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Abstract 
US legislation passed in 2007 (RFS2) increased by about 1.3 billion bushels the net amount of corn 
required to be processed annually into ethanol for motor-fuel use. Using modern time-series 
methods, we estimate that corn prices were about 30 percent higher between 2006 and 2014 than 
they would have been but for RFS2 and if pre-2006 trends had continued. We estimate a permanent 
corn demand increase of 1.3 billion bushels increased the long-run price by 31% (90% confidence 
interval is [5%,95%]). Our identification strategy is unique in the literature because it enables 
estimation of the effects of transitory shocks, such as weather, separately from the effects of 
persistent shocks, such as the ethanol mandate. 
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 “There is fuel in corn; oil and fuel alcohol are obtainable from corn, and it is high time that someone was 
opening up this new use so that the stored-up corn crops can be moved.” 
—Henry Ford (in collaboration with Samuel Crowther), My Life and Work (1922, p. 276) 

 
More land is now planted with corn than with any other crop in the United States. In 2014, 36 percent of 

the US corn crop was used to make ethanol to blend with gasoline, up from 14 percent in 2005. The federal 

government mandated this rapid growth through the Renewable Fuel Standard (RFS), which requires a 

minimum annual quantity of biofuel content in motor fuel. The RFS was introduced in the US Energy Policy 

Act of 2005. In 2007, the US Energy Independence and Security Act, almost doubled the biofuel mandate. 

Under the expanded RFS, known as RFS2, corn ethanol now comprises 10 percent of finished motor 

gasoline in the United States, up from 3 percent in 2005.  

The difference between the RFS2 and RFS mandates is approximately 5.5 billion gallons (bgal) of 

ethanol annually in the years 2010-2012, which corresponds to about 1.3 billion bushels of corn after 

accounting for feed by-products. We take these 1.3 billion bushels as the permanent increase in corn 

demand in the RFS2, and we estimate that it caused a 31 percent long-run increase in corn prices. 

Interpreting our estimates correctly requires a precise statement about counterfactual ethanol 

production. In our counterfactual, ethanol production would have increased from its actual 2005 value of 

3.9bgal to 8.8bgal in 2014. This path represents a continuation of the trend observed between 2002 and 

2005 and is slightly below the path predicted by the USDA in early 2006. We argue it is a reasonable 

counterfactual path in the absence of the RFS2. We also point that our long-run estimate is scalable. To 

estimate the effect of increasing corn demand permanently by any multiple of 1.3 billion bushels, a reader 

could multiply our estimate by that multiple.  

Previous studies have also found that the increase in corn-ethanol production affected corn 

prices. The International Food Policy Research Institute (IFPRI, 2008) and the OECD (2008) both published 

reports claiming that biofuels were responsible for a significant proportion of the corn-price increase 
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during the 2007–08 commodity boom (see also Helbling et al. 2008). Other studies assert that ethanol 

policy strongly affected the level (Mitchell 2008; Hochman, Rajagopal, and Zilberman 2010) and the 

volatility (Wright 2011) of corn prices.  But each of these papers is mainly qualitative; none provides 

rigorous empirical estimates to support its conclusions.  

Two recent papers produce econometric estimates of the effect of ethanol production on 

agricultural markets. Hausman, Auffhammer, and Berck (2012) estimate a large factor-augmented vector 

autoregression of cropland allocation in the US. They calculate that removing land from food production 

to produce corn for ethanol raised corn prices in 2007 by $0.24 per bushel (less than 10%).  Roberts and 

Schlenker (2013) estimate the elasticities of world supply and demand for calories from agricultural 

commodities. They create a calorie-weighted index of prices and quantities and use instrumental-

variables techniques to estimate the parameters. Based on their static model, they estimate that their 

food price index was 20 percent higher in 2007 than it would have been without ethanol production.  

We focus our analysis on commodity inventory dynamics, which distinguishes our work from the 

extant literature. This approach enables us to estimate the price effects of persistent shocks to supply or 

demand separately from the effects of transitory shocks in a market for a storable commodity. This 

distinction is important in our context because persistent shocks have larger price effects than transitory 

shocks. The market can respond to a transitory shock, such as poor growing season weather, by drawing 

down inventory. This action mitigates the price effect. A persistent shock, such as an increase in current 

and expected future demand, cannot be mitigated by drawing down inventory.  

To identify these two types of shocks, we exploit their differential effects on inventory levels and 

on the term structure of futures prices. For example, all else equal, a sudden increase in this year’s 

consumption demand reduces available inventories and raises spot prices relative to futures prices. This 

is a transitory shock. In contrast, a predicted increase in next year’s consumption demand generates an 

increase in inventory and an increase in futures prices relative to spot prices. A persistent demand shock 
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is an increase in both this year’s consumption demand and next year’s expected consumption demand. 

Our method is readily applicable to other problems relating to storable commodities in which the 

distinction between transitory and persistent shocks matters, e.g., the effects of climate change, financial 

speculation, and technological change such as new seed varieties. 

We estimate the supply and demand for inventory using a partially identified structural vector 

autoregression (SVAR) model. This approach enables us to trace the dynamic effects of ethanol expansion 

without imposing strong identifying assumptions. We estimate that the demand for corn inventory 

increased in Fall 2006, as firms sought to store corn for the ethanol-production boom that would follow 

in 2008 and beyond. This increase in inventory demand helped to buffer the market in 2008 and 2009, 

when ethanol production increased dramatically. We estimate that average prices over the period from 

2006 to 2014 were about 30 percent greater in log terms1 than they would have been if US ethanol 

production had continued on its 2005 trend. We also estimate that ethanol demand growth increased the 

long-run price by 31 percent, with a 90 percent confidence interval ranging from 5 to 95 percent. 

 

Background 

Policy History 

Ethanol became a significant motor-fuel ingredient in the United States only recently, but its history as a 

prospective motor fuel is long. In 1920, the US Geological Survey estimated that peak petroleum 

production would be reached within a few years (White 1920). This assessment raised expectations that 

ethanol, distilled from grains and potatoes, would become the dominant motor fuel.2 However, ethanol 

production did not become profitable because newly discovered oil reserves in the US Southwest kept 

1 When reporting our results, we use the word percent to refer to log differences.  
2 Newspaper articles expressing this expectation include “Big Future for Alcohol,” Los Angeles Times, 11/2/1919; “What’s Coming 
in Fuel Drama?” Los Angeles Times, 9/12/1920; “Auto Fuel Problem,” New York Times, 4/27/1919; Alcohol as a Fuel,” New York 
Times, 10/19/1919; “More Alcohol Wanted,” New York Times, 2/13/1921; and “Ford Predicts Fuel from Vegetation,” New York 
Times, 9/20/1925, among many others.  
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petroleum production high and prices low. These low prices, coupled with the fact that ethanol is 35 

percent less efficient than gasoline when used to power standard combustion engines, kept ethanol from 

being profitable as a motor fuel. Thus, ethanol did not become a major motor-fuel ingredient without 

significant government support, a fact that is readily admitted by the industry.3 

Although the RFS was not enacted until 2005, bills containing variants of the RFS repeatedly 

entered the US Congress (in 1978, 1987, 1992, 2000, 2001, 2003, and 2004).4 The first of these bills, the 

1978 Gasohol Motor Fuel Act, had RFS-like features. It proposed that alcohol motor fuel supply at least 1 

percent of US gasoline consumption by 1981, 5 percent by 1985, and 10 percent by 1990. This bill never 

became law, and ethanol constituted less than one percent of finished motor gasoline in 1990. 

The 1990 amendments to the Clean Air Act provided the next opportunity for the corn-ethanol 

industry to lobby for favorable legislation. The amendments required that, in regions prone to poor air 

quality, oxygenate additives be blended into gasoline to make it burn more cleanly. When the 

amendments were first introduced to Congress in 1987, ethanol and methyl tertiary butyl ether (MTBE), 

a natural-gas derivative, were the main contenders to fulfill the oxygenate requirement. Johnson and 

Libecap (2001) document the lobbying battle between advocates for ethanol and those for MTBE. 

Although ethanol received favorable treatment in the final legislation,5 MTBE became the dominant 

additive because it was less expensive (Rausser et al. 2004). Subsequently, leaks in underground storage 

tanks caused MTBE to contaminate drinking water, and MTBE was consequently banned.  

The demise of MTBE allowed ethanol to establish itself as a fuel additive in the 2005 Energy Policy 

Act, which essentially replaced the earlier oxygenate requirement with the RFS. The RFS mandates that a 

minimum quantity of ethanol be blended into gasoline in the United States each year. The 2005 RFS 

3 “The frustrating fact is, without the carrot and stick of government policy, we would not have seen the growth in ethanol that 
we have seen.” Bob Dinneen, President and CEO, Renewable Fuels Association, 17th National Ethanol Conference, 2/23/12. 
4 The Gasohol Motor Fuel Act of 1978 (S.2533), the Ethanol Motor Fuel Act of 1987 (H.R.2052, S.1304), Amendment to the Energy 
Policy Act of 1992 (H.AMDT.554), Renewable Fuels Acts of 2000 and 2001 (S.2503 and S.670.IS), and the Energy Policy Acts of 
2003 and 2004 (H.R.4503, S.2095). 
5 Ethanol was allowed a 1 lb. waiver in the Reid Vapor Pressure (RVP) requirement. 
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mandated that 4bgal of ethanol be used in 2006 and that the amount rise gradually to 7.5bgal by 2012. 

This 2012 quantity corresponded to 5 percent of projected domestic gasoline use, so it represented a 

small expansion of the proportion of oxygenates in gasoline. In 2005, US oxygenate production (ethanol 

and MTBE combined) totaled 4.6 percent of finished motor gasoline. Anderson and Elzinga (2014) show 

that legislation banning MTBE increased gasoline prices as producers were forced to switch from MTBE to 

ethanol. Corn prices jumped by 25% in early 2004 due to higher than expected ethanol demand.  However, 

the 2004 growing season produced record yields, which offset the ethanol shock. 

Legislation to increase the RFS entered Congress even before the 2005 Energy Policy Act had 

passed, and more bills followed in 2006.6 These proposals led to a doubling of the RFS for corn ethanol in 

2007. The RFS2 specifies minimum renewable-fuel production each calendar year from 2007 through 

2022. It required 9bgal in 2008 and increased this level annually to 15.2bgal in 2012 and 36bgal in 2022. 

However, the RFS2 specified that no more than 13.2bgal of corn ethanol could be used to satisfy the RFS2 

in 2012, and no more than 15bgal of corn ethanol could be used after 2015.7 By 2014, the RFS2 had 

reached a crossroads with ethanol use at 13.4bgal, which was 10 percent of gasoline use. The fuel industry 

had resisted increasing ethanol use beyond this level and chose instead to comply with the RFS2 by 

increasing biodiesel production (Lade, Lin and Smith, 2015) 

A massive expansion in ethanol production capacity took place between the 2005 and the 2007 

Energy Acts.8 At the beginning of 2006, 4.3bgal of operational production capacity existed, and an 

additional 1.8bgal of capacity was under construction. Only one year later, capacity under construction 

had grown to 5.6bgal, which exceeded the previous year’s total ethanol production (see Panel A of Figure 

1). This construction boom, which anticipated the expansion of the RFS, received considerable attention. 

6 20/20 Biofuels Challenge Act of 2005 (S.1609), BOLD Energy Act of 2006 (S.2571.IS, H.R.5331.IH). 
7 The balance of the RFS, the legislation stipulated, had to be filled by so-called advanced biofuels, such as biodiesel from soybean 
oil and ethanol from cellulosic biomass (e.g., switchgrass, miscanthus, and corn stover). But as of 2014, negligible amounts of 
commercially viable cellulosic ethanol existed in the United States. 
8 In the remainder of this article, we use the word ethanol to refer to ethanol made from corn. Only trivial amounts of other 
feedstock (e.g., sorghum, barley) have been used commercially in the United States to produce ethanol for motor fuel.  
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The United States Department of Agriculture (USDA), which makes annual 10-year projections of the 

agricultural economy, recognized the expanding RFS and the associated construction boom in its 2007 

projections. Panel B of Figure 1 shows that the projections the USDA made in February 2007 (the solid 

black line) almost doubled the 2006 projections (the solid gray line).9 These 2007 projections predicted 

2007–09 ethanol use extremely well. In contrast, the February 2006 projections understated 2008 and 

2009 ethanol use by 33 and 39 percent, respectively. Overall, Figure 1 suggests that the 2007 expansion 

of the RFS generated a large jump in projected ethanol production.  

[FIGURE 1 HERE] 

In addition to the RFS and RFS2, numerous other federal and state policy actions aimed to expand 

ethanol production. The 1978 Energy Tax Act marked the beginning of federal ethanol programs; it 

included a provision to exempt ethanol-gasoline blends from the gasoline excise tax. Subsequent 

legislation offered loan guarantees for ethanol-plant investment and instituted a tariff on imported 

ethanol.10 The excise-tax exemption evolved into a tax credit of $0.45 per gallon of ethanol. The ethanol 

tax credit and the import tariff both expired on December 31, 2011 with little opposition from ethanol 

producers’ groups such as the National Corn Growers Association and the Renewable Fuels Association.11 

This lack of opposition suggests that the RFS has high value to the ethanol industry; with the RFS in place, 

it has acquired guaranteed demand for its product and a large implicit subsidy (Holland et al. 2011).  

 
Incremental Effect of RFS2 on Ethanol Production 

The difference between the 2007 and 2005 RFS mandates is approximately 5.5bgal of annual ethanol use 

in the years 2010-2012. We take these 5.5bgal as the permanent increase in ethanol demand in the RFS2. 

9 Available at http://usda01.library.cornell.edu/usda/ers/94005/. 
10 Omnibus Reconciliation Act of 1980 and Energy Security Act of 1980.  
11 "With growing concerns about gridlock in Washington and greed on Wall Street, Americans are wondering whether anyone 
with a stake in public policies is willing to sacrifice their short-term advantage for a greater good. Well, someone just did. Without 
any opposition from the biofuels sector, the tax credit for ethanol blenders (the Volumetric Ethanol Excise Tax Credit—VEETC) 
expired on January 1." Bob Dinneen, President and CEO, Renewable Fuels Association, 1/5/12. RFA press release. 
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Ethanol plants produce about 2.8 gallons of ethanol from each bushel of corn, but a third of that bushel 

is returned to the food system in the form of distiller’s grains used for animal feed. Thus, we estimate the 

effect of a permanent corn demand increase of 1.3 billion bushels, or 33.4 million metric tons (mmt). 

An alternative explanation for the expansion in ethanol production is that ethanol was relatively 

inexpensive in 2006-2014 due to high oil prices, so an expansion in ethanol use would have occurred even 

in the absence of the RFS2 (Tyner 2010). Counterfactual ethanol production depends on two factors that 

are difficult to quantify. First, ethanol production requires a large capital investment, and there are also 

significant fixed costs to adjust fueling infrastructure to incorporate ethanol. Without the guarantee 

provided by the RFS2 and given uncertainty about the future prices of oil and corn, some firms that built 

ethanol capacity in 2007-2008 may have waited to invest even if ethanol were less expensive than gasoline 

on the margin (Dixit and Pindyck 1994).  

The second relevant factor is the value of ethanol to the fuel industry. Ethanol has 65 percent of 

the energy content of gasoline, which suggests that the competitive price of ethanol would be 0.65 times 

the price of wholesale gasoline. However, blending ethanol with gasoline at a 10 percent rate reduces fuel 

efficiency by only 3 percent, which may not be detected by consumers. Thus, the market may price 

ethanol by volume rather than energy content. In addition, ethanol has a high octane rating, which 

enables oil refiners to meet octane standards by producing a lower-cost lower-octane gasoline and 

blending it with ethanol (Babcock 2013). Under these arguments, the competitive price of ethanol may 

equal or exceed the wholesale gasoline price.  

Figure 2 shows the relative price of ethanol to gasoline, both in gross terms and net of the ethanol 

tax credit. Two horizontal lines show the competitive prices assuming (i) ethanol is valued equal to 

gasoline on a volumetric basis, and (ii) ethanol is valued for its energy content only. Until its expiration in 

December 2011, the ethanol tax credit significantly increased the incentive to expand ethanol production. 

Aside from a brief dip in 2005, the relative price net of the tax credit averaged volumetric par until early 
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2007. Thus, even under volumetric ethanol pricing, there was little market incentive to expand ethanol 

production in this period. Given that building ethanol plants requires significant lead time, the 2007-2008 

expansion in production capacity shown in Panel A of Figure 1 was likely induced by the RFS and RFS2. 

[FIGURE 2 HERE] 

From May 2007 until oil prices began declining in October 2014, the relative net ethanol price 

averaged 0.79. Under volumetric pricing, there would have existed a significant incentive to expand 

ethanol production during this period, which suggests that ethanol production would have expanded even 

faster than it did.12  Without the RFS2, the incentive would have been even greater because ethanol supply 

and therefore ethanol prices would have been even lower. However, the fact that ethanol has been priced 

closer to its energy value than volumetric par implies that energy-equivalent valuation fits the data better 

than volumetric pricing, at least at the wholesale level. 

Estimating how much ethanol production would have occurred in the absence of the RFS2 

requires specification of an ethanol supply curve. Babcock (2013) uses a numerical model to estimate 

counterfactual ethanol production in the absence of government assistance. His model is based on a 

marginal analysis of the aggregate supply and demand for ethanol, i.e., he does not model the decision to 

invest in new ethanol plants, the cost of ethanol transportation, or the costs of adapting the petroleum 

refining and blending system to incorporate more ethanol. As such, his estimates provide an upper bound 

on the actual amount of ethanol likely to be produced in the absence of the RFS2; they are more 

appropriate as estimates of the likely amount of blending should the RFS2 be repealed. 

Babcock presents two scenarios: (i) ethanol demand is perfectly elastic at the price of gasoline as 

long as ethanol makes up no more than 10 percent of the gasoline supply, and (ii) ethanol demand is 

perfectly elastic at its energy value. From May 2007 until oil prices began declining in October 2014, the 

12 This applies up to 2011, when ethanol use reached 10 percent of the gasoline pool. Increasing ethanol use beyond the 10 
percent “blend wall” presents significant technical obstacles, and so willingness to pay for ethanol above 10 percent may be low.  
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average wholesale gasoline price was about $2.50. Assuming 80 million harvested acres of corn, Babcock’s 

estimates imply 12.97bgal of ethanol per year under scenario (i) and 7.67bgal under scenario (ii). These 

estimates increase to 13.43 and 9.30 bgal if we assume 85 million harvested acres. Given that ethanol has 

been priced closer to energy par than volumetric par, and given that Babcock’s model assumes production 

capacity already exists, we find it reasonable to assume that ethanol use would have increase steadily to 

8.8bgal by 2014 in the absence of the RFS2. 

 

Conceptual Framework 

We model the supply and demand for corn inventory. The staple of the inventory literature is the 

competitive rational storage model, which originated with Williams (1936). Gustafson (1958) first solved 

for the optimal storage rule in this model, and Williams and Wright (1991), Deaton and Laroque (1996), 

Routledge, Seppi, and Spatt (2000), and Pirrong (2012) made further important contributions.  

The equilibrium level of inventory is determined by three integrated markets: (i) supply and 

demand for use in the current period; (ii) expected supply and demand in the next period; and (iii) storage 

from the current period to the next period. In the current period, there exists a price at which the quantity 

demanded for use would equal the quantity supplied. At any higher price, there will be an excess supply 

in the current period. This excess supply equals amount of inventory that the market is willing to supply 

into the storage market at the end of the current period.  Thus, we define the supply of inventory as the 

horizontal difference between the current period supply and demand curves. 

Market participants in the current period also look ahead to the next period and predict the 

willingness of next period’s market participants to produce, consume, or store the commodity. If the 

expected price is high enough, then suppliers would produce enough next period to completely satisfy 

next period’s expected demand. At any lower price, next period’s market is expected to be able to absorb 
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inventories from the current period. Thus, we define the demand for inventory as the horizontal difference 

between the next period’s expected demand and supply curves. 

The storage market connects the current period to the next. Storage firms purchase the excess 

supply in the current period, hold it for one period, and sell it into next period’s market. Following a long 

literature that originates with Working (1949), we specify the marginal cost of storage as increasing with 

inventory. This specification leads to the well-known “Working curve” for the supply of storage, and it 

allows for the marginal cost of storage to be negative. A negative marginal cost of storage can arise due 

to convenience yield, a concept introduced by Kaldor (1939) and developed by Brennan (1958), among 

others. Convenience yield represents the flow of benefits to firms that hold a commodity in storage. It is 

typically motivated as an option value generated by the cost of sourcing the commodity (Telser 1958) or 

by the possibility that inventories could be driven to their lower bound in the future (Routledge, Seppi, 

and Spatt 2000). In the next section, we develop the model formally. 

 
Rational Storage Model 

Let Pt denote the post-harvest price of corn in year t. The long growing season implies that corn supply is 

an increasing function of the expected price as of the previous year ( 1[ ]t tE P− ) and demand for current use 

is a decreasing function of Pt. The storage market connects the period t to period t+1. Storage firms 

purchase the excess supply in period t, hold it for one period, and sell it into the period t+1 market. The 

willingness to supply storage is increasing in the returns to storage, as per the Working curve.  

Three potential shocks drive the market: (i) a shock to net supply in period t ( stε ); (ii) an 

expectations shock ( etε ); (iii) a shock to the supply of storage ( wtε ). These shocks may be autocorrelated; 

we specify them as first-order Markovian with independent and identically distributed innovations. The 

expectations shock captures changes in expectations about the future that are independent of current 

supply and demand, e.g., a change in expected future demand due to ethanol expansion. The net supply 
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shock encompasses anything that affects either supply or demand in the current period, such as poor 

growing-season weather. The net supply shock is correlated with lags of the expectations shock because 

expectations in period t predict outcomes in period t+1. 

Net supply in year t is 

 ( )1, , ,t t t t t stS D f F P ε−− =  ,       (1) 

where we use the fact that, in the absence of a risk premium, the futures price at time t-1 for delivery in 

t equals the expected spot price, i.e., 1, 1[ ]t t t tF E P− −= .13 The supply of storage is  

  ( ), 1 , ,t t t t t wtF P c I P+ − = ε . 

We specify ( )0, ,t wtc P ε = −∞  to capture the empirical regulatory that inventories never equal zero. We 

include Pt as an argument in the supply of storage function to allow the possibility that some components 

of the price of storage are proportional to price.  

Intertemporal accounting requires that the change in inventories equals net supply, i.e.,

t t tI S D∆ ≡ − . Putting this together with (1) gives the net supply function  

 ( )1, , ,t t t t stI f F P ε−∆ =   

which we invert to obtain 

 ( )1,, ,t t t t stP h I F ε−= ∆          (2) 

This equation represents the supply of inventory; it specifies the price that would induce the market to 

supply It units to the storage market.  

 Next, we obtain the demand for inventory. In equilibrium, outgoing inventory can be expressed 

as a function of the state variables (e.g., Williams and Wright (1991), Routledge, Seppi, and Spatt (2000)): 

  ( )1 , 1 , 1 , 1, , ,t t s t e t w tI J I+ + + += ε ε ε        (3) 

13 This assumption is consistent with the rational storage literature and the empirical fact that average payoffs on agricultural 
futures have been close to zero in the past thirty years (Sanders and Irwin 2012). 
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From (2), the expected value of next year’s inventory supply conditional on the state variables this year is 

 ( )1 1 , 1 , 1[ ] , ,t t t t t t s tE P E h I F ε+ + + + = ∆   ,      (4) 

where [ ]tE ⋅  denotes the expectation conditional on { , , , }t st et wtI ε ε ε .  Substituting (3) into (4) implies  

 ( ), 1 1 , 1 , 1 , 1 , 1 , 1[ ] ( , , , ) , ,t t t t t t s t e t w t t t t s tF E P E h J I I Fε ε ε ε+ + + + + + + ≡ = −      (5) 

Now, because the shocks are Markovian, the conditional expectation of a function of , 1 , 1 , 1{ , , }s t e t w tε ε ε+ + +  

is in turn a function of { , , }st et wtε ε ε , and we can rewrite (5) as 

( ), 1 , , ,t t t st et wtF g I ε ε ε+ = .       (6) 

This equation is the demand for inventory; it specifies the expected price that would induce the market 

to demand It units from the storage market next period. 

We use the terms inventory and storage in the same way they are used in the commodity-storage 

literature. However, these terms leave room for confusion. Inventory denotes actual bushels of grain that 

are not used in period t and are instead saved for use in period t+1. Storage describes the service of 

holding inventory from period t to period t+1. To use an analogy in the retail industry, inventory 

corresponds to the units of product that a store buys from wholesalers and sells to consumers, and storage 

corresponds to the service of buying the product from wholesalers and selling it to consumers. The price 

of storage thus corresponds to the markup earned by retailers, whereas the price of inventory is the price 

of a unit of the commodity.  

The retail analogy helps clarify the demand for storage services in our model. The willingness to 

pay for retail services equals the difference between the price at which consumers are prepared to buy a 

unit in the store and the price at which wholesalers are willing to sell that unit to the store. Similarly, the 

demand for storage is the vertical difference between the inventory supply and demand curves. Thus, the 

willingness to pay for storage is the difference between (6) and (2), i.e., the inverse demand for storage is 
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     ( ) ( ), 1 1, , , , [ ],t t t t st et wt t t t stF P g I h I E Pε ε ε ε+ −− = − ∆      (7) 

The demand for storage slopes downward because the market is willing to save more inventories for the 

second period when the price of storage is low. Equilibrium occurs at prices and quantities such that the 

supply of storage equals the demand. 

 

Graphical Illustration 

Figure 3 illustrates the equilibrium for a case with linear supply and demand and iid shocks. Supply is 

0 1 1,t t t stS F −= γ + γ + ε  and demand is 0 1t tD P=β −β , where 1[ ] 0t stE − ε = , which implies that net supply is  

0 0 1 1, 1t t t t t stS D F P−− = γ −β + γ +β + ε  

Panel A of Figure 3 shows the period t supply and demand curves. The supply curve is vertical because 

supply depends on the expected period t price as of period t-1.  The horizontal difference between these 

curves is inventory supply, denoted by ( )1, [ ]t t th I E P−∆  in Panel C.14  

[FIGURE 3 HERE] 

 Next, we obtain the demand for inventory. Expected total demand next period is 

  1 1 0 1 , 1 , 1 , 1 , 1[ ] ( , , , )t t t t t t t d t s t w tE D I F E J I+ + + + + + + =β −β + ε ε ε   

and expected supply is 1 0 1 , 1[ ]t t t tE S F+ += γ + γ . Panel B shows these two functions. The horizontal difference 

between these curves is inventory demand, labeled g(It) in Panel C. 

The inventory demand and supply curves in Panel C are each evaluated at different prices. The 

inventory supply curve is evaluated at the period t spot price Pt, and the inventory demand curve is 

evaluated at the expected period t+1 spot price , 1 1[ ]t t t tF E P+ +≡ . Thus, the vertical difference between 

these curves equals the price-dependent demand for storage in (6). The market will clear at the point 

14 For brevity, we suppress the shocks, which are also arguments of the inventory supply function, i.e., we write ( )1,,t t th I F −∆  

rather than ( )1,, , ,t t t dt sth I F ε ε−∆ . We do the same for the inventory demand function. 
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where the inventory supply and demand curves cross only if the market price of storage is zero. Panel D 

depicts the demand for storage derived from Panel C and plots that demand along with the supply of 

storage. We depict the supply of storage as linear in the log of inventory. The market clears at an inventory 

level with a positive price of storage, (i.e., , 1 0t t tF P+ − > ). If the demand for storage shifted left, this 

equilibrium could result in a negative price of storage (i.e., futures-market backwardation).  

From the perspective of the inventory market, both current-supply and current-demand shocks 

affect the amount of available inventory. It matters little whether the reduced supply of inventory comes 

from bad weather (which reduces the crop size) or from increased demand (which removes more of the 

commodity from the market). This feature helps us identify the effects of the ethanol expansion because 

we do not need to separately identify the elasticities of demand and supply for current use.  

In the case of corn ethanol, evidence shown in Figure 1 suggests that by the end of 2006, market 

participants knew that ethanol production would increase in 2008. Viewed in light of Figure 3, the 

expected future demand curve for corn in Panel B shifted to the right (an expectations shock), which 

implies that the demand-for-inventory curve shifted to the right in 2006. However, current-year supply 

and demand remained constant. Thus, the spot price, inventory level, and price of storage all increased.  

By 2008, the increase in demand for corn from ethanol plants had become permanent. Figure 4 

shows this scenario. Both current and expected future demand have shifted to the right (Panels A and B), 

which in turn shifted the supply-of-inventory curve in Panel C to the left and the inventory-demand curve 

in Panel C to the right. Figure 4 shows a decline in inventory carryover because the perfectly inelastic 

supply in period t causes the supply-of-inventory curve to shift up by more than the demand-for-inventory 

curve. The graphical analysis illustrates the case in which the market is surprised, in period  t, by the 

demand shift. The market responds by drawing down inventory. If, in period  t-1, the market had 

anticipated the coming demand shift, it would have increased period t supply. Relative to the case 
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depicted in Figure 4, the supply-of-inventory curve would have shifted to the right, and the inventory 

carryover would have increased.  

[FIGURE 4 HERE] 

Figure 4 illustrates the advantages of our inventory-focused approach in distinguishing transitory 

from persistent price shocks. Poor growing-season weather is one example of a transitory price shock. 

Such a shock would shift the supply-of-inventory curve to the left but it would not shift the demand-for-

inventory curve, so it would have a smaller price effect than a persistent shock that shifts both curves.  

 

Empirical Framework 

In the previous section, we show using a rational storage model how demand from ethanol producers for 

corn affects the supply and demand for inventory, the price of storage, and the price of corn. To bring this 

model to the data, we log-linearize the supply-of-inventory, demand-for-inventory, and supply-of-storage 

functions given in equations (2), (6), and (7). We then fit a structural vector autoregression model to this 

linearized system. Using this framework, we follow a long literature pioneered by Sims (1980) concerning 

estimating dynamic rational-expectations models with SVARs. Our identification scheme allows us to 

partially identify shocks to each of inventory demand, inventory supply, and the supply of storage, and 

the estimated parameters then reveal how these shocks propagate through the system.  

We use annual data covering the period 1961 through 2012. We choose to model at the annual 

frequency because price and inventory variation is dominated by the annual harvest cycle.15 We use 

futures prices for the next period’s expected price. In addition to prices and inventory, we follow Kilian 

(2009) in controlling for aggregate commodity demand. After we describe our data, we present our 

identification strategy, our counterfactual experiment, and our method for estimating long-run effects. 

15 Inventory data exist for the United States at the quarterly frequency. These data exhibit a saw-tooth pattern: the fall harvest 
generates high inventory in December, and inventory declines linearly in each of the three subsequent quarters.  
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Data: Real Futures Price of Corn 

The crop-year for corn in the United States runs from September through August. The crop is typically 

planted in April and May and harvested in September and October. Through the summer, the growing 

regions experience agro-economic conditions (especially precipitation and temperature) that determine 

productivity (yields). If the weather is too hot, cold, wet, or dry, then prices rise in anticipation of a small 

crop. After harvest, it takes some time before the size of the harvest is known. The official scorekeeper, 

the USDA, publishes its final estimate of the crop size in January, following the harvest. However, after 

November, the USDA usually revises its estimates only slightly.  

We measure prices in March of each year, which occurs in the middle of the crop-year, before 

planting and before the weather realizations occur that determine yield on the next year’s output, and 

after the market has full information about the size of the previous year’s output. Specifically, for each 

crop year we take the average daily settlement price in March on the futures contract that matures in 

December. This price represents the (risk-adjusted) price that a firm would expect to receive in December 

if it were to decide in March to sell corn in December. We then deflate the price by the all-items consumer 

price index and take logs. The resulting futures-price variable is ,ln( / )t t T tf F CPI= , where t denotes March 

of each year and T denotes December of the same calendar year.  

Data: Futures-Cash Price Spread (Convenience Yield) 

As articulated by Working (1949), the market price of storage is revealed by the difference between the 

futures price for delivery after the next harvest and the current spot price. In other words, the absence of 

arbitrage opportunities implies that the futures price equals the current cash price plus the cost of carrying 

the commodity until the futures contract expires. Specifically, 

( ), , , ,(1 ) (1 ),t T t t T t T t TF P r c y= + + −         (8) 

where rt,T denotes the cost of capital, ct,T the warehousing cost of storage, and yt,T the convenience yield. 
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With this construction, we can interpret the convenience yield as the percent by which the futures price 

falls below the value implied by full carrying costs. We use a measure of the log convenience yield as our 

measure of the price of storage because it captures the component of the supply of storage that depends 

on inventory but not on the price level. 

We use average daily Central Illinois cash bids in March to measure the spot price, although it 

does not make any difference to our results if we use other locations in the United States.16  Nor do our 

results change if we use expiring March futures prices in place of Central Illinois cash bids. We treat capital 

costs as exogenous to corn storage and measure them using , 0.75t T tr g= , where gt denotes the yield on 

one-year Treasury notes plus 200 basis points, and the 0.75 factor reflects the fact that we are calculating 

the cost of storage over a nine-month horizon. We add 200 basis points based on the Chicago Mercantile 

Exchange’s (CME) method for determining the price of storage in wheat-futures markets. Our results are 

insensitive to the choice of capital-cost measure because variation in the price of storage is dominated by 

variation in the other components of (8). 

Warehousing fees are not directly observable from secondary sources. Moreover, because grain 

elevators are multi-output firms that merchandize and store several different commodities and may cross-

subsidize some activities, a posted fee for storage may not clearly reflect the price of grain storage on the 

margin (Paul 1970). Our warehousing-cost factor is derived from a maximum storage price set by the CME 

on warehouse receipts and shipping certificates that are issued to make delivery on futures contracts. 

Since 1982, this price maximum has been between $0.045 and $0.05 per bushel per month. However, 

Garcia, Irwin, and Smith (2015) show that this price has been too low relative to the market in the last 

several years, and that $0.10 would be a more appropriate price. If the storage price had been allowed to 

grow at the rate of CPI inflation, it would have reached $0.10 in 2007. Thus, we define the warehousing 

16 Garcia, Irwin, and Smith (2015) show that the specific futures-market delivery mechanism sometimes causes the futures price 
to exceed the expected future spot price. They show that these discrepancies have recently been large for wheat, but over a nine-
month storage window, they are small for corn. 
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component of the price of storage as $0.05/bu/mo in 1982–83 dollars, which corresponds to $0.45 over 

the nine months from March to December. 

Taking logs, the spread variable we use in our estimation is: 

, ,
,

(1 )
ln(1 ) ln 0.45 ln ,t t T t T

t t T
t t

P r F
cy y

CPI CPI
+   

= − − = + −   
        

(9) 

where CPI is indexed to equal 1 in 1982–83. The additive warehouse cost component reflects the fact that 

warehousing costs are not proportional to the price of the commodity. Nonetheless, our results are robust 

to our assumption that warehousing storage costs equal $0.45; the estimated average price effects 

increase slightly if we set the warehousing storage cost to zero.  

Data: Crop-Year-Ending Inventory 

We use total crop-year-ending inventory in the United States as the quantity variable in our model. This 

variable measures total corn inventory on August 31 of each year—that is, five months after the month 

in which we measure price. This timing convention suggests that inventory might be endogenous to price. 

Specifically, if a demand shock raises the price of the December futures contract in March, firms may 

respond by increasing inventory demand. We use a partial-identification strategy to allow this possibility. 

We use US inventory rather than world inventory for two reasons.17  First, US inventory is 

measured much more accurately than world inventory. Second, although the corn market is global, 

transportation costs are significant, so prices at any location reflect local scarcity. That is, using US 

inventory volume totals is commensurate with using a US price. Our inventory variable is ln( )t ti I= . 

Data: Index of Real Economic Activity (REA) 

Rapid economic growth and intense industrial activity tend to coincide, especially in less-developed 

17 Notwithstanding these reasons, our estimates of the price effect are only few percentage points different if we use world 
inventory excluding China. We exclude China because it often reports large changes in inventory holdings, but it does not tend 
to manage that inventory in accordance with market signals (Wright (2011)). The results are also unchanged if we exclude 
government-held inventory. 

18 
 

                                                           



nations. This growth spurs demand for commodities and raises commodity prices. In a review article 

(Carter, Rausser and Smith, 2011), we show that both the 1973–74 and 2007–08 commodity booms were 

preceded by unusually high world economic growth, especially in middle-income countries. Baumeister 

and Kilian (2014) show that corn prices are correlated with the price of oil, but that correlation is largely 

“driven by common macroeconomic determinants of the prices of oil and of agricultural commodities.”  

To represent global economic activity, we use the index developed by Kilian (2009) and extend it 

backwards using the index of Hummels (2007). These indexes are based on dry-cargo shipping rates and 

are designed to capture shifts in global demand for industrial commodities. As Kilian emphasizes, “the 

proposed index is a direct measure of global economic activity which does not require exchange-rate 

weighting, which automatically aggregates real economic activity in all countries, and which already 

incorporates shifting country weights, changes in the composition of real output, and changes in the 

propensity to import industrial commodities for a given unit of real output” (1056). We use the March 

value of the index to match the timing of our price data. 

Figure 5 presents the resulting index of real economic activity (after removing a linear trend) along 

with the de-trended time-series for log inventory, log real futures price, and convenience yield. 

[FIGURE 5 HERE] 

VAR Model and Identification  

We estimate the three functions in (2), (6), and (7), adding REAt and a linear trend as arguments in each 

equation. We write the log of these equations as 

( )( )
( )( )
( )( )

1,
inventory supplyln , , , ,

ln , , , , , inventory demand

ln , , , supply of storage

t t t t t t st

t t t st et wt

t t t wt

f cy h I F REA t

f g I REA t

cy c I REA t

ε

ε ε ε

ε

−+ = ∆

=

= −

  

where we specify the log price of storage as the negative convenience yield (-cyt) and the log spot price 

as t tf cy+ . As outlined earlier, our objective in defining the cyt variable is to obtain a supply of storage 
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function that does not depend contemporaneously on price.  

We perform a first order expansion around the log of inventory and prices and around the levels 

of REA, the trend and the shocks. We then normalize the three equations by it, ft, and cyt to obtain 

          
0 1 2 3 4 1 5 1

0 1 2 3 4 5

0 1 2 3

( ) inventory supply
inventory demand
supply of storage

IS IS IS IS IS IS
t t t t t t st

ID ID ID ID ID ID
t t t st et wt

SS SS SS SS
t t t wt

i t f cy REA i f

f t i REA

cy t i REA

δ δ δ δ δ δ ε

δ δ δ δ δ ε ε δ ε

δ δ δ δ ε

− −= + + + + + + +

= + + + + + +

= + + + +

 

Defining [ ]t t t t tX REA i f cy ′≡  and assuming that REAt is exogenous to the corn market within a year, 

we write the log-linear system as * * *
1 ,t t t tA X B X Z Dε−= +Γ +  where 

3 2 2*

3 2

3 2

1 0 0 0

1

1 0

0 1

IS IS IS

ID ID

SS SS

A
δ δ δ

δ δ

δ δ

 
 
− − − =  − − 
 − − 

,  * 4 5

0 0 0 0

0 0
0 0 0 0
0 0 0 0

IS IS

B
δ δ

 
 
 =  
 
  

,  

0 1

0 1*

0 1

0 1

R R

IS IS

ID ID

SS SS

δ δ

δ δ

δ δ

δ δ

 
 
 

Γ =  
 
 
 

 

4 5

1 0 0 0
0 1 0 0

0 1
0 0 0 1

ID IDD
δ δ

 
 
 =  
 
  

 ,  

R
t
s
t

t e
t
w
t

ε
ε

ε
ε
ε

 
 
 =
 
 
  

  

[ ]1tZ t′ = , and R
tε  denotes a Markovian shock to REAt. The first-order Markov assumption on the shocks 

implies that a linear approximation to the data generating process for the shocks is  

  1t t tUε ε −=Φ +  ,        (10) 

where Ut is a vector of innovations that are independent of each other and independently and identically 

distributed over time. Thus, we have 

  ( )1 * 1 * 1 * 1 * 1 *
1 2 ,t t t tD A X D B D A X D B X D t U− − − − −

− −= +Φ −Φ + Γ +  

which write compactly as 

1 1 2 2t t t t tAX B X B X Z U− −= + +Γ +         (11) 

This model is linear in the logarithm of prices and inventory, which implies that the elasticity of total 
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demand with respect to price decreases when inventory decreases. To see why, note that a given 

percentage change in inventory corresponds to a much smaller change in total quantity when inventory 

is low than when inventory is high. Thus, a given percentage price change will be associated with small 

percentage changes in total quantity when inventory is low and larger percentage changes in total 

quantity when inventory is high.  This implication is consistent with the standard rational storage model 

in which demand is less elastic when inventory is scarce.   

After re-normalizing (11) so that one variable has a unit coefficient in each equation, we have  

21 23 23

31 32 34

41 42

1 0 0 0
1

1
0 1

A
α α α
α α α
α α

 
 − − − =
 − −
 
− 

,                 (12)

 

The parameter α23 is the short-run (i.e., one-year) elasticity of inventory supply. As shown in Figure 3, this 

parameter reflects the horizontal difference between the current-year supply and demand curves; it is 

the difference between the supply and current-use-demand elasticities. The parameter α32 is the short-

run inverse elasticity of net demand for inventory with respect to the expected price in the next period. 

Another key parameter is α42, the short-run inverse elasticity of supply of storage. Our identification 

assumption that price does not appear in the supply of storage function produces the zero in the bottom 

row of A. As specified in (11) and (12), the elements of A are not identified, because inventory is 

endogenous in the inventory-demand and supply-of-storage equations.  

Most of the year-to-year variation in inventory comes from fluctuations in inventory supply (i.e., 

fluctuations in current-year supply and demand). To identify α23, we require independent variation in 

inventory demand. The dominance of inventory-supply shocks thus makes point identification of α23 

difficult. As a result, we use a partial-identification strategy. 

Partial identification, also known as set identification, permits econometric analysis without 

imposing strong assumptions (Manski 2003). We assume that α23 lies in a specified range, but we take no 
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position on which value in that range the parameter takes. Because we do not identify a particular value 

for α23, the other parameters in A are also not uniquely identified; they are identified only up to the set 

defined by our assumption on α23. This approach is similar to that employed by Kilian and Murphy (2014) 

in their study of the role of inventory in determining crude-oil prices. Kilian and Murphy impose sign 

restrictions on the elements of their A matrix and bounds on several of the short-run elasticities in that 

matrix. Their method extends the identification-by-sign-restrictions approach of Faust (1998) and Uhlig 

(2005), who impose sign restrictions only.  

We make an identifying assumption that there is no feedback from the corn market to global 

economic activity within one year. This assumption implies zero restrictions in the first row of the matrix 

A. Total world trade in corn is a small fraction of seaborne trade in dry cargo, the price of which underlies 

our real economic activity measure. Most dry cargo is industrial commodities such as coal and iron ore.  

In the decade of the 2000s, total corn trade was less than 2 percent of seaborne dry-cargo trade by weight. 

During our sample period, world corn trade never exceeded 4.3 percent of seaborne dry-cargo trade. 

Thus, the effect of corn-specific price shocks on real economic activity is likely negligible.18  These zero 

restrictions leave a single unidentified parameter, so we place bounds only on α23.  

Using estimates from the literature and with some introspection, we could exactly identify our 

model by choosing a specific numerical value for the short-run supply elasticity. This was the approach 

used by Blanchard and Perotti (2002) to model the effects of government spending and taxes on output. 

Blanchard and Perotti impose on their model a value for the elasticity of tax receipts with respect to GDP. 

In our case, we could use the estimates of Adjemian and Smith (2012), who use the price response to 

USDA crop forecasts during the period from 1980 to 2011 to estimate the demand flexibility (inverse 

elasticity) for corn. We show in Appendix A that their estimates imply ( )23 32 42 344.4 1 / (1 )α ≈ − α +α +α .  

18 Corn trade data from the USDA (http://www.fas.usda.gov/psdonline), and dry cargo trade data from UNCTAD Stat 
(http://unctadstat.unctad.org/ReportFolders/reportFolders.aspx).  
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Rather than imposing specific values, we impose bounds on α23. Here, we introduce three 

assumptions that imply bounds on the parameters that can be used to partially identify our model. The 

elasticity of inventory supply is19 

23 ,
s u

s uQ Q
I I

α =η −η  

where ηs and ηu denote the production (supply) and current-use (demand) elasticities, / sI Q  is the ratio 

of inventory to production,  and / uI Q  is the ratio of inventory to use. The inventory to use ratio never 

exceeded 0.4 in our sample period, and it would seem reasonable to suppose that the elasticity of demand 

for current use exceeds 0.1 in absolute value. The supply elasticity is non-negative and likely close to zero 

because planted acreage and inventory carryover are essentially determined by March of each year. Thus, 

we place a lower bound of 0 0.1 / 0.4 0.25−− =  on α23.  

The α32 inverse elasticity in our econometric specification reflects the potential net response of 

next-period’s producers and consumers to expected prices. This elasticity should be at least as large as 

the short-run elasticity of current-period net supply with respect to the current price because firms are at 

least as able to respond to current shocks during the next period as they are during the current period. 

Thus, we place an upper bound of 1/α32 on α23, and we have 23 320.25 1 /α α≤ ≤ . 

In sum, we base these bounds on three assumptions: 

(i) Short-run elasticity of demand for current use exceeds -0.1 in absolute value. 

(ii) Inventory-to-use ratio never exceeds 0.4, which is the sample maximum. 

(iii) Elasticity of next year’s net supply is not less than elasticity of current net supply. 

Proceeding under these assumptions, we estimate the model parameters using data from 1961 to 2005. 

Based upon the estimated parameters, we take two approaches to estimating the effects of the RFS in 

corn prices. First, we forecast prices and inventory for the period from 2006 to 2014 and conduct a 

19 Because α23 is constant, the η decreases as Q/I increases, i.e., demand and/or supply is less elastic at low inventory levels.  
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counterfactual experiment to assess the dynamic impact of expanding ethanol production. Second, we 

deduce implied long-run effects from our parameter estimates through parallel shifts of the inventory 

supply and demand curves as in Figure 4. Next, we describe these two methods. 

 
Estimating the Ethanol Effect Using Counterfactual Analysis 

We forecast prices and inventory under various assumptions regarding the structural shocks Ut. First, we 

set the inventory-demand shock to zero for 2006–14 and set the remaining shocks to their values implied 

by the parameter estimates. This experiment predicts the prices that would have occurred if the market 

had experienced the same real-economic-activity, inventory-supply, and supply-of-storage shocks as in 

fact occurred but had not been hit by any inventory-demand shocks. Specifically, we generate 
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                     = + + Γ +                          

, 

where Â  , B̂  , and Γ̂   denote estimates of the structural parameters and t̂u  denotes the structural 

residuals. If all inventory-demand shocks in 2006-14 emanated from changes to expected future ethanol 

demand, then the difference between the observed and counterfactual variables provides an estimate of 

ethanol’s effect on prices and inventory through the inventory-demand channel. The absence of 

inventory-demand shocks would imply that the market did not display the foresight to hold inventory to 

meet the impending ethanol-demand boom. In that case, we would expect inventories to be drawn down 

as ethanol use increased, but prices would not rise as much as they would have done if the market were 

demanding more inventories in anticipation of future ethanol production.  

As Figure 4 shows, permanent increases in ethanol production shift the inventory-supply curve to 

the left and the inventory-demand curve to the right. In our second experiment, we set both the 

inventory-demand (u3t) and inventory-supply shocks (u2t) to zero for 2006–14. This experiment produces 
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an estimate of the effect of ethanol production on corn prices under the assumption of no other inventory 

demand or supply shocks in the 2006–14 period.  

The first six years of our counterfactual period produced no extreme Corn Belt weather events, 

but corn production did fluctuate significantly during this period. Then, in 2012 this region experienced 

its worst drought for 50 years. In our third counterfactual experiment, we allow for inventory-supply 

shocks from surprises in the US corn harvest. To measure these surprises, we use the difference between 

actual production and the World Agricultural Supply and Demand Estimates (WASDE) that are made in 

May of each year. The May WASDE report is the first one released in each crop year. It is based on a survey 

of planted acreage and projected trend yield. Production in 2007 and 2009 exceeded expectations by 5 

and 8 percent, respectively, whereas production in 2010 and 2011 was 7 and 8 percent, respectively, 

below expectations. In 2012, production came in 27 percent below expectations. To incorporate these 

surprises in our counterfactual scenario, we generate 
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,           (13) 

where / 40t tSδ =  and St denotes the production surprise in year t, which we measure in millions of metric 

tons. We standardize the shock by the average inventory the last 10 years of our estimation sample, which 

was 40mmt. By using this functional form for δt, we allow an approximate linear shift of magnitude St in 

the quantity of inventory supplied.  

 
Estimating the Long-Run Ethanol Effect Directly 

We estimate the long-run effect of the mandate directly from the model parameters. We expect the long-

run price effect to be less than the short-run effect as a longer run gives the opportunity for land-use 

change. The long-run effect would be zero if factors of production had infinitely elastic supply, but we 

25 
 



have no reason to expect this to be so. The dominant factor of production for corn is cropland, the 

expansion of which is limited (Searchinger et al (2008)). 

The RFS2 implies a permanent corn demand increase of 1.3 billion bushels, or 33.4 mmt. In the 

long run, the supply of inventory shifts left by this amount and the demand for inventory shifts right by 

this amount, as illustrated in Figure 4. The short run impacts differ because the mandate was phased in 

over time and because inventory demand may have moved by more than the long-run amount in the 

short run to potentially cover multiple years.   

 The long-run relationships implied by the VAR can be depicted by setting all shocks to zero, i.e.,  

1 1 2 2
LR LR LR
t t t tAX B X B X Z− −= + +Γ         (14) 

This equation describes the long-run real economic activity, inventory supply, inventory demand, and 

supply of storage curves. We shift the inventory supply curve to the left by 33.4 mmt and the inventory 

demand curve to the right by the same amount. We then solve for new values of inventory, futures price 

and convenience yield holding REA constant. See Appendix B for details on our solution method.  

These parallel shifts are nonmarginal, and their magnitude is approximately equal to the trend 

level of inventory in the latter part of our sample. This fact makes our results potentially sensitive to our 

specification of a log linear functional form. To investigate the robustness of our results to functional form, 

we estimate the long-run ethanol effect using several linear approximations. Specifically, we estimate the 

effect on prices of small parallel shifts in the inventory supply and demand curves and extrapolate linearly. 

Our results are robust to the amount of extrapolation. 

 

Results 

Parameter Estimates and Impulse Responses 

Table 1 contains the reduced-form parameter estimates20 and estimates of the structural-parameter 

20 The reduced-form parameters correspond to A-1B1 in (9) and are estimated by OLS. 
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matrix A. The first three variables in the system have significant autocorrelation, but all estimates of the 

largest root are far below the threshold for a unit root, which is consistent with the apparent mean-

reverting behavior of these variables in Figure 5. The futures and inventory variables display statistically 

significant trends: real futures prices trend down and inventory trends up. 

If we fix α23 based on the assumption that the difference between the inventory supply and 

demand elasticities equals ( )23 32 42 344.4 1 / (1 )α = − α +α +α  (as suggested by the discussion above and in 

Appendix A), then the estimated short-run elasticity of inventory supply equals 1.79. Under this same 

assumption, the estimated short-run elasticity of inventory demand equals -1/0.29=-3.45. Thus, the short-

run inventory-demand elasticity is substantially greater than the short-run inventory-supply elasticity; this 

proposition is consistent with the notion that next year’s net demand is more elastic than this year’s net 

demand. Constraining our parameters only to lie in the identified set produces a range from 3.30 to 0.25 

for α23.  As we show in subsequent sections, this wide range has little effect on our price-impact results, 

but it has larger effects on our counterfactual predictions of inventory. The range for the elasticity of 

inventory demand is narrower; it spans from -1/0.30=-3.33 to -1/0.25=-4.00. The supply-of-storage 

parameters are largely unaffected by variation within the identified set.  

Figure 6 shows impulse-response functions for one-time one standard deviation structural shocks. 

The shaded box in the figure signifies the identified set, and the vertical lines above and below indicate 

confidence intervals with greater than 90 percent coverage.21 A real-economic-activity shock raises 

futures prices significantly for several years. In contrast, it lowers inventory and convenience yield. Lower 

21 We generate confidence intervals using a recursive-design wild bootstrap with 10,000 replications (Goncalves and Kilian 2004). 
For each bootstrap draw, we estimate the identified parameter set and the range of impulse responses defined by that set. We 
keep only draws that satisfy our identification conditions α23>0.25 and α32>0. This exercise produces 10,000 bootstrap draws for 
both the estimated lower and upper bounds of the identified set. We set the lower limit of the confidence interval equal to the 
0.05 quantile across draws of the estimated lower bound and the upper limit as the 0.95 quantile across draws of the estimated 
upper bound. This interval covers the identified set with probability 0.90, because 90 percent of the estimated parameter sets lie 
entirely inside it. Imbens and Manski (2004) show that the confidence interval for the identified set is wider than the confidence 
interval for the true parameter within the set. Heuristically, this result follows from the fact that the true parameter (a single 
point within the identified set) necessarily covers a narrower range than the identified set (assuming that the set has positive 
measure). Thus, a 90 percent confidence interval for the whole set covers the true parameter with probability greater than 0.90. 
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convenience yield signifies an increased demand for inventory, so the signs of these responses are 

consistent with the supposition that these demand shocks elevate both current and future demand. 

[FIGURE 6 HERE] 

Inventory-supply shocks raise inventory levels and lower the futures price and convenience yield 

(as would be expected from Figures 3 and 4). Inventory-demand shocks raise inventory levels over several 

years, and they also raise futures prices accordingly. The convenience-yield response to inventory demand 

is negative, as expected. Consistent with Figures 3 and 4, a positive supply of storage shock (increasing 

convenience yield) implies a shift downward in the supply-of-storage curve and an increase in inventories. 

Overall, the impulse responses are consistent with our theory.  

Both the BIC and the small-sample corrected AIC of Hurvich and Tsai (1989) indicate that a model 

with a single lag is the most favored model. Thus, although our conceptual model suggests that a second 

lag may be relevant, including the second lag reduces precision and does not improve fit significantly. In 

the remainder of the paper, we focus on estimates from the one-lag model, although we also report the 

analogous two-lag results for comparison. 

Historical Decomposition and Counterfactual Analysis 

Figure 7 shows a historical decomposition of the four variables for the case with 

( )23 32 42 344.4 1 / (1 )α = − α +α +α . The decomposition reveals the cumulative contribution of each of the 

four shocks to the observed variable. It shows that most of the variation in inventory emanates from 

inventory-supply shocks, as expected. However, substantial increases in inventory demand occurred in 

2006–14. Futures prices are affected strongly by real economic activity, which produced high prices in the 

1970s and again in the most recent decade. However, inventory demand contributed significantly to price 

increases in 2006–07 and again in 2010-12. Inventory-supply shocks affected prices in several episodes, 

especially 2010-14. In 2010 and 2011, respectively, actual production was 7 and 8 percent below 

expectations due to below-average weather during the growing season. The 2012 drought manifests as a 
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negative inventory-supply shock, which raises prices and lowers inventory. 

Convenience yield is driven mostly by inventory supply, which would be expected from a relatively 

constant supply-of-storage curve that the demand curve slides up and down as inventory levels change. 

High inventory demand dampens convenience yield after 2006, as implied by our theory. 

[FIGURE 7 HERE] 

To further explore the effect of the various shocks and draw implications for the effect of ethanol 

production on corn prices, we conduct the counterfactual analysis that we introduced earlier. Figure 8 

shows these results for ( )23 32 42 344.4 1 / (1 )α = − α +α +α , and Table 2 shows the ranges implied by the 

identified set. If there had been no inventory demand shocks in 2006–14, inventory would have dropped 

precipitously, as shown by the green line in Figure 8. The first row of Table 2 shows that inventory levels 

were 68 percent higher in log terms, on average, than they would have been in the absence of realized 

inventory-demand shocks. In other words, the market responded to the growth in ethanol production by 

holding more corn in inventory than it otherwise would have. This inventory demand caused futures prices 

to increase by 12 percent, on average, over the nine-year period, and it lowered the convenience yield by 

2 percent, on average. This result supports the hypotheses of Figure 4: an increase in inventory demand 

raises the demand for storage and therefore increases the price of storage, i.e., an increase in inventory 

demand affects cash prices less than it does futures prices. This result reinforces the findings of Garcia, 

Irwin and Smith (2015), who show significant decreases in convenience yield since 2006. 

[FIGURE 8 HERE] 

The dominant net-supply shock during 2006–14 was the growth of the ethanol industry. The red 

line in Figure 8 shows the counterfactual case of no inventory supply or demand shocks between 2006 

and 2014. The green line indicates lower inventory and higher prices than the red line because it includes 

the actual current-use demand for corn. In other words, the growth in ethanol use caused inventory to be 

run down and prices to rise. The blue line in Figure 8 shows counterfactual paths that assume no 
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inventory-demand shocks and limit net-supply shocks to those that derived from US production surprises. 

Incorporating production shocks does change the path of prices and inventory, but prior to 2012 it has 

little effect on the average difference between the actual and counterfactual values. Table 2 shows that, 

based on this counterfactual, we estimate that ethanol production raised corn prices by 31 percent, on 

average, in 2006-2014. The 90 percent confidence interval for this estimate is [0.13, 0.54]. If we use the 

two-lag VAR, then Table 2 shows a larger estimated effect of 41 percent. 

The counterfactual implications for prices depend little on the fact that our model is set- rather 

than point-identified. Based on the identified set, we estimate the average price effect to be between 28 

and 30 percent for futures prices and between 28 and 32 percent for cash prices. The associated 

conservative 90 percent confidence intervals are [0.14, 0.53] for futures and [0.13, 0.54] for cash prices. 

Inventory, however, is much more sensitive to the location of our parameters in the identified set. Our 

estimated inventory effect ranges from 10 to 34 percent across the identified set; this wide range is 

generated by the range of α23.  

To check the robustness of these estimates, we applied our counterfactual analysis to the 1999-

2005 crop years. This is a kind of placebo test. Using the counterfactual in (13), which allows for production 

shocks, we estimate an average counterfactual cash price 8 percent lower than the observed price. This 

estimate has a 90 percent confidence interval of [-0.20, 0.04] and so it is not statistically significant. 

Moreover, the confidence interval includes zero for all but one of the 7 years.  

Our analysis also reveals the dynamic responses of prices and inventory to the ethanol boom. 

Corn prices jumped in 2006–07 and increased further in 2007–08, mainly because demand for inventory 

was high. In late 2008, the financial crisis and the corresponding crash in oil prices and gasoline demand 

caused a drop in demand for corn from ethanol producers. The counterfactual analysis shows that in the 

following two years, the effect of ethanol demand on corn prices was much more moderate. Then in 2010 

and 2011, along with the worse-than-expected crops, increasing ethanol demand caused corn prices to 
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rise again significantly above the counterfactual values. In these two years, we estimate that corn prices 

were 53 and 56 percent greater than they would have been without the ethanol-induced shocks.  

In the absence of the ethanol shocks observed since 2006, the 2012 drought would have caused 

inventory to decline by significantly more than it did. This difference comes from inventory demand; in 

the counterfactual world without ethanol, the market would choose to run down inventory and replenish 

it the following year. In the current market environment, which has a large component of permanent 

inelastic demand for corn from ethanol producers, the willingness to hold inventory is higher. The poor 

2010 and 2011 harvests mean that inventories would have been relatively low entering 2012 even without 

ethanol production. Thus, the drought would still have had a substantial price effect; our counterfactual 

2012 cash price is 32 percent below the actual price.  

Estimated Long-Run Effect 

Figure 9 shows the estimated long-run effect on cash prices using two different lag lengths and 

two different methods, which vary by the extent of linear extrapolation. As described earlier, we conduct 

parallel shifts of π*33.4 mmt in the inventory supply and demand curves and multiply the result by 1/π to 

approximate the effect of 33.4 mmt shifts. For π=0.5 and one lag in the VAR, the estimated effect is 31 

percent, with the identified set covering the range [0.29, 0.32].  When we extrapolate from 0.334 mmt 

parallel shifts (π=0.01), we obtain a cash price effect of 0.35 and when we use the full parallel shift (π=1), 

we obtain an estimate of 0.28 (not shown). The estimates from the two-lag VAR are significantly less 

precise than the one-lag model and are also slightly more sensitive to the linear extrapolation.  Overall, 

the estimates are robust to the linear extrapolation, especially for the for the one-lag model. 

 The confidence interval on the cash price effect is robust to various levels of linear extrapolation. 

For confidence intervals with greater than 90 percent coverage (see footnote 21), we obtain ranges of 

[0.06, 0.97] for π=0.01 and [0.05, 0.95] for π=0.5. For parallel shifts of the full 33.4 mmt the confidence 

intervals become unreasonably wide. This confidence interval is sensitive to functional form because 33.4 
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mmt is approximately equal to trend inventory, which means that a leftward shift of this magnitude in 

inventory supply can generate an equilibrium a very steep part of the inventory demand curve. Thus, in 

some bootstrap draws we obtain a large estimated price effect because we take the log of a number close 

to zero. Because the extrapolated estimates are naturally bounded away from this region, and because 

the point estimates from the favored one-lag model are robust to {0.01,0.5,1}π ∈ , we report the π=0.5 

confidence interval as our preferred estimate. Our long-run estimate is that a 1.3 billion bushel increase 

in corn demand raised prices by 31 percent with a 90 percent confidence interval of [0.05, 0.95]. 

 [FIGURE 9 HERE] 

Conclusion 

In this paper, we have measured the relationship between US ethanol expansion and corn prices in the 

period following the 2007 expansion of ethanol mandates. We use structural vector autoregression to 

model corn-inventory dynamics and use a counterfactual experiment to estimate what prices would have 

been in the absence of ethanol-induced shocks to inventory supply and demand. This approach enables 

us to separately identify persistent and transitory shocks to corn prices.  

We isolate two main results that have not been previously quantified in the literature. First, the 

corn market anticipated the forthcoming ethanol boom and increased inventory demand accordingly. As 

a result, prices increased in 2006 in advance of the ethanol-production jump in 2007 and 2008. Second, 

we estimate that the long-run corn price would be about 31 percent lower if the ethanol mandate had 

not been expanded in 2007. This estimate is scalable; to estimate the effect of increasing corn demand 

permanently by any multiple of 1.3 billion bushels, a reader could multiply our estimate by that multiple. 

The ethanol mandate is controversial and continues to face economic and political challenges. 

During the 2012 drought, several state governors and other groups including livestock producers 

requested a temporary waiver of the RFS mandate. The EPA has the authority to temporarily waive the 

mandate if it is causing “severe economic or environmental harm to a region or the nation”. However, the 

32 
 



temporary-waiver request was denied. In 2013, the mandate reached the so-called blend-wall constraint, 

namely that the mandate requires greater ethanol content than the 10 percent that has been approved 

by EPA for blending with conventional fuel. The EPA was unable to resolve this dilemma in a timely fashion. 

It did not release 2014 compliance requirements until May 2015, when it also announced that it would 

not fully enforce the mandate for 2015 and 2016. However, it stated that it intended to move back 

towards the RFS2 mandate in future years. This period of uncertainty has significantly affected fuel 

markets (Lade, Lin, and Smith, 2015). If the mandate is to be met after 2016, either alternative fuel blends 

that use 15 and 85 percent ethanol will have to penetrate the market or biodiesel production from 

soybeans will need to increase substantially. Expanding biodiesel production would have potentially large 

effects on another food commodity, so our methods and results are of continuing policy relevance.  
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Table 1: VAR Parameter Estimates  

Equation 
REA Inventory Futures Conv. Yield 

 Reduced Form Estimates: A-1B1 

REAt-1 0.79* (0.18) -0.60 (0.52) 0.45* (0.19) 0.02 (0.08) 
Inventoryt-1 -0.11 (0.07) 0.33* (0.32) -0.05 (0.09) 0.05 (0.06) 
Futurest-1 -0.35 (0.19) 0.01 (0.76) 0.33 (0.20) 0.08 (0.12) 
Conv. Yieldt-1 0.06 (0.44) -0.38 (1.41) 0.09 (0.54) 0.40 (0.29) 
     

REAt-2 -0.37* (0.19) 0.34 (0.44) -0.33* (0.21) -0.09 (0.07) 
Inventoryt-2 -0.01 (0.10) 0.43 (0.22) 0.02 (0.08) -0.05 (0.04) 
Futurest-2 0.12 (0.23) 0.89 (0.65) 0.40 (0.21) -0.12 (0.11) 
Conv. Yieldt-2 -0.99 (0.58) 2.31* (0.86) -0.30 (0.46) -0.15 (0.17) 
     

Constant 1.69 (0.93) 0.59 (2.33) 0.83 (0.83) 0.17 (0.37) 
Trend -0.005 (0.004) 0.028* (0.010) -0.009* (0.003) -0.001 (0.002) 
     
 A Matrix: imposing ( )23 32 42 344.4 1 / (1 )α = − α +α +α  

REA 1 0 0 0 

Inventory Supply 0.71 1 -2.15 -2.15 

Inventory Demand -0.37 0.29 1 0.54 

Supply of Storage 0.15 0.10 0 1 

     

 A Matrix: Identified Set 

REA 1 0 0 0 

Inventory Supply [0.11, 1.07] 1 [-3.30,-0.25] [-3.30,-0.25] 

Inventory Demand [-0.37,-0.37] [0.25, 0.30] 1 [0.52, 0.57] 

Supply of Storage [0.15, 0.15] [0.09, 0.10] 0 1 
     
 A Matrix: >90% Confidence Interval 
REA 1 0 0 0 

Inventory Supply [-0.40, 2.19] 1 [-4.37, -0.25] [-4.37, -0.25] 

Inventory Demand [-0.48,-0.23] [0.19, 0.35] 1 [0.14, 0.97] 

Supply of Storage [0.09, 0.21] [0.07, 0.13] 0 1 
Notes: Sample range: 1961–2005; standard errors in parentheses; * indicates significance at 5%; model 
selection criteria values are AICC=-669.92 and BIC=-639.66; for the one-lag model, we obtain AICc = -687.70 
and BIC = -667.38, so the one-lag model is favored. We obtain the confidence intervals using a recursive-
design wild bootstrap (see footnote 21). 

 

 
 



Table 2: Log Difference between Actual and Counterfactual 

 2006-07 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 Average 
No Inventory-Demand Shocks        

Inventory 0.31 0.62 0.44 0.36 0.89 0.92 1.01 0.73 0.81 0.68 
Fut. Price 0.18 0.29 0.06 -0.05 0.27 0.22 0.17 -0.05 0.01 0.12 
Conv. Yield -0.03 -0.05 0.00 0.01 -0.05 -0.02 -0.02 0.02 0.00 -0.02 
Cash Price 0.14 0.25 0.06 -0.03 0.22 0.19 0.15 -0.03 0.01 0.11 

           
No Inventory-Demand Shocks; Inventory-Supply Shocks from Production Surprises Only 

Inventory -0.08 0.16 0.42 -0.02 0.04 -0.08 0.67 0.20 0.15 0.16 
Fut. Price 0.26 0.42 0.11 0.06 0.50 0.51 0.35 0.15 0.25 0.29 
Conv. Yield 0.01 -0.01 -0.02 0.05 0.02 0.05 -0.03 0.05 0.04 0.02 
Cash Price 0.27 0.41 0.09 0.11 0.53 0.56 0.32 0.21 0.29 0.31 

           
Identified Set; No Inventory-Demand Shocks; Inventory-Supply Shocks from Production Surprises Only  

Inventory -0.08,-0.08 0.00,0.21 0.33,0.45 -0.3,0.08 0.01,0.12 -0.18,0.20 0.29,1.74 0.04,0.73 0.11,0.36 0.10,0.34 
Fut. Price 0.26,0.27 0.41,0.44 0.10,0.12 0.05,0.10 0.50,0.51 0.49,0.53 0.25,0.41 0.10,0.19 0.23,0.26 0.28,0.30 
Conv. Yield 0.01,0.01 -0.02,0.00 -0.02,-0.01 0.04,0.06 0.00,0.03 0.01,0.06 -0.13,0.01 0.05,0.06 0.04,0.06 0.01,0.02 
Cash Price 0.27,0.27 0.39,0.44 0.08,0.11 0.08,0.16 0.50,0.54 0.50,0.58 0.13,0.42 0.15,0.24 0.29,0.30 0.28,0.32 
           

>90% Confidence Interval on Identified Set; No Inventory-Demand Shocks; Inventory-Supply Shocks from Production Surprises Only 
Inventory -0.30,0.32 -0.37,0.66 -0.16,0.91 -0.78,0.41 -0.50,0.56 -0.65,0.57 -0.17,2.13 -0.48,1.17 -0.40,0.90 -0.29,0.66 
Fut. Price 0.16,0.33 0.25,0.58 -0.10,0.36 -0.15,0.36 0.29,0.80 0.31,0.81 0.11,0.69 -0.09,0.47 0.04,0.56 0.14,0.53 
Conv. Yield -0.05,0.04 -0.07,0.05 -0.09,0.04 -0.03,0.11 -0.08,0.08 -0.04,0.10 -0.18,0.05 -0.01,0.15 -0.05,0.15 -0.05,0.06 
Cash Price 0.14,0.35 0.22,0.60 -0.13,0.34 -0.11,0.42 0.28,0.83 0.32,0.85 -0.01,0.68 -0.01,0.52 0.10,0.63 0.13,0.54 
           

No Inventory-Demand Shocks; Inventory-Supply Shocks from Production Surprises Only; 2 lags in VAR 
Inventory -0.33 -0.01 0.32 -0.21 0.12 0.05 0.82 0.59 0.35 0.19 
Fut. Price 0.38 0.51 0.19 0.22 0.61 0.65 0.41 0.16 0.18 0.37 
Conv. Yield 0.03 0.02 0.01 0.07 0.03 0.08 0.00 0.06 0.07 0.04 
Cash Price 0.42 0.52 0.20 0.29 0.64 0.73 0.41 0.22 0.25 0.41 
           

Production Surprises (MMT)        
Actual Prod. 267.50 331.18 305.91 331.92 315.62 312.79 273.19 351.27 361.09  
May Forecast 267.98 316.50 307.99 307.10 339.61 343.04 375.68 358.88 353.68  
Surprise -0.48 14.68 0.85 25.45 -23.45 -29.12 -102.49 -7.61 7.41  

Notes: Here we define the log cash price as ft+cyt. Table entries are results from the counterfactual experiment described in the text. One-lag model unless otherwise stated.

 
 



Figure 1: Growth of the U.S. Ethanol Industry 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The solid lines in Panel B, show USDA projections, the dashed lines show the mandated quantities under the 
RFS, and the diamonds show actual ethanol production. Data sources are USDA baseline projections, Renewable 
Fuels Association Annual Industry Outlook, and the Energy Information Administration of the US Department of 
Energy. 
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Figure 2: Relative Price of Wholesale Ethanol to Gasoline 

 
 
Notes: Average rack prices, FOB, Omaha, Nebraska. Downloaded from the website of Nebraska Energy Office 
(http://www.neo.ne.gov/statshtml/66.htm)  
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Figure 3: Two-Period Commodity-Market Equilibrium  

 

 

Figure 4: A Permanent Increase in Demand 
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Figure 5:  De-Trended Data for Key Variables 

 
 
 
Notes:   For clarity, this figure shows linearly de-trended series, where we estimate the trend in the pre-ethanol period (1962-
2005). For the VAR estimation, we use the actual series and include a constant and linear trend in each equation of the model. 
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Figure 6: Impulse Responses 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes:  Responses to one-time one-standard-deviation shocks for the two-lag model. The dark boxes indicate the range of 
impulse responses in the identified set. The vertical bars indicate estimated confidence intervals that cover the true parameter 
with probability greater than 0.90.  We obtain these intervals using a recursive-design wild bootstrap (see footnote 22). 
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Figure 7: Historical Decomposition 

 
Notes: Figures show contributions of each shock to the relevant series for the one-lag model. The sum of the 
contributions equals the observed data (net of trend). 
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Figure 8: Counterfactual Analysis 

 

Notes: Here we define the log cash price as ft+cyt. The various lines are generated from the counterfactual experiment 
described in the text using the one-lag model. 
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Figure 9: Long-Run Cash-Price Effect of Ethanol Mandate 

 
 

Notes:  We conduct parallel shifts of the estimated inventory supply and demand by the amounts of π*33.4 for 
π=0.01 and 0.5. We multiply the resulting price change by 1/π to estimate the effect of 33.4mmt shifts. The dark 
boxes indicate the range of estimated price effects in the identified set. The vertical bars indicate estimated 
confidence intervals that cover the true parameter with probability greater than 0.90.  We obtain these intervals 
using a recursive-design wild bootstrap (see footnote 21). We report results for VAR specifications with one and two 
lags. 
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Appendix A: Conditions for Exact Identification 

Here, we derive a restriction on the parameters that exactly identifies our model. The supply of inventory 

(Is) equals quantity supplied (Qs) minus quantity used (Qu). Thus, the short-run elasticity of inventory 

supply with respect to the cash price is 

,
s s u u s

s s u
s

dI P dQ P dQ P Q Q
dP I dP I dP I IQ

 
θ ≡ = − = η −η 

 
                (A1) 

where we define the production (supply) and current-use (demand) elasticities, respectively, as 

s
s dQ P

dP Q
η ≡

 

and 
u

u
u

dQ P
dP Q

η ≡ .  Note also that total demand equals demand for current use plus 

inventory demand (i.e., d u dQ Q I= + ). Thus, elasticity of total demand is 

 ,
d u d u

d u d
d d d d d

dQ P dQ P dI P Q I
dP dP dPQ Q Q Q Q

η ≡ = + =η +θ
   

             (A2) 

where
d

d dI P
dP I

θ ≡

 

denotes the elasticity of inventory demand with respect to the spot price P. Using the 

equilibrium condition = =s dQ Q Q , these two equations imply  

  θ = η −η +θ 
 

,s s d d I Q
Q I  

                  (A3) 

which can be rewritten as  

 ( )θ −θ = η −η .s d s d Q
I   

                (A3a) 

That is, the difference between the elasticities of supply and demand for inventory is proportional to the 

difference between the elasticities of total supply and demand. 

Using estimates from the literature and some introspection, we could exactly identify our model by 

choosing numerical values for the terms on the right-hand-side of (A3a). For the total demand elasticity, 

ηd, we could use the estimates of Adjemian and Smith (2012). They use the price response to USDA crop 

forecasts during the period from 1980 to 2011 to estimate that the demand flexibility (inverse elasticity) 

1 
 



for corn is -1.27, which implies 1 / 1.27 0.79dη = − = − . In our setting, the short-run production elasticity, 

ηs, is close to zero. Since planted acreage and inventory carryover are essentially determined by March of 

each year, it is nearly impossible for producers to respond to price shocks that occur after March. During 

our sample period, average year-ending inventories as a proportion of use equal 0.18. Thus, at average 

inventory levels, we expect from (A3a) that θ −θ ≈ − − =(0 0.79) / 0.18 4.4s d . 

To translate θs into our econometric specification, we define the spot price of interest as 

log( )P f cy≡ + . Then, equations (A1)–(A3) imply 23
sθ α≡ . Similarly, combining the inventory-demand and 

supply-of-storage equations (9b and 9c) implies  

 32 43 42
1 ( )

(1 )d

d f cy
di

α α α
θ

+
≡ = − + − ,                 (A4) 

which implies 

( )32 43 421 / (1 )dθ = − α +α +α .                  (A5) 

Thus, we translate our expectation that 4.4s dθ −θ ≈  into our econometric model parameters as 

( )23 32 43 421 / (1 ) 4.4α + α +α +α ≈   

To fully identify our model, we could impose the restriction ( )23 32 43 421 / (1 ) 4.4α + α +α +α = .  

 

Appendix B: Solving for Effect of Parallel Shifts in the Inventory Supply and Demand Curves 

The long-run relationships implied by the VAR model can be depicted by setting all shocks to zero, i.e.,  

1 1 2 2
LR LR LR
t t t tAX B X B X Z− −= + +Γ         (A6) 

where 

log( )

LR
t
LR
tLR

t LR
t

LR
t
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We write  
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. 

The second equation is the inventory-supply equation, which we shift to the left by amount δ, and the 

third equation is the inventory-demand equation, which we shift to the right by amount δ. We hold REA 

fixed at the long-run values in (A6) and solve for the other three variables in 2011 and 2012.  We also 

impose that these shifts change the level of the variables but not the long-run trends.  

Thus, we solve the following three equations for * * * * * * * * *
1 1 1 2 2 2, , , , , , , ,   and t t t t t t t t tf I cy f I cy f I cy− − − − − −

  in 

t=2014 
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