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ABSTRACT 
This paper describes some simplifications allowed by the variational theory of traffic flow 
(VT). It presents general conditions guaranteeing that the solution of a VT problem with 
bottlenecks exists, is unique and makes physical senseB i.e., that the problem is well-posed. 
The requirements for well-posedness are mild and met by practical applications. They are 
consistent with narrower results available for kinematic wave or Hamilton-Jacobi theories. 
The paper also describes some duality ideas relevant to all these theories. Duality and VT are 
used to establish the equivalence of eight traffic models. Most of these are not new but VT-
duality considerations offer a new insight into their relationship.  
 

1.  INTRODUCTION  
Consider an infinite one-directional road on which vehicles cannot pass and move in the 
direction of increasing distance, I. If at some location I I 0 we assign consecutive integers to 
the vehicles we observe as time increases from -! to K!, then the space-time trajectories of 
all the vehicles are completely defined as proposed in Moskowitz (1NO5), and further 
elaborated in Makigami et al (1N71), by the integer contours of a surface. This surface is 
characterized by a continuous function N(t, I) I n. The floor "n# is the number of the last 
vehicle to have advanced beyond I by time t. Since passing is not allowed the ordering of the 
vehicles is preserved everywhere. Therefore we can assume without loss of generality that 

 
1 Presented as “Taffic NetworBs: Aasic 6omponents; LinBages; and Macroscopic Effects;” at the 1st International 
Conference on Networks and Heterogeneous Media, Maori, Italy, June 200O. 
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N(t, I) is non-increasing in t for every I.  Moreover, since vehicles move in the direction of 
increasing I; we can also assume that N is non-decreasing in I for every t8  

The simplest model of traffic flow further assumes that that N is differentiable almost 
everywhere (except possibly along some curves that would form ridges in the surface defined 
by N) and that the first partial derivatives of N are related by a functionB i.e.: 

 
    ).,,Y(Y ItINOtN $%$&$$        (1) 
  

This is a Hamilton-Jacobi (HJ) equation with O as the Hamiltonian. Note that $NY$t 
(abbreviated +) is the flow and %$NY$I (abbreviated B) is the density, and that meaningful 
solutions require flow and density to be non-negative.  

 The function O is called the “fundamental diagram” (FD) by traffic engineers. We 
assume in rough agreement with experiments that O is piecewise differentiable and concave 
in its first argument and returns non-negative values (for every t and I) if the first argument is 
in an interval \0, '(t, I)] such that O(0, t, I) I O(', t, I) I 0, with '(t, I) ^ !. The parameter ' 
is called the “jam density.” The maximum of O,  +maI, is called the “capacity”B see Fig. 1(a). 
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Figure 1.  Basic concepts of Variational Theory: (a) fundamental diagramB and (b) cost function. 

 

Note that if (1) is differentiated with respect to I and expressed in terms of density it 
reduces to the conservation law: $BY$t K ($OY$B)($BY$I) I %$OR$I. This is the classical 
kinematic wave (`W) formulation of aighthill and Whitham (1N55), and Richards (1N5O). A 
simplified solution of some `W problems in terms of the Moskowitz function was later 
proposed in Newellds seminal trilogy (Newell, 1NN3). Newellds results have been recently 
formalized and extended in Daganzo (2003, 2003a and 2005), which proposes a variational 
theory (VT) able to capture bottlenecks of all types.  
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(

1.1 Variational theory 

Variational theory also assumes that (1) holds where N is differentiable and that O is concave, 
but treats the problem as a capacity-constrained optimization problem. An intuitive 
explanation is as follows. We know that the flow at any point in space-time is bounded from 
above by +maI., the capacity. A similar capacity constraint should also hold if the road is 
viewed from a rigid frame of reference that moves with speed I’. In this case the capacity 
relative to the frame (the “relative capacity”) is the maximum rate at which traffic can pass an 
observer attached to the frame. Since an observer that moves with speed I’ next to a traffic 
stream with density B and flow + is passed by traffic at a rate + f BI’, the FD for the moving 
frame is O(B, t, I) % B I’ and its relative capacity is: 
 

) *+ ',,sup),,'( BIItBOItIP
B

%& .       (2) 
 

Figure 1(a) shows these relations geometricallyB note that the relative capacity P is the 
intercept of the tangent to curve O with slope I’. Figure 1(b) shows the relative capacity 
function (also called the “cost function” in variational theory) with I’ as the argument. Note 
that %P is the aegendre-Fenchel transform of O, and that as a result, as shown by Fig. 1(b), P 
is convex and strictly decreasing in the range of “valid” slopes where O is non-negativeB i.e., 
for I’ ,  - \w(', t, I), w(0, t, I)]. Note as well that P ! 0 and P(u) I 0, 
since curve O touches the origin. Thus, in traffic flow the aegendre-Fenchel transform has an 
intuitive physical interpretation, which makes its application fairly intuitive as we shall now 
see.   

BOItBw $$, Y),,(

 Clearly, an observer travelling with a valid speed IQ(t) - \w('), w(0)] along a “valid” 
space-time path ! from point D to point P cannot see a change in vehicle number greater than 
the integral with respect to time of its relativistic capacitiesB i.e., an upper bound to change is: 

 

 .( !) ,         (3) ) */&
P

D

t

t

dtItIP ,,'

where tD and tP are the times associated with the path endpoints. Therefore, an upper bound to 
the vehicle number NP observed at a point P can be written by considering the set P of all 
valid observer paths to P from the points of a boundary D where the vehicle numbers are 
known. In other words, if D(!)-D is the beginning of a valid path !, and ND(!) is the known 
vehicle number at D(!), then it must be true that NP, must satisfy:   
           

 NP " inf hND(!) K .(!) : 0 ! - P i.       (4) 
 

kquation (4) is the capacity constraint mentioned at the outset.  
In variational theory the solution domain S is the set of points P such that all infinitely 

long valid paths ending at P intersect the boundary. For example, the solution domain for the 
initial value problem (IVP) is the half plane, t ! 0. Variational theory assumes that capacity 
constraint (4) is bindingB i.e., that the actual value of NP for P - S is the largest possible 
allowed by (4): 
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  NP I inf hND(!) K .(!) : 0 ! - P i.        (5) 
 

This is a calculus of variations problem. It is well known that under some regularity 
conditions (5) characterizes both the viscosity solution of the HJ-IVP and also the entropy 
solution of the `W-IVP.2 A key advantage of VT over the HJ and `W theories is its natural 
framework for expressing the relatively complicated problems arising in traffic flow 
applications (including bottlenecks and finite roads), and the convenient way in which the 
“well-posedness” of such problems can be assessedB see below. 
 

 

2.  SIMPLIFICATIONS 

2.1 Homogeneous problems with point bottlenecks: solution existence and uniqueness. 
 

In traffic flow theory it is often necessary to consider “point bottlenecks”. These are usually 
slower vehicles or fixed obstructions that reduce the maximum rate at which traffic can flow 
past them. A point bottleneck is defined by its space-time trajectory IA(t), assumed to be a 
valid path, and by its relative capacity (maximum passing rate) rA(t). The bottleneck imposes 
the condition dN(t, IA(t))Ydt " rA(t) in HJ theory. This type of constraint seems not to have 
received much attention in the mathematics literature. The constraint is even more 
complicated when expressed in terms of `W theory. But the complication disappears in VT. 

In VT a bottleneck reduces the original relative capacity of the road along the bottleneck 
trajectory. This is recognized by using rA(t) instead of P as the integrand in (3) for the portion 
of any path that overlaps IA(t).3 Nothing else needs to be changed: (4) and (5) continue to 
apply. Hence, in VT, point bottlenecks are just shortcuts through space-time, which preserve 
the shortest-path character of the problem without increasing its complexity. The solution 
should be equally easy to find. The question is whether the solution with bottlenecks is 
continuous and varies with t and with I at allowable rates.  

We look for solutions that satisfy the following aipschitz-continuity conditions: 
 
(N(t, I1) f N(t, I2)) Y (I2 %  I1) -  \0, !]          if   I1 ^ I2    and   (Oa) 
 
(N(t2, I) % N(t1, I)) Y (t2 %  t1)  -  \0, +maI]                if   t1 ^  t2 .   (Ob) 
 

A solution satisfying (O) is obviously continuousB thus, vehicles have continuous trajectories. 
Furthermore, if (O) holds, vehicles can neither reverse direction nor overtake an object 
moving with speed uB i.e. their average speed is always bounded in a physically meaningful 

 
2 If O is not concave (4) continues to be true but (5) may not match the HJ and the `W solutionsB other 
constraints come into play. 
3 For a bottleneck to have an effect its relative capacity should be less than the originalB i.e., rA(t) ^ P(dIA Ydt ,t,I).  
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way.4 Therefore, solutions satisfying (O) will be called “valid”. A VT problem whose solution 
is valid will be said to be “well-posed”. 
 We examine below whether these conditions are satisfied for “homogeneous” 
problems in which O and P are time-independent and space-independent. Therefore, they will 
be expressed from now on as functions of one argument, O(B) and P(I’)B the parameters', 
+maI, etc. will become constants. It will be useful to keep in mind that for homogeneous 
problem without bottlenecks straight lines turn out to be optimum paths and the RHS of (3) 
reduces to P(vDP)(tP f tD), where vDP  is the slope of segment DP:  vDP  I (IP f ID)Y(tP f tD)B see 
Daganzo (2005). In this special case, thus, the calculus of variations problem (5) reduces to an 
ordinary minimization for the point on the boundary (D-D) that produces the minimum cost. 
We can now state the following. 
 

THkORkM 1: A UT-IUP with any number of piecewise differentiable bottlenecBs XAY is well-
posed if the initial data satisfy (Za) and the bottlenecBs satisfy: rA(t) 1 0 and dIA(t)Rdt  1 08  

Proof: see Appendix A (aemmas 5 and O). �  

 
aemmas 5a and O of Appendix A (summarized as Theorem 2, below) prove a similar result 
for the finite highway problem (FHP) with bottlenecks. The highway extends from I [ 0 to I 
[ Io \ 08 Given are the vehicle numbers along the boundary: n(0, I) I N(0, I) for 0 " I "  Io, 
and n(t, 0) and n(t, Io) for t 1 0. We look for N(t, I) for t n 0 and I ! 0. The solution domain is 
S I h(t, I): t 1 0 and 0 " I " Ioi. Because the boundary at I I 0 and I [ Io can be reached by 
valid paths from the boundary, we add the necessary consistency condition stipulated in 
Daganzo (2005) for problems with complex boundaries: namely, that the least cost of 
reaching a boundary point with a path from the boundary be no less than the cost specified for 
that pointB i.e., that N(t, 0) I n(t, 0) and N(t, Io) I n(t, Io) for t 1 0. In our case, this means that 
the boundary lines I I 0 and I[ Io must be optimum paths. 

 
THkORkM 2:  A FHP with bottlenecBs is well posed if: (i) the boundary data n(t, I) satisfies 
(O)B (ii) the bottlenecBs satisfy rA(t) 1 0; dIA(t)Rdt  1 0 and IA(t) 1  0B and (iii) the consistency 
condition is satisfied: N(t; 0) I n(t; 0) and N(t, Io) I n(t, Io) for t " 0. 

 
In applications, Theorem 2 can be interpreted in terms of a competition between “upstream 
demand” and “downstream capacity”. aet U(t) be a real function satisfying (Ob), giving the 
number of cumulative desired entrances at I I 0B and let ND(t, 0) be the available capacity at I 
[ 0 from conditions downstream. We define ND(t, 0) as the infimum of the costs of reaching 
point (t, 0) from the boundary with valid paths in the solution domain starting at an earlier 
timeB i.e., from the set of points Dt [ h(t’; I): (t’; I) - D and 0 # t’ ^ t i, with end point E(! ) 
I (t, 0).  Thus, ND(t, 0) I infhND(!) K .(!)B 0!  - Dt and E(! ) I (t, 0)i. aikewise, let 6(t) be 
a real function satisfying (Ob), giving a bound on the cumulative exits at IoB and define the 
                                                 
4  The proof of this statement is so simple we only give the logic: (i) direction reversals cannot occur because 
they require N to be constant for increasing t and decreasing I, but this is obviously incompatible with (O)B (ii) 
vehicles cannot overtake a valid path with u everywhere because this would imply that N increases along such 
path, but this is incompatible with the requirement P(u) I 0. 



 
 
 O  
 
 

                                                

upstream demand at I [ Io, NU(t, Io), as the infimum of the costs of reaching point (t, Io) from 
the boundary with valid paths in the solution domain starting from Dt B i.e., NU(t, Io) I 
infhND(!) K .(!)B 0!  - Dt and E(! ) I (t, Io)i. Then, we have the following corollary: 

 
COROaaARo 1:  The FHP with bottlenecBs is well posed if: (i) the initial data n(0, I) 
satisfies (Oa)B (ii) the bottlenecBs satisfy rA(t) 1 0; dIA(t)Rdt  1 0 and IA(t) 1  0B and (iii) the 
upstream and downstream data are n(t; 0) I minhU(t), ND(t, 0)i and n(t, Io) I minh6(t), 
NU(t, Io)i. 
 
The corollary is true because it satisfies conditions (i), (ii) and (iii) of Theorem 2. It satisfies 
(i) and (iii) because according to (5): N(t; 0) I minhn(t; 0), ND(t, 0)i I n(t; 0), and N(t; Io) I 
minhn(t; Io), NU(t, Io)i I n(t, Io)B and both results obviously satisfy (Ob).  The functions U(t) 
and 6(t) can be chosen in any way consistent with (Ob). For example, if there is a highway 
with bottlenecks and different O and P for I ^ 0, we can define U(t) for the downstream 
problem as the demand at I I 0 arising from the upstream problem: U(t) # NU(t, 0)B and 
choose 6(t) for the upstream problem as the available capacity arising from the downstream 
problem at I [ 0: ND(t, 0). To stitch together the two solutions we stipulate n(t; 0) I 
minhNU(t, 0), ND(t, 0)i for both problems. This ensures that both problems are well-posed, 
and is a natural way to treat inhomogeneous highways. 

The Theorems and Corollary are consistent with results available for `W (or aWR) 
theory for the case without bottlenecks. The results also generalize the demand vs. capacity 
metaphor of the cell-transmission model (Daganzo, 1NN3, 1NN4) and the related formulations 
in Daganzo (1NN3a), aebacque (1NN3).5   

The results can also be applied to time-dependent problems. Well-posedness can be 
checked in this case by slicing the solution space into successive time-independent problems 
and verifying that each time-independent slice satisfies the conditions of one of the above 
theorems. Unfortunately, well-posedness cannot always be tested a priori (before solving the 
problem) as in the time-independent case because for the initial data of a slice to be valid (and 
the theorems to hold) the solution obtained at the end of the previous slice must satisfy (Oa) 
with the jam density ' specified a priori for the current slice.  

2.2 Linear cost functions 

 
In this subsection O is triangular in B. Now, the problem simplifies even more because the 
cost function (3) is linear (Daganzo, 2003a). If we use u , w(0) and fw , w(') for be the 
slopes of the rising and dropping branches of O (in traffic flow lingo u is the “free-flow 
speed” and w the “backward wave speed”), then (2) becomes:  

 

 
5  Well-posedness with point bottlenecks has not been systematically studied in `W theory. Thus, we propose 
using the conditions of Theorems 1 and 2 and Corollary 1 to verify the well-posedness of `W problems with 
concave O. This is reasonable because a valid VT solution satisfies the conservation law derived from (1) where 
the VT solution is differentiable. And, since a valid VT solution is “stable” with respect to the l! norm, one 
would also expect it to be an entropy solution of the conservation law.. 
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P(I’) I (1 % I’Ru)+max,                           for I’- \-w, u].     (7) 
 

Note that P(I’) decreases. We shall abbreviate its maximum: P(%w) I (1_wRu)+max, by the 
symbol r. This parameter (the maximum relative capacity) will be of importance later. 
kxperiments show that r is about 15q greater than +maI.  

 This case is so simple because when P is linear the cost of a path (4) is a linear 
function of the pathds duration and distanceB i.e., if ! goes from D to P:  

 
.( !) I +max(tP f tD) % (+maxYu)(IP f ID).        (8) 
 

Hence, if as is often the case in traffic flow the boundary data (i.e., the coordinates tD and ID 
and the values ND for all points D-D) are given as piecewise linear functions of a parameter, 
tD I t(2), ID I I(2)) and ND I n(2), then (5) becomes: 

 
 NP I inf 2 h+max\tP f t(2)] % (+maxYu)\IP f I(2)] K n(2)i,    (N) 
 

which is just the minimization of a piecewise linear function. Obviously, we can find its 
minimum by inspecting the corners of the objective function.  

The solution can also be found with network algorithmsB see e.g., Daganzo (2003a). 
These methods are advantageous when the solution is sought at many points in the solution 
domain. The networks in question are digraphs with nodes L embedded in space-time, with 
directed arcs LLQ.  Arcs are defined only for node pairs that can be connected by a valid path.  
We call these “valid node pairs.” kach arc is assigned a cost, cLL’, equal to that of an optimum 
continuum path between its end nodesB e.g., as given by (8) when O is triangular. Of interest 
are networks whose shortest “walks” (network paths) between all valid node pairs are shortest 
continuum paths. These networks are said to be “sufficient” because by solving the shortest 
path problem on the network one solves the continuum problem exactly for all its valid node 
pairs. This is useful because if one puts nodes of a sufficient network on the corners of a 
piecewise linear boundary, then the network solution identifies the exact N at every node. The 
solution can be found with the usual dynamic programming recursion: 

 
+ ')'(' min LLLLFLL ccc 3&

-
,         (10) 

 
where F(LQ) is the set of “from” nodes of LQ. 

 For problems with linear P sparse sufficient networks with as few as 2 links per node 
can be constructedB thus (10) can be computed fast. The rest of this paper does not consider 
bottlenecks and uses sufficient networks of the “lopsided” type defined in Daganzo (2003a).O 
A lopsided network (see Fig. 2) is a network with the following properties: (i) its nodes are on 
a rectangular lattice with space separation 4 and time step 5, (ii) the set of links pointing to 

 
O aopsided neworks can only be used if there are no bottlenecksB otherwise they need to be modified. This is 
done by overlying a discrete shortcut with appropriately reduced link costs over the networkB see Menendez and 
Daganzo (2005). 
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any node is translationally symmetric, (iii) two of the links in this set have slopes u and %w, 
and (iv) none of the links spans a distance greater than 4. Note: since the nodes are on a 
rectangular lattice, 4Yu and 4Y(%w) must be integer multiples of 5, assuming u, w 6 0. These 
networks will help us compare different ways of finding N8  But before this is done we 
introduce some duality ideas, which will allow us to double the number of models covered 
under the same umbrella. 

 

t

I

4

 
   

          Figure 2:  A lopsided network. 

3. DUALITY 
 

In this section O(B) is general—not necessarily triangular. The results apply to problems 
where N(t, I) strictly decreases with I for every t in the relevant solution domain. aemma 5b 
of Appendix A shows that an IVP with strictly decreasing n(0, I) satisfies this condition if it 
has no bottlenecks with zero relative capacityB and also if there are bottlenecks with zero 
relative capacity but the solution is only sought upstream of them.7  

Since N is continuous and declines with I, the relation N(t, I) I n defines an implicit 
function for I in terms of t and n, I I `(t, n). This function gives the position of vehicle n at 
time t. It is also continuous and declines with n. Both functions describe the same Moskowitz 
surface. The two functions are connected by the relation: 
 
 `(t, N(t, I)) I I,                 (11a) 
 
which merely expresses that the position at time t of the vehicle that was at I at time t must be 
I. Conversely, we can also write: 
 
 N(t, `(t, n)) I n,                (11b)  
 
since the vehicle number found at time t at the position of vehicle n at time t is n. Note that 
(11b) is obtained from (11a), and vice versa, by interchanging  (I, `) with (n, N).  Since the 
(primal) results of the previous section were derived with N as the unknown, this suggests that 

                                                 
7  Note that the initial vehicle positions of an IVP can always be described by a strictly decreasing N(0, I), if the 
road contains at least one vehicle. Therefore, no generality is lost by assuming that N(G, I) is monotonic.  
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similar (dual) results can be derived with ` as the unknown after swapping the variables and 
functions for position and vehicle number.  
 Differentiation of (11a) with respect to t and x yields the following relation among the 
partial derivatives of the primal and dual functions: 
 

$NY$I I 1Y$`Y$n ^ 0                    (12a) 
and 

$NY$t I %$`Y$tY$`Y$n 1 0.                 (12b) 
 
The same expressions with (I; `) and (n, N) interchanged are obtained if one differentiates 
(11b). The quantity v [ $`Y$t is the vehicle speed, and the quantity s I %$`Y$n the reciprocal 
of densityB i.e., the continuum version of vehicular spacing. If we now insert (12) into (1) we 
find: 
 

$`Y$t I U(%$`Y$n),            (13) 
 
where U is related to O by the following transformation:8       
 
 U(s) I O(1Ys)Ys,    where s [ %$`Y$n.       (14) 

 

kquation (13), like (1), is an HJ equation. Since we have not reversed the direction of time the 
solution of (13), which is obtained by transforming with (11) the stable (viscosity) solution of 
(1), is also a stable solution. Thus, for any given set of boundary conditions \tD I t(2), ID I 
I(2)) and ND I n(2)] the stable solutions of (13) and (1) describe the same Moskowitz 
surface. Since U, like O, is concave in the relevant range of its argument, s - \1Y', !), `, like 
N, can be found with VT. Thus, the Moskowitz surface can be found by solving with the same 
methods either a primal problem (1) or a dual problem (13).N  

The dual cost function Pd is given by (2) with U substituted for O8  We find that Pd is the 
inverse of P, with the roles of speed I’ and passing rate n’ reversed, and that it still is convex 
and decreasing in the relevant range of passing rates. In the triangular case the dual cost 
function is the inverse of (7), and is still linear: 

 

Pd(n’) I (1 % n’Y+max) u,                         for n’- \0, r].     (15) 

 

 
8 Note that the transformation O 7 U is an involution, which should not be surprising since the swap of I and n 
is a reflection. 
N Note too that one can define by differentiating (13) with respect to n a conservation law, $sY$t K ($U(s)Y$s) 
$sY$n I 0, which is the dual of $BY$t K ($O(B)Y$B)$BY$I I 0.  The analyses and methods relevant to the primal 
conservation law also apply to the dual. 
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Therefore, the sufficient lopsided networks that one could use with (10) now have slopes 
equal to the cost rates of the primal (0, and r) and cost rates equal to the slopes of the primal 
(u and %w, respectively). Variational theory in its primal and dual forms is used in the next 
section to examine the connection between eight different traffic models. 

 

4. APPLICATION: EIGHT MODELS OF A TRAFFIC STREAM  
 
In this section the highway is homogeneous and the FD is triangular. We classify traffic 
models into 4 categories distinguished by the number of variables that are treated discretely: 
0-models treat all variables continuously, as in the discussion up to this pointB 1-models treat 
one independent variable (I or n) discretelyB 2-models treat both independent variables (t and 
IB or t and n) discretelyB and 3-models treat all variables (t, I and n) discretely. Here we shall 
present primal and dual VT models for each category (eight models in total) and see how they 
relate to existing ones.  

0-models: These are fluid models. Our primal 0-model is (3, 5). We have already seen 
that it has the following dual 0-model, where !  is a dual path n(t) from (tD, nD) to (tP ,nP): 

`P I sup h.(!) K `D(!)i,  where .( !)  I u(tP %tD)%(uY+maI)(nP %nD).     (1O)  ) */&
P

D

t

t

d dtnP '

The last equality follows from (15). Note the similarity of .( !) in (1O) and (8). 

1-models:  These are queuing and car-following models. An example of a primal 1-
model is Newellds queuing formula (Newell, 1NN3) which gives the cumulative curve at some 
point of a highway N(t; IM) from the vehicle number curves observed at its upstream and 
downstream ends: NU(t) and ND(t)8 The formula is: 

 
N(t; IM) I minhNU(t%(IM%IU)Yu) , ND(t%(ID%IM)Yw)K (ID%IM)ri.                  (17) 
 

The reader can verify that (17) is the result of applying (N) to our boundary data.10  

 We now apply (1O) to a “lead vehicle problem”. This is a dual problem with boundary 
conditions: `(t, 0) I I0(t) for t 1 0 and  `(G, n) I In(0) for n 1 0. Assume the In(0) is linear in 
n (vehicles are uniformly spaced)  and that dI0(t)Ydt " u. Then, an optimum path to reach point 
(t; n) for some integer n must begin at one of the two extreme points of the relevant part of the 
boundary for point (t, n): either point (0, n) or point (t% nYr, 0). The result is: 

 
`(t, n) I minh In(0) K ut, I0(t% nYr) % nsj i,                      
 

                                                 
10 Since NU and ND cannot increase at a rate that exceeds +maI, an optimum path to point “P” must emanate from 
a point on the (upstream or downstream) boundary with the highest possible t8  Only two such points generate 
valid paths. They correspond to the two arguments of (13). 
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which is the trajectory of vehicle n8 The parameter 1Yr (comparable with a second) has the 
interpretation of a reaction time and we denote it by 8. In practice we are usually interested in 
the 1-model that seeks the values of ` for all integer n. A recursive expression is obtained by 
setting n I 1 in the above and applying the same recipe to all consecutive vehicle pairs. The 
result is the following car-following law (Newell, 2002): 

 
`(t, n) I minh In(0) K ut, In%1(t%8) % sj i.                         (18) 
 
2-models:  These are numerical versions of fluid models. For the primal we use (10) 

with a lopsided network with two links per node. We choose 4 I u58 Therefore, the links with 
slope u (and zero cost) span one time step. The links with slope %w (and cost rate r) span 9 I 
uYw time steps. Hence their cost is c [ r95 [r4Yw. Note: since 9  must be integer we are 
assuming that uYw is an integer—this ratio is comparable with O in practice. If we now use 
sub-indices l and m to identify the time and distance steps, i.e., so that Nlm , N(l5, m4), (10) 
becomes: 

 
Nlm I minhNl%1,m%1 , Nl%9,  m_ 1 K c i.                           (1N) 
 

kquation (1N) expresses the ACT (asynchronous cell transmission) model for cells of size 4B 
see Appendix B.11 

 A dual 2-model is obtained by applying (10) to a lopsided network on the (t, n) plane 
as described above with arc slopes (0, r) and arc cost rates (u, fw). We choose the step for 
variable n to be 1 and the time step, 5 I 1Yr [ 8. This achieves a rectangular lattice, since 5r [ 
1. The link costs become as a result: u8 and %w8 I %sj. Therefore, with the convention: `lm , 
`(l8, m), recursion (10) reduces to: 

 
`lm I minh`l%1,m K u8, `l%1,m%1 % sj i.                       (20) 
 

This is the CF(a) model (Daganzo, 200O), which merely expresses (18) on a lattice.  
 
3-models:  kxamples of 3-models are cellular automata (CA) models, where cars are 

assumed to jump on a lattice. Most CA models are described in dual space, but as we now 
show primal models can also be derived. Simply, use 4 I sj , wRr in (1N), which yields c [ 1, 
and therefore:  

 
Nlm I minhNl%1,m%1 , Nl%9, mK1 K 1i.                         (21) 
 

This expression returns an integer if the input vehicle numbers are integer.  Therefore it is a 
CA model. The expression indicates that the vehicle count at a point in space increases by one 
if and only if vehicle number at the downstream lattice point had reached the target number 9 
time steps agoB i.e., if the previous vehicle had jumped from m and left it vacant for at least 9 
time steps. This is the CA(M) rule described in Daganzo (200O).  

Consider now the dual formula (20) and express it in dimensionless distance, c [ `Ysj.. 
It becomes: 
                                                 
11 The middle term of (B3) turns out to be redundant for the homogeneous highway problem. But if we had used 
a lopsided network with one horizontal link of cost +maI5, (21) would have included the middle term of (B3). 
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 clm I minhcl%1,m K u8Rsj , cl%1,m%1 %1i I minhcl%1,m K 9 ,  cl%1,m%1 %1 i               (22) 
 

We see that if vehicles are initially on the lattice (the cds are integer) and if 9 is an integer, 
then (22) keeps vehicles on the latticeB i.e., it is a CA model. kquation (22) is the unbounded 
acceleration model of Nagel and Schreckenberg (1NN2), called the CA(a) model in Daganzo 
(200O). 

This concludes our review. Duality and variational theory provided a framework that 
clearly established the equivalence of our models. The best model for any given application 
depends on the form of the data and the requirements of the output. 

 

5. COMPOSITION INTO NETWORKS AND DISCUSSION  
Primal analysis looks for the flow of vehicles from the perspective of the roadB and dual 

analysis the “flow of road” from the perspective of the vehicles.12 Fixed bottlenecks such as 
merges and lane-drops are understood by scientists in primal space, from the perspective of 
the road, since this is the form in which data are available. Moving bottlenecksB e.g., those 
caused by slow-moving obstructions are understood from the perspective of the moving 
bottleneck, since data from this perspective is available. The moving-bottleneck effects of 
lane-changing are most easily expressed in dual spaceB those of fixed bottlenecks in primal 
space. The ideas in this paper allow us to combine the effects of fixed and moving 
bottlenecks, including lane-changing, consistently in whatever framework is most useful 
(primal or dual) for a practical application.  

Since lane changes to a faster stream act as moving bottlenecks on the target lane, and 
lane changes to a slower stream act as moving bottlenecks on the source lane, the ability to 
treat moving bottlenecks allows us to compose the very basic component described in this 
paper—a single lane of traffic—into complex multi-lane streams quite realisticallyB this 
approach was explained, proposed and tested with encouraging results in aaval and Daganzo 
(2005). It has proven to be parsimonious and surprisingly accurate for lane drops, moving 
bottlenecks and mergesB see also aaval et al, (2005). A variant of it has also been applied to 
HOV lanes, with considerable success (Menendez and Daganzo, 200O). 

Composition of links into networks is possible along traditional lines, e.g., as in the 
CTM (Daganzo, 2004). But the ideas of this paper allow us to treat turning movements as 
lane-changes, and junctions as complex multi-lane links. Therefore, they allow us to compose 
multi-lane links into networks in quite a bit of detail without introducing extra parameters. 

 
12 A possible interpretation of dual VT and its constraints is as follows. Imagine uniformly spaced parked (dual) 
vehicles by the side of the road. Then, dual VT describes the flow of these vehicles from the perspective of a 
flexible frame of reference attached to the moving (primal) vehiclesB i.e., where (dual) distance increases by a 
unit with each (primal) moving vehicle. From this frame of reference, the (dual) flow is the rate at which dual 
vehicles (i.e., units of primal distance) flow past fixed positions in the dual frame (i.e., moving-primal vehicles). 
Thus, dual flow I primal speed.  Conversely, the rate at which a dual vehicle overcomes dual distance (i.e., 
moving vehicles) is both the dual speed and the primal flow. And the number of parked vehicles between two 
consecutive moving vehicles is both the dual density and, the primal spacing.  Thus, dual-VT can also be 
interpreted in terms of flows and densities, and its constraints described in terms of relative capacities, but all 
from the perspective of the flexible frame of reference. Thus, the dual relative capacity is the maximum flow of 
parked vehicles that can be seen by an observer jumping from primal vehicle to primal vehicle with a fixed jump 
frequency. 
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The composition rules, however, require additional dataB most notably, the destinations of the 
vehicles making up the stream. This make-up strongly affects the discharge rates of diverge 
bottlenecks (see Munoz and Daganzo, 2002) and the performance of intersections controlled 
by traffic signals. Unfortunately, as a network grows in size, the number of possible 
destinations grows and the availability of the required input data diminishes. Thus, the 
practical limit to composition is not theoretical (we could model relatively well almost 
anything if we knew where vehicles were going) but informational. 

We believe that the results in this paper can be of use for the design of small networks 
such as complex interchanges, but other approaches should be sought for very large networks. 
See Daganzo (200Oa) for some ideas in this direction 
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APPENDIX A: PROOFS 
 
Definition 1.  Valid path: A continuous piecewise differentiable function, I(t), such that: 

 

(I(t2) % I(t1)) Y (t2 %  t1)  -  \%w, u]                if   t1 ^  t2 . 
  
Definition 2. Cost function with bottlenecks: 
 

 PA(I’; t; I) I minhrA(t); P(I’)i  if  (t , I) - S, I [ IA(t)  and I’ [ I’A(t) for some A. 
                              I P(I’),   otherwise. 
 
Definition 2. Auxiliary cost function:  

 

PA(I’) I maxh0, %I’rRwi I maxh0, %I’' i. 
 
Definition 3. Auxiliary path costs, .A(!), are costs obtained with the auxiliary cost function.  
 
akMMA 1: PA(I’) " P(I’) for I’ ! %w8 
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    Proof:  The lemma holds for I’ ! 0 since in this case PA(I’) I 0  " P(I’). For I’ ^ 0, PA(I’) 
I %I’rRw I %I’P(%w)Rw I %I’ ) *+ (BwBO

B
3sup Rw I %I’ ) *+ (BwBO

B
3Ysup .  Since 0 ^ (%I’) " w, 

%I’  " %I’) *+ (BwBO
B

3Ysup ) *+ (BIBO
B

3% )'Y(sup  I ) *+ (BIBO
B

'sup %  I P(I’). � 

 
We assume for the rest of this appendix that I’A(t) ! 0 and rA(t) ! 0. 
 
akMMA 2:  0 : PA(I’) " PA(I’; t; I). 
    Proof:  In view of aemma 1, we only need to prove aemma 2 for the first case of definition 
2B i.e., it suffices to show that PA(I’) " PA(I’; t; I) I rA(t) when  I [ IA(t), I’ [ I’A(t) ! 0 and 0 
" rA(t) ^ P(I’). This is obviously true since for I’ ! 0, PA(I’) I 0 and PA(I’; t; I) ! 0. � 
 
akMMA 3: If valid path ! goes from point D to point P, .(!) ! .A(!) ! maxh0, '(ID % IP)i. 
    Proof:  The first inequality follows from aemma 2, since PA is the cost used to calculate 
.(!) and PA is the cost used to calculate .A(!).  The second inequality holds because maxh0, 
'(ID % IP)i is the auxiliary cost of the linear path from D to P, which is the least possible 
because PA(I’) is time- and space-independent. � 
 
akMMA 4 (kxistence): If G # u; w ^ $; and the initial data satisfy (Z) then there is a !# 
which achieves (5) for both the IUP and the FHP8 
    Proof: The set of feasible paths ! from the boundary to P - S is a non-empty, closed and 
bounded subset of the linear normed space of continuous functions, I(t), with respect to the l! 
norm.  The RHS of (5) is bounded from below because (O) applies to ND(!) , and .(!) ! 0. 
Since the set of feasible paths is closed, !# exists. � 
 
akMMA 5: If conditions (i); (ii) and (iii) of Theorem 1 in the teIt apply for an IUP with 
bottlenecBs; then (Za) holds8 
   Proof: Consider two points A and B in the solution domain with coordinates tA I tB I t and 
IA n IA.   
   We first prove that NA " NA. Consider the maximal path, $A, which reaches B from the 
boundary with I’ I u from a source B’-D, and an optimum path from the boundary to A, !#A 
which emanates from a point A’-D.  If the paths do not intersect (i.e., IA’ n IA’) then NA’ " 
NA’ and we can write: NA " NA’ " NA’ [ NA % .(!#A) " NA. (The first equality holds because 
the maximal path imposes a capacity constraint with zero cost, the equality because !#A is a 
solution of (5), and the last inequality because .(!#A) is non-negative.) Thus, NA " NA if the 
paths do not intersect.  If the paths intersect, there is a common point C. Clearly, NA " N6 
since C is on the maximal path to B, and N6 " NA since C is on the optimum path from the 
boundary (and the optimum path from C to A has non-negative cost). Thus, NA " NA if the 
paths do not intersect. 
    To conclude the proof we now show that NA " NA K '(IA % IA) using similar logic. Consider 
the minimal path, %A , which reaches A from the boundary with I’ I %w from a source AY, 
and an optimum path from the boundary to B, !#A , which emanates from a point BY.  If the 
paths do not intersect then NAY " NAY and we can write: NA " NAY K '(IAY %  IA) " NAY K '(IAY 
%  IAY) K '(IAY %  IA) I NAY K  '(IAY %  IA) I NA % .(!#A) K '(IAY %  IA) " NA % .A(!#A) K '(IAY 
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%  IA) " NA % '(IAY %  IA) K '(IAY %  IA) I NA K '(IA %  IA). The first inequality holds because 
'( IAY %  IA) is an upper bound to the cost of the minimal path from AYB the second because 
NAY " NAY K '(IAY %  IAY) as per (Oa)B the first equality is algebraicB the second one holds 
because !#A is an optimum path from the boundary emanating from BYB the third and fourth 
inequalities hold because of aemma 3B and the fifth one is algebraic. Thus, NA " NA K '(IA %  
IA) if the paths do not intersect.  If the paths intersect, then again there is a common point C 
and a common part of the optimum path extending from C to B, which we denote !#6A. And 
we see using the same logic that: NA " N6 K '( I6 %  IA) I NA % .(!#6A) K '(I6 %  IA) " NA % 
.A(!#6A) K '(I6 %  IA) " NA % '( I6 %  IA) K '( I6 %  IA) I NA K '( IA %  IA). Thus, NA " NA K 
'( IA %  IA) whether or not the paths intersect. � 
 
akMMA 5a: If conditions (i); (ii) and (iii) of Theorem 2 in the teIt apply for a FHP with 
bottlenecBs; then (Za) holds8 
   Proof: The proof of aemma 1 can be repeated word for word with only two changes. First, 
for the proof that NA " NA when the maximal and optimal paths $A  and !#A  do not intersect, 
we need to recognize that one or both paths may emanate from the line I I 0, and that it is still 
true that NA’ " NA’ therefore we can still write NA " NA’ " NA’ [ NA % .(!#A) " NA. Second, for 
the proof that NA " NA K '(IA % IA) when the minimal and optimal paths %A  and !#A  do not 
intersect, we need to we need to recognize that one or both paths may emanate from the line I 
I Io. To avoid this problem, extend both paths to the line t I 0 with slope %w and define AY 
and BY as the intersection of the extended paths with the line t I 0.  We imagine that the 
highway extends to I I $, is filled with jam density for I \ Io, and define NAY and NAY 
accordingly. Then the extended path !#A continues to be optimal, the inequality NAY " NAY K 
'(IAY %  IAY) is again implied by (Oa), and the proof of this case goes through verbatim. �  
 
akMMA 5b (Strictly monotone problems without bottlenecks): If for an IUP without 
bottlenecBs the conditions of Lemma 5 are satisfied and n(0; I) is strictly monotone; then N(t; 
I) is strictly monotone8 This is also true for problems with bottlenecBs in the part of the 
solution domain upstream of the bottlenecBs8  
   Proof: Strict monotonicity of the data allows us to replace the inequality NA’ " NA’ used in 
the proofs of aemmas 5 and 5a as part of the relation NA " NA’ " NA’ [ NA % .(!#A) " NA by a 
strict inequality. This establishes that NA ^ NA in the case where the paths used in the proofs 
do not intersect. aack of bottlenecks in the relevant part of the solution domain (upstream of 
the bottlenecks) allows us to state for the case where the paths intersect at C that the part of 
the optimum path from C to A has positive cost—since the average slope of this path must 
then be strictly less than u8 Hence the inequality N6 " NA is strict and this establishes that NA ^ 
NA when the paths do intersect. � 
 
akMMA O (Bounded flows): If conditions (i); (ii) and (iii) of Theorem 1 (or Theorem 2) 
apply for an IUP (or FHP) with bottlenecBs; then (Zb) holds8 
   Proof: Since paths with I’ I 0 are valid and satisfy PA " P I +maI, it follows that N(t2, I) % 
N(t1, I) " (t2 %  t1)+maI if   t1 ^ t2 . Thus, the upper bound part of (Ob) holds. To prove the 
lower bound part, consider the maximal path from (t1, I) to the line t I t2 n t1, reaching it at 
(t2 , I2). Assume first that I2 " Io8 Clearly, aemma 5 guarantees N(t2, I) ! N(t2, I2), and since 
the maximal path has zero cost N(t2, I2) ! N(t1, I). Thus, N(t2, I) ! N(t2, I2) ! N(t1, I). If I2 n 
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Io, there is a time t1’ I t1 _ (Io % I)Ru ^ t2 at which the maximal path intersects the downstream 
boundary. The same logic now implies N(t1 _ (Io % I)Ru, I) I N(t1’, I) ! N(t1’, Io) ! N(t1, I). 
We can now try a maximal path from (t1’, I) and repeat the argument until we reach the line t 
I t2 without intersecting the downstream boundary. We find: N(t1, I) " N(t1 _ (Io % I)Ru, I) " 
N(t1 _ 2(Io % I)Ru, I) " … " N(t2, I). � 
 
COMMkNT: For the FHP (and other problems with complex boundaries) valid paths from 
the boundary to a point P in the solution domain may leave S and return to it. The consistency 
condition (iii) implies that such paths cannot be unique optima. Hence, they can be ignored 
when solving (5). This is the recommended option for application because discrete networks 
for numerical solution then only have to be defined in S. (The reader may want to verify that 
the proofs of aemmas 5a and O still hold if paths are not allowed to leave S.) 
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APPENDIX B: ASYNCHRONOUS CELL TRANSMISSION MODEL 
 
In this appendix primes do not denote derivatives. The cell transmission model (CTM) with 
time step 5, cells of size 4 I u5,  and a triangular FD is: 
 

Nlm %Nl-1,m I minhNl%1,m%1 % Nl-1,m , +maI5 ,  ('  % (Nl%1,m % Nl-1,mK1)Y4)w5 i.     (B1)  
 

The aHS of (B1) is the flow advancing in one time step across the mth intercell boundary. The 
RHS is a function of the vehicles currently in the upstream and downstream cells. It is well 
known (Daganzo, 1NN4, 1NN5) that the last term of the CTM formula, which expresses the 
available capacity of the downstream cell, introduces a first order numerical error when w 6 
4R5, and that the error vanishes if w [ 4R5.  These errors can be eliminated by changing the 
time variable to asynchronous time—as proposed in Sec. 5.2.2 of Daganzo (2003b). The 
result was called the asynchronous cell transmission model (ACTM). 
 
To summarize, imagine that clocks at each location have been synchronized with the passage 
of a reference vehicle with negative speed, s, such that: 1Ys I 1Yu % 1Yw ^ 0. Thus, the new 
(asynchronous) time is t’ [ t _ IRs , and the new lattice instants at I [ Im are related to the old 
by: l’ [ tl’R5 [ tlR5 _ ImRs5 [ tlR5 _ m4Rs5 [tlR5 _ m(u5)(1Yu % 1Yw)R5  I l _m(1 % 9). If 9 is an 
integer then the lattice remains the same, since the lattice instants are displaced from the old 
by an integer multiple of the time step. This leaves invariant the jam density but changes 
speed as per: 1Yv’ I 1Yv K 1Yw % 1Yu. The advantage of the new coordinate system is that the 
speed of the backward wave adopts the value %w’ such that: 1Y(%w’) I 1Y(%w) K 1Yw % 1YuB i.e., 
w’ [ u, and therefore w’ [  4R5. Thus, the formula for available capacity in the new coordinate 
system, which is \'  % (Nl’%1,m % Nl’-1,mK1)Y4]w’5 , is exact. In terms of the old variables, l and 
w’, this expression becomes \' % (Nl’%1,m % Nl’-1,mK1)Y4]w’5 I \'  % (Nl%1,m % Nl-9,mK1]Y4)u5 [ '4 
% (Nl%1,m % Nl-9,mK1). Substituting this expression for the last term of (B1) we obtain the exact 
ACTM recipe: 
 

Nlm %Nl-1,m I minhNl%1,m%1 % Nl-1,m , +maI5 ,  '4 % (Nl%1,m % Nl-9,mK1)i, or            (B2) 
 

Nlm I minhNl%1,m%1 , Nl-1,m _ +maI5 ,  '4 K Nl-9,mK1i.               (B3) 
 
 
 




