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Dynamic incorporation of multiple in silico functional 
annotations empowers rare variant association analysis of large 
whole genome sequencing studies at scale

A full list of authors and affiliations appears at the end of the article.

Abstract

Large-scale whole genome sequencing (WGS) studies have enabled the analysis of rare variants 

(RVs) associated with complex phenotypes. Commonly used RV association tests (RVATs) have 

limited scope to leverage variant functions. We propose STAAR (variant-Set Test for Association 

using Annotation infoRmation), a scalable and powerful RVAT method that effectively 

incorporates both variant categories and multiple complementary annotations using a dynamic 

weighting scheme. For the latter, we introduce “annotation Principal Components”, multi-

dimensional summaries of in silico variant annotations. STAAR accounts for population structure 

and relatedness, and is scalable for analyzing very large cohort and biobank WGS studies of 

continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid 

traits in 12,316 discovery samples and 17,822 replication samples from the Trans-Omics for 

Precision Medicine program. We discovered and replicated novel RV associations, including 

disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-

density lipoprotein cholesterol.

An increasing number of whole genome/exome sequencing (WGS/WES) studies are being 

conducted to investigate the genetic bases of human diseases and traits, including the Trans-

Omics for Precision Medicine Program (TOPMed) of the National Heart, Lung and Blood 

Institute (NHLBI) and the Genome Sequencing Program (GSP) of the National Human 

Genome Research Institute (NHGRI). Such studies enable assessment of associations 

between complex traits and both coding and non-coding rare variants (RVs; minor allele 

frequency (MAF) < 1%) across the genome. However, single-variant analyses typically have 
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low power to identify associations with rare variants1–3. To improve power, variant-set tests 

have been proposed to jointly test the effects of given sets of multiple rare variants. These 

methods include the burden test4–7, Sequence Kernel Association Test (SKAT)8, and their 

various combinations9–12. In parallel, external biological information provided by functional 

annotations, such as conservation scores and predicted enhancer status, has been 

successfully used for prioritizing plausibly causal common variants in fine-mapping studies, 

partitioning heritability in GWAS, and predicting genetic risk13–17. It is of substantial 

interest to incorporate variant functional annotations effectively, to boost the power of RV 

analysis of WGS association studies18,19.

Variant functional annotations take two forms: (i) qualitative functional groupings into 

genomic elements, such as Variant Effect Predictor (VEP) categories20,21, and (ii) 

quantitative functional scores available for variants across the genome, including protein 

functional scores22,23, evolutionary conservation scores24,25, epigenetic measures26, and 

integrative functional scores27. Different annotation scores capture diverse aspects of variant 

function28,29. Given the diversity of available annotations, efforts have been made to 

aggregate the evidence they provide on genomic function30. Simultaneous use of multiple, 

varied functional annotation scores in variant-set tests could improve rare variant association 

study (RVAS) power, for example, by optimally selecting and weighting plausibly-causal 

rare variants31.

To boost power for variant-set tests in WGS RVAS, we propose the variant-Set Test for 

Association using Annotation infoRmation (STAAR), a general framework that dynamically 

incorporates both qualitative functional categories and quantitative complementary 

annotation scores using a unified omnibus multi-dimensional weighting scheme. For the 

latter, to effectively capture the multi-faceted biological impact of a variant, we introduce 

annotation Principal Components (aPCs), multi-dimensional summaries of annotation scores 

that can be leveraged in the STAAR framework.

Recent methods32–34 have incorporated functional annotations in genetic association studies. 

However, these methods are not scalable to analyze large-scale WGS studies while 

accounting for relatedness and population structure. Large scale WGS and WES studies, 

such as TOPMed and GSP, include a considerable fraction of related and ancestrally diverse 

samples. STAAR accounts for both relatedness and population structure, as well as 

longitudinal follow-up designs, for both quantitative and dichotomous traits, using a 

Generalized Linear Mixed Models (GLMM) framework35 that includes linear and logistic 

mixed models36,37. Using sparse Genetic Relatedness Matrices (GRMs)38, STAAR is 

computationally scalable for very large WGS studies and biobanks of hundreds of thousands 

of samples.

We perform herein extensive simulation studies to demonstrate that STAAR can achieve 

substantially greater power compared to conventional variant-set tests, while maintaining 

accurate type I error rates for both quantitative and dichotomous phenotypes. We then apply 

STAAR to perform WGS gene-centric and sliding window-based genetic region analysis of 

12,316 discovery samples and 17,822 replication samples with four quantitative lipid traits: 

low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), 
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triglycerides (TG), and total cholesterol (TC) from the NHLBI TOPMed program. We show 

that STAAR outperforms existing methods and identifies novel and replicated associations, 

including with LDL-C in disruptive missense RVs of NPC1L1, and in an intergenic region 

near APOC1P1.

Results

Overview of methods.

STAAR is a general framework for analyzing WGS RVAS at scale by using both qualitative 

functional categories as well as multiple in silico variant annotation scores within a variant-

set, while accounting for population structure and relatedness by fitting linear and logistic 

mixed models for quantitative and dichotomous traits using fast and scalable algorithms. For 

each variant-set, there are two main components of the STAAR framework: (i) using 

annotation PCs to capture and prioritize multi-dimensional variant biological functions, and 

(ii) testing the association between each variant-set and phenotypes by incorporating these 

annotation PCs as well as other integrative functional scores and MAFs in the STAAR test 

statistics using an omnibus weighting scheme (Fig. 1).

Variants often influence genes and gene products through multiple mechanisms. We extract 

a broad set of variant functional annotations (Supplementary Table 1), including both 

individual and ensemble functional scores, from various databases, such as ENCODE26, 

Roadmap Epigenomics39, and other evolutionary and protein annotation databases27,40,41. A 

correlation heatmap across variants in the genome (Fig. 2) shows that the correlation 

structure among all individual annotations is approximately block-diagonal, with highly 

correlated blocks representing different classes of variant function, e.g., epigenetic function, 

evolutionary conservation, protein function, local nucleotide diversity. We introduce 

annotation Principal Components defined as the first PCs calculated from the set of 

individual functional annotation scores in each functional block (Supplementary Table 1 and 

Online Methods). Annotation PCs effectively reduce the dimensionality of the large number 

of individual annotations and summarize multiple aspects of variant function.

The STAAR framework first calculates a set of multiple candidate test statistics using 

different annotation weights under a particular testing approach (Fig. 1d). For each type of 

RV test, STAAR then uses ACAT (aggregated Cauchy association test) method to combine 

the resulting P-values calculated using different weights in order to effectively and 

powerfully aggregate the association strength from all annotations in a data-adaptive manner 

(Fig. 1d and Online Methods). The ACAT method for combining P-values is accurate and 

computationally efficient, while accounting for arbitrary correlation structure between 

tests9,42. To leverage the advantages of different types of tests, we propose an omnibus test 

in the STAAR framework (STAAR-O) by combining P-values across different types of 

multiple-annotation-weighted variant-set tests using the ACAT method (Fig. 1d and Online 

Methods).
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Simulation studies.

To evaluate the type I error and power of STAAR compared to conventional variant-set tests, 

we performed simulation studies under a variety of configurations. We followed the steps 

described in the Data simulation section of the Online Methods to generate both continuous 

and dichotomous phenotypes. We generated genotypes by simulating 20,000 sequences for 

100 different regions with each spanning 1 Mb. The data were generated to mimic the 

linkage disequilibrium (LD) structure of an African American population by using the 

calibration coalescent model (COSI)43. We randomly selected 5-kb regions from these 1-Mb 

regions and considered sample sizes of 2,500, 5,000, and 10,000 for each replicate. The 

simulation studies focused on aggregating uncommon variants with MAF < 5%.

Type I error simulations.

The empirical type I error rates for STAAR-O were evaluated based on 109 simulations at 

α = 10−5, 10−6, 10−7 for continuous and dichotomous traits (Supplementary Table 2). The 

results show that the type I error rate for STAAR-O appeared to be well controlled for both 

continuous and dichotomous traits at all α levels. For continuous traits, STAAR-O delivered 

accurate empirical type I error rates. For dichotomous traits and the smallest α level 

considered of 10−7, STAAR-O was slightly conservative for moderate sample sizes (2,500 

individuals); however, its type I error rate came close to the nominal level with larger sample 

sizes.

Empirical power simulations.

Next, we evaluated the power of STAAR empirically by incorporating MAF and 10 

annotations into its analysis and comparing results with conventional variant-set tests in a 

variety of configurations. Power was estimated as the proportion of P-values less than 

α = 10−7 based on 104 replicates. Causality of variants was allowed to be dependent on 

different sets of annotations through a logistic model (Online Methods). We considered 

different proportions of causal variants (5%, 15%, 35% on average) in the signal region. For 

both continuous and dichotomous traits, STAAR-O incorporating all 10 annotations had 

higher power than the conventional variant-set tests in terms of signal region detection 

(Supplementary Figs. 1–4). Power simulation results of STAAR-O for different magnitudes 

of effect sizes and different proportions of effect size directions yielded the same conclusion 

(Supplementary Figs. 1, 5, and 6). Overall, our simulation studies showed that STAAR-O 

could provide considerably higher power than conventional variant-set tests.

Association analysis of lipid traits in the TOPMed WGS data.

We applied STAAR to identify RV-sets associated with four quantitative lipid traits (LDL-C, 

HDL-C, TG and TC) using TOPMed WGS data44,45. LDL-C and TC were adjusted for the 

presence of medications as before44. DNA samples were sequenced at >30X target coverage. 

The discovery phase consists of four study cohorts of TOPMed Freeze 3. The replication 

phase consists of ten different study cohorts in TOPMed Freeze 5 that were not in Freeze 3 

(Supplementary Note and Supplementary Table 3).
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Sample-level and variant-level quality control (QC) were performed44,45. There were 12,316 

discovery samples, which had 155 million single nucleotide variants (SNVs), and 17,822 

replication samples, which had 188 million SNVs. The TOPMed data consist of ancestrally 

diverse and multi-ethnic related samples. Race/ethnicity was defined using a combination of 

self-reported race/ethnicity and study recruitment information. The discovery cohorts consist 

of 4,580 (37.2%) Black or African American, 6,266 (50.9%) White, 543 (4.4%) Asian 

American, and 927 (7.5%) Hispanic/Latino American. Among all samples in discovery 

phase, 3,577 (29.0%) had first-degree relatedness, 491 (4.0%) had second-degree 

relatedness, and 273 (2.2%) had third-degree relatedness (Supplementary Fig. 7). Among all 

SNVs observed in the discovery samples, there were 6.5 million (4.2%) common variants 

(MAF > 5%), 5.3 million (3.4%) low frequency variants (1% ≤ MAF ≤ 5%), and 143.2 

million (92.4%) rare variants (MAF < 1%). The race/ethnicity distribution, related sample 

distribution, and variant number distribution for replication phase and pooled samples 

(samples from both discovery phase and replication phase) are given in Supplementary Table 

4.

Our study used the proposed STAAR-O method to perform (i) gene-centric analysis using 

RV-sets based on functional categories, and (ii) genetic region analysis using variant-sets 

defined by 2-kb sliding windows with 1-kb skip length across the genome. We adjusted for 

age, age2, sex, race/ethnicity, study, and the first 10 ancestral PCs, while controlling for 

relatedness using linear mixed models, with inverse-rank normal transformation applied to 

phenotypes (Online Methods). Race/ethnicity was included as a covariate to adjust for 

sociocultural and environmental factors, while genetic ancestry differences were captured by 

the inclusion of the ancestral PCs. In addition to the two MAF weights3, we incorporated 13 

aggregated functional annotation scores in STAAR-O: 3 integrative scores (CADD27, 

LINSIGHT46, and FATHMM-XF47) and 10 aPCs. Figure 2 summarizes the correlation 

among all functional annotations, including 60 individual scores, 3 integrative scores, and 10 

aPCs.

Gene-centric association analysis of coding and non-coding rare variants.

We performed gene-centric analysis to identify whether rare variants in coding, promoter, 

and enhancer regions of genes are associated with lipid traits using STAAR-O. For each of 

the four lipid traits, we analyzed five functional categories (masks) of coding and non-

coding variants: (i) pLoF (stop gain, stop loss and splice) RVs, (ii) missense RVs, (iii) 

synonymous RVs, (iv) promoter RVs, and (v) enhancer RVs. The pLoF, missense, and 

synonymous RVs were defined by GENCODE VEP categories20,21. The promoter RVs were 

defined as RVs in the +/− 3-kb window of transcription starting site (TSS) with overlap of 

Cap Analysis of Gene Expression (CAGE) sites. The enhancer RVs were defined as RVs in 

GeneHancer predicted regions with overlap of CAGE sites48–50. Within each gene functional 

category, we tested for an association between rare variants (MAF < 1%) in the functional 

category and lipid traits using STAAR-O with the 13 aggregated functional annotations 

described above. For missense RVs, we incorporated an additional annotation functional 

category predicting functionally “disruptive” variants determined by MetaSVM51, which 

measures the deleteriousness of missense mutations. The overall distributions of STAAR-O 

P-values were well calibrated for all four lipid phenotypes (Supplementary Fig. 8). We 
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considered in unconditional analysis a Bonferroni-corrected genome-wide significance 

threshold of α = 0.05/(20, 000 × 5) = 5.00 × 10−7 accounting for five different masks across 

protein-coding genes.

STAAR-O identified 21 genome-wide significant associations with four lipid phenotypes 

using unconditional analysis of the discovery samples (Supplementary Table 5 and 

Supplementary Fig. 9). After conditioning on known lipids-associated variants44,52–67, 11 

out of the 21 associations remained significant at the Bonferroni correction level 

0.05/21 = 2.38 × 10−3 using the discovery samples. These included associations with LDL-C 

(pLoF RVs in PCSK9 and APOB, missense RVs in PCSK9, NPC1L1, and APOE), 

association with HDL-C (pLoF RVs in APOC3), association with TG (pLoF RVs in 

APOC3), and associations with TC (pLoF RVs in PCSK9 and APOB, missense RVs in 

PCSK9 and LIPG) (Table 1). Of these 11 associations, 10 were replicated at the Bonferroni-

corrected level 0.05/11 = 4.55 × 10−3 after adjusting for known lipid-associated variants. The 

association between APOC3 pLoF RVs and HDL-C was unreported in a previous study 

using the same TOPMed Freeze 3 data44.

The association between missense RVs in NPC1L1 and LDL-C was not detected by the 

conventional variant-set tests and has not been observed in previous studies44,55,68,69. In the 

discovery phase, its unconditional STAAR-O P-value was 1.29 × 10−7, while the most 

significant conventional variant-set test was the burden test with P = 7.04 × 10−6 . This 

association was not driven by any single RV (minimum single RV P-value > 10−3) but was 

due to the aggregated effects of multiple missense RVs. The P-value of the burden test 

additionally weighted by MetaSVM was the smallest of all annotations (P = 3.15 × 10−9),
highlighting the significant association between disruptive missense RVs in NPC1L1 and 

LDL-C (Supplementary Fig. 10). Among all 174 missense RVs in NPC1L1 from the 

discovery samples, the disruptive missense RVs as predicted by MetaSVM were enriched 

among variants with higher aPC-Conservation scores (Supplementary Table 6). This 

contributed to the test weighted by aPC-Conservation being the most significant across all 

quantitative annotation-weighted tests included in STAAR-O (burden P = 3.12 × 10−7). As 

aPC-Conservation summarizes variants’ evolutionary conservation scores, it is informative 

in predicting whether or not variants are deleterious and thus functional70,71. Conditioning 

on the ten known common variants in NPC1L1 associated with LDL-C (Supplementary 

Table 7)57–61,65–67, the association between disruptive missense RVs in NPC1L1 and LDL-

C remained significant after Bonferroni correction with the conditional analysis 

P = 9.27 × 10−9 in discovery phase.

This association was validated in replication phase with P = 2.59 × 10−4 and with 

P = 4.02 × 10−11 in pooled samples in conditional analysis. This significant association was 

also validated using whole exome sequencing data from the UK Biobank72 (n = 40, 519) with 

P = 2.49 × 10−4 in conditional analysis.
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Genetic region analysis of rare variants.

We performed genetic region analysis to determine whether RVs within sliding windows are 

associated with lipid traits. The sliding windows were defined to be 2 kb in length, start at 

position 0 bp for each chromosome, and have a skip length of 1 kb. Windows with a total 

minor allele count less than 10 were excluded from the analysis, resulting in a total of 2.66 

million 2-kb overlapping windows, with a median of 104 RVs in each sliding window 

among discovery samples. For each 2-kb window, we tested for an association between the 

RVs in the window and each lipid trait using STAAR-O by incorporating 13 aggregated 

quantitative annotations. The overall distributions of STAAR-O P-values were well 

calibrated for all four lipid phenotypes (Fig. 3b and Supplementary Figs. 11b, 12b, and 13b). 

Using the Bonferroni correction, we set the genome-wide significance threshold at 

α = 0.05/(2.66 × 106) = 1.88 × 10−8 across sliding windows (Fig. 3a and Supplementary Figs. 

11a, 12a, and 13a). Supplementary Table 8 summarizes the significant 2-kb sliding windows 

identified using STAAR-O. Overall, by dynamically incorporating multiple functional 

annotations capturing different aspects of variant function, STAAR-O was able to detect 

more significant sliding windows, and showed consistently smaller P-values for top sliding 

windows compared with conventional variant-set tests weighted using MAFs (Fig. 3c,d and 

Supplementary Figs. 11c–f, 12c, and 14). Burden tests were not able to detect any window 

that reached significance.

Among the 59 genome-wide significant sliding windows detected by STAAR-O in 

unconditional analysis, 17 remained significant at the Bonferroni correction level 

0.05/59 = 8.47 × 10−4 after conditioning on known lipids-associated variants using the 

discovery samples (Table 2). For LDL-C, the significant sliding windows were located in 

gene PCSK9 or in a 50-kb region on chromosome 19 including the APOE cluster. For TC, 

all of the significant sliding windows were located in the same areas as for LDL-C. For TG, 

STAAR-O detected two consecutive significant sliding windows within APOC3, whereas no 

significant sliding windows were detected for HDL-C. Of these 17 associations, six were 

replicated at level 0.05 /17 = 2.94 × 10−3 after Bonferroni correction and another four were 

replicated at level 0.05/9 = 5.56 × 10−3 after Bonferroni correction for nine non-overlapping 

sliding windows in conditional analysis of replication samples17, including a sliding window 

located downstream of APOC1P1 (Chr 19: 44,931,528 bp - 44,933,527 bp), which was 

significantly associated with LDL-C but undetected by the burden test, SKAT, and ACAT-V 

(Table 2 and Fig. 3c).

The top variant of the significant sliding window located downstream of APOC1P1 was 

rs370625306 (MAF = 0.005, P = 8.71 × 10−8), which was not significant at a Bonferroni-

corrected threshold (α = 0.05/(1.51 × 107) = 3.31 × 10−9) in individual variant analysis. This 

rare variant and the second top variant in these windows 

(rs9749443, MAF = 0.009, P = 2.46 × 10−5) were upweighted by aPC-Epigenetic in STAAR-O 

(Supplementary Fig. 15). Specifically, the aPC-Epigenetic scores of rs370625306 and 

rs9749443 ranked in the top 10% and top 30% among all RVs, respectively, in each sliding 

window. Conditioning on the two known common variants rs7412 and rs429358 in APOE 
associated with LDL-C55, the strength of association of both sliding windows was reduced 
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but remained significant (Table 2). Similar results were found after further conditioning on 

APOE haplotypes using these two SNPs (Supplementary Table 8). This suggests that the 

effects of RVs in this sliding window are not fully captured by the two known common 

LDL-associated variants. STAAR-O also identified and replicated two highly significant 

windows in APOC3 associated with TG in conditional analysis that were undetected by 

SKAT and burden test73.

STAAR identifies more associations using relevant tissue functional annotations.

To evaluate the effect of tissue specificity, we compared the performance of STAAR-O in 

both gene-centric and genetic region analysis by incorporating liver (a central hub for lipid 

metabolism), heart, and brain annotations. For each tissue, we calculated a tissue-specific 

aPC from tissue-specific DNase, H3K4me3, H3K27ac and H3K27me3 from ENCODE 

(Supplementary Table 9)26,74. We used tissue-specific CAGE sites with overlap of RVs in 

the +/− 3-kb window of TSS and GeneHancers to define promoter and enhancer RV masks 

in gene-centric analysis. To make a fair comparison between tissues, we calculated STAAR-

O P-values based solely on the tissue-specific aPC and without incorporating the MAF and 

other annotations.

Overall, the use of liver annotation resulted in more significant levels of association than 

heart and brain annotations, as would be expected for lipid traits, although no additional 

replicated conditionally significant association was detected by using tissue-specific 

annotations. STAAR-O identified 9 and 8 replicated conditionally significant associations by 

using liver annotation in gene-centric and genetic region analysis, respectively 

(Supplementary Tables 10 and 11). Among these 17 significant associations, two were not 

seen when heart annotation was used and two were not seen when brain annotation was 

used, and no additional associations were detected by using heart and brain annotations 

(Supplementary Tables 10 and 11). Furthermore, more suggestive significant associations 

were detected when using liver annotation than the other two tissues at various levels of 

unconditional P-value thresholds in the discovery phase (Supplementary Figs. 16 and 17).

Computation cost.

We developed an R package, STAAR, to perform scalable variant-set association tests 

incorporating multiple variant annotations for WGS RVAS. Using sparse GRMs38, STAAR 

scales well both in terms of computation time and memory for very large-scale WGS 

association studies, such as sample sizes in TOPMed, GSP, and UK Biobank. The 

computation time for STAAR-O to perform WGS gene-centric and genetic region analysis 

on 30,000 related samples using the TOPMed data requires 15 hours for 100 2.10 GHz 

computing cores with 6 GB memory for each lipid trait. Analyzing 500,000 simulated 

related samples mimicking the UK Biobank sample size requires 26 hours for WGS analysis 

using the same approach and computational resources (Online Methods).

Discussion

We propose STAAR as a general, computationally scalable framework that effectively 

incorporates multiple qualitative and quantitative variant functional annotations to boost 
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power for variant-set tests for continuous and binary traits in WGS RVAS, while accounting 

for both population structure and relatedness using GLMMs.

We highlighted STAAR-O, the omnibus test that aggregates multiple annotation-weighted 

tests in the STAAR framework. We focused on two types of WGS RV association analyses 

using STAAR-O: gene-centric analyses by grouping coding and non-coding variants into 

functional categories for each protein-coding gene, and agnostic genetic region analyses 

using sliding windows. In extensive simulation studies, we demonstrated that STAAR-O 

achieves substantial power gain compared with conventional variant-set tests weighted by 

MAF, while maintaining accurate type I error rates for both quantitative and dichotomous 

phenotypes.

In a WGS RV analysis of lipid traits using the TOPMed data, STAAR-O identified several 

conditionally significant functional categories associated with lipid traits in gene-centric 

analysis (including NPC1L1 missense RVs and LDL-C; APOC3 pLoF RVs and HDL-C; and 

LIPG missense RVs and TC) that were missed by the previous study using the same 

TOPMed data44. Earlier studies reported marginal association between inactivating 

mutations (pLoF RVs and frameshift indels) in NPC1L1 and LDL-C with P = 0.0469, which 

was replicated using the pooled TOPMed samples (P = 0.02), no significant association 

between pLoF RVs and LDL-C was found (P = 0.15 ) . STAAR-O identified much more 

significant novel association, which replicated, between missense RVs in NPC1L1 and LDL-

C, which was driven by disruptive missense RVs (conditional P = 4.02 × 10−11 in pooled 

samples). None of these disruptive missense RVs was reported in ClinVar75, suggesting that 

the findings from emerging WGS studies can help guide the expansion of the ClinVar 

database. NPC1L1 is the direct molecular target of the lipid-lowering drug ezetimibe, which 

reduces the absorption of cholesterol by binding to NPC1L176. STAAR-O also suggested 

several conditional associations in the discovery phase that were validated in our replication 

phase and achieved significance in pooled samples (Supplementary Table 12).

In agnostic sliding-window based genetic region analysis, STAAR-O detected and replicated 

10 sliding windows after conditioning on known variants, including association between an 

intergenic region located downstream of APOC1P1 and LDL-C, that were not detected using 

conventional tests. This detected APOC1P1 region is located in the hepatic control region 2 

(HCR-2) that regulates hepatic expression of apolipoproteins. By further conditioning on the 

APOE haplotypes and rs35136575, a common variant previously found in the downstream 

HCR-2 associated with LDL-C77, the strength of association was reduced but remained 

significant (Supplementary Table 8). This discovery is due to upweighting several plausibly 

causal rare variants that have regulatory functions using aPC-Epigenetic scores in STAAR-O 

(Supplementary Fig. 15 and Supplementary Table 13). These results highlight that 

incorporating multiple functional annotations using STAAR can effectively boost power for 

WGS RVAS.

To capture multiple aspects of variant functionality, we introduced annotation PCs by 

performing dimension reduction of a large number of diverse individual annotations from 

various external databases. See Online Methods for an example demonstrating that aPCs 

explain diverse and complementary functionality of known LDL-associated functional rare 
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variants, and STAAR provides greater power for RV association tests by upweighting these 

variants using aPCs.

In practice, STAAR is very flexible and users can determine the set of individual annotations 

to calculate aPCs and the number of aPCs and integrative functional scores and other 

qualitative scores to be used, as well as tissue, cell-type and phenotype-specific variant 

annotations78–80. In this paper, we group the individual annotations based on biological 

knowledge; users can also apply data-driven approaches, such as clustering, to group 

annotations for aPC calculation. We also demonstrate that STAAR detects more associations 

using relevant tissue functional annotations. It will be of interest, in future research, to 

incorporate improved rare variant effect size models in the weights to further improve power 

for RVAS81,82.

The STAAR procedure is fast and scalable for very large WGS studies and biobanks of 

hundreds of thousands to millions of samples for both quantitative and dichotomous 

phenotypes as it uses estimated sparse GRMs38 to fit the null GLMM and to scan the 

genome. Besides using sliding windows of a pre-specified fixed window length, STAAR 

could be extended to flexibly detect the sizes and locations of coding and non-coding rare 

variant association regions using the dynamic window analysis method SCANG83. In 

addition, STAAR could be extended to settings with survival, unbalanced case-control, and 

multiple phenotypes, and hence could provide a comprehensive framework for WGS RVAS. 

Thus, STAAR provides a powerful and flexible tool for variant association discovery in 

many settings to explore the molecular basis of common diseases.

Online Methods

Notations and model.

Suppose there are n subjects with M total variants sequenced across the whole genome. 

Given a genetic set of p variants, for subject i, let Y i denote a continuous or dichotomous 

trait with mean μi; Xi = (Xi1, …, Xiq)T  denote q covariates, such as age, gender, ancestral 

principal components; and Gi = (Gi1, …, Gip)T  denote the genotype information of the p 

genetic variants in a variant-set.

When the data consist of unrelated samples, we consider the following Generalized Linear 

Model (GLM)

g μi = α0 + Xi
Tα + Gi

Tβ, (1)

Where g(μ) = μ for a continuous normally distributed trait, g(μ) = logit(μ) for a dichotomous 

trait, α0 is an intercept, α = (α1, …, αq)T  is a vector of regression coefficients for Xi, and 

β = (β1, …, βp)T  is a vector of regression coefficients for Gi.

When the data consist of related samples, we consider the following Generalized Linear 

Mixed Model (GLMM)35−37
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g μi = α0 + Xi
Tα + Gi

Tβ + bi, (2)

where the random effects bi account for remaining population structure unaccounted by 

ancestral PCs, relatedness, and other between-observation correlation. We assume that 

b = (b1, …, bn)T N 0, ∑l = 1
L θlΦl  with variance components θl and known covariance 

matrices Φl. The random effects b can be decomposed into a sum of multiple random effects 

to account for different sources of relatedness and correlation as b = ∑l = 1
L bl with 

bl N 0, θlΦl . For example, b1 accounts for population structure and family relatedness by 

using the Genetic Relatedness Matrices (GRMs) as its covariance matrix Φ184,85. A sparse 

GRM can be used to scale up computation38. Additional random effects b2, ⋯, bL can be 

used to account for complex sampling designs, such as correlation between repeated 

measures from longitudinal studies using subject-specific random intercepts and slopes and 

hierarchical designs. The remaining variables are defined in the same way as those in the 

GLM (1). Under both the GLM and the GLMM, we are interested in testing the null 

hypothesis of whether the variant-set is associated with the phenotype, adjusting for 

covariates and relatedness, which corresponds to H0:β = 0, that is, β1 = β2 = ⋯ = βp = 0.

Conventional variant-set tests.

Conventional score-based aggregation methods allow for jointly testing the association 

between variants in the genetic set and phenotype. In particular, burden tests4–7 assume that 

βj = wjβ, where β is a constant for all variants, such that the corresponding burden test 

statistic to test H0:β = 0 H0:β = 0 is given by

QBurden = ∑j = 1
p wjSj

2
,

where Sj = ∑i = 1
n Gij Y i − μi  is the score statistic of the marginal model for variant j and μi

is the estimated mean of Y i under the null GLM g μi = α0 + Xi
T α or the null GLMM 

g μi = α0 + Xi
T α + bi . QBurden asymptotically follows a chi-square distribution with 1 degree 

of freedom under the null hypothesis, and its P-value can be obtained analytically while 

accounting for linkage disequilibrium (LD) between variants3,37.

For SKAT8, the βj’s are assumed to be independent and identically distributed (i.i.d.) 

following an arbitrary distribution, with E(βj) = 0 and Var(βj) = wj2τ . The null hypothesis of 

no variant-set effect H0:β = 0 is equivalent to H0:τ = 0, and the corresponding SKAT test 

statistic is given by

QSKAT = ∑
i = 1

p
wj2Sj2 .
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QSKAT  asymptotically follows a mixture of chi-square distributions under the null 

hypothesis, and its P-value can be obtained analytically while accounting for LD between 

variants3,37.

Further, the recently proposed ACAT-V test uses a combination of transformed variant P-

values rather than operating on the test statistics directly9. The ACAT-V test statistic is given 

by

QACAT − V = w2MAF(1 − MAF)tan 0.5 − p0 π

+ ∑
j = 1

p′
wj2MAFj 1 − MAFj tan 0.5 − pj π ,

where p′ is the number of variants with minor allele count (MAC) greater than 10 and pj is 

the association P-value of individual variant j corresponding the individual variant score 

statistics Sj for those variants with MAC > 10. p0 is the burden test P-value of extremely rare 

variants with MAC ≤ 10 and w2MAF(1 − MAF) is the average of the weights 

wj2MAFj 1 − MAFj  among the extremely rare variants with MAC ≤ 10. QACAT − V  can be 

well approximated by a Cauchy distribution under the null hypothesis, and its P-value can be 

obtained analytically while accounting for LD between variants9. For binary traits in highly 

unbalanced designs, one can improve individual P-value calculations using Saddlepoint 

approximation86,87.

These conventional approaches consider a weight wj defined as a threshold indicator or a 

function of minor allele frequency (MAF) for variant j, i.e. wj = Beta MAFj; a1, a2
3 .

Common choices of the parameters are a1 = 1 and a2 = 25 which upweights rarer variants, or 

a1 = 1 and a2 = 1, which corresponds to equal weights for all variants. In WGS studies, the 

vast majority of rare variants across the genome are not causal. Thus, choosing their weights 

according to MAF will incorrectly upweight many such “noise” variants in a variant-set and 

result in a loss of statistical power. Weighting using multiple variant functional annotations 

will help overcome this deficiency.

Calculation of annotation principal components using individual functional annotations.

To effectively capture the multi-faceted biological impact of a variant while reducing 

dimensionality, we propose variant annotation Principal Components (aPCs) as the PC 

summary of the functional annotation data by incorporating individual scores extracted from 

various functional databases26,27,39–41,88. We first group the individual scores into 10 major 

functional categories based on a priori knowledge, each capturing a specific aspect of variant 

biological function, including epigenetics, conservation, protein function, local nucleotide 

diversity, distance to coding, mutation density, transcription factors, mappability, distance to 

TSS/TES, and micro RNA (Fig. 2). For each category, we then center and standardize all 

individual scores within the category, such that higher value of each individual score 

indicates increased functionality of that annotation, and calculate aPC as the first PC from 

the standardized individual scores (Supplementary Table 1). To facilitate better 
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interpretation, these aPCs are then transformed into the PHRED-scaled scores for each 

variant across the genome, defined as −10 × log10(rank( − score)/M), where M is total 

number of variants sequenced across the whole genome.

Unlike ancestral PCs that are subject-specific and are calculated using genotypes across the 

genome to control for population structure, annotation PCs are variant-specific and are 

calculated using functional annotations for individual variants and are used to summarize 

multi-facet functions of individual variants. Complementary to other existing single-

dimension integrative functional scores, annotation PCs summarize multiple aspects of 

variant function, with different blocks captured by different annotation PCs in the heatmap 

(Fig. 2).

STAAR incorporating multiple functional annotations.

STAAR constructs the weights by modeling the probability of a variant being causal using 

its functional annotation information via qualitative annotations (e.g. functional categories) 

and quantitative annotations (e.g. annotation PCs and integrative annotations), as well as 

modeling the effect sizes of causal variants. Specifically, we consider the effect of variant j
on a phenotype can be written as

βj = cjγj,

where cj is the latent binary indicator of whether variant j is causal, and γj is the effect size 

of variant j if it is causal. The burden test, SKAT, and ACAT-V make direct assumptions on 

the variance of βj using MAF information. This newly proposed variant effect model is 

expected to increase association power since a variant’s causal status can be prioritized using 

its functional annotations13,14. Let πj = E cj  denote the probability of variant j being causal, 

then the effect of variant j given above is equivalent to

βj = 1 − πj δ0 + πjγj,

where δ0 is the Dirac delta function indicating that with probability 1 − πj, variant j has no 

association with the phenotype.

Define πjk as the estimated probability of jth variant being causal using the kth annotation 

k = 0, ⋯, K , e.g., πj1 measures the estimated probability that the jth variant is causal using 

epigenetic annotation, aPC-Epigenetic. We estimate πjk using the empirical CDF of the kth 

annotation for variant j using its rank among all variants as

πjk = ECDFk Ajk =
rank Ajk

M ,

where Ajk is the kth annotation for the jth variant. For k = 0, we set Aj0 = 1 as the intercept, 

which gives πj0 = 1 . For a quantitative annotation, Ajk represents its numeric value, e.g., the 
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kth annotation PC. The quantitative Ajk we consider in this paper include 10 aPCs 

(Supplementary Table 1) and existing integrative scores, including CADD27, LINSIGHT46, 

and FATHMM-XF47. For a qualitative annotation, we define Ajk = 1 for variants in the 

functional group (yes) and Ajk = 0 for variants otherwise (no). For example, Ajk denotes 

whether a variant is a disruptive missense variant using MetaSVM51. Hence, πjk = 1 for 

variants in the functional group and πjk = 0 otherwise, e.g., disruptive missense variants 

(yes/no). This corresponds to the RV tests using variants of this functional group.

In the STAAR framework, we model the effect sizes of causal variants γj in the same way as 

that used in conventional variant-set tests. Specifically, we assume γj ∝ wj, where wj is 

assumed as a function of MAFs. For simplicity, we model wj using 

Beta MAFj; a1, a2 and set a1, a2 to be (1, 1) or 1,25 . Then, the burden test statistic using kth 

variant functional annotation as the weight, e.g., aPC-Epigenetic, is given by 

QBurden, k = ∑j = 1
p πjkwjSj

2
, whose P-value is denoted by pBurden, k k = 0, ⋯, K). Under the 

assumption of SKAT, by estimating the probability of jth variant being causal using the kth 

annotation k = 0, ⋯, K , we have E βj = 0 and V ar βj = V ar cjγj = πjkwj2τk. Hence, the 

SKAT test statistic using kth variant functional annotation as the weight is given by

QSKAT , k = ∑
j = 1

p
πjkwj2Sj2,

whose P-value is denoted by pSKAT , k k = 0, ⋯, K). In the ACAT-V test, the test statistic 

using kth variant functional annotation as the weight is given by

QACAT − V , k = π ⋅ kw2MAF(1 − MAF)tan 0.5 − p0, k π

+ ∑
j = 1

p′
πjkwj2MAFj 1 − MAFj tan 0.5 − pj π ,

where π ⋅ kw2MAF(1 − MAF) is the average of the weights πjkwj2MAFj 1 − MAFj  among the 

extremely rare variants with MAC ≤ 10. The P-value of QACAT − V , k is denoted by 

pACAT − V , k(k = 0, ⋯, K) .

We denote by pBurden, k, pSKAT , k, pACAT − V , k the P-values of burden, SKAT, and ACAT-V 

tests, respectively calculated using the kth annotation as the weight. For each type of RV 

tests, to robustly aggregate information from multiple annotations to boost power RV 

association tests in a data-adaptive manner, we propose to use the STAAR framework to 

combine individual annotation weighted tests using the ACAT P-value combination 

method9,42. Specifically, we define STAAR-Burden (STAAR-B), STAAR-SKAT (STAAR-

S), and STAAR-ACAT-V (STAAR-A) as
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TSTAAR − B = ∑
k = 0

K tan 0.5 − pBurden, k π
K + 1 ,

TSTAAR − S = ∑
L = 0

K tan 0.5 − pSKAT , k π
K + 1 ,

TSTAAR − A = ∑
k = 0

K tan 0.5 − pACAT − V , k π
K + 1 .

The P-value of TSTAAR − S, TSTAAR − B, and TSTAAR − A can be approximated by

pSTAAR − B ≈ 1
2 −

arctan TSTAAR − B
π ,

pSTAAR − S ≈ 1
2 −

arctan TSTAAR − S
π ,

pSTAAR − A ≈ 1
2 −

arctan TSTAAR − A
π .

To further aggregate information from different types tests and different weights, we propose 

an omnibus test in the STAAR framework (STAAR-O) by combining STAAR-B, STAAR-S 

and STAAR-A using the ACAT method9,42. We define the STAAR-O test statistic as

TSTAAR − O = 1
3 A ∑

a1, a2 ∈ A
tan 0.5 − pSTAAR − B a1, a2 π + tan 0.5 − pSTAAR − S a1, a2 π

+ tan 0.5 − pSTAAR − A a1, a2 π ,

where pSTAAR − B a1, a2 , pSTAAR − S a1, a2 , and pSTAAR − A a1, a2  denote the P-values of 

STAAR-B, STAAR-S, and STAAR-A using wj = Beta MAFj; a1, a2 , A is the set of specified 

values of a1, a2 , and ∣ A ∣ is the size of set A. In practice, we set A = 1,25 , 1,1 . The P-

value of TSTAAR − O could then be accurately approximated by

pSTAAR − O ≈ 1
2 −

arctan TSTAAR − O
π .

By combining different types of tests into an omnibus test, STAAR-O has a robust power 

with respect to the sparsity of causal variants and the directionality of effects of causal 
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variants in a variant-set, as well as variant multi-facet functions and MAFs. Specifically, by 

including the burden test, STAAR-O is powerful when majority of variants in a variant-set 

are causal and have effects in the same direction; by including SKAT, STAAR-O is powerful 

when not a small number of variants in a variant-set are causal with effects in different 

directions, or when variants in a variant-set are in high LD; by including ACAT-V, STAAR-

O is powerful when a small number of variants in a variant-set are causal or a good number 

of extremely rare variants are causal; by weighting each type of tests using multiple 

annotation PCs and other integrative functional scores and qualitative annotations, STAAR-

O is powerful when any of these variant functional annotations can pinpoint causal variants 

and help boost power.

Data simulation.

Type I error simulations.—We performed extensive simulation studies to evaluate 

whether the proposed STAAR framework preserves the desired type I error rate. We 

generated continuous traits from a linear model defined as

Yi = 0.5X1i + 0.5X2i + ϵi,

where X1i N(0, 1), X2i  Bernoulli (0.5), and ϵi N(0, 1) . Dichotomous traits were generated 

from a logistic model defined as

logit P Yi = 1 = α0 + 0.5X1i + 0.5X2i,

where X1i and X2i were defined the same as continuous traits and α0 was determined to set 

the prevalence to 1%. In this setting, we used a balanced case-control design. We generated 

genotypes by simulating 20,000 sequences for 100 different regions each spanning 1 Mb. 

The data were generated to mimic the LD structure of an African American population by 

using the calibration coalescent model (COSI)43. In each simulation replicate, 10 

annotations were generated as A1, …, A10 i.i.d. N 0,1  for each variant, and we randomly 

selected 5-kb regions from these 1-Mb regions for type I error simulations. We applied 

STAAR-B, STAAR-S, STAAR-A, and STAAR-O by incorporating MAFs and the 10 

annotations and repeated the procedure with 109 replicates to examine the type I error rate at 

α = 10−5, 10−6, 10−7 levels. Total sample sizes considered were 2,500, 5,000, and 10,000.

Empirical power simulations.—Next, we carried out simulation study under a variety of 

configurations to assess the power gain by incorporating multiple functional annotations 

using STAAR compared to conventional variant-set tests that use MAFs as weights. In each 

simulation replicate, we randomly selected 5-kb regions from these 1-Mb regions for power 

simulations. For each selected 5-kb region, we generated causal variants according to a 

logistic model defined as

logit P cj = 1 = δ0 + δk1Aj, k1 + δk2Aj, k2 + δk3Aj, k3 + δk4Aj, k4 + δk5Aj, k5,
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where k1, ⋯, k5 ⊂ 1, ⋯, 10  were randomly sampled for each region. For different regions, 

causality of variants was allowed to be dependent on different sets of annotations. We set 

δkl = log(5) for all annotations and varied the proportions of causal variants in the signal 

region by setting δ0 = logit(0.0015), logit(0.015), and logit(0.18) for averaging 5%, 15% and 

35% causal variants in the signal region, respectively.

We generated continuous traits from a linear model given by

Yi = 0.5X1i + 0.5X2i + β1G1j + ⋯ + βsGsj + ϵi,

where X1i, X2i, ϵi were defined the same as the type I error simulations, G1j, …, Gsj were the 

genotypes of the s causal variants in the signal region, and β1, …, βs were the corresponding 

effect sizes of causal variants. Dichotomous traits were generated from a logistic model 

given by

logit P Yi = 1 = 0.5X1i + 0.5X2i + β1G1j + ⋯ + βsGsj,

where α0, X1i, X2i were defined the same as the type I error simulations, G1j, …, Gsj were the 

genotypes of the s causal variants in the signal region, and β1, …, βs were the corresponding 

log ORs of the s causal variants.

Under both settings, we model the effect sizes of causal variants using 

βj = γj = c0 log10MAFj . The effect size of causal variant was therefore a decreasing function 

of MAF. For continuous traits, c0 was set to be 0.13. For dichotomous traits, c0 was set to be 

0.255, which gives an odds ratio of 3 for a variant with MAF of 5 × 10−5. For each setting, 

we additionally varied the proportions of causal variant effect size directions by setting 

100%, 80%, and 50% variants to have positive effects. Finally, we performed simulations 

using different magnitudes of effect sizes by varying the values of c0 across a wide range. 

We applied STAAR-B, STAAR-S, STAAR-A, and STAAR-O using MAFs and all 10 

annotations in the weighting scheme, and repeated the procedure with 104 replicates to 

examine the powers at α = 10−7 level. Total sample sizes considered were 10,000 across all 

settings.

Computation cost.—To test the computation time of 500,000 related samples, we 

simulated 1,000 genomic regions, each with 100 variants, for 1 million haplotypes of 

125,000 families with 2 parents and 2 children per family. The computation time for WGS 

RVAS was estimated by analyzing 2.5 million variant-sets with on average 100 variants in 

each set using STAAR.

Statistical analysis of lipid traits in the TOPMed data.

The TOPMed WGS data consist of ancestrally diverse and multi-ethnic related samples45. 

Race/ethnicity was defined using a combination of self-reported race/ethnicity and study 

recruitment information. The discovery cohorts consist of 4,580 (37.2%) Black or African 
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American, 6,266 (50.9%) White, 543 (4.4%) Asian American, and 927 (7.5%) Hispanic/

Latino American. The replication cohorts consist of 3,534 (19.8%) Black or African 

American, 11,662 (65.4%) White, 132 (0.7%) Asian American, and 2,494 (14.0%) others. 

The “others” category in the replication cohort includes many Hispanic/Latino American as 

well as a cohort of Samoans.

We applied STAAR-O to identify RV-sets associated with four quantitative lipid traits (LDL, 

HDL, TG and TC) using the TOPMed WGS data. LDL-C and TC were adjusted for the 

presence of medications as before44. Linear regression model adjusting for age, age2, sex 

was first fit for each study-race/ethnicity-specific group. In addition, for Old Order Amish 

(OOA), we also adjusted for APOB p.R3527Q in LDL-C and TC analyses and adjusted for 

APOC3 p.R19Ter in TG and HDL-C analyses44. The residuals were rank-based inverse 

normal transformed and rescaled by the standard deviation of the original phenotype within 

each group. We then fit a heteroscedastic linear mixed model (HLMM) for the rank 

normalized residuals, adjusting for 10 ancestral PCs, study-ethnicity group indicators, and a 

variance component for empirically derived kinship matrix plus separate group-specific 

residual variance components to account for population structure and relatedness. The output 

of HLMM was then used to perform following variant set analyses for rare variants (MAF < 

1%) by scanning the genome, including gene-centric analysis using five variant categories 

(pLoF RVs, missense RVs, synonymous RVs, promoter RVs, and enhancer RVs) for each 

protein coded gene, and agnostic genetic region analysis using 2-kb sliding windows across 

the genome with a 1-kb skip length. The WGS RVAS analysis was performed using the R 

package STAAR (version 0.9.5).

The aPCs provide diverse and complementary information on variant functionality, and are 

incorporated in rare variant association tests using an omnibus weighting scheme via the 

proposed STAAR method. We demonstrate using the following example that STAAR boosts 

the rare variant association test power by properly upweighting known LDL-associated 

functional rare variants. For example, the association between a 2-kb sliding window located 

at 55,038,498 bp - 55,040,497 bp on chromosome 1 and LDL-C using STAAR-O is more 

significant than conventional tests in unconditional analysis (Supplementary Table 14). This 

power gain of STAAR-O is due to upweighting functional variants, e.g., the known tolerated 

missense variant rs11591147 within the sliding window through incorporating multiple 

aPCs59. Specifically, the aPC-Epigenetic, aPC-Protein, and aPC-Mappability PHRED scores 

are greater than 20 (top 1% across the genome), and the aPC-MutationDensity, aPC-TF, and 

CADD PHRED scores are greater than 10 (top 10% across the genome) for this variant, 

highlighting the multi-dimensional functionality of this variant. The aPC-Protein and aPC-

Mappability weighted SKAT P-values are 6.69 × 10−13 and 3.78 × 10−12, which are more 

significant than SKAT (P = 1.12 × 10−9) and burden test (P = 4.68 × 10−4).

Statistical analysis of LDL-C in the UK Biobank data.

We used UK Biobank whole exome sequences (WES) from the functionally equivalent (FE) 

pipeline. Sample and variant quality control measures were previously described72,89. In 

brief, samples with mismatch between genetically inferred and reported sex, high rates of 

heterozygosity or contamination (D-stat > 0.4), low sequence coverage (less than 85% of 
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targeted bases achieving 20X coverage), duplicates, and WES variants discordant with 

genotyping chip were removed. A total of 43,243 individuals with genetically inferred 

European ancestry were included; 40,519 of those had data on LDL cholesterol. Total 

cholesterol was adjusted by dividing the value by 0.8 among individuals reporting lipid 

lowering medication use after 1994 or statin use at any time point. LDL cholesterol was 

calculated from adjusted total cholesterol levels by the Friedewald equation for individuals 

with triglyceride levels < 400 mg/dl. If LDL cholesterol levels were directly measured, then 

their values were divided by 0.7 among reporting lipid lowering medication use after 1994 

or statin use at any time point. Residuals were created after adjustment for age, age2, sex, 

and the first 10 ancestral principal components. Residuals were then rank-based inverse-

normal transformed and multiplied by the standard deviation. Analyses were restricted to 

missense variants in the NPC1L1 gene predicted to be damaging according to the MetaSVM 

prediction algorithm and conditioned on ten known common variants in NPC1L1 associated 

with LDL-C (rs10234070, rs73107473, rs2072183, rs41279633, rs17725246, rs2073547, 

rs10260606, rs217386, rs7791240, rs2300414) obtained from the UK Biobank imputed 

genotype data. We performed a burden test for the association between disruptive missense 

RVs in NPC1L1 and LDL-C.

Reporting summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this technical report.

Genome build.

All genome coordinates are given in NCBI GRCh38/UCSC hg38.

Code availability.

STAAR is implemented as an open source R package available at https://github.com/xihaoli/

STAAR and https://content.sph.harvard.edu/xlin/software.html.

Data availability.

This paper used the TOPMed Freeze 5 Whole Genome Sequencing data and lipids 

phenotype data. The genotype and phenotype data are both available in dbGAP. The 

discovery phase used the data from the following four study cohorts, where the accession 

numbers are provided in parenthesis: Framingham Heart Study (phs000974.v1.p1), Old 

Order Amish (phs000956.v1.p1), Jackson Heart Study (phs000964.v1.p1), and Multi-Ethnic 

Study of Atherosclerosis (phs001416.v1.p1). The replication phase used the data from the 

following ten study cohorts: Atherosclerosis Risk in Communities Study (phs001211), 

Cleveland Family Study (phs000954), Cardiovascular Health Study (phs001368), Diabetes 

Heart Study (phs001412), Genetic Study of Atherosclerosis Risk (phs001218), Genetic 

Epidemiology Network of Arteriopathy (phs001345), Genetics of Lipid Lowering Drugs and 

Diet Network (phs001359), San Antonio Family Heart Study (phs001215), Genome-wide 

Association Study of Adiposity in Samoans (phs000972) and Women’s Health Initiative 

(phs001237). The sample sizes, ethnicity and phenotype summary statistics of these cohorts 

are given in Supplementary Table 3.

Li et al. Page 19

Nat Genet. Author manuscript; available in PMC 2021 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/xihaoli/STAAR
https://github.com/xihaoli/STAAR
https://content.sph.harvard.edu/xlin/software.html


The functional annotation data are publicly available and were downloaded from the 

following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/download), 

ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/latest/user-guide/

download), LINSIGHT (https://github.com/CshlSiepelLab/LINSIGHT), FATHMM-XF 

(http://fathmm.biocompute.org.uk/fathmm-xf), CAGE (https://fantom.gsc.riken.jp/5/data), 

GeneHancer (https://www.genecards.org), and Umap/Bismap (https://

bismap.hoffmanlab.org). In addition, recombination rate and nucleotide diversity were 

obtained from Gazal et al90. The tissue-specific functional annotations were downloaded 

from ENCODE (https://www.encodeproject.org/report/?type=Experiment).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. STAAR workflow.
a, Prepare the input data of STAAR, including genotypes, phenotypes, covariates, and 

(sparse) genetic relatedness matrix. b, Annotate all variants in the genome and calculate the 

annotation principal components for different classes of variant function. c, Define two types 

of variant-sets: gene-centric analysis by grouping variants into functional genomic elements 

for each protein-coding gene; genetic region analysis using agnostic sliding windows. d, 

Estimate STAAR statistics for each variant-set. e, Obtain STAAR-O P-values for all variants 

sets that are defined in c and report significant findings.
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Figure 2 |. Correlation heatmap of functional annotation scores.
The figure shows pairwise correlations between 76 individual and integrative functional 

annotations using variants from the pooled samples of lipid traits in the TOPMed data. The 

cells in the visualization are colored by Pearson’s correlation coefficient values with deeper 

colors indicating higher positive (red) or negative (blue) correlations. Each annotation 

principal component (aPC) is the first PC calculated from the set of individual functional 

annotations that measure similar biological function. These aPCs are then transformed into 

the PHRED-scaled scores for each variant across the genome (Online Methods).
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Figure 3 |. Genetic region (2-kb sliding window) unconditional analysis results of LDL-C in 
discovery phase using the TOPMed cohort.
a, Manhattan plot showing the associations of 2.66 million 2-kb sliding windows for LDL-C 

versus −log10 P value  of STAAR-O. The horizontal line indicates a genome-wide P-value 

threshold of 1.88 × 10−8 (n = 12,316). b, Quantile-quantile plot of 2-kb sliding window 

STAAR-O P-values for LDL-C (n = 12,316). c, Genetic landscape of the windows 

significantly associated with LDL-C that are located in the 150-kb region on chromosome 

19. Four statistical tests were compared: Burden, SKAT, ACAT-V and STAAR-O. A dot 
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indicates that the sliding window at this location is significant using the statistical test that 

the color of the dot represents (n = 12,316). d, Scatterplot of P-values for the 2-kb sliding 

windows comparing STAAR-O with Burden, SKAT and ACAT-V tests. Each dot represents 

a sliding window with x-axis label being the −log10 P value  of the conventional test and y-

axis label being the −log10 P value  of STAAR-O (n = 12,316).
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