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a  b  s  t  r  a  c  t

Developmental  differences  regarding  decision  making  are  often  reported  in  the  absence  of  emotional
stimuli  and without  context,  failing  to explain  why  some  individuals  are  more  likely  to  have a greater
inclination  toward  risk.  The  current  study  (N  = 212; 10–25y)  examined  the  influence  of  emotional  context
on  underlying  functional  brain  connectivity  over  development  and  its impact  on  risk  preference.  Using
functional  imaging  data  in a neutral  brain-state  we  first  identify  the “brain  age”  of  a given  individual
then  validate  it with  an independent  measure  of  cortical  thickness.  We  then  show,  on  average,  that  “brain
eywords:
rain age
motional state
isky behavior
ultivariate

rediction

age”  across  the  group  during  the teen  years  has  the  propensity  to  look  younger  in  emotional  contexts.
Further,  we  show  this  phenotype  (i.e.  a younger  brain  age  in emotional  contexts)  relates  to a  group  mean
difference  in  risk  perception  −  a pattern  exemplified  greatest  in  young-adults  (ages  18–21).  The  results
are  suggestive  of  a specified  functional  brain  phenotype  that  relates  to being  at  “risk  to  be  risky.”

© 2017  The  Authors.  Published  by  Elsevier  Ltd. This  is an  open  access  article  under  the CC  BY-NC-ND

seudo-resting state fMRI

. Introduction

Even before the earliest conceptions of a juvenile justice system,
dolescents and young adults have presented unique challenges
o policy-makers (Steinberg, 2009). Higher incidents of criminal
ctivity, substance use disorders, and the emergence of psy-
hopathologies are often reported during this sensitive time period

mongst a range of potentially comorbid factors (Bava and Tapert,
010; Cohen and Casey, 2014). Prominent aspects include an

ncrease in risky behaviors, higher degrees of sensation seeking and
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/).
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

impulsivity, greater sensitivity to rewards, and heightened reactiv-
ity to threat and punishment (Benthin et al., 1993; Brown et al.,
2015; Dreyfuss et al., 2014).

A particular locus of concern pertains to the functional
neuroanatomy of adolescent development and autonomy in
decision-making from young, to full adulthood, particularly within
and amongst socio-affective environments known to have a pro-
found impact on cognition and behavior. Impeded decision-making
abilities have been reported in response to emotionally charged-
situations, peer influence, and paradigms assessing the salient
nature of rewards and punishment (Brown et al., 2012a; Dreyfuss
et al., 2014; Gardner and Steinberg, 2005; Ladouceur, 2012;

Mueller, 2011; Somerville and Casey, 2010). Indeed, these matters
are currently being debated at the intersection of law and neuro-
science, where legal decisions regarding the criminal culpability of
juveniles remain in flux (Cohen and Casey, 2014; Jones et al., 2014;
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teinberg, 2008). Legal issues concerning the age of majority beg the
uestion − when should an adolescent be considered an adult (Cohen
t al., 2016)?

In all aspects of development, a great deal of heterogeneity
xists amongst typically and non-typically developing populations
Fair et al., 2012b). Particular characteristics may  predispose certain
ubgroups of individuals more than others with a greater incli-
ation toward risk. Some of these characteristics may  normalize
ver time, in part due to structural and functional brain matura-
ion; but regardless of age, there is much uncertainty regarding
hich individuals are most at-risk. Simply stated, while on average

he increased prevalence of risky behavior and irrational decision-
aking across the adolescent and young adult periods have been

hown repeatedly, not all adolescents fit this behavioral profile
Steinberg, 2008).

This variation across individuals may  explain why general
ypotheses concerning mismatches in brain development (e.g.
ual-process models, grey matter vs. white matter, subcortical
s cortical regions), cognitive control and emotional regula-
ion (hot/cold, top-down/bottom-up, BIS/BAS, etc.) have difficulty
ccounting for the myriad of behaviors and heterogeneity reported
n this timeframe (Cohen and Casey, 2014; Mills et al., 2014). Impor-
antly, developmental differences are often reported in the absence
f emotional stimuli and without context. A key advancement in
he study of development with respect to atypical behavior lies in
xploring these relationships while taking into consideration the
brain state” in which a decision is made.

.1. Task-based & task-free imaging paradigms

Neuroimaging studies combining data from resting-state (rs-
cMRI; task-free) and task-based (fMRI; event-related) paradigms
ave mapped developmental changes in network dynamics, forma-
ion, and development (Fair et al., 2009, 2007a; Power et al., 2010).
hese studies and their antecedents have documented shared func-
ional properties at both the regional and systems level (Fair et al.,
007b; Fox et al., 2006; Fox and Raichle, 2007). In essence, they
ite a universality of intrinsically organized neural coherence;
n underlying organization of functional brain connectivity that
ppears to be closely related to task-evoked neural responses (Cole
t al., 2014; Fox et al., 2007). However, the nature of the intrinsic
rain connectivity that lies beneath event-related task-activity is
ot static. Alterations in intrinsic activity under various conditions
ay  yield important insights into the nature of decision making

ndependent of the task evoked activity (Fair et al., 2007b).

.2. Model-Based science, neuroimaging & prediction

With this framework in mind − recognizing the brain as a
ynamic and complex biological system − a key direction for cog-
itive and behavioral neuroscience research is the acquisition and
xamination of large datasets employing multivariate analytical
olutions and robust statistical validation procedures (Power et al.,
010). Such approaches applied to the study of brain and behavior

n typically and atypically developing cohorts across the lifespan
as already begun to show great promise and translational poten-
ial (Betzel et al., 2016, 2014; Cao et al., 2014; Chan et al., 2014;
osenbach et al., 2010; Fair et al., 2012b; Helfinstein et al., 2014).

.3. Purpose & goals

The current research examines the influence of sustained emo-

ional contexts (neutral, negative, and positive) on residual patterns
f functional connectivity (pseudo-resting state, RS)(Fair et al.,
007b). We  test whether an individual’s predicted functional “brain
ge” deviates under emotional influence (emotional brain age) and
ive Neuroscience 24 (2017) 93–106

whether or not this deviation from one’s true age in a given context
is related to a propensity toward, or aversion to risk regardless of
biological age.

2. Methods

2.1. Participants

As part of a large, ongoing study, 212 healthy right-handed
10–25 year olds (118 Females) with no history of mental ill-
ness, neurologic disorders, or use of psychotropic medications was
recruited and included in the current report. Participants come
from a diverse community sample in New York City (NY; N = 119)
and Los Angeles (LA; N = 98) (all participants—M = 19.05, SD = 3.91;
11 children—6 female, ages 10–12 years, M = 11.55, SD = 0.89; 80
teens—45 female, ages 13–17 years, M = 15.77, SD = 1.44; 58 young
adults—33 females, ages 18–21 years, M = 19.86, 1.11; 63 adults—34
females, ages 22–25 years, M = 23.7, SD = 1.03) self-identified as
African American (23.6%), Asian (14.6%), Caucasian (34.4%), His-
panic (22.6%), or Other (4.7%), completed the Cognitive Control
Under Emotion (CCUE) fMRI task (Cohen et al., 2016) and the
Benthin Risk Assessment (Benthin et al., 1993; Steinberg, 2008).
Nineteen participants were excluded for motion as described in
more detail below. All participants provided informed written con-
sent approved by the Institutional Review Boards at each site (see
Supplemental Table S6 for more detail). A smaller subset of these
data (N = 85; see discussion) has been used in previously published
analyses cited within the current report (Cohen et al., 2016).

2.2. Behavioral risk assessment

As part of a larger behavioral (non-imaging) battery, partici-
pants completed a modified version of the Benthin Risk Perception
Measure (BRPM)(Benthin et al., 1993; Gardner and Steinberg, 2005;
Steinberg and Chein, 2015) to assess perception of, and preference
for risk taking through self-report. Variables of interest used in the
present report were graded on a 4-point scale and included risk
perception (how risky is an activity), risk seriousness (how serious
are the consequences for engaging in a risky behavior), risk cost
(how much do costs outweigh the benefits), and risk preference
(how much do the benefits outweigh the costs). A composite “risk
assessment” index provided an overall measure of risk reflecting
the mean score across risk perception, cost and seriousness. Except
for risk preference, lower scores indicate less overall awareness and
preference for risk.

2.3. fMRI task design & presentation

Participants completed a rapid event-related emotional go/nogo
impulse control task to transient social cues under sustained
negative (threat: anticipation of an aversive noise), positive (excite-
ment: anticipation of a reward), and neutral (no anticipation of
an aversive noise or reward) emotional contexts. The task fea-
tured a pseudo-random design with variable inter-stimulus time
intervals for presentation of sustained emotional contexts and
six transient social cue trial type pairings (fear/calm, calm/fear,
fear/happy, happy/fear, calm/happy, and happy calm). During each
emotional context, a participant was  presented with the full-range
of emotional and non-emotional faces and transient cue pairings.
The potential for an emotional versus neutral event occurring was
indicated by a colored background (Supplemental Fig. S4). A more
detailed description of the novel CCUE task used in the present

report, including effects concerning altered decision-making under
the sustained emotional contexts can be found in previous reports
(Cohen et al., 2016, 2015). Data were acquired during six 8-min and
2-s runs (for a total of 48 min  and 12 s), allowing each emotional
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xpression (calm, fear, happy) to be used as a go or a nogo stimulus
ithin runs counterbalanced for emotional context. For each trial,

 face appeared for 500 ms,  followed by a jittered intertrial interval
2–7 s). A total of 114 trials were presented in each run in a pseu-
orandomized order (84 go, 30 nogo across all cue types). In total,
0 nogo and 168 go trials, across all three cue types, were acquired
or each emotional state. A portion of the participants (85 of 212)
nderwent a peer condition where a theoretical peer was  present
uring task administration. Assessing individuals with and with-
ut peer influence separately produced results consistent with the
rimary findings described in the results section (see Supplemen-
al Text). In brief, this manipulation did not have any statistically
ignificant effects on the current findings.

.4. Data acquisition

Whole brain fMRI data were acquired using Siemens Magne-
om Trio 3.0 T scanners located at the Citigroup Biomedical Imaging
enter at Weill Cornell Medical College (WCMC) or at the Staglin
enter for Cognitive Neuroscience at the University of California,
os Angeles (UCLA). Scanning parameters were identical across
ata collection sites and each site acquired imaging data across the
ange of ages included in the current sample. A high resolution,
1 weighted magnetization-prepared rapid-acquisition gradient
cho (MPRAGE) sequence scan was acquired using BIRN optimized
equences (repetition time [TR] of 2170 ms,  echo time [TE] of
.33 ms,  256-mm field of view [FOV], 160 slices x 1.2-mm sagit-
al slices). Functional images were acquired using T2*-sensitive
cho planar pulse sequences covering the full brain. Thirty-eight
-mm thick axial slices were acquired per 2500 ms  TR (TE = 30 ms;
OV = 200-mm; Flip angle = 90◦, 3.1 × 3.1 × 4.0 mm voxels).

.5. Data pre-processing

Preprocessing of functional data, including preparation of fMRI
ata for connectivity analyses, was performed in-house at the Ore-
on Health & Science University (OHSU) using methods described
reviously to reduce artifacts, register subjects to a target atlas and
esample data (Miezin et al., 2000). Steps included: (1) removal of

 central spike caused by MR  signal offset, (2) correction of odd vs.
ven slice intensity differences attributable to interleaved acquisi-
ion without gaps (differences in acquisition time), (3) correction
or head movement within and across runs (Power et al., 2012)
nd (4) within-run intensity normalization to every voxel using

 whole brain mode value of 1000. Atlas transformation of the
unctional data was computed for each individual via the MPRAGE
can. Each run then was resampled in atlas space (Talairach and
ournoux, 1988), using a target T1-weighted template (711-2B),
n an isotropic 3 mm grid, combining movement correction and
tlas transformation in one interpolation (Lancaster et al., 1995). All
ubsequent operations were performed on the atlas-transformed
olumetric time series (Fair et al., 2012b).

.6. Pseudo-resting state (pseudo-RS)

To examine functional connectivity under emotional influence
ndependent of task performance and deterministic task-related
vents, task-related BOLD responses were modeled using the gen-
ral linear model (GLM) and removed by regression prior to
unctional connectivity preprocessing on a voxel-by-voxel basis
Fair et al., 2007b; Fox et al., 2007, 2006; Miezin et al., 2000). Similar
o Fair et al., 2007a,b; the GLM design included time as a seven level

actor (7 frames following stimulus presentation) and the BOLD
esponse was  modeled over a period of ∼17.5 s (7 frames, 2.5 s
er MR frame), including two additional regressors coded in the
LM for baseline signal and linear drift. Importantly, given issues
ive Neuroscience 24 (2017) 93–106 95

with parameter estimation across brain regions and timescales, a
canonical hemodynamic impulse response function/shape was  not
assumed (Boynton et al., 2012; Fair et al., 2007b).

2.7. Connectivity pre-processing

Additional preprocessing steps were employed to reduce spu-
rious variance stemming from non-neuronal activity (Fox et al.,
2005; Fox and Raichle, 2007). Steps included: 1) regression of six
parameters (head re-alignment estimates) obtained by rigid body
head motion correction, 2) regression of the whole brain signal
(Power et al., 2014a; Power et al., 2014b; See limitaions within
the discussion), 3) regression of ventricular signal averaged from
ventricular regions-of-interest (ROI), 4) regression of white matter
signal averaged from white matter ROI, 5) regression of first order
derivative terms for whole brain, ventricular, and white matter sig-
nals (to account for variance between regressors), and 6) temporal
bandpass filtering (0.009 Hz < f < 0.08 Hz)(Fair et al., 2012b, 2009,
2008, 2007b). As described in the steps above, nuisance regression
was applied prior to bandpass filtering to circumvent the potential
for reintroducing unfiltered noise (i.e. previously filtered frequen-
cies) back into the data (Hallquist et al., 2013). In addition, and in
light of research demonstrating the profound impacts of in-scanner
movement on connectivity estimates, motion was censored on a
frame-by-frame basis via framewise displacement (FD)(Fair et al.,
2012b; Power et al., 2012). Frames (or volumes), including adjacent
frames (1 prior to and 2 following a censored frame) associated with
greater than 0.3 mm displacement (translation and rotation) were
removed from a time series prior to analyses (Minutes remaining:
M = 33.94 min, SD = 10.08; Percent Frames Remaining: M = 71.78%,
SD = 21.23). Nineteen participants were excluded from analyses for
having less than 10 min or 20% of frames remaining across all runs
(Laumann et al., 2015; Van Dijk et al., 2010).

2.8. Pseudo-RS connectivity pre-processing & ROI definition

To assess the discrete effects of sustained emotional con-
texts on underlying connectivity, all analyses were performed on
motion-corrected residual timeseries (after removal of modeled
task-specific effects as described in the previous section) for a
given emotional context. This step is accomplished on a subject
by condition basis whereby a binary vector representing the total
number of frames (accounting for excluded frames due to motion)
is further modified in order to ensure successful separation of adja-
cent epochs of fMRI data. Specifically, the aim is to eliminate any
interaction between emotional conditions and to remove potential
confounds induced by hemodynamic delay and response patterns
(Fair et al., 2007b; Logothetis and Wandell, 2004). Supplemen-
tal Fig. S5 depicts a generalization of this process: steady-state is
assumed after the first four frames, then the two frames preced-
ing a block of sustained emotional valence (neutral, negative, and
positive) are removed and six frames after a contextual block are
included to account for the delay in the hemodynamic response.
Frames removed are censored by setting the values of those frames
to zero, whereas frames included are set to one.

From there, for each participant, blocks specific to a given
emotional context are concatenated together, providing 3 vectors
(neutral context, negative context, and positive context). Connec-
tion matrices were generated for each emotional context by taking
the pairwise cross-correlation of valid time points between a set of
264 regions of interest (ROIs; 10 mm  spheres) derived from a prior

meta-analyses of task fMRI data and resting-state activity mapped
onto a cortical surface (Dosenbach et al., 2010; Power et al., 2011,
2010). This process results in a 264 × 264 × 212 correlation matrix
comprising 34,716 unique connections for a given context.
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.9. Partial least squares regression (PLSR)

Given the high-dimensional space (number of features) and
ovariance structure in the connectivity data, we chose to use
LSR to assess a participant’s predicted age. PLSR is a multi-
ariate technique similar to Principle Components Analysis (PCA)
hat models a response by reducing a large set of correlated fea-
ures into orthogonal (uncorrelated) components. However, unlike
CA which focuses solely on the input (x; the independent vari-
bles, or predictors), PLSR takes the output (y; dependent variable)
nto consideration by limiting the relationship (amount of covari-
nce) between the predictor variables and maximizing covariance
prediction) between x and y via singular-value decomposition
SVD)(Abdi and Williams, 2013). For further details and insightful
chematics depicting this process we refer the reader to (Krishnan
t al., 2011).

.9.1. Applying PLSR to residual connectivity matrices
Here, (x) represents a 212 (participant) x 34,716 (connection)

wo-dimensional input matrix for a given context and (y), a 212 × 1
ector containing ages for each participant. We  used 10-fold cross-
alidation on the entire sample in the neutral (baseline) context to
dentify the optimal number of components used to predict age.
ross-validation is an iterative process whereby a sample dataset

s randomly partitioned in order to train and test sets used to assess
 model’s robustness, prevent overfitting, and increase generaliz-
bility to unseen data (Abdi and Williams, 2013; Fair et al., 2012b;
abrieli et al., 2015; Krishnan et al., 2011). This approach iden-

ified four components capable of providing the best overall fit
hile simultaneously reducing the mean-squared error (MSE) and

xplaining the greatest variance in y (Fig. 1).

.10. Predicting age

Counter to traditional correlation-based methods utilizing
nown outcomes/relationships, prediction is herein formalized as a
odel-based approach to predicting some outcome/response vari-

ble in a subset of unseen data from parameters generated within
 larger dataset (Gabrieli et al., 2015).

.10.1. Constructing the model
In order to avoid selection bias and maximize generalizability

ithin our dataset, (using a fixed number of four components as
escribed above) PLSR models are generated and tested on ran-
omly selected groups using a cross-validation process repeated
ver 4000 iterations. Specifically, on each round of cross-validation,
articipants were randomly partitioned using a 30% holdout proce-
ure resulting in 70% training (148) and 30% test (64) sets. Training
f a model is based exclusively on functional connectivity data (in

 Training set) from the neutral condition given no external stim-
lus was present. That is to say, participants are presented with
he range of cues and faces across all contexts (neutral, negative
nd positive), however only the neutral context is absent of exter-
al manipulation (presentation/anticipation of noise or reward),
nd therefore serves as a baseline condition to derive predicted
brain ages”. From here, in order to assess differences in connectiv-
ty under emotional influence (across contexts) within subject, we
dentified a test case with the best out-of-sample (test) fit between
rue and predicted ages in the neutral condition. As described
elow, this approach also allows us to test hypotheses regarding the
ssociation between alterations in functional connectivity under
motional influence and risk.
.10.2. Applying the model
Here, we use the established ‘optimal’ model to predict a partici-

ant’s age within the test case under varying emotional contexts by
ive Neuroscience 24 (2017) 93–106

re-applying the model parameters (beta weights) generated exclu-
sively from the training set in the neutral context to connectivity
data from the test case for the negative and positive contexts.

2.11. Emotional brain age & group comparisons on risk

In order to assess the relationship between altered intrinsic
functional connectivity in an emotional context and risk, we  gen-
erated an adjusted emotional brain age for participants within the
test case. Emotional brain age is herein defined as the difference
between an individual participant’s predicted age in the neutral
context, from their predicted ages in the negative and positive emo-
tional contexts (see Methods). This approach provides a zero-mean
index such that those predicted to be younger in emotional contexts
relative to the neutral condition fall below zero, and above zero if
predicted to be older. Predicted emotional brain age within a given
emotional context was  used to split the test set into participants
predicted as younger or older, and to test for group differences
on risk metrics using standard univariate analyses (Fig. 2). Seven
participants could not be included due to missing data on risk met-
rics. Additional independent t-tests were used to ensure predicted
group status, and differences observed on risk metrics, were not
due to a variety of factors including movement as discussed further
below.

Data smoothing procedures (Fair et al., 2012b, 2007a, 2006)
were applied to the predicted emotional brain ages using locally
weighted sum of squares (loess). Such tests require no assumptions
regarding the structure of data, and help zero in on appropriate
model fits (Cleveland et al., 1988). Polynomial functions were also
fit to the data permitting a qualitative comparison between a par-
ticipant’s biological and predicted emotional brain age (Fig. 2).
Additional tests were performed to assess group differences within
and between predicted groups by gender and peer group status (see
Supplementary Material).

2.12. Structural data

Cortical thickness measurements, extracted from 244 cortical
nodes mapped to the cortical surface (Gordon et al., 2014) within
the 264 ROI set were used to generate a new PLSR model to predict
age within the cross-validated training and test sets (Note: subcor-
tical regions from the 264 region set were not used for the validation
as they cannot be mapped for cortical thickness measurements).
This procedure permitted additional validation of predicted ages
derived from functional activation within the baseline neutral con-
text. Thirteen participants within the training set and three within
the test set could not be included in the current analysis. Two-
participants were excluded due to bad image segmentations and
11 had not completed proper quality assurance at the time of the
analysis, leaving 127 of 148 training participants and 61 of 64 test
participants. Cortical reconstruction and volumetric segmentation
was performed with the Freesurfer image analysis suite, which
is documented and freely available for download online (http://
surfer.nmr.mgh.harvard.edu).

2.13. Predictive features

Correlation matrices for the neutral, negative, and positive con-
ditions represented 34,716 unique functional connections between
264 ROIs used as features in the PLSR model to predict age. The beta
weights obtained, signifying the importance of a particular connec-

tion between ROIs in the model, were ranked and summed by their
absolute values. ROIs were then plotted on a standardized brain
surface using Caret 5 (University of Washington, St. Louis) scaled
proportionally by their absolute beta weights.

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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Fig. 1. Partial least squares regression (PLSR) & age prediction. 10-fold cross-validation identifies the optimal number of components able to predict age in the current
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ample.  Four components were selected (a) minimizing the mean-squared predicti
age).  Linear fits illustrate the predictive quality for age (exact age at scan) in the 

ales)  and (d) testing sets (64 Participants; 35 Females, 29 Males) in the NEUTRAL 

. Results

.1. Age prediction

We  begin by examining the ability for our models to predict
ge in a given individual within a neutral baseline condition (see
ethods). Age prediction was highly accurate over each round of

ross-validation (Mean r = 0.3846; SD = 0.0988; p < = 0.00001). The
ptimal model was also highly significant (Fig. 1), and importantly
ell matched in demographic characteristics between train and

est sets. The strength of prediction for the training set for this
odel is high as expected, as these data are used to generate the
odel itself (see Methods). However, the model significantly pre-

icted age in the novel test sample with high accuracy as well
Fig. 1; Train r2 0.810, r2−adjusted 0.808, RMSE 1.503; Test r2 0.421,
2−adjusted 0.412, RMSE 1.591). In sum, these findings are consis-
ent with prior work using alternative models with resting-state
unctional connectivity (Dosenbach et al., 2010; Fair et al., 2012b).

.2. Predicted ages with structural connectivity
Generating a model within the training and test sets using an
ndependent brain measure (i.e., structural, as opposed to func-
ional data) provided an additional layer of support for predicted
ges derived from pseudo-RS connectivity data in the neutral
or and (b) maximizing the amount of explained variance in the predicted variable
ining group for 148 randomly selected participants (70% Holdout; 83 Females, 65
ng condition after 4000 repetitions.

condition, despite predicting the same outcome measure (i.e. age).
Cortical thickness measurements from 244 cortical nodes used for
the functional predictions (see Methods) significantly predicted age
(Fig. 2), consistent with prior work (Brown et al., 2012b). Impor-
tantly, predicted ages derived from cortical thickness estimates
and pseudo-RS data in the neutral context were highly correlated
and not significantly different. A paired samples t-test was  used
to test for differences between the predicted ages (t(60) = −1.211,
p = 0.2667). Panel c (Fig. 2) displays the significant relationship
between both sets of predicted ages. For the current report we
define “brain age” as ones predicted age based on brain measure-
ments relative to their true age. Along with the functional data in
the neutral state, these data provide evidence for a baseline “brain
age” for a given individual (see Methods).

3.3. Predicted emotional brain age & risk

Given the ability of the models to predict age within the neutral
context for both the training and test sets, and validation of pre-
dicted ages using structural data, we  sought to assess the impact
of sustained emotional context on connectivity and predict age

under emotional influence in the negative and positive contexts
relative to the neutral condition (a comparison, of note, that cannot
be conducted with anatomical data alone). Applying the validated
model (derived from the neutral baseline context in the training
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ig. 2. PLSR-structural & age prediction. Using cortical thickness measurements fr
n-sample (train; N = 127) and (b) out-of-sample (test; N = 61) data. Structural x Neu

et exclusively) to connectivity data from the test sample in both
he negative and positive emotional contexts yielded significant age
redictions (Fig. 1; Negative r2 0.349, r2−adjusted 0.338, RMSE 1.688,
ositive r2 0.333, r2−adjusted 0.323, RMSE 1.708). Although the slopes
f these predictions were not statistically different (neutral vs. neg-
tive: p = 0.589; neutral vs. positive: p = 0.518), we  next tested for
ny non-systematic differences within participants in predicted age
etween emotional contexts relative to neutral.

Predicted emotional brain ages (i.e. the difference between an
ndividual’s age predicted in the neutral baseline condition versus

 given emotional condition) were plotted against a participant’s
rue age and fit with LOESS curves (Fig. 3) to identify trends within
he data. In sum, this analysis highlighted participants who tended
o be predicted as relatively younger or older in an emotional con-
ext when compared to the neutral context. Adolescents (teens)
howed a greater inflection overall toward being predicted younger
n average (this particular result was further explored using a
◦ polynomial for the negative and positive contexts, see Fig. 3;
egative r2 = 0.089, norm-R = 10.139, p = 0.131; Positive r2 = 0.205,
orm-R = 0.897, p = 0.003). However, across all ages there were
any participants who were predicted as being “older” in the

motional contexts as opposed to others who were predicted as
younger.” Further, we acknowledge and discuss some potential
imitations with regard to over-interpreting the adolescent specific

esults (see Discussion). The predicted ages between the negative
nd positive contexts were highly correlated (r = 0.823, r2 = 0.677,

 = 0.000) and 15 of 64 (23.43%) participants switched predicted
roups amongst the emotional contexts. In other words, for most
4 nodes within the 264 node set, PLSR significantly predicted age in both the (a)
redicted ages (c) were not significantly different and correlated at r = 0.517.

participants, but not all, the phenotype (i.e. predicted younger vs.
predicted older) cut across both emotional conditions.

We then set out to determine whether this phenotype (i.e. pre-
dicted “older” or “younger” under emotional contexts) related to
differences on risk preference and risk perception across these
groups of participants (regardless of various developmental and
environmental factors). Within the final test set of 64 participants,
7 did not have risk data resulting in 57 participants used in all
subsequent analyses assessing the relationship between predicted
emotional brain age and risk.

Differences on risk metrics were assessed between predicted
phenotypes (i.e. two levels: predicted younger versus predicted
older) using a multivariate analysis of variance (MANOVA) for
risk perception, cost, and seriousness for a given context (i.e.
negative and positive). Results were just above significance at
trend level in the negative context (F(3.53) = 2.684, p = 0.056, �p
2 = 0.132) and significant in the positive context (F(3.53) = 3.433,
p = 0.023, �p 2 = 0.163). A univariate ANOVA was  run separately for
risk assessment (given it is a composite score of risk perception,
risk cost, and risk seriousness; see Methods), and was  signifi-
cant in both the negative (F(1.55) = 4.000, p = 0.051) and positive
(F(1.55) = 8.020, p = 0.006) context. Risk preference was  assessed sep-
arately (different scale; see Methods) using an independent t-test
and was significant at p < = 0.05 in the negative context (t(55) = 2.31,

p = 0.024) with the predicted younger group having a greater pref-
erence for risk. Differences on risk preference was  trend level at
p < = 0.10 in the positive context (t(55) = 1.72, p = 0.092), again with
the predicted younger group having a greater preference for risk.
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Fig. 3. Smoothing curves (LOESS) & Polynomial Fits. Qualitative visualization of trends present within predicted emotional brain age groups for negative (Younger N = 33;
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lder  N = 31) and positive (Younger N = 33; Older N = 31) emotional contexts. Data (
40%  of the data). The sharpest inflection occurs about mid-adolescent to young-ad
oung-adulthood. In panel b) a polynomial fit is used (Negative r2 = 0.089, norm-R =

Post-hoc independent t-tests in the positive context were sig-
ificant for risk perception and risk seriousness at p < = 0.05, and
rend level for risk cost at p < = 0.10 in that the predicted younger
henotype showed a decreased risk perception and greater incli-
ation toward risk (see Fig. 4; Supplemental Table S2). Post-hoc

ndependent t-tests for the negative context were significant for all
ut one measure (Fig. 4; Supplemental Table S2).

We  note several important considerations here: 1) Although
dolescents tended to show a greater overall trend toward being
redicted as younger during emotional contexts, there were no
ifferences in the predicted ages between the contexts (see Meth-
ds), 2) the predicted groups (i.e., predicted ‘older’ versus ‘younger’)
id not differ on measures of pubertal development, site of scan
cquisition, IQ, socioeconomic status (SES), race, task performance,
r movement (percent frames remaining or remaining mean FD;
upplemental Table S1), this was true for both the negative and

ositive contexts. Motion is discussed further within the supple-
ental material in relation to age, predicted outcomes and metrics

ssessed here.

ig. 4. Predicted emotional brain age group comparisons on risk metrics. Post-hoc indep
n  both the negative (Younger N = 29; Older N = 28) and positive (Younger N = 28; Older
wareness of and preference for risky behavior. * p < = 0.05, ** p < = 0.01, + trend at p < = 0.1
ge x predicted emotional brain age) is fit with a) LOESS curves sensitive to outliers
nge. The decline occurs around mid-adolescence stabilizing somewhat by the late
9, p = 0.131; Positive r2 = 0.205, norm-R = 0.897, p = 0.003).

Overall, the results suggest that regardless of context, age, or
gender (in addition to the additional post-hoc group comparisons
described above), the phenotype of being predicted younger in
emotional contexts is associated with greater risk preference and
lower risk perception (Fig. 4; Supplemental Table S2, although
see caveats in Supplemental Table S2). Importantly, a partici-
pant’s predicted “brain age” in an emotional context (as opposed
to the predicted emotional brain age defined as the difference
of ‘brain age’ in neutral and emotional contexts) did not predict
scores on risk metrics (Supplemental Fig. S1). Further, simply tak-
ing the difference between predicted ages in the neutral context
and a participants true age, does not result in observed differences
between predicted groups on any of the risk metrics assessed;
risk perception (t(55) = −1.531, p = 0.132), risk cost (t(55) = −0.778,
p = 0.440), risk seriousness (t(55) = 0.550, p = 0.585), risk assess-
ment (t(55) = −0.768, p = 0.446), risk preference (t(55) = −0.778,

p = 0.440). This result further supports the relationship between
predicted emotional brain age as defined in the current study and
the risky behavioral phenotype. Small, but significant relationships

endent t-tests were performed between individuals predicted as younger or older
 N = 29) emotional contexts relative to the neutral condition on metrics assessing
0.
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ig. 5. Predicted emotional brain age & risk preference by age cohort. Significant diff
ere  observed for adolescents or adults on risk preference in the negative or posit
redicted emotional brain age and other risk measures as a function of age cohort.

ith risk metrics were observed for a participant’s biological age,
redicted age in the neutral context (Supplemental Fig. S1), and
redicted emotional “brain ages” for both emotional contexts.

.4. Age group comparisons

The results demonstrate that regardless of biological age, emo-
ional situations influence underlying physiology and relate to
risky” phenotypes. However, to test whether the strength of this
ffect is dependent on age or more prominent within a particular
ge range we ran additional analyses. That is, to assess the differen-
ial effects of emotional context on a particular age range and risk
henotype, we re-ran analyses, and examined differences between
nd within predicted emotional age groups in three of the four
redefined age-cohorts (Adolescents 13–17; Young Adults 18–21;
dults 22 + ). Children were excluded from these analyses given

hat only 5 of 7 children in the test sample had risk data, as well as
oncerns with validity and reliability of self-reporting on the risk
ssessment (also see Supplemental Text). Importantly, the primary
nalyses testing for differences on risk metrics between predicted
ge groups on this subsample showed that the initial results sur-
ived largely unaltered (Supplemental Fig. S2, Supplemental Table
3).

Results from a two-way analysis of variance (ANOVA) using pre-
icted emotional group (i.e. two levels: predicted younger versus
lder) and age cohort (i.e. three levels: teens, young adults, and
dults) as factors revealed both significant and trend-level inter-
ction effects within in the positive context. An age x group
nteraction was identified for risk cost (F(2.52) = 4.365, p = 0.018), and
isk preference (F(2.52) = 4.365, p = 0.018). Post hoc analyses showed
his finding was largely driven by decreased risk cost and increased
isk preference for those predicted younger within the young-adult
ohort (risk cost (t(19) = −2.798, p = 0.0115) and risk preference
t(19) = 2.798, p = 0.0112); Fig. 5, Supplemental Fig. S3, and Supple-

ental Table S4). This finding demonstrates a decreased awareness
f and a greater preference for risk respectively for those predicted

ounger within the young-adult cohort. An age x group interaction
or risk seriousness (F(2.52) = 2.714, p = 0.077) and risk assessment
F(2.52) = 3.084, p = 0.055) were trend-level at p < = 0.10. Results
ere again driven by decreased risk seriousness (t(19) = −2.434,
es were observed for risk preference only in young adults. No significant differences
ntext. *p < = 0.05, ** p < = 0.01, + trend at p < = 0.10. See supplementary material for

p = 0.0250) and risk assessment (t(19) = −2.921, p = 0.009) for those
predicted younger within the young-adult cohort (Supplemental
Fig. S3, and Supplemental Table S4), likely representing a decreased
awareness of risk.

Importantly, the overall trend for being predicted younger and
at greater risk was  evident across age groups and context, but not
necessarily for all measures, as direct comparisons failed to reach
significance in the negative context. This result is of particular inter-
est as it suggests that although teens may  be slightly more likely
to have the younger “brain age” phenotype in emotional contexts,
the tendency for this phenotype (relative to the older “brain age”
phenotype) to elicit increased risk preference and decreased risk
perception is greater during the young-adult period.

3.5. Supplementary material

Though not a primary aim of the current paper, we  explored
the relationship between gender and risk, as well as the potential
influence of peer presence amongst predicted brain age groups and
risk. No significant effects were found with regard to peer influence.
While not significant, trends were identified within the gender
comparisons. In addition, we assessed whether or not puberty, scan
site, race, and task performance had any influence on predicted
brain age groups (i.e. predicted younger vs. older) and risk. No
effects were found for scan site, puberty or race. For task perfor-
mance, no differences were found between groups on the number
of false-alarms (FA; go-nogo errors) in either context. However
trend-level mean-differences were found in the positive context
for FA, though these results had no effect on differences found
between predicted groups on the risk metrics assessed. Results and
discussion are provided within the supplemental information.

3.6. Functional neuroanatomy associated with the age prediction
models

Correlation matrices for the neutral, negative and positive

conditions represented 34,716 unique pseudo-RS functional con-
nections between 264 ROIs used as features in the PLSR model
to predict age. The beta weights obtained, signifying the impor-
tance of a particular connection between ROIs in the model, were
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Fig. 6. Predictive features. 264 regions of interest visualized on a standardized brain surface representing pre-established networks (Default Mode (Red), Dorsal Attention
(Green), Frontoparietal (Yellow), Salience (Black), Cingulo-opercular (Purple), Visual (Blue), Subcortical (Orange), Ventral Attention (Teal), etc.) as described in Power et al.,
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011. Nodes are scaled proportionally according to their degree of importance (sum 

)  provides dorsal, lateral and medial views of the brain, while panel b) shows the 

istributions for all 264 regions. (For interpretation of the references to colour in th

anked and summed by their absolute values for each ROI (Fair et al.,
012a). ROIs were then plotted on a standardized brain surface
sing Caret 5 (University of Washington, St. Louis) scaled propor-
ionally by their absolute beta weights (Fig. 6). The histogram in
ig. 6 shows a distribution of weights for each ROI. Of the 264
odes used in the current study, 27 represent the top 10% (90th per-
entile), 14 the top 5%, and 4 ROIs in total had beta weights greater
han 2.5. Interestingly, the top 5% included key nodes consisting of
evelopmentally important hubs within large-scale networks iden-
ified in rs-fcMRI studies and regions cited throughout the fMRI
iterature as important for the integration of affective stimuli and
ocioemotional processing (Fig. 6, Supplemental Table S5a). For
xample, important cognitive control hubs included regions within
he default mode (DFM; posterior cingulate [PCC]), dorsal attention
DAN; superior parietal [sPAR]), frontoparietal (FP; inferior lateral
arietal [IPL], ventrolateral prefrontal [vlPFC]) and salience (SAL;
orsal anterior cingulate [dACC]) networks. Regions within large-
cale networks with task-specific functional properties included
hree medial prefrontal areas (ventral [vmPFC], medial [mPFC],
orsal [dmPFC]) within the DFM, a primary visual node (V1) and
he dorsomedial thalamic nuclei (dmTHAL) as part of a subcorti-
al network. The remaining nodes within the top 5% consisted of

wo inferior temporal regions (ventral anterior [vaTEMP], ventral

edial [vmTEMP]) and one within the orbitofrontal (OFC) region.
lthough all 34,716 connections are considered within the model,
lute beta weights for each connection to an ROI) in predicting age using PLSR. Panel
l surface. Panel c) depicts the relative (left-most graph) and absolute beta-weight
re legend, the reader is referred to the web  version of this article.)

we have provided the top 20 pairwise connections between ROIs
(Supplemental Table 5b). We  have also included the full list of ROIs
used as a supplementary document. Additionally, in order to high-
light topology related to the predictive features (connections) we
have provided the absolute beta weights in matrix format sorted
by network (Fig. 7).

4. Discussion

4.1. Functional connectivity under emotional contexts and risk

The dimensional data-driven approach taken in the present
study permitted the mutual investigation into both similarities
and differences in brain connectivity across development based
on affective states within an individual and across groups. Uti-
lizing a robust multivariate methodology and two  distinct MRI
measurements (i.e. function and structure) we  replicate, and add
to, previous findings that highlight the ability to identify a “brain
age” in individuals (Brown et al., 2012b; Dosenbach et al., 2010).
Adding to previous work, based on pseudo rs-fcMRI, we  demon-
strate the ability to predict age across emotional contexts in a

sizeable training set using cross-validation (as we  have previously
shown)(Dosenbach et al., 2010; Fair et al., 2012b) as well as in a
completely separate test set (which understandably had slightly
lower fit statistics (Combrisson and Jerbi, 2015)). We  further show
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Fig. 7. Absolute beta weights sorted by network. 264 regions of interest visual-
ized as a matrix and sorted according to the pre-established networks (Default
Mode (Red), Visual (Blue), Cingulo-opercular (Purple), Sensorimotor (Cyan), Salience
(Black), Frontoparietal (Yellow), Subcortical (Orange), Dorsal Attention (Green),
Ventral Attention (Teal), Cerebellum (Dark Blue), and nodes not part of a large-
scale network (Grey) as described in Power et al., 2011). (For interpretation of the
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while on average adults are not known to be risky, the phenotype
eferences to colour in this figure legend, the reader is referred to the web  version
f  this article.)

hat both positive and negative contexts can alter an individual’s
brain age” based on changes in functional connectivity patterns.
his finding is not to say there are no differences in functional
euroanatomy between contexts (e.g., see Cohen et al., 2016) —
ather similar patterns are identified with pseudo rs-fcMRI. Impor-
antly, two distinct phenotypes (i.e., a subgroup of participants
hose emotional brain age was predicted ‘older’ versus a subgroup
hose was predicted ‘younger’) were related to risk perception and
reference.

As noted above, across the range of ages examined in the present
tudy, we identified a subgroup of participants who  had a pheno-
ype whereby their brain organization was predicted as younger in
n emotional context, while another subgroup had a phenotype
hereby they were predicted as being older. While not all par-

icipants that were predicted as being younger had a more “risky”
henotype (i.e. lower risk perception and higher risk preference), on
verage they did.  In essence, based on alterations in functional
onnectivity in an emotional context, our data suggest that the sub-
roup of participants whose functional brain patterns reverted back
o patterns of a younger age in an emotional context were at “risk for
eing risky.” That is, the predicted age under emotional (negative
r positive) contexts, relative to the neutral context, was  related to
ncreased risk preference and lower risk perception as measured via
he Benthin Risk Perception Measure. Importantly, we do not argue
hat these phenotypes are predicting future behaviors, which by
ecessity would require a longitudinal design. Rather, we are high-

ighting that these phenotypes relate to current risk perception and

reference of the participants.

Of note, while on average all participants who had the “predicted
ounger” phenotype regardless of biological age, were at “risk to
ive Neuroscience 24 (2017) 93–106

be risky,” the propensity to be “predicted younger” was slightly
more evident during the adolescent time period (see Fig. 3 and 1).
Specifically, this trend occurs around mid-adolescence and sta-
bilized somewhat by the late young adult period. This finding is
consistent with the literature that shows that adolescence and early
young-adulthood is a particularly vulnerable period for higher inci-
dence of risky behaviors, higher degrees of sensation seeking and
impulsivity, greater sensitivity to rewards, heightened reactivity to
threat and punishment, increased criminal activity and substance
use disorders, as well as, the emergence of psychopathologies (Bava
and Tapert, 2010; Benthin et al., 1993; Brown et al., 2015; Dreyfuss
et al., 2014; Steinberg, 2009; Sweeten et al., 2013) — a vulnerabil-
ity that may  not be captured in controlled research settings per se.
While we  did not observe a difference in pubertal status in those
predicted younger or older during emotional contexts, this “dip”
during adolescence and early young-adulthood might be related to
pubertal development, which we  plan to explore further (also see
Supplemental Text).

Interestingly, while the adolescent period was  the period of time
that individuals were more likely to have the “predicted younger”
phenotype on average, it was  individuals in the young adult period
(i.e. ages 18–21) who  were at the greatest risk to be risky for the
“predicted younger” versus “predicted older” phenotype. In other
words, the results suggest that this period of development is an
important transition where one might be less likely to be “pre-
dicted as younger” relative to the adolescent period, but if they
are, they are even more inclined to be risky relative to the “pre-
dictive older” phenotype. Post hoc comparisons within the young
adult cohort (predicted younger vs. predicted older; Fig. 4 and Sup-
plemental Fig. S3) were trend-level in the negative context, while
all comparisons were significant or trend level within the positive
context, a result not seen within any of the other age group com-
parisons. By adulthood (ages 22+), many of these findings were
reduced or limited, but present to a degree. Such results support and
extend previous studies assessing young adults (within the age-
range defined here), documenting developmental and behavioral
differences aligning their behavior more closely to adolescents than
fully matured adults (Cohen et al., 2016). Previous studies examin-
ing age-dependent differences on risk taking and risky behavior
through measures of self-report are consistent with our overall
findings (Steinberg, 2009, 2008). Such studies posit that adoles-
cents and young adults are not less capable of making proper or
logical decisions, per se, from their adult counterparts, but rather
inconsistencies in behavior emanate from a variety of environmen-
tal, psychological, sociological and biological factors. In our case, a
charged emotional context may change state physiology (i.e. func-
tional connectivity) in some individuals,  such that decisions are
made more impulsively relative to what the individual is capable
of doing outside of that context. Such hypotheses are likely to be
an important area of investigation in future work.

The idea that not all adolescents or young adults are poor execu-
tive decision-makers is not a new concept. As indicated by Gardner
and Steinberg (2005), such findings lend support to concepts like
group polarization theory. The general idea is that those with
risky predispositions, especially during adolescence and young-
adulthood, are more likely to make risky-decisions and engage
in risky behavior under emotionally salient situations and/or in
response to the influence of peers. With that said, it is impor-
tant to note that, while to a lesser extent than adolescents and
young adulthood, even individuals in the adult cohort that were
“predicted younger” were slightly more at risk to be risky for some
measures (e.g. decreased risk perception, etc.) — suggesting that
(predicted as younger in emotional contexts) in subpopulations of
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dults might lead to impulsive, risky decisions (who are often in a
osition of authority) as well.

.2. Documenting developmental differences

Results described above, stemming from differences in pseudo-
esting state connectivity, may  extend and bridge prior research
tilizing task-free and task-based studies alike to document devel-
pmental differences during this sensitive time period. Specifically,
n a related study, Cohen et al. found that under negative emo-
ional contexts young adults (18–21) appeared to perform more
ike their younger (teen) than older (adult) counterparts both in

easures assessing task performance and task-related neural acti-
ation (within a subset of the participants used here; see Methods).
oth teens and young adults show decreased task performance
nd activity (percent signal change) in cognitive control regions
uch as the dorsolateral prefrontal cortex (dlPFC) and dorsal ante-
ior cingulate (dACC) in response to emotional stimuli, particularly
earful cues. In parallel, greater activity was recorded with decreas-
ng performance in the ventromedial prefrontal cortex (vmPFC),

 region implicated in affective processing. The authors suggest
his imbalance between top-down and bottom-up control, as pre-
iously reported in adolescents (Galvan et al., 2007; Somerville and
asey, 2010) is present within young adults when emotional con-
ext is taken into account. However, the authors point out that more
tudies are needed in order to assess the differential impact emo-
ional states may  have on cognitive control across individuals. Our
esults lend further support and suggest considering developmen-
al differences regarding decision making under salient conditions,
articularly during adolescence and young-adulthood, an impor-
ant direction for future research. We  add to this prior work
howing that while teens may  on average be affected greater than
lder cohorts, both young adults and adults are susceptible to large-
cale alterations in FC under emotional contexts. Importantly, our
esults are also distinct, in that we are considering the overall
ffect emotional context has on underlying functional topology
nd demonstrate that such properties are capable of distinguishing
nd predicting individuals more likely to be at risk across the age
pectrum, particularly in young adults.

.3. Comparison across studies

As previously stated (see methods), a portion of the total par-
icipants (N = 85; 32 with a hypothetical peer) used in the Cohen
t al. study were included in our analyses. Of these participants,
6 (28 with a hypothetical peer) belonged to the final training
et, and 19 (4 with a hypothetical peer) within the final test set.
ifferences between samples and methodologies make comparing

esults between these and other studies complex, and interpreta-
ions are likely not straightforward. Task activations in response to
n external stimulus are not the same as changes in intrinsic con-
ectivity during emotional states. While limitations are discussed

urther below, and caution is warranted, we hope our findings
) highlight this complex interaction between intrinsic and task
voked activity that is in need for further study, and B) highlight the
mportance of considering individual differences and heterogeneity
cross development in both typical and atypical populations (Fair
t al., 2012a; Gates et al., 2014; Karalunas et al., 2014).

Across studies, differences in brain maturation (Casey and Jones,
010; Shaw et al., 2008; Somerville and Casey, 2010), functional
etwork development and organization (Fair et al., 2007a; Power
t al., 2010), differences in socio-emotional development (Dreyfuss

t al., 2014; Somerville and Casey, 2010), and other such devel-
pmental factors may  all have implications for why  some teens
nd young adults are more likely than others to engage is risky
ehaviors. Such correspondence across investigations may  infer the
ive Neuroscience 24 (2017) 93–106 103

existence of a biological phenotype further aiding to explain such
behavior. While the speed at which neuroscience is being used in
the courtroom to adjudicate law may  be premature (e.g., see lim-
itations below)(Cohen and Casey, 2014; Jones et al., 2013) (Roper
v. Simmons, 2005; Graham v. Florida, 2010; Miller v. Alabama and
Jackson v. Hobbs, 2012), future advances that consider brain devel-
opment and contextual information may  provide additional insight
into these complex decisions.

4.4. Limitations & considerations

4.4.1. Regarding developmental trajectories
Several limitations within the present study should be taken into

consideration and are discussed here and within the provided sup-
plemental information. While care was  taken in the current cohort
to obtain a nationally representative sample, as a cross-sectional
study, inferences cannot be made at the individual or group level
as to whether patterns regarding individual predicted ages and the
relation to risky decision making reported are developmental or
purely situational in nature. Longitudinal samples will be needed in
order to assess the true developmental characteristics of the iden-
tified risk brain phenotypes. With regard to the age cohorts used,
age distribution was lower at both tails. Specifically, the number
of children in the study was  negligible, and concerns regarding
comprehension within the risk assessment cannot be eliminated.
However, excluding children from post-hoc analyses had no sig-
nificant effect on differences in risk between groups predicted as
younger or older. In addition, the adult age-range is constrained at
22–25 years of age and may not give an adequate representation of
the population at a biological and or psychological level.

4.4.2. Regarding risk assessment
Given current and/or past propensities toward and expe-

riences with risk, differing contingencies amongst age groups
present another potential concern with respect to validity of the
self-report measure used in general. Presumably, without such lim-
itations the ability to discern between the predicted groups would
only improve. Further, how risk is defined, operationalized, and
assessed in clinical and behavioral studies may  deserve attention.
Methodological differences and interpretations may  account for
inconsistencies noted elsewhere regarding perception and pref-
erence at any age. While in the present report, we  were simply
interested in the existence of a relationship between risk and con-
nectivity under emotional influence, studies in the future will likely
benefit from refined methodologies to tease apart developmental
differences.

4.4.3. Regarding the fMRI paradigm
The novel CCUE task designed to assess the effects of emotional

context on cognitive capacity and brain activity is a positive step
forward for developmental science. However, the paradigm does
not likely mimic real-world situations and therefore direct extrap-
olations to legal matters are unwarranted at this time. Further the
task design may  present a few methodological challenges. Most
obvious, is the ability to discern effects attributed solely to cues
presented from trial-to-trial and in relation to a particular sus-
tained emotional context in which the cues are presented (Ollinger
et al., 2001). Further, whether or not an individual is experiencing
or feeling a change in overall mood versus simply being emo-
tionally excited during anticipation of reward and/or punishment
is unknown. Though several recommended steps were taken to
enhance the detectability of discrete neural events from trial-to-

trial (Fair et al., 2007b; Fox et al., 2007; Huettel, 2012), and ensure
no overlap between emotional contexts existed (Supplemental Fig.
S5), the complexity and lack of any true rest periods between a
given emotional context may  pose an issue with such detection
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nd interpretation (Petersen and Dubis, 2012). In the present report
e tested the influence of emotional context on task-residual acti-

ation in an attempt to circumvent such concerns, and in light of
esearch citing the complex interplay between intrinsic resting-
tate fluctuations and task-induced BOLD activity (Fox et al., 2006,
005; Mennes et al., 2010). In the future, studies assessing the influ-
nce of contextual information may  benefit from the use of more
dvanced methods to design task fMRI paradigms (Kao et al., 2009;
ager and Nichols, 2003).

.4.4. Regarding motion artifact
As outlined in the methods section (and discussed further

ithin the supplementary material), we have attempted to robustly
orrect for motion related confounds to the best of our abili-
ies guided by the most recent literature. Of note, global signal
egression (GSR) is used within the current analyses following
everal insightful reports noting its merits in reducing global arti-
acts and robustly dealing with in-scanner movement especially
hen used in combination with motion scrubbing (i.e. framewise
isplacement)(Burgess et al., 2016; Power et al., 2012, 2014a,b;
ower et al., 2016, 2015; Satterthwaite et al., 2013, 2012; Siegel
t al., 2016, 2014). As discussed elsewhere, while GSR has been criti-
ized for inducing negative correlations (by shifting the distribution
f r values for observed connections) and causing distortions in the
ata (Saad et al., 2012), motion has been shown to skew the distri-
ution in the opposite direction and quite remarkably so (Burgess
t al., 2016; Power et al., 2015, 2012; Satterthwaite et al., 2012;
iegel et al., 2016, 2014) − distortions that GSR correct. As shown
n the cited literature, these confounds correlate highly with behav-
oral results and often lead to false-positives across studies (Burgess
t al., 2016; Siegel et al., 2016). Thus, while individual studies need
o take their own data into account, we feel in the context of the
urrent study the use of GSR is important. In addendum, though we
eel confident in our approach toward ameliorating such confounds
sing this approach; we acknowledge more work is warranted in
rder to identify the optimal solutions to remove artifacts biasing
evelopmental findings.

.5. Conclusions

In the present study we demonstrate the ability to predict age
erived from pseudo-RS connectivity in emotional contexts and
ategorize individuals into predicted emotional brain age groups.
urther, we show that differences in individuals predicted age
nder such influence related to certain metrics assessing aware-
ess of and preference for risky behavior. Results suggest that
egardless of biological age contextual settings have an impact on
nderlying functional neurophysiology, in this case an individual’s
predicted emotional brain age,” and that some individuals are
ore at-risk than others, particularly from the teen years through

he transitional period of young-adulthood (as defined within the
resent study), but also within some adults depending on how risk

s assessed.
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