
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Response to Valle and Zorello Laporta: Clarifying the Use of Instrumental Variable Methods 
to Understand the Effects of Environmental Change on Infectious Disease Transmission.

Permalink
https://escholarship.org/uc/item/61v6m5k0

Journal
American Journal of Tropical Medicine and Hygiene, 105(6)

ISSN
0002-9637

Authors
MacDonald, Andrew J
Mordecai, Erin A

Publication Date
2021

DOI
10.4269/ajtmh.21-0218
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/61v6m5k0
https://escholarship.org
http://www.cdlib.org/


Response to Valle and Zorello Laporta: Clarifying the use of instrumental variable methods to 

understand the effects of environmental change on infectious disease transmission 

Running head: Response to the critique by Valle & Zorello Laporta

Andrew J. MacDonald1* & Erin A. Mordecai2

1. Earth Research Institute and Bren School of Environmental Science and Management, 

University of California, Santa Barbara, CA, USA

2. Department of Biology, Stanford University, Stanford, CA, USA

*Corresponding author: Bren School of Environmental Science and Management, University of 

California, Santa Barbara, CA 93106-5131; andy.j.macdon@gmail.com

Keywords: causal inference; instrumental variables; environmental change; vector-borne disease;

earth observation data

Abstract: 164 words

Text: 2264 words

Figures: 0

Tables: 0

SI: 1 SI table

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

mailto:andy.j.macdon@gmail.com


Abstract

Identifying the effects of environmental change on the transmission of vector-borne and 

zoonotic diseases is of fundamental importance in the face of rapid global change. Causal 

inference approaches, including instrumental variable (IV) estimation, hold promise in 

disentangling plausibly causal relationships from observational data in these complex systems. 

Valle and Zorello Laporta recently critiqued the application of such approaches in our recent 

study of the effects of deforestation on malaria transmission in the Brazilian Amazon on the 

grounds that key statistical assumptions were not met. Here, we respond to this critique by: 1) 

deriving the IV estimator in order to clarify the assumptions that Valle and Zorello Laporta 

conflate and misrepresent in their critique; 2) discussing these key assumptions as they relate to 

our original study and how our original approach reasonably satisfies the assumptions; and 3) 

presenting model results using alternative instrumental variables that can be argued more 

strongly satisfy key assumptions, illustrating that our results and original conclusion—that 

deforestation drives malaria transmission—remain unchanged.
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Main Text

There is substantial and increasing interest in understanding the role that processes of 

global change are playing in the ecology and transmission of vector-borne and zoonotic 

diseases.1,2 While these questions are of fundamental importance given the increasing rate of 

climate and land use change, and the large proportion of emerging infectious diseases that are 

vector-borne or of zoonotic origin,3 causally linking these two processes is an enormous 

challenge. Take as an example the case of deforestation impacts on malaria transmission in the 

Brazilian Amazon, the focus of MacDonald & Mordecai4 and the critique by Valle & Zorello 

Laporta.5 The gold standard of a randomized controlled trial in which deforestation is 

experimentally manipulated and randomly assigned to different regions to assess its impact on 

malaria transmission presents obvious logistical and ethical barriers that make such an approach 

largely infeasible. As a result, researchers must rely on observational data and employ statistical 

approaches to approximate, as closely as possible, the experimental ideal.

One promising set of statistical techniques—broadly referred to as causal inference 

methods, which includes Instrumental Variable (IV) estimation, are increasingly being leveraged

to disentangle plausibly causal relationships from observational data in ecology. Due to the 

challenges described above, these approaches have been employed by researchers assessing 

global change impacts on infectious disease,6-14 including in another recent study investigating 

the effects of deforestation on malaria transmission in Brazil,14 with similar results to our own 

work. Valle and Zorello Laporta5 rightly point out that model assumptions are critically 

important in such approaches, and that causal conclusions should be carefully drawn in these 

contexts. However, the authors unfortunately conflate the assumptions of IV estimation in their 
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perspective piece. As a relatively new approach in ecology and environmental science,6 it is 

important that the underlying assumptions are clear for appropriate application. 

IV is a useful approach to overcome what is known as endogeneity bias, which is due to a

relationship between the error term and one or more of the explanatory variables, (formally,

E [εi∨x i ]≠0 where ε and x  represent the error term and explanatory variable for observation i). 

Such a relationship could be due to bidirectional causality where, for example, deforestation may

drive malaria transmission but malaria burden may also influence rates of deforestation. In IV, a 

third variable, known as an instrument (z i¿, is used to isolate exogenous variation in explanatory 

variable x i and recover a statistically consistent estimator for the true relationship between the 

exogenous variable and the outcome. 

The instrument must meet two conditions for IV to be a consistent estimator, which are 

sometimes termed “relevance” and “exclusion” criteria. In words, the instrument must be 

statistically associated with the endogenous variable (“relevance”) and must be related to the 

outcome only through its relationship with the endogenous variable (“exclusion”). While the 

wording is easy to remember, it leaves much open to interpretation. For example, does relevance 

require a causal link? Does exclusion require statistical independence? The derivation makes 

these key assumptions much more apparent. Before showing the derivation, we will first provide 

brief background to our original study,4 the critique by Valle & Zorello Laporta5 and our 

response.

In MacDonald & Mordecai,4 we were first interested in predicting annual malaria 

incidence as a function of annual deforestation, and use aerosol optical depth (AOD) in the 

month of September from MODIS satellite imagery as our “instrument.” We expand on the 
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methodology and terminology below, but set the context of the argument here. Valle & Zorello 

Laporta5 have two critiques of our IV approach. The first, however, is a misrepresentation of the 

assumptions of IV, namely that a valid IV requires that the IV has a causal effect on the 

endogenous explanatory variable. They state, “However, it is deforestation that causes aerosol 

pollution […] rather than aerosol pollution that causes deforestation […] As a result, [the 

relevance] assumption is clearly violated.” As we show below, causality is not required.
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 Rather, there must be an “association”, or more specifically, the covariance between the 

instrument and the endogenous variable must not be zero. However, it is possible that an 

instrumental variable itself introduces endogeneity bias if it does not meet the exclusion criteria, 

and this can be particularly problematic in the case of “weak instruments” as we show below. 

This can occur, for example, in cases where the instrument (e.g., AOD) is strongly driven by the 

endogenous predictor variable (e.g., deforestation). In our case, we chose AOD as an instrument 

for deforestation, as it is an indicator of human activity on the landscape.16 Further, over our 
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study period, AOD was decoupled from deforestation as biomass burning in the Brazilian 

Amazon—and resulting AOD—was primarily driven by fires intentionally set to keep existing 

pastures and agricultural lands clear16 and by drought conditions leading to wildfires in already 

degraded forests,16-18 rather than by new deforestation activity. 

Nevertheless, to explore the extent to which our original IV estimates of the effect of 

deforestation on malaria may have been affected by potential endogeneity introduced by the use 

of AOD as an IV, we run additional IV models using 1) last year’s AOD as an instrument for this

year’s deforestation, and 2) remotely sensed, average municipality soil quality19 processed in 

Google Earth Engine,20 interacted with annual international soy and beef commodity prices from 

the World Bank. We chose last year’s AOD since it is correlated with this year’s deforestation 

(relevance), but this year’s deforestation could not have caused last year’s AOD. While this 

addresses the issue of reverse causality, it is plausible that there remain endogeneity issues in this

context. For example, if last year’s AOD somehow acts upon this year’s malaria through 

mechanisms beyond deforestation, then the exclusion criteria would fail. To address these 

potential lingering concerns, we run additional models using soil quality coupled with 

international agricultural commodity prices for key Brazilian exports, which may influence a 

land owners’ decision to clear forest for agricultural production (relevance); in this case, 

deforestation rates do not cause soil quality and are highly unlikely to shift international 

commodity prices (exclusion). We run these IV models on our interior Amazon sample of 

municipalities, where active deforestation rates are highest and where we predict forest clearing 

should have the strongest effect on malaria transmission,4 predicting both total malaria and 

Plasmodium falciparum malaria incidence, following our original study.4 Results are presented 

in the SI (Table S1). In brief, we find significant positive effects of deforestation on malaria 
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transmission in each of these additional model specifications, with coefficients of similar, though 

slightly larger magnitude than our original study. Our main conclusion, that deforestation 

increases malaria transmission in the Brazilian Amazon, remains unchanged.

The second goal of MacDonald & Mordecai4 is to understand whether annual malaria 

burden feeds back to influence annual rates of deforestation, and we use optimal temperature for 

malaria transmission in the dry season as our instrument for malaria. Optimal temperature was 

defined as the sum of days falling within a narrow temperature band that is optimal for malaria 

transmission (24-26ºC) based on earlier mosquito and parasite trait-based mechanistic modeling 

studies.21 Valle & Zorello Laporta’s5 second critique is that the exclusion assumption may be 

violated in this model because “it is possible that temperature affects deforestation not only 

through malaria, but also through other causal paths,” particularly the relationship between 

temperature and agricultural gross domestic production.22 In other words, favorable temperatures 

for mosquitos and malaria parasites may affect deforestation not just through malaria, but by also

being favorable agricultural growing conditions, which increase the potential value of forest 

clearing. We agree that temperature is important to both agriculture and malaria, and that those 

clearing land may consider the land’s growing potential. However, rather than counting the 

number of days in a 2ºC temperature window during the dry season, we suggest agricultural 

producers will instead consider the general growing conditions of a region as it relates to 

commonly grown crops—for example, soil quality, climate, topography, and infrastructure. As 

land clearing for agriculture is a large and long-term investment, average growing conditions are 

much more likely to influence clearing decisions than are small deviations in weather from year 

to year.
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 There are two additional primary reasons that our IV, optimal malaria transmission 

temperature, is highly unlikely to fail the exclusion criteria. First, we specifically employ 

municipality “fixed effects” or dummy variables
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 to remove roughly time invariant characteristics specific to each municipality through 

differencing. Thus, average characteristics (e.g., soil quality, average precipitation, average 

temperature) that are likely to influence the evolution of regional agricultural land use and the 

location of processing plants and other infrastructure are removed and the model is identified 

from deviations from the municipality-specific mean. Second, the range of optimal average 

temperatures for soybean—Brazil’s main crop by area and production23—cultivation and 

development in Brazil is from 20ºC to 35ºC.24 Recall optimal temperature for malaria 

transmission is 24ºC to 26ºC, and we use the number of days in the dry season within this narrow

temperature band as our instrument. Thus, an additional day at 25ºC relative to 27ºC would be 

expected to lead to increases in malaria transmission. However, this same change in temperature 
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would likely have a trivial impact on soy yields, as both temperatures are well within the bounds 

of optimal soy cultivation. Given the breadth of favorable temperatures for soy, it is unlikely that

changes in the number of days between 24ºC to 26ºC will influence land clearing decisions for 

agricultural production. 

We too feel that causal inference approaches hold much promise in disease ecology, and 

agree that researchers interested in exploring the use of such methods should carefully consider 

model assumptions. Toward that end, we briefly derive the simplest form of IV to illustrate to 

potential users what is under the hood of the IV approach and how the exclusion and relevance 

assumptions function in this technique.  

Deriving the IV Estimator: To keep it as intuitive as possible, let us assume a bivariate regression

of the form,

y i=α+β x i+εi

1

Where y i is the outcome variable (e.g., malaria incidence) for observation (e.g., municipality) i,

x i is the endogenous explanatory variable (e.g., deforestation), εi is the error term, α is the 

intercept, and β is the coefficient of interest. 

To derive the IV estimator, we can take the covariance of each side of equation 1 with respect to 

the instrument, z i:
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cov(z i , yi)=cov (zi , α)+cov (zi , β x i)+cov(z i , ε¿¿ i)¿2

¿0+βcov(z i , x i)+cov(z i , ε¿¿ i)¿3

Since α is a constant, and the covariance of a variable with a constant is 0, the first term drops 

out. Similarly, because β is a constant, it can be removed from the covariance. The exclusion 

assumption of IV is that the instrument (z i) only affects the outcome through changes in the 

endogenous variable (x i), which is more formally written as  cov(z i , ε¿¿ i)=0.¿ Thus with basic 

rearranging, we have derived the IV estimator (β IV),

β IV=
cov (zi , yi)

cov(zi , x i)
.

4

Consistency of IV: If we then want to illustrate that the IV estimator is consistent—in other 

words, as the sample size gets larger and larger the distribution of the estimator converges to the 

true parameter value—we can plug the right-hand side of equation 1 into y i in equation 4. We 

substitute β IV  with β̂ IV  since we are considering whether the estimated slope from an IV 

converges in probability to the true slope β.

plim β̂ IV=
cov(z i , α+β x i+εi)

cov(z i , x i)
.
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Following a similar logic as with equation 3, equation 5 becomes: 

plim β̂ IV=
βcov(zi , x i)

cov(zi , x i)
+

cov (zi , εi)

cov(zi , x i)
.

6

From equation 6, the second assumption of IV becomes evident. The second assumption is the 

relevance assumption, or that the instrument must be statistically associated with the endogenous

variable (x i). As can be seen in equation 6, this means, in mathematical terms,

cov(z i , x¿¿i)≠0¿. Covariance does not imply a direction to the relationship, whether AOD (our

instrument) determines deforestation or deforestation determines AOD (or neither) is irrelevant, 

as it is the covariance between the two that is important. 

By these two assumptions of IV, that cov(zi , ε¿¿ i)=0¿ and cov(z i , x¿¿i )≠ 0¿, equation 6 

simplifies to plim β̂ IV=β, illustrating IV is a consistent estimator of the true relationship. 

Weak Instruments: Equation 6 also illustrates another important aspect when considering the 

application of instrumental variables, and that is a problem known as “weak instruments.” The 

problem occurs if the exclusion criteria, cov(zi , ε¿¿ i)=0¿, fails. Based on the relationship 

between covariance and correlation (namely, cov ( x , y )=corr (x , y )∗σ x σ y where σ is the standard 

deviation of each variable) and assuming cov(z i , x¿¿i)≠ 0¿, we can rewrite equation 6 to 

illustrate the problem (omitting subscripts for simplicity). 
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plim β̂ IV=β+
corr (z , ε )∗σ z σ ε

corr (z , x )∗σ z σ x
=β+

corr (z , ε )∗σ ε

corr (z , x )∗σ x
.

7

If there is a small correlation between the instrument and the error, the last term in equation 7 

does not drop out and the IV estimator is inconsistent ( plim β̂ IV ≠ β). If corr (z , ε ) is just slightly

different from zero and corr (z , x) is much different than zero, the last term is of minimal 

influence. However, if the instrument is only weakly correlated with the endogenous covariate, 

the last term of equation 7 can become large. In practice, weak instruments can cause the IV 

estimator to be severely biased. Since there is no test to validate the exclusion criteria, the 

strength of the relationship between the instrument and the endogenous variable is very 

important in practice, and can be formally tested25 as in the supplementary material from 

MacDonald and Mordecai.4 

 

Conclusion: Understanding the effects of environmental change on infectious disease 

transmission—from diseases long endemic to the tropics like malaria, to novel emerging 

pathogens we have yet to discover like SARS-COV-2—is of fundamental and increasing 

importance. In these complex socio-ecological systems that are difficult to study experimentally, 

emerging data sources (e.g., high spatio-temporal resolution earth observation data) and causal 

inference methods (e.g., IV estimation) represent one methodological approach that can help us 

achieve such clearer understanding. 
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