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Abstract: Background: Among patients undergoing head computed tomography (CT) scans within
3 h of spontaneous intracerebral hemorrhage (sICH), 28% to 38% have hematoma expansion (HE)
on follow-up CT. This study aimed to predict HE using radiomics analysis and investigate the
impact of intraventricular hemorrhage (IVH) compared with the conventional approach based on
intraparenchymal hemorrhage (IPH) alone. Methods: This retrospective study enrolled 127 patients
with baseline and follow-up non-contrast CT (NCCT) within 4~72 h of sICH. IPH and IVH were
outlined separately for performing radiomics analysis. HE was defined as an absolute hematoma
growth > 6 mL or percentage growth > 33% of either IPH (HEP) or a combination of IPH and IVH
(HEP+V) at follow-up. Radiomic features were extracted using PyRadiomics, and then the support
vector machine (SVM) was used to build the classification model. For each case, a radiomics score
was generated to indicate the probability of HE. Results: There were 57 (44.9%) HEP and 70 (55.1%)
non-HEP based on IPH alone, and 58 (45.7%) HEP+V and 69 (54.3%) non-HEP+V based on IPH + IVH.
The majority (>94%) of HE patients had poor early outcomes (death or modified Rankin Scale > 3 at
discharge). The radiomics model built using baseline IPH to predict HEP (RMP) showed 76.4%
accuracy and 0.73 area under the ROC curve (AUC). The other model using IPH + IVH to predict
HEP+V (RMP+V) had higher accuracy (81.9%) with AUC = 0.80, and this model could predict poor
outcomes. The sensitivity/specificity of RMP and RMP+V for HE prediction were 71.9%/80.0% and
79.3%/84.1%, respectively. Conclusion: The proposed radiomics approach with additional IVH
information can improve the accuracy in prediction of HE, which is associated with poor clinical
outcomes. A reliable radiomics model may provide a robust tool to help manage ICH patients and to
enroll high-risk ICH cases into anti-expansion or neuroprotection drug trials.

Keywords: spontaneous intracerebral hemorrhage; intraventricular hemorrhage; hematoma expansion;
radiomics; prediction

1. Introduction

Spontaneous intracerebral hemorrhage (sICH) accounts for about 7–15% of all strokes
and carries a mortality rate of about 40%, with half of fatalities occurring within the first
two days after an ictus [1–3]. The hallmark of sICH is the intraparenchymal hemorrhage
(IPH). The high rate of early neurological deterioration after sICH is related in part to
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active bleeding that may proceed for hours after the symptom onset [4]. Among patients
undergoing head CT scans within 3 h of sICH onset, 28% to 38% have hematoma expansion
(HE) on follow-up CT scans, with volume greater than one third compared with the
hematoma volume on original CT scans [3,4]. HE has also been shown to be an independent
predictor of clinical deterioration and poor outcomes [3,5–7].

Several radiological predictors for HE on baseline non-contrast CT (NCCT) are pro-
posed, including hematoma volume, shape, hypodensities, and density heterogeneity [8–13].
The pattern of heterogeneity can be analyzed using texture features extracted by the ra-
diomics approach, which has been shown capable of capturing various agnostic features
to aid in HE prediction [14–19]. The radiomics features can be further combined with
clinical [19] and radiological variables [16,17] to improve the prediction accuracy.

Except for HE in the brain parenchyma, the presence of intraventricular hemorrhage
(IVH) at baseline CT scan has been shown to be associated with mortality in patients
with sICH [3,20,21]. In more than 33% of sICH patients, IVH was present at baseline CT
scan [22–24]. IVH was previously described as one risk factor in the ICH score [20], a
clinical grading scale for risk stratification of sICH. Another study reported that 30% to 50%
of sICH patients experienced additional IVH [21]. Recently, IVH expansion at follow-up
CT has also been identified as a strong predictor of poor clinical outcomes [25]. It was
shown that including IVH expansion into the definition of HE improves overall prediction
accuracy of the 90-day outcome [24]. Nevertheless, the IVH information has usually been
ignored in the conventional radiomics models using texture analysis [14–19].

The objective of this study was to investigate the added value of IVH for prediction
of HE by using the radiomics analysis. The results obtained by considering IVH with
IPH were compared to the conventional approach based on the IPH alone. Two different
radiomics analyses were performed: (1) using IPH to predict expansion defined based
on IPH; (2) using IPH + IVH to predict expansion defined based on IPH + IVH. The
performance of the two radiomics analyses for prediction of HE, and for prediction of poor
outcome, were compared.

2. Materials and Methods
2.1. Study Design and Population

In this retrospective, observational study, patients aged > 18 years at 1st episode of
sICH who had undergone a baseline and F/U non-contrast CT (NCCT) scan within an
interval of 4–72 h from February 2012 to September 2018 in our hospital were included.
Patient data were extracted from the sICH database of the picture archiving and commu-
nication system (PACS) to identify eligible patients. In total, 178 patients who met the
inclusion criteria were identified. The exclusion criteria were: (1) co-existence of vascular
lesions and a brain tumor diagnosed during the same admission (N = 16); (2) pediatric
patients < 18 years old (N = 3); (3) patients who underwent brain surgery before follow-up
CT (N = 27); (4) patients with primary IVH and equivocal IPH at the periventricular regions
(N = 5, two illustrated cases in Supplementary Figure S1). Thus, the data of 127 patients
(89 males, 38 females; mean age 60.5 ± 12.8 years; range 30–94 years) were included in
the analysis.

2.2. Ethical Considerations

The study protocol was approved by the Institutional Review Board of our hospital.
Due to the retrospective nature of the study, the IRB waived the requirement to obtain
informed consent from participants.

2.3. Clinical Parameters and Clinical Outcomes

Clinical information, including blood pressure (SBP > 180 or <180 mmHg; DBP > 100 or
<100 mmHg) [26], bleeding diathesis (INR > 1.5, aPTT ratio > 1.5 or platelet count < 1 × 105/mL) [27],
Glasgow Coma Scale (GCS) [20] at admission (13~15 or <13) were collected for clinical
model analysis. In-hospital mortality and modified Rankin Scale (mRS) [28] at discharge
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represented the outcomes. A mRS > 3 at discharge was defined as a poor outcome in
this study.

2.4. CT Imaging Protocol

Brain CT was acquired using our standard protocol on a 64-slice CT (Definition AS;
Siemens Medical Solutions, Forchheim, Germany). The scanning range was from the skull
base to the cranial vertex with the following parameters: 120 kVp, 380 mAs, and slice
thickness/spacing of 4.8/4.8 mm.

2.5. Manual Hematoma Segmentation and HE Definition

The segmentation of the ICH region of interest (ROI) was performed manually, using
Image J (National Institutes of Health, Bethesda, MD). The ROI drawing for baseline and
F/U CT of each patient was done in one sitting by a neuroradiologist (TCW with 15 years
of experience). The intraparenchymal hemorrhage (IPH) and intraventricular hemorrhage
(IVH) were outlined separately to form two datasets of intracerebral hemorrhage (ICH):
ICHP containing the ROIs of IPH, and ICHP+V containing the ROIs of IPH and IVH. Based
on the hematoma volumetric change between baseline and F/U CT studies, HE was defined
as an absolute hematoma growth > 6 mL or relative growth of >33% from the baseline
ICHP [5,29]. ICHP+V has no consensus definition of expansion, so the same criteria were
applied. The baseline ROIs of ICHP and ICHP+V were used to extract radiomics features,
followed by feature selection and model building to predict HE.

2.6. Feature Extraction and Feature Selection

The radiomics analysis (RA) procedures are illustrated in Figure 1.
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Figure 1. The radiomics analysis flowchart to build the ICH expansion model. The IPH and IVH are
segmented by manual tracing of the hematoma at baseline and follow-up CT images. The absolute
or percentage volumetric change is calculated to determine whether the patient is an expander or
non-expander based on IPH or IPH + IVH. The baseline ROI is used to extract radiomics features,
and then the important features are selected using the support vector machine (SVM) algorithm to
build the prediction model with the SVM.

For the ICHP or ICHP+V in one patient, all segmented ROIs on different slices were
combined to form a 3D lesion mask, and the linear interpolation was utilized to convert
the hematoma ROI to be isotropic. A total of 1046 radiomic features were extracted using
the PyRadiomics open-source python package, including 2D/3D shape, first-order, Gray
Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level
Run Length Matrix (GLRLM), Gray Level Dependence Matrix (GLDM). The features were
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extracted from the original and the filtered images, including wavelet-transformed and
Laplacian of Gaussian with a kernel of 1, 2, 3 mm. The bin width was set at 25 to minimize
the impact of the noise on the extracted quantitative features.

To select robust features that had a high reproducibility, a second hematoma ROI
drawing was performed in 30 randomly selected cases by another neuroradiologist (TYC
with 21 years of experience). The extracted features from two separately segmented ROIs
were correlated to calculate the intraclass correlation coefficient (ICC). Only features with
ICC > 0.8 were considered in the subsequent analysis for feature selection by Gaussian
radial basis function of support vector machine (SVM) kernel and model building by the
kernel approximation classifiers with SVM kernel.

After the above steps, five features from ICHP were selected for the development of
prediction model for hematoma expansion, including two GLCM features (JointAverage
and Correlation) and three GLRLM features (LongRunLowGrayLevelEmphasis, GrayLevel-
Variance and_LowGrayLevelRunEmphasis). Another six features were extracted from
ICHP+V, including one shape feature (SurfaceVolumeRatio), two GLCM features (Join-
tEntropy and InverseVariance), one GLRLM feature (RunPercentage), one GLDM feature
(HighGrayLevelEmphasis) and one GLSZM feature (SizeZoneNonUniformityNormalized).

2.7. Model Building and Radiomics Score (RS)

The radiomics models (RM) for classification of HE vs. non-HE were built based on
either ICHP (RMP) or ICHP+V (RMP+V). The kernel approximation classifiers with SVM
kernel were applied to perform nonlinear classification of data. In order to derive more
accurate estimates of prediction performance, the 10-fold cross-validation was used to
prevent overfitting, whereby 90% of cases were randomly selected as the training set and
the remaining 10% as the testing set. This procedure was repeated ten times to obtain
the average results. Two radiomics scores (RSP & RSP+V) were calculated for each case
using the models built from ICHP and ICHP+V. The prediction threshold for hematoma
expansion was set at RS ≥ 0. Once the radiomic score ≥ 0, the patient would be classified
as an expander.

2.8. Statistical Analysis

Statistical analyses of the clinical parameters were performed using SPSS for Windows
(V.24.0, IBM, Chicago, IL, USA). Discrete variables are presented as counts (n) and percent-
ages (%), and continuous variables are presented as medians and interquartile ranges (IQR).
The chi-square test and Student’s t-test were performed for categorical and continuous data,
respectively; p values < 0.05 were considered statistically significant. The receiver operating
characteristic (ROC) curve was constructed to assess the classification performance, and
the sensitivity, specificity and accuracy were calculated.

3. Results
3.1. Hematoma Expansion Status Defined by IPH (HEP)

The clinical parameters, hematoma information and short-term outcomes of all 127 patients
are summarized in Table 1. When considering the volume change of IPH, a total of 57 patients
(44.9%) met the criteria of hematoma expansion (HEP) with an absolute hematoma growth
> 6 mL (31 cases) or relative growth of >33% (36 cases). The other 70 patients (55.1%) did
not meet the criteria and thus were classified as non-HEP. Patients with HEP had a higher
proportion of alcohol consumption (36.8% vs. 17.1%, p = 0.012) and more bleeding diathesis
(21.1% vs. 5.7%, p = 0.010). In HEP patients, the hematoma volume change was significantly
larger in not only IPH (median 38.6 vs. −0.4 mL) but also IVH (median 5.9 vs. 0.1 mL),
and combined IPH and IVH (medium 44.2 vs. −0.4 mL). As for the clinical outcomes, HEP
patients had more brain surgery (54.4% vs. 30.0%, p = 0.005), higher in-hospital mortality
(35.1% vs. 4.3%, p < 0.001), and overall poor outcomes with a mRS > 3 at discharge (94.7%
vs. 62.9%, p < 0.001).
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Table 1. The clinical parameters, hematoma information and short-term outcomes of 127 sICH
patients based on ICHP.

Hematoma Expansion Based on ICHP

Yes (57 Cases) No (70 Cases) p Value

Sex 0.681
Male/Female 41/16 (72%/28%) 48/22 (69%/31%)
Age (years) 60.6 (51, 69) 60.4 (51, 67) 0.921

Interval from onset to CT scan (min) 165 (60, 168) 200 (76, 207) 0.379
Interval between CT scans (h) 19.9 (4.6, 24.8) 23.8 (9.9, 35.9) 0.327

Initial IPH volume (mL) 17.2 (7.2,23.4) 22.7 (9.8, 28.8) 0.064
Initial IVH volume (mL) 4.5 (0, 4.4) 1.8 (0, 2) 0.097

Initial IPH + IVH volume (mL) 21.7 (10.6, 28.1) 24.5 (10.5, 34.2) 0.423
IPH volume change (mL) 38.6 (10.6, 63.3) −0.4 (−1.8, 1.3) <0.001 *
IVH volume change (mL) 5.6 (0, 9.4) 0.1 (0, 0) <0.001 *

IPH + IVH volume change (mL) 44.2 (11.9, 72.8) −0.4 (−2.6, 1.4) <0.001 *
IVH at baseline CT scan 23 (40.4%) 26 (37.1%) 0.712

DM 15 (26.3%) 20 (28.6%) 0.777
HTN 45 (78.9%) 58 (82.8%) 0.576

Smoking 26 (45.6%) 22 (31.4%) 0.101
Alcohol 21 (36.8%) 12 (17.1%) 0.012 *

Antiplatelet/Anticoagulation 13 (22.8%) 10 (14.3%) 0.215
Bleeding diathesis # 12 (21.1%) 4 (5.7%) 0.010 *

SBP at ER > 180 mmHg 31 (54.4%) 35 (50.0%) 0.623
DBP at ER > 100 mmHg 36 (63.2%) 40 (57.1%) 0.492

GCS 3–12 24 (42.1%) 31 (44.3%) 0.805
Location 0.071

basal ganglia 34 (59.6%) 31 (44.3%)
thalamus 9 (15.8%) 22 (31.4%)

lobar 6 (10.5%) 12 (17.1%)
posterior fossa 8 (14.0%) 5 (7.1%)

Hospital stay (days) 20 (11, 41.5) 19.5 (12, 26) 0.034 *
In-hospital mortality 20 (35.1%) 3 (4.3%) <0.001 *

Brain surgery during hospitalization 31 (54.4%) 21 (30.0%) 0.005 *
Poor outcome (mRS > 3 at discharge) 54 (94.7%) 44 (62.9%) <0.001 *

For continuous variables, median (25%, 75%) values are reported. For number of patients, N (%) are reported.
# INR > 1.5, aPTT > 1.5 or Platelet count < 100,000/uL. * Statistically significant difference (p < 0.05).

Forty-nine patients (38.6%) had IVH at initial presentation. At follow-up, 72 patients
exhibited IVH, among whom 25 patients (25/78; 32.1%) had new IVH (i.e., not initially
present at baseline). IVH clot retraction (IVH change < 0 mL) was observed in 21 patients
(21/49; 42.9%), with two patients exhibiting full resolution of IVH at follow-up. As for the
presence of IVH at the baseline, there was no significant difference between patients with
or without HEP (39.7% vs. 37.7%). New IVH (34.5% vs. 7.2%), IVH growth > 1 mL (58.6%
vs. 8.7%) and any IVH growth (> 0 mL) (67.2% vs. 20.3%) were significantly associated
with HE (p < 0.001).

3.2. Hematoma Expansion Status Defined by IPH + IVH (HEP+V)

When using the same criteria of total volume change of >6 mL or relative growth
of >33% to define the expansion of IPH and IVH, 58 patients (45.7%) were HEP+V and
69 patients (54.3%) were non-HEP+V. In comparison with HEP classification results, five
crossover cases were found. Two patients with HEP were re-classified as non-HEP+V
(Figure 2a), and three patients with non-HEP were re-classified as HEP+V (Figure 2b). All
five patients had poor outcomes. One died, and four survived the episode and were
discharged from the hospital with a mRS of 4 or 5. Compared to non-HEP+V, HEP+V had
higher in-hospital mortality (32.8% vs. 5.8%, p < 0.001), and overall poor outcomes (94.8 vs.
62.3%, p < 0.001). The clinical parameters, hematoma information and short-term outcomes
of all 127 patients based on ICHP+V are summarized in the Supplementary file, Table S1.
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Figure 2. Illustration of two crossover cases. (a) A 94-year-old male with right cerebellar hemorrhage
was classified as an expander based on IPH (3.7 to 5.6 mL, 51% growth), but was reclassified as a
non-expander based on IPH + IVH (5.8 to 7.6 mL, 31% growth < 33% threshold). This patient was
discharged on Day-74 after ICH with a mRS of 5. The RMP model showed a true positive result, and
the RMP+V showed a true negative result. (b) A 52-year-old female with right thalamic hemorrhage
was classified as a non-expander based on IPH (16.1 to 18.1 mL) but was re-classified as an expander
based on IPH + IVH (23.7 to 31.0 mL, 7.3 mL growth > 6 mL threshold). This patient was discharged
on Day-70 after ICH with a mRS of 5. The RMP model showed a true negative result but the RMP+V

showed a false negative result.

3.3. HE Prediction Performance of Two Radiomics Models

Two radiomics models were built using the ICHP and ICHP+V on the baseline NCCT
to predict HE. The prediction threshold for hematoma expansion was set at radiomics
score (RS) ≥ 0. Comparisons of the prediction performance of these two models are
summarized in Table 2, and the ROC curves are shown in Figure 3. The radiomics model
using conventional IPH to predict HEP, i.e., RMP, included 41 true positive (TP), 56 true
negative (TN), 14 false positive (FP), and 16 false negative (FN) cases. The accuracy,
sensitivity, and specificity were 76.4%, 71.9%, and 80.0%, respectively. In the RMP+V
using ICHP+V to predict HEP+V, the prediction accuracy was improved to 81.9% with
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46 TP, 58 TN, 11 FP, and 12 FN cases. The sensitivity and specificity were also improved
to 79.3% and 84.1%, respectively. The area under the ROC curve (AUC) of RMP+V was
0.80 (95% CI: 0.72, 0.87) and the AUC of RMP was 0.73 (95% CI: 0.64, 0.80). Figure 4
shows a case example who was classified as an expander using either HEP or HEP+V.
The model built using IPH alone (RMP) gave a false negative result, while the model
based on IPH + IVH (RMP+V) gave a true positive result and correctly predicted that
this patient was an expander. The Supplementary Figure S2 showed the distribution of
value of the radiomics score for expanders and non-expanders in these two models. In
RMP, the value of RSP for expanders and non-expanders ranged from −1.579 to 1.375
(median 0.268; interquartile range (IQR) 0.003~0.762) and −1.510 to 1.243 (median −0.709;
IQR −1.013~−0.209), respectively. In RMP+V, the value of RSP+V for expanders and non-
expanders ranged from −1.250 to 1.425 (median 0.349; IQR 0.039~0.798) and −1.727 to
1.319 (median −0.754, IQR −1.012~−0.347), respectively.

Table 2. The prediction performance of two different radiomics analysis models.

RMP+V RMp

Accuracy 81.9% (104/127) 76.4% (97/127)
Sensitivity 79.3% (46/58) 71.9% (41/57)
Specificity 84.1% (58/69) 80.0% (56/70)

False Positive Rate 19.3% (11/57) 25.5% (14/55)
False Negative Rate 17.1% (12/70) 22.2% (16/72)

Positive Predictive Value 80.7% (46/57) 74.5% (41/55)
Negative Predictive Value 82.9% (58/70) 77.8% (56/72)
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Figure 3. The ROC curves of RMP built using IPH, and RMP+V built using IPH + IVH. The AUC is
0.73 (95% CI: 0.64, 0.80) for RMP, and 0.80 (95% CI: 0.72, 0.87) for RMP+V.

3.4. Radiologic Parameters and Early Outcome of Two Radiomics Models

The comparison of radiologic parameters and early outcomes between the labelled
HE and non-HE by the two radiomics models is summarized in Table 3. In these 127 sICH
patients, the median hospital stay was 20 days with an interquartile range between 12 days
and 29 days. Most patients (79.5%; 101 of 127 patients) had a hospital stay < 1 month.
Only 26 patients (20.5%) had a hospital stay longer than 30 days and only one patient had
a hospital stay longer than 90 days. The ICH patients with hematoma expansion had a
significantly longer hospital stay than those without HE (28.8 days vs. 21.4 days, p = 0.034).
In both prediction models, the labelled HE had significantly larger hematoma volume
changes and a higher possibility of poor functional outcome at discharge as compared to
the labelled non-HE. In-hospital mortality was significantly higher in the HE labelled by
RMP+V (p = 0.003) but was not significantly higher in the HE labelled by RMP (p = 0.093). In
the RMP+V, the onsets to CT interval and CT follow-up interval were shorter in the labelled
HE with marginal significance (p = 0.068 and 0.087, respectively). These findings were
consistent with the results of the original definition of HE (Table 1).
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Figure 4. A case illustration. A 51-year-old male with right putaminal hemorrhage, classified as an
expander based either on IPH or IPH + IVH criteria. The patient was discharged on Day-5 after ICH
with a mRS of 6. The RMP based on ICHP wrongly predicted this case as a non-expander, but the
RMP+V based on ICHP+V correctly predicted this case as an expander.

Table 3. Comparison of radiologic parameters and clinical outcomes of the labelled patients in
different prediction models.

Labelled Hematoma Expansion

Yes No p Value

RMP+V 53 cases 74 cases
Median interval from onset to CT scan (min) 141 (55, 149) 215 (80, 221) 0.068

Median interval between CT scans (h) 18.1 (5.1, 22.9) 24.9 (9.5, 40.2) 0.087
Median initial IPH volume (mL) 22.5 (9.8, 25.8) 17.6 (6.9, 26.4) 0.103
Median initial IVH volume (mL) 3.5 (0, 4.8) 0 (0, 4.8) 0.737

Median initial IPH + IVH volume (mL) 25.5 (9.8, 26.7) 21.1 (10.9, 30.6) 0.223
Median IPH volume change (mL) 31.3 (4.3, 51.7) 7.0 (−1.2, 2.9) <0.001
Median IVH volume change (mL) 4.2 (0, 5.0) 1.4 (−0.1, 0.6) 0.029

Median IPH + IVH volume change (mL) 35.5 (4.8, 65.4) 0.9 (−1.3, 5.7) <0.001
Intraventricular extension 16 (30.2%) 33 (44.6%) 0.100

GCS 3–13 20 (37.7%) 35 (47.3%) 0.284

Hospital stay (days) 19 (11.5, 27) 21 (12, 30.3) 0.747

Brain surgery during hospitalization 26 (49.1%) 26 (35.1%) 0.116
In-hospital mortality 16 (30.2%) 7 (9.5%) 0.003
mRS at discharge > 3 49 (92.5%) 57 (77.0%) 0.021

RMP 52 cases 75 cases
Median interval from onset to CT scan (min) 156 (62, 168) 204 (72, 217) 0.237

Median interval between CT scans (h) 18.6 (4.2, 23.6) 24.4 (8.9, 40.0) 0.145
Median initial IPH volume (mL) 22.5 (10.4, 30.2) 17.7 (7.0, 23.0) 0.108
Median initial IVH volume (mL) 2.9 (0, 2.6) 3.5 (0, 4.1) 0.718

Median initial IPH + IVH volume (mL) 25.4 (10.4, 36.8) 21.2 (10.7, 28.0) 0.235
Median IPH volume change (mL) 32.7 (4.1, 48.6) 6.3 (−1.3, 4.3) <0.001
Median IVH volume change (mL) 4.6 (0, 7.8) 1.2 (0, 1.0) 0.010

Median IPH + IVH volume change (mL) 37.3 (4.4, 57.5) 7.4 (−1.4, 5.5) <0.001
Intraventricular extension 20 (38.5%) 29 (38.7%) 0.981

GCS 3–13 20 (38.5%) 35 (46.7%) 0.359

Hospital stay (days) 22 (12.3, 39) 19 (12, 26) 0.087

Brain surgery during hospitalization 28 (53.4%) 24 (32%) 0.014

In-hospital mortality 13 (25%) 10 (13.3%) 0.093
mRS at discharge > 3 48 (92.3%) 58 (77.3%) 0.026

4. Discussion

The present study investigated the impact of IVH on the radiomics analysis for HE
prediction using a case series of 127 patients with sICH. The hematoma ROIs of IPH
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alone, and IPH with addition of IVH, were used to build separate models. The prediction
performance and clinical outcome correlation of these two radiomics models (RMP &
RMP+V) were compared. RMP+V developed using hematoma ROIs of both IVH and IPH
demonstrated better prediction performance of HE and was significantly associated with
in-hospital death. That is, when IVH was considered, RMP+V improved the classification
accuracy and AUC compared to that of RMP built using the traditional approach based on
IPH alone.

Previously reported predictive indicators for HE included the CT angiography spot
sign [27,30,31], NCCT radiological features (density heterogeneity, hypodensities, blend
sign, etc.) [8,32,33], and clinical information (GCS, onset to CT interval, warfarin use,
etc.) [27,31,33,34]. In recent years, the radiomics approach, which uses texture analysis to
capture various agnostic features, has also shown convincing results [14–17,19]. The least ab-
solute shrinkage and selection operation (LASSO) algorithm was the most applied method
for feature selection and model building [14–17,19], presumably due to its wide availability.
The more sophisticated SVM algorithm has been applied as well [15]. The accuracy, sen-
sitivity, and specificity ranged from 0.64 to 0.88, 0.75 to 0.89 and 0.60 to 0.87, respectively,
covering a wide range, and were highly dependent on the dataset [14–17,19]. The present
study showed comparable results. The model built using the baseline IPH + IVH achieved
an accuracy of 81.9%, with a sensitivity of 79.3% and a specificity of 84.1%. For patients
with a high risk of expansion, more aggressive procedures, including immediate surgery,
may be considered. Another clinical application of the HE prediction model is to identify
subjects who are likely to show HE to participate in anti-expansion trials for sICH [13,32].
A high specificity is preferred for this application. That is, patients who are unlikely to
show HE should not be enrolled in order to maximize the power of testing the treatment
efficacy by using the smallest number of subjects.

The radiomics features used to construct the radiomics model were generally extracted
from shape-based, first-order statistics, and second-order statistics. First-order statistics
are used to describe the voxel intensity distribution within ROIs. Second-order statistics
describe the spatial relationships between neighboring voxels within the ROIs. In general,
second-order features are difficult to evaluate by the human visual system. In this study,
five features extracted from ROIs of IPH and six features from ROIs of IPH + IVH were
chosen for the development of two radiomics models (RMP and RMP+V), respectively. The
selected features for the development of two radiomics models are different. It could be
attributed to the different ROIs of hematoma for feature extraction. Most of these fea-
tures were filtered or wavelet-transformed second-order texture features, including GLDM
features, GLCM features, GLRLM features, and GLSZM features. Among the five fea-
tures extracted from ROIs of IPH, two GLRLM features (LongRunLowGrayLevelEmphasis
and Correlation) and one GLRLM feature (GrayLevelVariance) had been reported as the
selected features for the development of radiomics models for HE prediction [16,35,36].
Among the six features from ROIs of IPH and IVH, however, only the shape feature (Sur-
faceVolumeRatio) had been reported [35]. These features are usually used to describe the
density heterogeneity and hypodensity of hematoma, which are proven to be significant
predictors for hematoma expansion of sICH [8,30]. Even though radiomics analysis shows
promising results for HE prediction, the segmentation of hematoma is required, which
hinders its clinical application in the emergency room. Deep learning has been shown
to provide a promising solution to achieve expert-level detection and segmentation of
intracranial hemorrhage [37–41]. Precise differentiation of IVH and IPH is challenging,
which requires judgement based on the knowledge of neuroanatomy and is usually per-
formed manually by experienced neuroradiologists. It is time consuming and also subject
to a high intra- and inter-rater variation. The segmentation performed using CT-based
planimetry algorithms has been reported in several studies. Cho et al. applied a fully-
automated algorithm to perform hematoma segmentation and found mis-interpretation of
IPH and IVH at the interface [38]. For IVH adjacent to massive IPH, it might be interpreted
as part of IPH or undefined as a result of the distortion of ventricles. Conversely, IPH
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adjacent to the fourth ventricle might be misidentified as IVH. In the PREDICT cohort
study, semi-automated planimetry was applied to perform the volumetric analyses of
the total hematoma (IPH + IVH), and the results showed that the minimum detectable
differences (MDD) of total hematoma volume were higher in the patients with larger
hematoma volumes [42,43] and in the patients with IVH [42]. However, regarding the
total intracerebral hematoma (i.e., IPH + IVH), both the semi-automated [42,43] and fully-
automated hematoma segmentation algorithm [41,44] showed reliable results compared to
manual segmentation.

We implemented a deep learning algorithm using the U-net architecture [45] to per-
form automatic segmentation of both IPH and IVH. The preliminary model was applied to
test the cases included in the present study and achieved the dice similarity coefficient of
0.838. The examples of the IPH and IVH segmentation with concordant and discordant
results are illustrated in the Supplementary Materials files (Figures S3 and S4). Because
IVH is present in one-third of sICH patients, a larger dataset of sICH is necessary for the
development of a reliable automatic tool for IPH and IVH segmentation. Considering
the high frequency of IVH in the sICH patients, the better performance of RMP+V in HE
prediction, and the high fidelity of total ICH segmentation using a deep learning approach,
integration of such an automated segmentation algorithm into the HE prediction model
would be a reasonable clinical approach.

The initial presence of IVH at baseline CT was not associated with HE in the present
study, which was consistent with the results found in the PREDICT study [27] and in a
cohort study of the BAT score [32] for prediction of ICH expansion. However, IVH had
been demonstrated as a risk factor of HE in a case series of 259 patients with putaminal
hemorrhage [46] and in the INTERACT study [34]. Our results showed that the dynamic
change of IVH, including new IVH (34.5% vs. 7.2%) and any IVH growth (67.2% vs. 20.3%)
were significantly associated with HE in the present study (p < 0.001). This finding was also
consistent with the results of previous studies [21,24,25]. With regard to the early outcomes
of the 127 ICH cases in the present study, IVH at the baseline CT scan was also associated
with mortality and poor functional outcomes with crude ORs of 4.2 and 4.1, respectively.
Our results also showed that the HE cases predicted by RMP+V were correlated with the
in-hospital mortality, but not the HE cases predicted by RMP. Considering the impact of
IVH on prediction of outcomes and the relationship between the dynamic IVH change and
HE, the IVH should be considered in future sICH studies.

The present study has several limitations. First, this was a retrospective design using
single-center data with a small sample size. Second, the request for F/U CT scans was at
each clinician’s discretion, most likely due to the large baseline ICH and/or worsening
symptoms. Consequently, there was a relatively high percentage of patients with HE
(57/127; 45%), and poor outcomes for almost all expanders (>94%). Third, there was no
external testing dataset that could provide a more realistic estimate of the HE prediction
performance of the two proposed radiomics models. Without external validation, we cannot
ensure that the proposed radiomics model could be applied across various clinical settings.
Therefore, this should be considered as a pilot study mainly for proof of principle, to
demonstrate the feasibility of the analysis based on combined IPH + IVH. In future studies,
AI software may be applied to automatically segment IPH and IVH, to efficiently process
a large number of patients and to evaluate the clinical role of the developed radiomics
prediction models.

5. Conclusions

Compared with conventional radiomics analysis based on IPH per se, addition of
IVH in the radiomics analysis to build a model using combined IPH + IVH improves the
prediction of the HE. With the maturing of AI software for segmentation of IPH + IVH, the
developed model can be implemented in an emergency setting. A reliable model for the
prediction of HE will not only provide a useful tool to aid in better management for ICH
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patients but will also help to select appropriate patients for enrolling into anti-expansion or
neuroprotection drug trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12112755/s1, Figure S1: IVH cases; Figure S2: RS
box plot; Figure S3: Concordant Autoseg; Figure S4: Discordant Autoseg; Table S1: HE predic-
tion_127 cases.
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Abbreviations

AUC Area Under the ROC Curve
CT Computed Tomography
GCS Glasgow Coma Scale
HE Hematoma Expansion
ICH Intracerebral Hemorrhage
IPH Intraparenchymal Hemorrhage
IVH Intraventricular Hemorrhage
mRS modified Rankin Scale
NCCT Non-Contrast Computed Tomography
NIHSS National Institute of Health Stroke Scale
RM Radiomics Model
ROC Receiver Operating Characteristic
ROI Region of Interest
ICHP ROI of intraparenchymal component of intracerebral hemorrhage
ICHP+V ROI of intraventricular component of intracerebral hemorrhage
RS Radiomics Score
sICH spontaneous Intracerebral Hemorrhage
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