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Abstract

Background—Independent studies report association of autism spectrum disorder with air

pollution exposure and a functional promoter variant (rs1858830) in the MET receptor tyrosine

kinase (MET) gene. Toxicologic data find altered brain Met expression in mice after prenatal

exposure to a model air pollutant. Our objective was to investigate whether air pollution exposure

and MET rs1858830 genotype interact to alter ASD risk.

Methods—We studied 252 cases of autism spectrum disorder and 156 typically developing

controls the Childhood Autism Risk from Genetics and the Environment Study. Air pollution

exposure was assigned for local traffic-related sources and regional sources (particulate matter,

nitrogen dioxide and ozone). MET genotype was determined by direct re-sequencing.

Results—Subjects with both MET rs1858830 CC genotype and high air pollutant exposures were

at increased risk of autism spectrum disorder compared with subjects who had both the CG/GG
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genotypes and lower pollutant exposures. A statistical test of multiplicative interaction identified a

statistically significant effect between NO2 and MET CC genotype (p=0.03)

Conclusions—MET rs1858830 CC genotype and air pollutant exposure may interact to increase

autism spectrum disorder risk.

Autism and autism spectrum disorders are complex neurodevelopmental disorders

characterized by deficits in social interaction, communication, and behavioral flexibility.

The complex phenotypic presentation of these disorders suggests that multiple genetic and

environmental factors contribute to risk, and gene-environment interactions are widely

believed to underlie autism spectrum disorders. Few studies have addressed joint risk from

specific genetic susceptibility in combination with a specific environmental exposure or

class of exposures.1 In previous independent studies, we have identified (1) increased autism

spectrum disorder risk among children exposed to high levels of local near-roadway traffic-

related air pollution and regional particulate matter near the time of birth2,3; (2) increased

autism spectrum disorder risk among children with the C allele of the MET gene promoter

variant rs1858830,4,5 which is associated with decreased expression of MET protein in

brain6 and immune system7; and (3) decreased MET protein expression in brain and altered

behavior in offspring of mouse dams exposed during pregnancy to the polycyclic aromatic

hydrocarbon benzo(a)pyrene (a component of traffic-related air pollution and particulate

matter).8 Based on these independent autism spectrum disorder associations and the

biological link between benzo(a)pyrene and MET, we hypothesized that a gene-environment

interaction contributes to autism spectrum disorder risk.

In children, as in animals, prenatal polycyclic aromatic hydrocarbon exposure has been

associated with intelligence (IQ) deficits at age 5 years as well as with increased anxiety,

depression, and inattention at age 6–7.8–10 In this study we investigated the relationship of

air pollution exposure and genotype at the MET rs1858830 locus with autism spectrum

disorder.

Methods

Description of Sample

The Childhood Autism Risks From Genetics and the Environment Study is a population-

based, case-control study of preschool children from California. Participants were born in

California and lived with at least one English- or Spanish-speaking biologic parent in one of

the study catchment areas related to specific regional centers in California. Subjects were 24

to 60 months of age at the time of recruitment; additional details on study design are

provided elsewhere.11 For this analysis, cases met criteria for autism or autism spectrum

disorder based on the Autism Diagnostic Observation Schedules and the Autism Diagnostic

Interview-Revised. Typically developing controls were children who received a score of less

than 15 on the Social Communication Questionnaire and also showed no evidence of other

types of developmental delay (composite scores greater than 70 on Mullen Scales of Early

Learning and Vineland Adaptive Behavior Scales). We assigned air pollution exposure to

669 study participants based on their residential histories and available exposure databases

(as described below).3 For 63 percent of participants, parents agreed to give blood and
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consented to share biospecimens with researchers outside of the original study team. This

analysis includes 251 cases with a confirmed diagnosis of autism or autism spectrum

disorder and 156 controls with typical development.

In parental interviews we collected data on demographic characteristics, medical conditions

and environmental exposures, including residential history.11 Residential histories recorded

dates and address locations where the mother lived, beginning at conception through the

most recent place of residence, as well as any other place of residence where the child lived.

These dates and addresses were used to develop air pollution exposure metrics.3 Prenatal

and birth addresses were used to develop a weighted average of pollution exposure. In this

analysis, we focus on air pollution exposure during the prenatal period.

Air Pollution Exposure Assignment

We assigned modeled estimates of traffic-related air pollution exposure to study participants

using the CALINE4 line-source air-quality dispersion model.12 Included in the model is

information on roadway geometry, link-based traffic volumes, period-specific

meteorological conditions (wind speed and direction, atmospheric stability, and mixing

heights), and vehicle emission rates.3 CALINE4 pollutant concentration estimates are

indicators of the traffic-related air pollutant mixture rather than of a specific pollutant. We

estimated residential exposure derived from freeways, non-freeways, and all roads located

within 5 km of the home.

We also used regional air quality data to assign exposure for particulate matter less than 2.5

and less than 10 microns in diameter (PM2.5 and PM10), nitrogen dioxide, and ozone using

data from the US Environmental Protection Agency Air Quality System (www.epa.gov/ttn/

airs/airsaqs) supplemented for Southern California by the University of Southern

California’s Children’s Health Study data for 1997–2009.3 When no Federal Reference/

Equivalent Method data for particulate matter were available for a given monitoring station

in the Air Quality System, Children’s Health Study continuous particulate matter data were

used. The monthly air quality data from monitoring stations located within 50 km of each

residence were used for spatial interpolation of ambient concentrations. The spatial

interpolations were based on inverse distance-squared weighting of data from up to four

closest stations located within 50 km of each participant residence; however, if one or more

stations were located within 5 km of a residence, then only data from the stations within 5

km were used for the interpolation.

Genotyping Methods

Blood was collected from participants as part of the study protocol, with genomic DNA

extracted from peripheral blood leukocytes using standard methods (Puregene kit; Gentra

Inc). As the rs1858830 SNP falls within a highly GC-rich region, indirect genotyping

methods fail when using genomic DNA. A 652-bp fragment containing the rs1858830 SNP

was amplified from 15 ng genomic DNA with primers 5′-

GATTTCCCTCTGGGTGGTG-3′ (Forward) and 5′-CAAGCCCCATTCTAGTTTCG-3′
(Reverse). Polymerase chain reaction (PCR) analysis was performed with the KOD Xtreme

Hot Start Polymerase kit (EMD Millipore), which is designed to amplify regions with high
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GC content. Cycling conditions were: 95°C for 5 min followed by 35 cycles of 95°C for 30s,

68°C for 30s and 72 °C for 1 min. Specific amplification of the 652-bp product was

confirmed by agarose gel electrophoresis. Each PCR product was subjected to direct re-

sequencing using an ABI 3730xl using Big Dye Terminator chemistry. Genotype at the MET

rs1858830 locus was determined from the sequencing result using Sequencher software

(Gene Codes, Ann Arbor, MI, USA).

Statistical Analysis

Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence

intervals (CIs) for air pollution exposure and MET genotype. We examined each pollutant

separately, categorizing children as “high exposure” if the pregnancy average exposure for

traffic related air pollution, PM2.5 or PM10, nitrogen dioxide, or ozone was in the top 25% of

the exposure distribution. Participants in the other 75% served as “low exposure” in our

analyses. These categorizations are consistent with findings identified in our previous work.3

We also explored more and less extreme exposure-cut points (eTable 1). Because previous

research demonstrated an increased risk of autism spectrum disorder due to over-

transmission of the C allele and because functional studies suggest the MET CC genotype is

associated with decreased MET expression, we compared the CC genotype to the CG and

GG genotypes in our analyses.5 Analyses were adjusted for potential confounders, including

child’s sex and ethnicity, maximum education level in the home, maternal age, home

ownership and prenatal smoking.

Results

Genotyped subjects were similar to ungenotyped subjects in autism spectrum disorder status

and air pollution exposure (eTable 1). Genotyped subjects were less likely to have a mother

who smoked during pregnancy and less likely to have high nitrogen dioxide exposure

compared with ungenotyped subjects. MET rs1858830 genotype frequencies did not vary

across cases and controls (χ2=1.40, 2df). We did not find an increased risk of autism

spectrum disorder for the MET CC genotype compared with CG/GG genotypes (crude OR=

0.9 [95%CI= 0.6–1.4]). Autism spectrum disorder was associated with exposure to the top

quartile of traffic-related air pollution (1.7 [1.0–2.7]), particulate matter less than 10 microns

in diameter (2.5 [1.6–4.3]), particulate matter less than 2.5 microns in diameter (1.9 [1.2–

3.1]), and nitrogen dioxide (1.7 [1.1–2.7]).

We then parameterized our model based on both MET genotype and air pollution exposure.

Synergistic effects were observed between MET CC genotype and local traffic-related air

pollution, regional PM10, and regional nitrogen dioxide exposure; adjusted ORs were,

respectively, 2.9 (1.0–10.6), 3.2 (1.3–9.1), and 3.6 (1.3–13), comparing the high-risk

genotype and highly exposed children to those with low exposure and without the risk

genotype (Table). Statistical tests of multiplicative interaction identified a statistically

significant effect between NO2 and MET CC genotype (p=0.03) and borderline significant

effects between local traffic-related air pollution and MET CC genotype (p=0.09). Analyses

exploring alternative cut-points found the persistence of joint effects of traffic-related air

pollution and MET CC genotype using either lower or higher cut points for defining high
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exposure (eTable 2). Joint effects of MET CC genotype with PM10 or nitrogen dioxide are

additionally present at higher cutpoints.

Discussion

Examination of joint pollution and gene effects suggest that subjects with both the MET

rs1858830 CC genotype and high air pollutant exposure were at increased risk of autism

spectrum disorder compared with subjects who had both the CG/GG genotypes and lower

air pollutant exposure. Given that the MET CC genotype had no impact in the 75% of the

population with lower air pollutant exposures, these data suggest a gene-environment

interaction for autism spectrum disorder based on MET genotype and air pollution exposure.

These results require independent replication and a more detailed understanding of the

underlying biology. However, these data add to the literature supporting a role for gene-

environment interactions in autism spectrum disorder etiology. They also point to the

contribution of common alleles for which gene-only analyses show inconsistent evidence of

a link to autism spectrum disorder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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