and incorporate lessons of
resiliency into these systems. From the planners’ perspec-
tive, understanding the route choice of e-scooter users
could improve the design of nonmotorized infrastruc-
ture, which supports shared micromobility. By improv-
ing sidewalk infrastructure and protecting or separating
bike lanes from travel lanes, cities could attract more
active transportation users.

From a research perspective, this study has shown the
usefulness of trajectory data in developing diverse
research analysis and providing methods that could be
used while also protecting personally identifiable
information.
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