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Abstract: The COVE trial randomized participants to receive two doses of mRNA-1273 vaccine
or placebo on Days 1 and 29 (D1, D29). Anti-SARS-CoV-2 Spike IgG binding antibodies (bAbs),
anti-receptor binding domain IgG bAbs, 50% inhibitory dilution neutralizing antibody (nAb) titers,
and 80% inhibitory dilution nAb titers were measured at D29 and D57. We assessed these markers
as correlates of protection (CoPs) against COVID-19 using stochastic interventional vaccine efficacy
(SVE) analysis and principal surrogate (PS) analysis, frameworks not used in our previous COVE
immune correlates analyses. By SVE analysis, hypothetical shifts of the D57 Spike IgG distribution
from a geometric mean concentration (GMC) of 2737 binding antibody units (BAU)/mL (estimated
vaccine efficacy (VE): 92.9% (95% CI: 91.7%, 93.9%)) to 274 BAU/mL or to 27,368 BAU/mL resulted
in an overall estimated VE of 84.2% (79.0%, 88.1%) and 97.6% (97.4%, 97.7%), respectively. By binary
marker PS analysis of Low and High subgroups (cut-point: 2094 BAU/mL), the ignorance interval
(IGI) and estimated uncertainty interval (EUI) for VE were [85%, 90%] and (78%, 93%) for Low
compared to [95%, 96%] and (92%, 97%) for High. By continuous marker PS analysis, the IGI and
95% EUI for VE at the 2.5th percentile (519.4 BAU/mL) vs. at the 97.5th percentile (9262.9 BAU/mL)
of D57 Spike IgG concentration were [92.6%, 93.4%] and (89.2%, 95.7%) vs. [94.3%, 94.6%] and
(89.7%, 97.0%). Results were similar for other D29 and D57 markers. Thus, the SVE and PS analyses
additionally support all four markers at both time points as CoPs.

Keywords: binding antibody assay; immune correlates of protection; modified treatment policy;
neutralizing antibody assay; principal stratification; principal surrogate; SARS-CoV-2; stochastic
intervention; stochastic interventional vaccine efficacy

1. Introduction

In the coronavirus efficacy (COVE) phase 3 clinical trial of the mRNA-1273 COVID-19
vaccine, participants were randomized 1:1 to receive mRNA-1273 vaccine (n = 15,209 as-
signed) or placebo (n = 15,206 assigned), administered on Day 1 (D1) and Day 29 (D29) [1,2].
Estimated vaccine efficacy (VE) in baseline negative per-protocol participants against the
primary endpoint of virologically confirmed, symptomatic COVID-19 (hereafter, “COVID-
19”) starting ≥14 days post-D29 through a median follow-up of 5.3 months, corresponding
to completion of the blinded phase, was 93.2% (95% confidence interval (CI), 91.0% to
94.8%) [2]. Vaccine safety was also assessed, with no safety concerns identified during the
trial [1,2]. As part of the United States government (USG)-coordinated effort to identify a
correlate of protection (CoP) for COVID-19 vaccines [3], we developed a “master protocol”
Statistical Analysis Plan (SAP) for harmonizing immune correlates analyses across all of
the USG/COVID-19 Response Team phase 3 COVID-19 vaccine trials [4]. As obtaining
evidence from multiple analysis frameworks is typically needed to establish an immuno-
logic biomarker for applications such as regulatory decisions or immunobridging, the SAP
laid out multiple correlate of risk (CoR) and CoP objectives, each of which addresses a
different question.

In Gilbert et al. [5], we reported the COVE trial results for some of these immune
correlate objectives, for the immune markers IgG binding antibodies (bAbs) against the
SARS-CoV-2 Spike protein (Spike IgG), IgG bAbs against the Spike receptor binding domain
(RBD IgG), 50% inhibitory dilution pseudovirus neutralizing antibody titer (nAb-ID50),
and 80% inhibitory dilution pseudovirus neutralizing antibody titer (nAb-ID80), measured
on D29 and on D57 in all vaccine recipient breakthrough cases and a randomly sampled
immunogenicity subcohort. The IgG markers were measured against the original index
strain and nAb-ID50 against the B.1/B.1.2 lineage (NC_045512.2), which is the index strain
except with the D614G mutation. All four D57 antibody markers correlated inversely



Viruses 2023, 15, 2029 3 of 15

with COVID-19 and impacted mRNA-1273 VE against COVID-19 through ~4 months
post-D29 [5]. Similar results were obtained for the D29 antibody markers. In additional
analyses of COVE, nAb-ID50 was the strongest independent correlate of risk as determined
by machine learning analyses that evaluated multivariable correlates of risk (CoRs) [6].
However, these studies did not report on all the immune correlate objectives outlined in
the master protocol SAP. In particular, the assessment of CoPs was based on the controlled
VE framework [7] and the natural direct and indirect effects mediation framework [8]. The
former framework considers a hypothetical intervention that assigns all participants to
receive a vaccine and to have a specific immune marker value, estimates COVID-19 risk
under this intervention, and then estimates VE by contrasting this risk with COVID-19
risk under the hypothetical intervention that assigns all participants to receive placebo.
The latter framework estimates the proportion of VE that is causally mediated through the
immune marker, defined by comparing the natural direct effect to the overall VE.

Here, we report the results from additional CoP analyses of the COVE trial, completing
the suite of pre-specified blinded-phase immune correlates analyses of the D29 and D57
antibody markers and COVID-19. Specifically, we evaluated each of the four markers,
Spike IgG, RBD IgG, nAb-ID50, and nAb-ID80, measured at D29 or D57, as a CoP against
COVID-19 defined using two additional causal inference frameworks for CoP assessment
as specified in the master protocol SAP: the stochastic interventional vaccine efficacy (SVE)
framework and principal surrogate (PS) framework (within the principal stratification
framework of causal inference [9]). The SVE approach, like the controlled VE approach,
is based on a hypothetical intervention to modify the immune marker but considers the
more plausible stochastic intervention of shifting each vaccine recipient’s immune marker
value by a fixed amount relative to their observed marker value instead of the static
intervention of deterministically setting the marker level to the same fixed value for all
vaccine recipients; thus, the SVE approach defines a contrast relative to the observed marker
values, which may plausibly arise in future hypothetical scenarios. The PS approach, in
contrast, does not intervene on the immune marker and instead estimates how VE varies
across subgroups defined by the value of the immune marker of vaccine recipients (which is
a counterfactual variable for participants in the placebo arm). Table 1 summarizes the four
statistical frameworks for assessing a correlate of protection from a vaccine efficacy trial.

Table 1. Four statistical frameworks for assessing an immune marker measured at a post-vaccination
time point as an immune correlate of protection (CoP) against a clinical outcome from a vaccine
efficacy trial, all of which were applied to the COVE trial.

Statistical Framework for Assessing a CoP Objective of the CoP Analysis Applied to an Immune Marker in COVE

Controlled vaccine efficacy (VE) [7]
To assess the vaccine efficacy that would be observed under a hypothetical

intervention that assigns all participants to the vaccine arm and to a specific
value of the marker, as opposed to assigning all participants to placebo *

Mediation of VE [8]

To assess the proportion of the overall VE against COVID-19 that is mediated
through the marker, through assessment of the natural direct effect (NDE) of
vaccine assignment on COVID-19 (NDE = the component of VE that remains
after setting (deactivating) the marker to the level it would have if assigned to

the placebo arm)

Stochastic interventional VE [10] To assess how overall VE would change under user-specified shifts of marker
values of vaccine recipients from their observed values

Principal surrogate VE [11] To assess how VE varies over subgroups defined by the marker value if
assigned to the vaccine arm

* This objective/definition attains in studies where all placebo recipients have the same value of the immune
marker. This occurs in COVE, as baseline negative placebo recipients all have antibody levels to SARS-CoV-2
antigens that are below the assay detection limit. For VE trials where placebo recipients have variability in the im-
mune marker (i.e., studies that enroll individuals previously infected with the pathogen), the objective/definition
must be updated: to assess the VE that would be observed under a hypothetical intervention that assigns all
participants to the vaccine arm and to a specific value of the marker, as opposed to assigning all participants to
placebo and to a specific value of the marker.
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2. Materials and Methods
2.1. COVE Trial and Study Endpoint

The COVE trial (NCT04470427), conducted in the United States, enrolled 30,420 adults
age 18 and over at appreciable risk of SARS-CoV-2 infection and/or high risk of severe
COVID-19 disease and randomly assigned them in a 1:1 ratio to receive either vaccine or
placebo [1,2]. The study endpoint used in the correlates analysis, which we refer to as
“COVID-19”, is the first occurrence of acute symptomatic COVID-19 with virologically-
confirmed SARS-CoV-2 infection [1,2]. Virological confirmation refers to a positive SARS-
CoV-2 reverse-transcriptase–polymerase-chain-reaction assay of a nasopharyngeal swab,
nasal, or saliva sample. As in Gilbert et al. [5], COVID-19 endpoints beginning seven days
post-D29 or -D57, depending on whether D29 or D57 markers were assessed, respectively,
through completion of the blinded phase of follow-up were included in the correlates
analyses. The calendar dates of this timeframe were 27 July 2020 to 26 March 2021.

2.2. Ethics Statement

All study participants provided written informed consent before enrollment and the
protocol and consent forms were approved by the central institutional review board.

2.3. Case-Cohort Sets Included in the Correlates Analyses

A case-cohort sampling design [12] detailed in Gilbert et al. [5] was used to sample
participants randomly for measurement of antibody markers on D1, D29, and D57. In all
vaccine recipients with a breakthrough COVID-19 endpoint, antibody markers were also
measured on the same days. As defined in previous studies [1,2], correlates analyses were
conducted in baseline negative (no immunologic or virologic evidence of prior COVID-
19 at enrollment) per-protocol (received both doses without major protocol violations)
participants. The analysis cohort included a randomly sampled immunogenicity subcohort
of size 1010 from the vaccine arm plus all vaccine cases starting 7 days after D29 (for D29
correlates analysis) or starting 7 days after D57 (for D57 correlates analysis). The analysis
cohort also included all baseline negative per-protocol placebo recipients, without making
use of any antibody data because all immune marker values are constant at “zero” (below
assay detection or quantitation limits). See Figure S2 in Gilbert et al. [5] for a schematic of
participant flow from enrollment through to the analysis. The numbers of vaccine arm cases
and non-cases with measured antibody marker data (for each of the four antibody markers)
included in the D29 correlates analyses and in the D57 correlates analyses are provided
in Table S3. There are 1005 vaccine arm non-cases and 46 (36) vaccine arm cases with
D29 (D57) antibody marker data and, hence, they were included for D29 (D57) correlates
analyses. All baseline negative per-protocol placebo recipients were included in the analysis
(13,221 non-cases and 751 (659) cases).

2.4. Pseudovirus Neutralizing Antibody Assay

Serum nAb activity against SARS-CoV-2 was measured in a validated assay utilizing
lentiviral vector pseudotyped with full-length Spike of the D614G strain NC_045512.2 [13].
Assay readouts were calibrated to the World Health Organization 20/136 anti-SARS-CoV-
2 immunoglobulin International Standard [14] and are expressed in international units
(IU50/mL and IU80/mL for nAb-ID50 and nAb-ID80, respectively). The arithmetic mean
calibration factors used to convert assay readouts to international units are provided in
Table S4. Table S5 gives the assay limits, with limit of detection (LOD) 2.42 IU50/mL for
nAb-ID50 and 15.02 IU80/mL for nAb-ID80. Values below the LOD were assigned the
value of LOD/2.

2.5. Binding Antibody Assay

Serum IgG bAbs against Spike and RBD were measured using a validated solid-phase
electrochemiluminescence S-binding IgG immunoassay [5]. Assay readouts were converted
to binding antibody units per ml (BAU/mL) using the World Health Organization 20/136
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anti-SARS-CoV-2 immunoglobulin International Standard [14]. Table S5 gives the assay
limits, with LOD = 0.3076 BAU/mL for Spike and LOD = 1.593648 for RBD. Values below
the LOD were assigned the value of LOD/2.

2.6. Stochastic Interventional VE

For each antibody marker, measured levels were hypothetically shifted along a
grid, (−1.0, −0.8, −0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8, 1.0), on the log10 scale such that
−1.0 represents a 10-fold decrease in geometric mean and 1.0 represents a 10-fold increase
in geometric mean. For each shift, the average risk of COVID-19 in per-protocol baseline
negative vaccine recipients was estimated via the method of Hejazi et al. [10]. Downward
(negative) shifts that would result in more than 10% of participants having counterfactual
values of the marker below the assay’s LOD were omitted. The zero-shift value corresponds
to the observed log10 geometric mean marker level. As described in the SAP, these average
risk estimates can be translated to the VE scale by also estimating the average risk of per-
protocol baseline negative placebo recipients, which are the results that are presented. The
analyses were implemented with the txshift and sl3 packages [15–17] for the R language
and environment for statistical computing [18,19].

2.7. Binary Principal Surrogate Evaluation

For each antibody marker, the method of Gilbert et al. [20] was used to estimate VE
for two principal strata, defined by the immune marker in vaccine recipients being above
vs. below the median marker value, with parameters of interest denoted VE(1) = VE(High)
and VE(0) = VE(Low). That is, let Y(1) and Y(0) be potential outcomes indicating whether
COVID-19 occurs during follow-up if assigned vaccine or placebo, respectively. Let S(1)
indicate the marker value at the time point of interest (D29 or D57) if assigned vaccine
and let sc indicate a specified cut-point value for S(1) (i.e., median value). Then, the causal
estimands of interest are VE(1), VE(0), and RR ratio = (1 − VE(0))/(1 − VE(1)), with

VE(1) = 1 − P(Y(1) = 1|S(1) > sc)/P(Y(0) = 1|S(1) > sc) and

VE(0) = 1 − P(Y(1) = 1|S(1) ≤ sc)/P(Y(0) = 1|S(1) ≤ sc),

where all the probabilities also condition on not experiencing the COVID-19 endpoint by
the marker time point of interest (D29 or D57) under both randomization assignments [20].
The relative VE parameter (relative risk ratio = RR ratio) is the degree to which the vaccine
confers greater risk reduction for the High subgroup compared to the Low subgroup. The
Supplementary Text lists the assumptions needed for the method, which include No Early
Harm (NEH) [20], i.e., there are no individuals who would have a COVID-19 outcome
before the marker was measured under assignment to vaccine, but not under assignment
to placebo. This method relies on user specification of three sensitivity parameters, β2,
β3, and β4, to construct IGI and EUI bounds. These parameters reflect different types and
degrees of post-randomization selection bias, all with a log-odds ratio scale, with details in
the Supplementary Text and in Gilbert et al. [20]. For data analysis, first, each sensitivity
parameter was set to zero, such that the VE parameters were point-identified, and point
estimates and 95% CIs were calculated. Then, each of the sensitivity parameters were set to
vary from log(0.75) to −log(0.75) (medium robustness) and from log(0.5) to −log(0.5) (high
robustness), such that the estimands were partially identifiable, and IGIs and 95% EUIs
were calculated.

Table S6 provides the median cut-points for each of the D29 and D57 antibody markers.
The method was implemented using the psbinary R package [21].

2.8. Continuous Marker Principal Surrogate Evaluation

For each antibody marker measured on a continuous scale, the methods of Huang,
Zhuang, and Gilbert [22] were used to estimate the VE curve, i.e., the curve of VE for
the subgroup of vaccine recipients with immune markers at each specific level s, i.e.,
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VE(s) = 1 − P(Y(1) = 1|S(1) = s)/P(Y(0) = 1|S(1) = s). Specifically, under the NEH assump-
tion, a participant disease-free (i.e., COVID-19 endpoint-free) at the time of marker mea-
surement can belong to either one of the two strata: the “equal-always-at-risk” stratum
(where the participant will be disease-free at the time of marker measurement if assigned
placebo) or the “early-protected” stratum (where the participant will have experienced the
disease outcome by the time of marker measurement if assigned placebo). A model for the
mixing probability of the two strata among all vaccine recipients disease-free at the time of
marker measurement is assumed with a sensitivity parameter β that equals the log-odds
ratio of remaining early-at-risk if assigned placebo for early-at-risk vaccine recipients with
Y(1) = 1 relative to Y(1) = 0. Sensitivity analyses were conducted for estimating the VE
curve for each marker, with the sensitivity parameter β varying from −log(4) to 0. For
comparison, a VE curve estimator was also produced under the EECR assumption, which,
in addition to NEH, also assumes that no individuals would have COVID-19 before the
marker was measured under placebo assignment but not under vaccine assignment.

3. Results
3.1. Stochastic Interventional VE Analysis Supports Each of the Four Antibody Markers as a
Correlate of Protection

For a given immune marker measured at a post-vaccination time point, SVE anal-
ysis [10] posits hypothetical individual-level shifts of the marker’s observed values by
different, user-specified magnitudes [10]. The output of SVE analysis is that of the overall
VE estimates had the vaccine hypothetically elicited marker values increased (or decreased)
as specified by different shift magnitudes. Applying this framework to COVE, estimated
mRNA-1273 VE against COVID-19 increased as each D57 marker was hypothetically in-
creased, and vice versa for hypothetical decreases (Figure 1). For example, the observed
geometric mean D57 Spike IgG concentration in vaccine recipients was 2737 BAU/mL and
the actual cumulative VE from 7 to 100 days post-D57 was 92.9% (95% CI: 91.4%, 93.9%).
Overall estimated VE decreased to 84.2% (95% CI: 79.0%, 88.1%) when shifting D57 Spike
IgG marker values down one log10 (to a geometric mean of 274 BAU/mL), and increased
to 97.6% (97.4%, 97.7%) when shifting D57 Spike IgG marker values up one log10 (to a
geometric mean of 27,368 BAU/mL) (Figure 1A). Results were similar for each of the other
three D57 markers.
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for D57 (A) Spike IgG, (B) RBD IgG, (C) nAb-ID50, or (D) nAb-ID80, estimated using the method of 
Hejazi et al. [10]. The y-axis plots the estimated vaccine efficacy (VE) for a vaccine that elicits hypo-
thetical D57 geometric mean value indicated on the x-axis. The vertical red line corresponds to the 
geometric mean concentration or titer in the COVE study population (baseline negative per-protocol 
vaccine recipients in the immunogenicity subcohort) and the horizontal red line corresponds to the 
estimated VE in COVE (follow-up time period from 7 to 100 days post-D57) at a shift of 0, i.e., the 
observed marker level. BAU, binding antibody units; ID50, 50% inhibitory dilution; ID80, 80% in-
hibitory dilution; IU, international units; LLOD, lower limit of detection; nAb, neutralizing anti-
body. 
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estimates VE for each of two or many subgroups defined by a participant’s value of the 
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counterfactual in placebo recipients). PS analysis was applied under the assumption that 
vaccination does not cause an increased risk of COVID-19 prior to the time of immune 
marker measurement (i.e., the NEH assumption) [20]. First, the approach was applied to 

Figure 1. Stochastic interventional vaccine efficacy (SVE) estimates against COVID-19 with hypo-
thetical shifts in geometric mean D57 antibody marker level. SVE, with 95% confidence intervals,
for D57 (A) Spike IgG, (B) RBD IgG, (C) nAb-ID50, or (D) nAb-ID80, estimated using the method of
Hejazi et al. [10]. The y-axis plots the estimated vaccine efficacy (VE) for a vaccine that elicits hypo-
thetical D57 geometric mean value indicated on the x-axis. The vertical red line corresponds to the
geometric mean concentration or titer in the COVE study population (baseline negative per-protocol
vaccine recipients in the immunogenicity subcohort) and the horizontal red line corresponds to the
estimated VE in COVE (follow-up time period from 7 to 100 days post-D57) at a shift of 0, i.e., the ob-
served marker level. BAU, binding antibody units; ID50, 50% inhibitory dilution; ID80, 80% inhibitory
dilution; IU, international units; LLOD, lower limit of detection; nAb, neutralizing antibody.

Similar results were obtained for the D29 binding antibody markers (Figure S1A,B),
with the D29 neutralizing antibody markers having less-clear trends with marker GM shifts
(Figure S1C,D). Figure S2 (D57 antibody markers) and Figure S3 (D29 antibody markers)
show estimates of absolute COVID-19 risk of vaccine recipients under the different shift
magnitudes, which are simply the numerators of the estimates of stochastic interventional
vaccine efficacy.

3.2. Binary Principal Surrogate Analysis Supports Each of the Four Antibody Markers as a
Correlate of Protection

For a given immune marker measured at a post-vaccination time point, PS analysis
estimates VE for each of two or many subgroups defined by a participant’s value of the
immune marker if assigned to the vaccine arm (observable in vaccine recipients and a
counterfactual in placebo recipients). PS analysis was applied under the assumption that
vaccination does not cause an increased risk of COVID-19 prior to the time of immune
marker measurement (i.e., the NEH assumption) [20]. First, the approach was applied to
estimate VE for each of two subgroups with High or Low immune marker value using
the median marker value to define High vs. Low. Results are presented using ignorance
intervals (IGIs) and 95% estimated uncertainty intervals (EUIs) [23]. The IGI is a range
of VE point estimates, with each estimate calculated under specific fixed values of the
sensitivity parameters. A 95% EUI is the union of 95% CIs, where each 95% CI is calculated
under specific fixed values of the sensitivity parameters. Whereas 95% CIs only capture
uncertainty due to sampling variability, 95% EUIs capture additional uncertainty due to
partial non-identifiability of the subgroup VE parameters that occurs because the counter-
factual immune marker values if assigned vaccine are not measured for participants who
were actually assigned placebo. Results are presented in three ways by specifying three
possible ranges for each of three user-specified sensitivity parameters β2 = β3 = β4 that are
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defined in Section 5.4 of Gilbert et al. [20]: [log(1.0), −log(1.0) = 0, 0], [log(0.75), −log(0.75)],
or [log(0.50), −log(0.50)], which specify different types and degrees of post-randomization
selection bias (see Methods and Supplementary Text for definitions of the sensitivity param-
eters). For each of the four immune markers at D57, VE point estimates were greater for the
High D57 marker subgroup compared to the Low D57 marker subgroup (Table 2, Figure 2).
In the special case of setting β2 = β3 = β4 = 0, IGIs collapse to point estimates and EUIs col-
lapse to CIs, in which case estimated VE (95% CI) for Low vs. High D57 Spike IgG was 88%
(81, 92%) vs. 95% (92, 97%), and results for the other three immune markers were similar. To
assess whether VE differed between the Low and High subgroups, we also estimated ratios
(1 − VE(Low))/(1 − VE(High)). For example, when setting β2 = β3 = β4 = 0, the point
estimate (95% CI) for D57 Spike IgG was 2.54 (1.31, 4.93), supporting higher VE for the High
marker subgroup. This inference is robust to a moderate amount of allowed uncertainty
(95% EUI 1.11, 5.83 when each sensitivity parameter is specified to range over [log(0.75),
−log(0.75)]), but not robust to the higher amount of allowed uncertainty (95% EUI 0.72,
9.69 for each sensitivity parameter specified to range over [log(0.50), −log(0.50)]). Similar
results were obtained for the four D29 markers (Table S1, Figure S4), with the lower limit
of the IGI for the (1 − VE(Low))/(1 − VE(High)) ratio exceeding one under a moderate
amount of allowed uncertainty for all four markers.

Table 2. Principal surrogate correlates of vaccine efficacy (VE) results by Gilbert et al. method [20] for
High (above median) vs. Low (below median) D57 antibody marker vaccinated subgroups under the
No Early Harm (NEH) assumption with sensitivity analysis scenarios.

VE(0) VE(1) (1 − VE(0))/(1 − VE(1))

Low Marker Vaccine
Subgroup

High Marker Vaccine
Subgroup Relative Risk Ratio

Marker Sens. * Ignorance
Interval

95%
Estimated

Uncertainty
Interval

Ignorance
Interval

95%
Estimated

Uncertainty
Interval

Ignorance
Interval

95%
Estimated

Uncertainty
Interval

D57 Spike IgG None (0.88, 0.88) (0.81, 0.92) (0.95, 0.95) (0.92, 0.97) (2.54, 2.54) (1.31, 4.93)
D57 Spike IgG Med (0.85, 0.90) (0.78, 0.93) (0.95, 0.96) (0.92, 0.97) (1.93, 3.35) (1.11, 5.83)
D57 Spike IgG High (0.80, 0.92) (0.70, 0.95) (0.94, 0.96) (0.91, 0.98) (1.30, 5.08) (0.72, 9.69)
D57 RBD IgG None (0.89, 0.89) (0.81, 0.93) (0.95, 0.95) (0.92, 0.97) (2.26, 2.26) (1.17, 4.37)
D57 RBD IgG Med (0.86, 0.90) (0.79, 0.94) (0.94, 0.95) (0.92, 0.97) (1.72, 2.97) (0.99, 5.17)
D57 RBD IgG High (0.81, 0.93) (0.72, 0.95) (0.93, 0.96) (0.90, 0.98) (1.15, 4.50) (0.64, 8.48)
D57 nAb-ID50 None (0.90, 0.90) (0.84, 0.93) (0.95, 0.95) (0.92, 0.97) (2.25, 2.25) (1.14, 4.46)
D57 nAb-ID50 Med (0.88, 0.91) (0.83, 0.94) (0.95, 0.96) (0.92, 0.97) (1.71, 2.97) (0.97, 5.26)
D57 nAb-ID50 High (0.84, 0.93) (0.78, 0.95) (0.94, 0.97) (0.90, 0.98) (1.15, 4.50) (0.63, 8.95)
D57 nAb-ID80 None (0.91, 0.91) (0.86, 0.95) (0.94, 0.94) (0.91, 0.96) (1.46, 1.46) (0.76, 2.82)
D57 nAb-ID80 Med (0.90, 0.93) (0.85, 0.95) (0.93, 0.95) (0.90, 0.97) (1.11, 1.92) (0.64, 3.34)
D57 nAb-ID80 High (0.87, 0.94) (0.80, 0.96) (0.92, 0.95) (0.88, 0.97) (0.74, 2.90) (0.41, 5.37)

* Sensitivity parameter settings were: None, β sensitivity parameters β2, β3, β4 set to zero; Med, β sensitivity
parameters β2, β3, β4 ranging from log(0.75) to −log(0.75); High, β sensitivity parameters β2, β3, β4 ranging from
log(0.5) to −log(0.5).
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marker greater than vs. less than or equal to the designated cut-point (median value). The black dot 
in each panel corresponds to the VE estimate for the relevant D57 antibody marker subgroup (Low 
or High) for (A) Spike IgG, (B) RBD IgG, (C) nAb-ID50, or (D) nAb-ID80 when β sensitivity param-
eters are set to zero. The vertical black line denotes the ignorance interval (IGI) when β sensitivity 
parameters range from log(0.75) to −log(0.75), the vertical red dashed line denotes the 95% confi-
dence interval (CI) when β sensitivity parameters are set to zero, and the vertical blue dashed line 
denotes the 95% estimated uncertainty interval (EUI) when β sensitivity parameters range from 
log(0.75) to −log(0.75). The green histogram on each lower panel denotes the distribution of the D57 
antibody marker, with the vertical black dashed line placed at the cut-point separating a Low D57 
antibody marker response from a High D57 antibody marker response. This cut-point was the me-
dian marker value in baseline negative per-protocol vaccine recipients in the immunogenicity sub-
cohort. (E) For each antibody marker, cut-point, relative risk (RR) ratio point estimate, IGI, 95% CI, 
and 95% EUI. RR ratio = (1 − VE(0))/(1 − VE(1)). BAU, binding antibody units; ID50, 50% inhibitory 
dilution; ID80, 80% inhibitory dilution; IU, international units; nAb, neutralizing antibody. 
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the D57 and D29 markers with s values (hereafter “VE(s)”) ranging from the 2.5th to 97.5th 
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and EUIs) are presented in Tables 3 and S2, respectively. For all four antibody markers 
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Figure 2. Binary principal surrogate vaccine efficacy (VE) against COVID-19 by D57 antibody marker
greater than vs. less than or equal to the designated cut-point (median value). The black dot in each
panel corresponds to the VE estimate for the relevant D57 antibody marker subgroup (Low or High)
for (A) Spike IgG, (B) RBD IgG, (C) nAb-ID50, or (D) nAb-ID80 when β sensitivity parameters are set
to zero. The vertical black line denotes the ignorance interval (IGI) when β sensitivity parameters
range from log(0.75) to −log(0.75), the vertical red dashed line denotes the 95% confidence interval
(CI) when β sensitivity parameters are set to zero, and the vertical blue dashed line denotes the
95% estimated uncertainty interval (EUI) when β sensitivity parameters range from log(0.75) to
−log(0.75). The green histogram on each lower panel denotes the distribution of the D57 antibody
marker, with the vertical black dashed line placed at the cut-point separating a Low D57 antibody
marker response from a High D57 antibody marker response. This cut-point was the median marker
value in baseline negative per-protocol vaccine recipients in the immunogenicity subcohort. (E) For
each antibody marker, cut-point, relative risk (RR) ratio point estimate, IGI, 95% CI, and 95% EUI. RR
ratio = (1 − VE(0))/(1 − VE(1)). BAU, binding antibody units; ID50, 50% inhibitory dilution; ID80,
80% inhibitory dilution; IU, international units; nAb, neutralizing antibody.

3.3. Continuous Principal Surrogate Analysis Supports Each of the Four Antibody Markers as a
Correlate of Protection

Second, the PS method of Huang, Zhuang, and Gilbert [22] was applied to estimate
the VE curve that describes how VE varies by subgroups defined by each possible value
of a quantitative immune marker if assigned to the vaccine arm. Estimated VE curves for
the D57 and D29 markers with s values (hereafter “VE(s)”) ranging from the 2.5th to 97.5th
percentiles are shown in Figures 3 and S5, respectively. Corresponding VE estimates (IGIs
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and EUIs) are presented in Tables 3 and S2, respectively. For all four antibody markers and
both time points, the IGI for VE(s) under each specified value of the sensitivity parameter β
varying over the pre-specified range of [−log(4), 0] (see Methods for a definition of β). For
all D57 markers, the lower 95% EUI limit for VE(s) exceeded 80% for all observed s values
above its 2.5th percentile. For example, the IGI and EUI for VE(s) at the 2.5th vs. 97.5th
percentile of s were [92.6%, 93.4%] (89.2%, 95.2%) vs. [94.3%, 94.6%] (89.7%, 97%) for D57
Spike IgG, and results were similar for the other three immune markers (Table 3).
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Figure 3. Continuous principal surrogate vaccine efficacy (VE) against COVID-19 by D57 marker
level, with ignorance intervals (dark blue) and 95% estimated uncertainty intervals (light blue) under
the No Early Harm (NEH) assumption shown for the sensitivity parameter β assumed to fall in the
range [−log(4), 0]. Results are shown for (A) Spike IgG, (B) RBD IgG, (C) nAb-ID50, or (D) nAb-ID80.
In each panel, the solid and dashed lines are the estimated VE curve and 95% perturbation confidence
intervals with the Equal Early Clinical Risk (EECR) assumption. The curves are plotted over the
marker range of the 2.5th to 97.5th percentile (Spike IgG: 519 to 9263 BAU/mL, RBD IgG: 638 to
13,794 BAU/mL, nAb-ID50: 33 to 1321 IU50/mL, nAb-ID80: 95 to 2385 IU80/mL). BAU, binding
antibody units; ID50, 50% inhibitory dilution; ID80, 80% inhibitory dilution; IU, international units;
nAb, neutralizing antibody.
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Table 3. Principal surrogate correlates of vaccine efficacy results by the Huang, Zhuang, and Gilbert
method [22] for D57 antibody marker at various levels under the No Early Harm (NEH) or Equal
Early Clinical Risk (EECR) assumption.

Vaccine Efficacy (S_alpha)

Marker Assumption Alpha = 0.025 0.05 0.1 0.5 0.9 0.95 0.975

D57 Spike
IgG

Concentration
(BAU/mL) 519.4 862.1 1224 2926.2 6169.4 7724.8 9262.9

EECR Estimate (%) 91.7 92.5 93 94.2 95.0 95.1 95.2
CI (%) (86.7, 94.8) (88.8, 95) (90.1, 95.1) (91.5, 96) (91.9, 96.9) (91.6, 97.1) (91.2, 97.4)

NEH IGI (%) [92.6, 93.4] [93, 93.7] [93.3, 93.9] [93.9, 94.3] [94.2, 94.5] [94.2, 94.6] [94.3, 94.6]
EUI (%) (89.2, 95.7) (90.1, 95.7) (90.5, 95.7) (91, 96.1) (90.7, 96.6) (90.3, 96.8) (89.7, 97)

D57 RBD
IgG

Concentration
(BAU/mL) 637.9 1093.5 1670.9 4423.3 9361.8 11,560.8 13,793.5

EECR Estimate (%) 90.6 91.8 92.6 94.1 95 95.2 95.4
CI (%) (84.4, 94.4) (87.4, 94.7) (89.4, 94.8) (91.4, 95.9) (91.7, 97) (91.8, 97.2) (91.8, 97.5)

NEH IGI (%) [92.6, 93.2] [93.2, 93.6] [93.5, 93.9] [93.9, 94.7] [94.2, 95.2] [94.3, 95.4] [94.3, 95.5]
EUI (%) (89.3, 95.5) (90.4, 95.6) (90.9, 95.6) (91.1, 96.4) (90.7, 97) (90.5, 97.2) (90.1, 97.3)

D57
nAb-ID50

Titer
(IU50/mL) 33 60.8 88.7 248.1 786.5 1100.8 1320.8

EECR Estimate (%) 91.5 92.3 92.9 94.2 95.2 95.5 95.6
CI (%) (84.6, 95.3) (88, 95.1) (89.5, 95.1) (91.6, 96) (91.2, 97.4) (90.7, 97.8) (90.3, 98)

NEH IGI (%) [90.9, 91.7] [92, 92.7] [92.6, 93.2] [94.2, 94.7] [95.2, 95.7] [95.5, 96] [95.6, 96.2]
EUI (%) (87, 94.2) (88.7, 94.8) (89.6, 95.2) (91.3, 96.4) (91.6, 97.5) (91.6, 97.8) (91.6, 98)

D57
nAb-ID80

Titer
(IU80/mL) 94.7 130.6 161.7 544.9 1248.9 1871.8 2385

EECR Estimate (%) 90.8 91.5 92 94.3 95.2 95.6 95.9
CI (%) (84.4, 94.6) (86.7, 94.6) (88, 94.6) (91.4, 96.2) (91, 97.4) (90.7, 97.9) (90.3, 98.2)

NEH IGI (%) [90.9, 92.1] [91.5, 92.7] [91.9, 93] [94, 94.9] [94.6, 95.8] [94.9, 96.2] [95.1, 96.4]
EUI (%) (86.9, 94.5) (87.8, 94.8) (88.4, 95.1) (91, 96.6) (90.9, 97.5) (90.6, 97.9) (90.4, 98.1)

CI, 95% confidence interval; EUI, 95% estimated uncertainty interval; IGI, ignorance interval. alpha = percentile of
marker in vaccine recipients.

As a comparison, in Figures 3 and S5, Tables 3 and S2, we also present corresponding
analyses under the simpler but less realistic Equal Early Clinical Risk (EECR) assumption,
under which there is no sensitivity parameter β. EECR assumes no vaccine effect on risk of
COVID-19 prior to the time of immune response measurement and is thus not a reasonable
assumption given the observed early vaccine effect in the COVE trial [1,2]. For the two
binding antibody markers, the results under EECR show greater moderation of VE across
the range of marker values than the results under NEH, whereas for the two neutralizing
antibody markers, the results are similar. These results are mostly of academic interest
given that the NEH assumption is well justified, whereas the EECR assumption is violated.
The overall conclusion is that all PS analyses support that VE increases across subgroups
with increasing D29 and D57 binding and neutralizing antibody levels.

4. Conclusions

Results from the stochastic interventional and principal surrogate statistical frame-
works for assessing immune markers as correlates of protection (CoP) supported all four
antibody markers measured at D29 and D57 as CoPs for two-dose mRNA-1273 vaccine
protection against COVID-19 through the COVE blinded phase with a median follow up of
5.3 months post dose two. These findings add to our previous findings supporting CoPs
via the controlled VE and mediation frameworks [7,8], thus adding to the body of evidence
characterizing these markers as CoPs.

The SVE results suggested that the D57 neutralizing antibody markers were potentially
stronger CoPs than the D57 binding antibody markers. For example, there was a greater
increase in VE on the relevant multiplicative scale across the range of hypothetical shifts
(from a 10-fold decrease to a 10-fold increase) for D57 nAb-ID80 compared to D57 Spike IgG:
For D57 nAb-ID80, estimated VE increased from 74.5% (56.5% to 85.1%) to 99.7% (99.6%
to 99.7%) (an 85.0-fold increase in the amount of vaccine protection on the multiplicative
scale), whereas for D57 Spike IgG, estimated VE increased from 84.2% (95% CI, 79.0% to
88.1%) to 97.6% (97.4% to 97.7%) from the lowest to the highest shift (a 6.6-fold increase
in the amount of vaccine protection on the multiplicative scale). This difference between
the D57 neutralizing antibody and D57 binding antibody markers was less pronounced
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for the continuous marker principal surrogate analyses. For example, the IGIs for VE at
the 2.5th and 97.5th percentile of marker values were [90.9%, 92.1%] and [95.1%, 96.4%] for
D57 nAb-ID80 compared to [92.6%, 93.4%] and [94.3%, 94.6%] for D57 Spike IgG. Moreover,
in the binary principal surrogate analysis, there was about a 2-fold multiplicative-scale
increase in the amount of vaccine protection going from the Low to High marker subgroup
for both antibody markers.

For the D29 markers, the SVE results indicated a similar change in VE across shifts
of binding antibody and neutralizing antibody markers, where only shifts upward can be
compared (up to 10-fold higher). For example, for D29 Spike IgG, estimated VE increased
from 92.9% (95% CI: 91.4%, 93.9%) at no shift to 97.3% (96.0%, 98.2%) at the highest shift (a
2.6-fold multiplicative-scale increase), whereas for D29 nAb-ID50, these values were 92.6%
(91.5% to 93.5%) to 96.3% (93.0% to 98.1%) (a 2.0-fold multiplicative-scale increase). By the
binary principal surrogate analysis, the change in VE from Low to High marker subgroups
was also similar for binding and neutralizing antibody markers: 88% (81% to 92%) vs. 95%
(95% CI: 92% to 96%) for D29 Spike IgG compared to 89% (84% to 92%) vs. 95% (92% to
97%) for D29 nAb-ID80 (at sensitivity parameters set to zero).

While we have presented evidence in multiple papers for D29 and D57 antibody
markers as CoPs, these markers do not fully represent the entire repertoire of immune
responses that can provide protection and did not show perfect mediation of the vaccine’s
efficacy against COVID-19. This can be partly seen in the PS analyses where vaccine efficacy
estimates are well above zero at the lowest end of the biomarker level, which implies the
average causal necessity condition for a perfect principal surrogate does not hold. It would
be interesting to pursue the identification of improved CoPs by studying other immune
responses such as Fc effector and T-cell responses. Technical advances for measuring
neutralization more sensitively would also be of interest.

This study shares many of the strengths and limitations of our previous COVID-19
vaccine immune correlates studies, including the constrained scope to a study population
naïve to SARS-CoV-2 who received two [5,6,24,25] vaccine or placebo doses, i.e., no boosters.
Future work is planned to apply the SVE analysis framework to the COVE trial to assess
CoPs for both SARS-CoV-2-naïve and -positive populations and for recipients of a third dose.
Additionally, during the follow-up period for correlates analysis, the study population was
exposed to predominantly ancestral lineage SARS-CoV-2 (i.e., the D614G B.1/B.1.2 strain)
and secondarily to minor genetic drift variants [26]. The antibody markers assessed as
correlates in this and our previous studies were measured against the index strain (binding
antibodies) or the D614G strain (neutralizing antibodies), thus essentially being matched to
the exposing D614G strain viruses. Future work is ongoing to assess these markers and
counterpart markers measured against the Omicron BA.1 strain as correlates of Omicron
BA.1 COVID-19.

The SVE and PS methods have specific strengths and weaknesses distinguishing them
from the previously applied controlled VE and mediation methods. SVE analysis has
advantages over both previously applied frameworks in that its hypothetical interventions
on an immune marker are more conceivable and can be guided by data. For example,
data on how a refined vaccine regimen changes the distribution of an antibody marker
can be used to empirically specify a marker shift of interest, and SVE analysis applied
to estimate how VE would change had the refined vaccine regimen been evaluated in
the VE trial. PS analysis, by not involving any hypothetical intervention on an immune
marker, advantageously avoids any issues with the conceivability of the causal estimand.
However, the absence of an intervention on the marker implies that the PS framework
does not provide results that can be interpreted in terms of an immune marker’s causal
effect on disease risk (fitting one perspective in causal inference on “no causation without
manipulation” [27]); PS analysis is “vanilla subgroup analysis” that obtains separate VE
estimates across a range of subgroups. That is, whereas the previously applied SVE CoP
frameworks rely on the key assumption that the immune marker is randomized after
accounting for other measured participant characteristics, the PS framework does not



Viruses 2023, 15, 2029 13 of 15

require this assumption. However, PS analysis replaces this challenge with the equally
challenging issue of missing data on the potential immune markers of placebo recipients,
which is generally tackled by crossing over placebo recipients to the vaccine arm and
measuring their immune markers and/or by measuring pre-vaccination characteristics
that predict the post-vaccination immune marker, as well as by specifying pattern mixture
models with sensitivity parameters to express the type and degree of post-randomization
selection bias.

The PS and SVE methods can be generally applied to any vaccine efficacy trial for
which the required immune marker data are available; for instance, the PS framework has
been applied to vaccine efficacy trial data for dengue [28], herpes zoster [29], HIV [30],
RSV [31], and influenza [32], and the SVE framework has been applied to HIV [10]. Both
methods can be readily applied when all participants in the analyzed cohort have no
evidence of prior infection with the pathogen of interest, as in the current analysis. Some
additional considerations for the PS method are needed if the analyzed cohort includes
participants who were previously infected with the pathogen of interest, e.g., the SARS-CoV-
2-non-naïve population. In these scenarios, the need to estimate a VE curve is expanded
to the need to estimate a VE surface conditional on the pair of potential immune markers
under both treatment assignments, to the vaccine and to the placebo [11].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15102029/s1.
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