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Abstract—The introduction and deployment of cheap, high
precision, high-sample-rate next-generation synchrophasors en
masse in both the transmission and distribution tier – while
invaluable for event diagnosis, situational awareness and capacity
planning – poses a problem for existing methods of phasor data
analysis and storage. Addressing this, we present the design and
implementation of a novel architecture for synchrophasor data
analysis on distributed commodity hardware. At the core is a new
feature-rich timeseries store, BTrDB. Capable of sustained writes
and reads in excess of 16 million points per second per cluster
node, advanced query functionality and highly efficient storage,
this database enables novel analysis and visualization techniques.
Leveraging this, a distillate framework has been developed that
enables agile development of scalable analysis pipelines with strict
guarantees on result integrity despite asynchronous changes in
data or out of order arrival. Finally, the system is evaluated in a
pilot deployment, archiving more than 216 billion raw datapoints
and 515 billion derived datapoints from 13 devices in just 3.9TB.
We show that the system is capable of scaling to handle complex
analytics and storage for tens of thousands of next-generation
synchrophasors on off-the-shelf servers.

I. INTRODUCTION

Synchrophasors have been deployed in the hundreds
throughout the transmission tier to improve power system
reliability and visibility[1]. The data they provide is poten-
tially valuable for a wide variety of applications, both in
real-time operation, including wide-area situational awareness,
monitoring frequency stability, power oscillation, and voltage,
alarming, resource integration, and state estimation; and for
off-line planning, including baselining, event analysis, model
validation, load characterization, and response. Since phasor
measurement units (PMU) produce high data rates from dis-
tributed locations across the grid, considerable attention has
been devoted to the basic data transport. Typically multiple
PMUs are aggregated at a phasor data concentrator (PDC)
which buffers data, provides basic integrity checking, corre-
lates the streams by time tag, formats the data (e.g., IEEE
C37.118), and delivers it over, typically, higher bandwidth
links to additional concentrators or back-end data processing
resources[2]. The backend represents a considerable challenge
due to the immense footprint of the collective data streams.
Various data historians are used to warehouse the phasor data
and various relational and non-relational databases are used to
hold small subsets and data processing results, typically as a
part of a vendor proprietary solution. Very little published work
attends to the storage and execution infrastructure required to
implement the potential PMU applications.

The recent introduction of μPMUs [3] – small, inexpensive

synchronized phasor measurement units – holds the potential
to vastly expand the number of streams (to tens of thousands
deployed throughout the distribution tier) and the diversity of
applications. In order to explore and understand the potential
applications of this new technology and to develop robust
analysis algorithms, researchers and practitioners require an
extremely flexible framework for developing, deploying, and
utilizing stream processing algorithms at scale with little effort.
Such a framework must deal with the evolution of processing
techniques, as well as expansion and modification of the
physical infrastructure of devices, deployments, and so on.

This paper describes an agile, scalable stream process-
ing infrastructure for large networks of μPMUs . Numerous
μPMU timeseries are delivered into a novel multi-resolution,
versioned time-series data store. Algorithmic transformations
on streams are described by distillers that fire computation as
chunks of data change on input streams and push computed
results onto output streams. Synchrophasor algorithms tap
into a network of distillers, which typically start with basic
cleaners on raw data and feed through dataflow operators
that may combine time-correlated streams within a PMU or
across PMUs. The logic of each distiller is described by a
simple kernel – a few lines of code that directly reflects the
mathematics. The data processing framework deals with all
of the performance optimizations and bookkeeping associated
with multiple interleaved streams arriving at different rates
– possibly out of order – chunking, buffering, scheduling
and so on. Moreover, everything is versioned – the data, the
distillers, and the intermediate streams. As a change occurs, the
framework determines what needs to be recomputed to produce
consistent results with precise provenance, and schedules the
processing required to propagate the change through associated
streams. Our results show that easy-to-write kernels in Python
can process many μPMU streams at full line rate and the
architecture easily scales across cluster resources to achieve
extremely large scale. As distillers move toward production
they can be optimized to operate closer to the storage engine
rate of tens of millions of inserts and removals per second per
node.

II. USE CASE

The systems presented in this paper were developed to
cope with the increased demands that next generation electric
grid measurement data will place on storage and analysis
infrastructure. We encountered these challenges in deploying
an array of μPMUs that send GPS time-stamped measurements
of voltage and current magnitudes and angles at 120 samples
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Fig. 1: Sample event as seen on the plotter (shown for one phase only): a voltage sag originating from the transmission system
results in a current transient and the subsequent loss of some load. The voltage phase angle difference between locations on
the same primary distribution feeder shows the disturbance and typical variations too small to observe with transmission-level
PMUs. This plot covers approximately five seconds

per second [3] on each of the three AC phases (which
in distribution systems, unlike transmission, can be highly
unsymmetrical). Distillers calculate several refined streams
per raw stream that represent quantities with relevant and
recognizable interpretations in the grid context, such as phase
angle differences, AC frequency, power factor, or symmetrical
(positive/negative/zero-sequence) components.

While this data volume could be reduced at the source
through “report by exception” rules, or within the analytic
infrastructure by running distillers only on small subsets of
data, there are good reasons to consider the streams in their
entirety and to leverage data sets for multiple applications si-
multaneously. These applications include not only the analysis
of specific events, but observation of the physical system at
any given moment in time, as well as its evolution over a
range of time scales, from AC cycles to seasons. A particular
emerging challenge as distribution systems increasingly host
diverse and active components, is to combine steady-state,
transient and dynamic analysis within the same tools to support
operations and planning [4]. Rather than hamper the future
development of applications by a design based on isolated use
case assumptions, the infrastructure presented here requires no
a priori censorship or compartmentalization and thus affords
unique opportunities for learning. For example, diagnosis of
a voltage sag as a transmission-level or locally caused event
can be corroborated by the magnitude of a corresponding
sag at different locations on the grid, since measurements for
precisely that instant can be readily compared (Figure 1). Loss
and recovery of various loads following a disturbance can be
characterized in detail because data and distillates are available
simultaneously at sub-cycle temporal resolution and over the
course of minutes and hours around the event.

The primary purpose of DISTIL is to serve as an analytic
tool to enable humans to visualize never before observable
quantities, and develop applications in the research setting. It
bears emphasis that measurements, such as those from our
μPMU array, represent a vast expansion of visibility into power
distribution systems, which are highly diverse, idiosyncratic,
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Fig. 2: Whole system architecture overview

time-varying and thus data-rich, yet still largely opaque to
operators.

III. ARCHITECTURE

The system (Figure 2) consists of multiple hardware and
software components distributed across cellular, wireless and
wired links. In the field μPMUs are deployed at critical points
in the power distribution infrastructure. The μPMU is a well
connected embedded device, with an Ethernet connection and
an ARM processor running Linux. In many locations, wired
Internet is not available, so an off-the-shelf LTE modem
is used to obtain Internet access. To cope with intermittent
connectivity, an agent on the μPMU collects the readings in
2 minute (172,800 point) chunks and reliably transmits them
directly across the Internet to the processing infrastructure,
either located in the cloud or in a utility datacenter. It is worth
noting that no dedicated communication infrastructure or data
concentrators are required, i.e. the PDC is essentially collapsed
into the μPMU .

In the datacenter, there are three subsystems. The storage
subsystem, provided by BTrDB, is responsible for archiving
the raw data, and the products of the distillate framework. It
acts as a crosspoint that connects every other service, analysis
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Fig. 3: A subsection of the data flow graph

algorithm or external third party toolchain. The distillate
framework subsystem, discussed in Section IV, provides high
throughput distributed computation with eventual consistency
in the face of data changes or software/hardware failures.
Finally, the service subsystem provides utilities, such as in-
teractive visualization and event detection. Additional protocol
translation to enable client modalities not supported by BTrDB
natively are implemented as services.

Clients, such as researchers, system operators, or automated
tools, can consume data either via an interactive visualization
tool, or in machine-readable formats that are compatible with
third party analysis and simulation tools.

A. Data flow

μPMUs stream raw data directly into the database via the
chunk loader. To facilitate rapid human-centric analysis, this
data is then automatically distilled into globally time-aligned,
clean streams by utilising the GPS lock stream and constantly-
evolving heuristics for good data. These streams are in turn
the inputs for an ensemble of further algorithms or distillers
that form a directed data flow graph, a portion of which can
be seen in Figure 3, for a single phase of a single μPMU .
These are duplicated for the additional phases, and again for
each addition μPMU . Distillers such as fundamental/reactive
power combine distillates across phases, and there are several
algorithms that require data from multiple different μPMUs .
Of these, only the phase angle difference is shown.

Our architecture focuses on efficient and reliable calcu-
lation and storage of these distillates in advance of queries,
rather than just-in-time materialization. The advantage is that
many months or years of data can be queried in milliseconds,
whereas with this density of data, just-in-time materialisation
would take hours or days. In addition, emphasis is placed
on guaranteeing correctness of the resulting analysis. This
is because most interesting data lies in transients, which are
hard to distinguish from faults in analysis. This guarantee is
established by treating the graph as a true dataflow graph that
specifies a relationship between streams, rather than simply
as a pipeline that processes incoming data. The difference
is subtle and best illustrated by example. In a traditional
streaming pipeline, if a researcher were to identify a range
of data that needs to be considered invalid after it had already
been processed, they would need to manually invalidate the
corresponding sections of results that were produced using that
data. If there were derivative streams that the researcher was
unaware of, they might slip through the cracks and later lead to

invalid results and reasoning. In DISTIL, the researcher need
only change the single stream, and the results will propagate
through the graph of dependent streams automatically.

B. Database

At the center of the system is a new timeseries store
– Berkeley Tree Database (BTrDB) – that has been de-
veloped for high density scalar timeseries data, typical of
synchrophasors. Initial attempts to use off-the-shelf technol-
ogy (e.g. OpenTSDB, SQL databases, Cassandra) met with
insurmountable challenges: lack of timestamp precision (32
bits / millisecond precision being the norm), slow queries for
fast-path operations such as “find what has changed since
this stream was last checked”, poor storage efficiency and
inability to preserve reproducibility despite deletes. Over and
above these, the single biggest problem was extremely poor
throughput. While existing solutions work well for devices
sampling at 1 Hz or slower, they cannot cope with the (120 x
pipeline depth) Hz rate we required. Similar studies by other
researchers in the field concur with our findings [5].

These shortcomings necessitated the development of a
new timeseries database for storing synchrophasor readings,
capable of advanced query functionality to support the data
processing methodology presented in Section IV. This method-
ology relies on the database as a critical component to de-
couple stages in the processing pipeline, allowing for failure-
tolerant distributed computation and reuse of intermediate
products. For this reason, sustained throughput is essential.
The resultant database possesses a novel architecture that offers
extremely high performance, multi-resolution fixed-response-
time queries, persistent per-commit multi-versioning with dif-
ference computation, and scalability to petabyte scale datasets.

1) Performance

BTrDB offers very high throughput. A single computation
node deployed on the cloud can handle sustained writes at
more than 16.7 million points per second – more than ten thou-
sand three-phase microsynchrophasor units. Read throughput
is similar at more than 19.8 million points per second, enough
to support complex on-line computation infrastructure (covered
in Section IV) or a heavy query load. These figures come from
a deployment on EC21 with distributed storage, showing that
deployment and scalability on commodity cloud platforms is
possible.

To achieve these results, – a per-node throughput that is
two to three orders of magnitude faster than OpenTSDB [5],
Cassandra, Couchbase, HBase or MongoDB2– the IO pattern
has been very carefully engineered. In addition, it is suitable
for the spinning metal drives used in data warehousing, espe-
cially on the write path that is the primary concern in phasor
data concentrator and archival deployments.

In addition, the database scales horizontally to large clus-
ters on two tiers. Figure 4 shows the tiered architecture of
a BTrDB cluster. At the top, the IO tier is made up of
computationally powerful machines as, due to the compression
techniques used, both reads and writes are CPU intensive.
The design of the database allows for concurrent reads to be

1The compute node is a c3.8xlarge, the storage nodes are i2.4xlarges
2A recent third party comprehensive benchmark of these offerings can be

found in [6]
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Fig. 4: BTrDB tiered architecture

distributed amongst multiple machines, whereas writes need
to be redirected by a frontend daemon to the server currently
holding the write lock. This daemon generally runs on the
same machine as the main BTrDB node. To scale throughput,
additional machines with high CPU and memory are added to
this cluster.

Storage is provided by the second tier: Ceph RADOS [7],
a scalable, reliable storage service for petabyte-scale storage
clusters. This proven technology allows for seamless repli-
cation and migration of data across clusters of thousands
of machines. In addition, Ceph is engineered to allow for
hot storage on SSDs that accelerate IO operations on the
working set. It handles the migration to and from cold storage,
composed of cheaper and larger spinning metal drives that
store historic data. To scale storage, additional RADOS Object
Store servers with large numbers of attached hard drives are
added to the cluster.

2) Multi-resolution store

The database stores the data in a time partitioning copy-
on-write tree. The internal nodes are used to store statistical
representations of the data in their children. This data structure
guarantees that the statistical representations are up-to-date at
the end of every commit, as the internal nodes are persisted
before the root superblock is written to disk. The statistics
stored by BTrDB internal nodes are the minimum, mean, max-
imum and count of the values in the subtree. This allows these
queries, or any queries containing these as a subexpression, to
be accelerated by several orders of magnitude.

The statistical queries can be used for efficiently locating
transients such as threshold excursions without needing to
query the full resolution data. This is utilised by the event
detection service to offer lightweight tagging of “interesting”
time windows for human observation. As an example of this,
consider Figure 5 that shows 2 months of voltage data with
sufficient information that an operator can identify several
voltage sags that warrant further investigation even though they
are only 100ms long. This data was fetched in < 10ms.

The agility with which such large quantities of data can
be explored lends itself to interactive visualization where an
operator can zoom and pan through streams without waiting
for queries to complete. The statistical results show more
information than would be available from traditional naive or
subsampling plotting methods. In Figure 5, each pixel column
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Fig. 5: Two months of voltage data plotted with 2.4 hours
(1084331 points) per pixel column. Several 100ms voltage sags
(including one shown in Figure 1) are clearly visible

Fig. 6: Response times for statistical queries backing a 1024
pixel wide interactive window as it is zoomed in from 237ns
per pixel to 223ns per pixel (2.3 minutes to 8.4ms per pixel)

in the plot covers a time range of roughly 2.4 hours. Although
only a single record is plotted per column, the min/mean/max
values are used to plot a bracket (in a light color) with the mean
as a darker line, increasing the information presented in the
graph over a naive plot of the full raw information which would
not identify the mean. A subsampled plot does not identify the
mean and elides valuable information about transients. The
count value is used to plot a data density graph above the
main plot, useful for identifying missing data and evaluating
how many records each pixel represent. Here it shows that each
pixel column represents roughly one million points, totalling
747 million points across the width of the plot.

Prior work has considered just-in-time aggregation of data
for pixel-perfect visualisation purposes [8], but in our work the
query is satisfied without reading the underlying data, enabling
a fast response time irrespective of the time range. Figure 6
shows the response time for queries zooming in from a 40 hour
wide window to an 8.5 second wide window. The times shown
are full-stack round trip times for JSON/HTTP queries, the
format used by the plotting web application. It was measured
by querying 50 different streams, 100 times each to obtain
the variance in the latency. These low-latency responses allow
for smooth interactive zooming and panning through terabytes
of data, facilitating human interpretation – a utility engineer
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def compute (self , changes , i n p u t s ,
params , r e p o r t ) :

o u t p u t = r e p o r t . o u t p u t ( ” p h a s e d i f f e r e n c e ” )
f rame = i n p u t s [ ” phase1 ” ] − i n p u t s [ ” phase2 ” ]
f rame = frame . d ropna ( )
f rame += 180
frame %= 360
frame −= 180
o u t p u t . i n s e r t f r a m e ( f rame )
# T h i s s p e c i f i e s t h e range t o be d e l e t e d
o u t p u t . addbounds (∗ c h a n g e d r a n g e s [ ” phase1 ” ] )

Fig. 8: The Python kernel for phase difference

described his experience of viewing μPMU data on the plotter
as being “a kid in a candy shop.”

3) Versioned store

As the primary data structure is copy-on-write, the database
is monotonic. New additions to a stream of timeseries data
result in new generations. Even a deletion does not result
in lost data, it is merely unavailable to queries targeting a
generation newer than that containing the deletion operation.

This structure allows queries to be guaranteed reproducible.
Combined with software version control systems such as
GitHub, this yields perfect provenance and reproducibility of
analysis. An algorithm simply needs to retain the generation
numbers used to satisfy the queries, and the commit hash of
the algorithm, and it can redo the analysis and get the exact
results again later.

More importantly, generational storage allows the database
to efficiently answer difference queries that yield a changeset
between two generation numbers. A changeset contains a list
of start, end tuples denoting ranges of time that have been
changed. This novel capability enables the efficient composi-
tion of stages in a processing pipeline that can react to out
of order changes in data without maintaining per-consumer
journals. Table I shows how changeset queries in large (9
month) datasets complete in milliseconds3.

IV. DISTILLATE FRAMEWORK

The distillate framework provides an environment for
materializing analytics streams given an abstract description
of a dataflow graph, along with the algorithm kernels that
describe each node in the graph. Figure 7 outlines the primary
components of the framework.

A. Distiller kernel

The process begins with a researcher developing a kernel.
An example kernel that computes phase delta can be found
in Figure 8. A kernel is a stateless, idempotent block of code
that consists of two functions: precompute and compute. The
precompute takes a list of time ranges containing changes on
the algorithm inputs and returns a list of time ranges that will
be required to compute the algorithm’s outputs. For many
distillates this operation is the identity function, but others
require an additional window of data before the change in

3We would have liked to include the query times for this operation on
a conventional relational or time series database but could not construct an
implementation that completes in under linear time without sacrificing large
amounts of storage.

order to compute the products. An example is the frequency
distillate which requires an extra second of data so that the
angle deltas can be computed across the whole window.

The second part of the kernel is the compute function,
which is invoked with all the data that has been fetched from
the database. It outputs a list of time ranges that need to be
erased, and a set of datapoints that need to be inserted.

A key characteristic of the kernel is that it does not main-
tain any state outside the inputs it receives and is idempotent.
This allows multiple chunks of computation to run in parallel,
be distributed across machines in a cluster and re-run without
unwanted side-effects. It also ensures that the distiller can
handle out-of-order arrival or holes in the data without any
additional code in the kernel.

B. Graph description

The researcher instantiates distillers by creating INI files
and uploading them to a specific repository on GitHub (shown
top left in Figure 7). This file specifies a list of nodes in
the dataflow graph, with each node having an algorithm, a
set of parameters, input streams and output streams. The act
of pushing the configuration file to the repository triggers an
automatic inclusion into the schedule and subsequent com-
putation. This design choice allows for accountability and
reproducibility as there is no out of band control in either
the algorithm or the graph description: everything goes via a
versioned source control system. The metadata associated with
the output products contains the version numbers of both the
algorithm and the parameters, allowing the provenance of any
point of data to be determined.

C. Scheduler

The scheduler runs on the front end for the three clusters
that comprise the system. It receives the graph description via
a post-commit hook from GitHub and spawns a process for
every node in the graph, passing it the instantiation parameters.
These processes are distributed among the cores in the compute
cluster. By utilising the versioned query functionality provided
by BTrDB, consistent views of the inputs to each node can be
maintained, even if other nodes are writing to the same streams
in the same time range. For this reason, the node processes are
fully parallelizable, requiring no inter-process communication
or synchronisation at all. This is the key characteristic that
offers scalability for the compute cluster.

D. Node process

The node process begins by pulling the algorithm code
from GitHub. All execution trace information is directed to
logging infrastructure so that development errors or warnings
thrown by the kernel can be observed on the pipeline monitor-
ing dashboard. From the node description, the input streams
are determined, and the metadata for those streams is loaded.
The BTrDB database is then queried for all time ranges that
have changed since the last timeslice that was scheduled for
the node, forming a changeset. These changes need not be
contiguous, at the end of the stream or in previously empty
space – the system is fully generic and will handle arbitrary
changes.

The changeset is then chunked into pieces that will fit into
memory and be efficient working sets for computation. Each
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chunk is then processed independently. Like the node process,
this may also be parallelized, although we have found the
parallelism at the scheduler level sufficient to take advantage of
the computational resources we have deployed. For simplicity,
the current implementation processes the chunks sequentially.

For each chunk – a timerange containing changes – the
framework invokes the section of the kernel that calculates
prerequisites. It then queries and builds the dataset. The kernel
compute function is invoked to process the dataset, returning
the time ranges to be erased, and the data points for the
products. These results are then inserted into the database.

Finally, once all the chunks have been computed without
error, the input versions in the metadata database are updated
to the ones used for the timeslice of computation that just
completed. If a software or hardware error occurs after some
but not all chunks have been written, these version numbers
will not be updated, causing the scheduler to reschedule all
the chunks on a different compute core, achieving eventual
consistency.

V. ANALYSIS

A. Database performance

Although a full evaluation of the performance of BTrDB
is outside the scope of this paper, a summary evaluation of the
space efficiency and throughput of the database is required to
contextualise the distillate framework performance.

The first figure of merit is the read and write performance.
On an Intel Xeon E5-2680v2 based cloud server with 60GB
of RAM, described earlier, a single BTrDB node writes 16.7
million scalar points per second and reads 19.8 million scalar
points per second under an IO pattern that mirrors that of the
chunk loader and distillers. This corresponds to a real-time
load of 11500 three phase μPMUs per BTrDB node in the
cluster and is several orders of magnitude faster than the time-
series databases or relational databases that have so far been
used for phasor data storage [5].

The second figure of merit is of storage efficiency.
The challenge is to balance the requirements of a multi-

resolution store – data carrying internal nodes in a space
partitioning copy-on-write tree – with that of warehouse scale
archival which requires optimal storage. At present, we have
a pilot deployment of thirteen μPMUs and have archived
216,748,666,750 raw data points (not including those produced
by the analysis pipeline). This dataset is only 1.1TB as the
novel lossless compression algorithm developed for BTrDB
uses only 5.46 bytes per (16 byte) reading on average, giving
a compression ratio of 2.93x. This is significantly better than
existing phasor data compression techniques [9].

As our cleaning algorithm heuristics are still under de-
velopment, the size of our stored distillates is much larger
(the results of the whole graph are archived for every version
of the cleaning algorithm). These bring the total size of our
stored dataset to 3.9 TB. The number of stored points available
in the latest versions of the distillates excluding archived
deleted regions, is 212,007,633,453 (there are approximately
300 billion archived changed points not in the latest versions).
The bytes per reading figure is calculated by taking the total
size on disk, including all indexes and statistical copies that
serve the multiresolution queries, and dividing it by the total
number of readings.

B. Framework node performance

To provide a characterisation of the performance of the
framework, we present a microbenchmark of three distillates
on two deployments of DISTIL. The first deployment is on
a small production setup, where the storage, compute and
metadata are all distributed. The CPU is an Intel E5-2670 v2 @
2.50GHz. The second deployment is on our staging machine,
an inexpensive home media server running an Intel i7 4600U
@ 2.1GHz. Here, all the components of the system are running
on the same box, with the storage attached via USB 3.0. The
production cluster has 48 cores per machine, and the staging
machine has 8 cores, but in both cases, only a single core is
tested – the scalability to multiple cores is completely linear.
The most important factor to consider in the performance of
the distillate framework is the ratio of time spent processing
a changeset to the wall time that the changeset represents,
i.e. how much faster than realtime the system is. Primarily
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Distributed Single Machine
Identity Phase Difference Reactive/Fundamental Pwr Identity Phase Difference Reactive/Fundamental Pwr

Input/Output streams 1/1 2/1 4/2 1/1 2/1 4/2

Compute changeset 972 μs 1659μs 1180μs 649μs 468μs 47183μs

Query data[s] 69.8 104.4 196.9 38.9 67.3 145.5

Kernel calculation[s] 10.8 22.7 245.5 7.9 15.9 164.3

Delete old data[s] 6.7 6.9 15.8 8.0 6.9 20.6

Insert new data[s] 40.7 39.8 66.5 31.91 30.7 52.8

Changeset / compute time 1064 x 773 x 259 x 1579 x 1135 x 357 x

TABLE I: Compute times for processing a 38 hour changeset on different distillates and deployments

this ratio influences how many nodes in the dataflow graph
there can be, and therefore how many synchrophasors can be
supported by the system.

Table I shows the wall time spent in the various stages
of the framework for a selection of three distillers running on
two deployments. The first distiller is an identity distiller which
simply copies its input to its output, to characterise what frac-
tion of the kernel computation time is from moving data. The
second kernel is a phase delta which measures the difference in
voltage phase angle between two different μPMUs, performing
some validation (the kernel for this distillate is listed in Figure
8). Finally, as a more computationally intensive kernel, the
RPFP distillate computes reactive and fundamental (apparent)
power. Both systems and sets of distillates were synthetically
exposed to a 38 hour changeset, and the resulting computation
was timed.

The first thing to note is that even on a single core, most
distillates operate at well beyond 250x realtime. Secondly, note
the alacrity of the changeset calculation query – an operation
that requires either a costly linear scan or an untenably large
index in existing databases. Finally, as expected, the query and
insert times scale with the valency of the node. Algorithms
with more inputs and outputs have increased data volume
and take longer to compute. As an aside, we are not sure
why there is such a disparity between the performance of
cores on the two systems. It is likely that it is due to CPU
power scaling, as even the kernel compute time differs, and
this stage contains no disk or network IO, nor traffic to the
database. As these results scale linearly with an increase in
cores, an average multicore commodity server such as a dual
socket Xeon E5-2670v3 (with 48 cores) can handle more
than 54000 phase difference nodes and still be faster than
real-time. This amounts to 18000 μPMU pairs – more than
the number of synchrophasors installed in North America.
A moderately sized cluster could handle in-depth analytics
for extremely large scale deployments with ease. The results
for the staging machine were included here to show that
despite being engineered for warehouse-scale analysis of tens
of thousands of synchrophasors, the system scales down well
to a single machine that could be deployed on-site.

VI. CONCLUSION

This paper presents DISTIL, a system for distributed anal-
ysis and storage of extremely large volumes of synchropha-
sor data. Data from μPMUs is transmitted using commodity
communication infrastructure across the Internet, to a central
processing location in a cloud or operator datacenter, removing
the need for dedicated phasor data concentrator hardware. The
processing infrastructure builds on BTrDB, a novel timeseries
database offering read or write performance in excess of 16
million points per second per cluster node – more than two

orders of magnitude faster than existing solutions. Persistent
multiversioning enables data provenance determination and
reproducibility of analysis. The distillate framework allows
complex analysis pipelines to be developed by writing and
connecting simple, concise kernels of analysis code represent-
ing nodes in a dataflow graph that are automatically scheduled
into execution on a processing cluster. Issues of error recovery
and change propagation into derivative streams are handled
transparently. We have evaluated DISTILĩn a pilot study,
analyzing data from 13 deployed next-generation μPMUs and
archiving more than 730 billion raw and derived datapoints.
This dataset occupies only 3.9TB, due to novel compression
techniques that yield a 2.93x compression ratio. Visualization
of the data can be done interactively, where terabytes of data
can be navigated smoothly and seamlessly due to the rapid
multiresolution capabilities of BTrDB. We demonstrate that
the framework is capable of scaling to complex analytics on
tens of thousands of μPMUs using cost-effective commodity
hardware, a previously unattainable goal.
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