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A Digitally Assisted Multiplexed Neural Recording
System With Dynamic Electrode Offset Cancellation

via an LMS Interference-Canceling Filter
Nader Sherif Kassem Fathy , Graduate Student Member, IEEE, Jiannan Huang , Member, IEEE,

and Patrick P. Mercier , Senior Member, IEEE

Abstract— This article presents a low-power (LP) area-efficient
implantable neural recording system that supports high-density
neural implant (HDNI) applications. The system uses a time-
division multiple access method to record from 16-neural elec-
trodes simultaneously. A least mean squares (LMSs) algorithm
is used to cancel the slowly varying electrode offsets from all
channels simultaneously by using a single-tap digital adaptive
filter (AF). The presented technique is fabricated in 65-nm CMOS
technology and achieves a per-channel area of 0.00248 mm2;
68% of which is digital circuitry (and is thus scalable with
technology). The overall system consumes 3.38 µW per channel
while achieving 2.6 µVrms of input referred noise (IRN) in
10 kHz of bandwidth. The proposed system has a noise efficiency
factor (NEF) of 1.83 and is fully integrated on-chip.

Index Terms— Digitally assisted least mean square (LMS) filter,
electrocorticography (ECoG), microelectronic implants brain–
machine interface (BMI), neural recording, time-division multiple
access (TDMA).

I. INTRODUCTION

THE development of high-density microelectronic neural
recording systems is becoming vital to study the com-

plicated dynamics of the human brain. For example, modern
research on brain–machine interfaces (BMIs) has succeeded
in decoding neural signals from the brain’s cerebral cortex
and has translated it into useful data for use in prosthetic
applications [1]. It is feasible to restore the movement of a limb
by recording from 10 000 neurons simultaneously, meanwhile
100 000 real-time neural recordings are predicted to be able
to restore movement of the entire body [2]. It is immensely
challenging to integrate this large number of channels on fully
integrated implantable system-on-chips (SoCs).

The main challenge in designing a high-density neural
implant (HDNI) system is the requirement of small channel
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Fig. 1. Implantable multi-channel neural recording system block dia-
gram with feedback-based offset removal. (a) Conventional in-pixel solution.
(b) Shared-hardware multiple access solution.

area, since area tends to trade off with other important parame-
ters such as noise, power, and offset blocking capabilities [3].
For example, neural local field potential (LFP) signal contents
of (1–300 Hz) lie in the flicker noise band, while thermal noise
affects the neural action potential (AP) signal of frequencies
(0.3–10 kHz) [4]. The flicker noise issue is traditionally
resolved by employing a large-area input differential pair
amplifier [5] or by using chopper-stabilized instrumentation
amplifier (IA), the latter of which requires a wide-bandwidth
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(BW) amplifier and, importantly, additional feedback loops to
cancel up-converted electrode offsets and chopper ripples; both
approaches require non-zero additional area [6], [7]. On the
other hand, the thermal noise issue is solved by increasing the
transconductance of the input differential pair of the neural
amplifier, which requires high power consumption and/or large
area utilization [5]. According to [8], the analog front-end
(AFE) module is still far behind in terms of development in
the pursuit of creating a true HDNI system.

Fig. 1 illustrates the overall concept of a batteryless neural
recording system, powered wirelessly from outside the skull
by using coils as demonstrated in [3]. The multiplexed digital
signals are transmitted outside the brain by an integrated
antenna and then demultiplexed on the receiver side outside
the brain as implemented in [8].

Fig. 1(a) shows a typical neural recording system, where
each electrode has its own dedicated analog interface. Each
pixel consists of a neural amplifier and a digital to analog
converter (DAC) in feedback to remove: 1) electrode offset
voltage (EOV); 2) amplifier input-referred offset; and 3) other
undesired signals such as motion or stimulation artifacts if
present. Dynamic electrochemical reactions at the interface
of the neural electrodes and tissue cause an EOV between
electrodes and the analog interface that can reach magnitudes
of approximately ±50 mV [4], [6], [9], [10]. In addition, if an
amplifier is used in an open-loop configuration to save area
by eliminating passive feedback components, an input-referred
offset caused by process mismatch can reach a few millivolts.
Such high offsets can easily saturate high-gain differential
neural amplifiers. While ac coupling capacitors can potentially
block EOVs, they do not help when choppers are placed before
the coupling capacitors. On the other hand, chopping after the
coupling capacitors forms a switched-capacitor (SC) parasitic
resistor with the input devices parasitic capacitors. When input
referred, the SC parasitic resistance noise is seen to have
a 1/ f 2 shape, which requires physically large capacitors to
attenuate it [11].

To tackle the issue of EOV in IAs, a dc-servo loop with
a low corner frequency (<1 Hz) is usually used [6], [7], [9],
[12]. Other approaches such as [13] use a track and zoom
analog to digital converter (ADC) to remove the dc-offsets,
or in [14] and [15], a voltage-controlled oscillator (VCO)-
based and successive approximation register (SAR) ADC
with digital feedback loop are used for dc-offset removal,
respectively. Unfortunately, the addition of analog or digital
servo loops requires a non-trivial overhead to the system. The
delta modulation presented in [16] and [17] offer a solution
to remove the EOV, though as will be discussed shortly,
hardware sharing to reduce per-channel area is not easily
possible with this technique. As a result, the traditional in-pixel
solution with EOV cancellation mechanism typically occupies
large channel area (∼0.01 mm2) and consumes high power
(∼3–5 μW) due to the use of a dedicated amplifier and DAC
for every channel [4], [14].

On the other hand, Fig. 1(b) shows a solution which
shares the analog interface among multiple electrodes. Done
correctly, this hardware sharing approach can reduce the
per-channel area, making it a promising candidate to solve

the AFE bottleneck described in [8]. For example, a time-
division multiple access (TDMA) method has been recently
used in [18] and [19], resulting in per-channel areas of (0.004,
0.0023 mm2), respectively. However, multiple coarse and fine-
tuning DACs, memory modules, off-chip digital filters, binary-
search algorithms, and processors are used in the system to
restore the distorted signal recorded by delta-encoded method,
which would ultimately occupy significant area in a final
implemented solution. Unfortunately, in a TDMA system,
the EOV removal becomes challenging since, assuming ran-
dom EOV for every channel, the input multiplexed signal
to the AFE translates the slowly varying EOV into a higher
frequency component that is equal to the multiplexer sampling
speed. This forces all channel multiplexed EOV to pass
through the AFE input with full amplitude even if an ac-
capacitor or a regular dc-servo loop is used. Accordingly,
the multiplexed EOVs saturate the AFE.

Importantly, it should be noted that EOV behavior is not
constant: EOVs tend to have some low-frequency content from
dc to 0.2 Hz [20]. As a result, static dc-cancellation approaches
as in [4] and [18] are not robust in real-world conditions
unless the digital cancellation calibration routine is rerun in
the foreground periodically. In addition, in case of using a
binary-search algorithm to remove the slowly varying EOV,
the cutoff frequency between LFP and AP becomes unknown,
and the offset is removed abruptly, which can lead to distortion
in the acquired neural signal.

This article presents a TDMA-based least mean square
(LMS)-optimized neural recording AFE which offers contin-
uous EOV tracking and cancellation, all without requiring
large transistors or capacitive feedback. The developed system
is mostly digital and highly scalable with CMOS process
technology, which paves a pathway toward implementing high-
density channel systems. This article is organized as follows:
in Section II, a study on which multiplexing technique is the
best for neural recording systems is presented. In Section III,
the EOV cancellation technique with adaptive filter (AF)
is explained. In Section IV, the overall proposed neural
recording system is illustrated. The system circuit topologies
are introduced in Section IV. Finally, Sections VI and VII
present the measurement results and conclusions of this article,
respectively.

II. STUDY OF DIFFERENT MULTIPLE ACCESS TECHNIQUES

There are various channel access schemes in telecommuni-
cation and computer network that allows transmission medium
sharing or, in this case, IA and ADC sharing. The applicable
ones in neural recording systems are frequency division mul-
tiple access (FDMA), code division multiple access (CDMA),
and TDMA.

A. Frequency Division Multiple Access

Fig. 2(a) shows a typical N-channels FDMA system block
diagram. Each signal is up modulated to a different carrier
frequency and then combined at a summing node to share the
AFE. To retrieve the signals back, a dedicated tuned bandpass
filter (BPF) selects each channel band individually, and then
a demodulator recovers the signal.
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Fig. 2. (a) FDMA, (b) CDMA, and (c) TDMA system block diagrams
adapted to neural recording applications.

Such an approach has been used in distributed electroen-
cephalogram (EEG) systems [21] to share the ADC among
all recording channels, and in implanted neural recording
systems [22] to share the RF module. Since on-chip EOV
cancellation is required to avoid the saturation of the IA,
sharing the IA and ADC by using FDMA requires on-chip
demodulation to filter out the EOV from each channel and
cancel it from the IA input. An FDMA on-chip demodulation
typically requires analog/mixed-signal (AMS) circuitry like a
frequency-locked loop (FLL), modulators, and demodulators.
This overhead in terms of power and area is usually high in
this approach which defeats the purpose toward HDNI appli-
cations. Cutting down the area and power of peripheral circuits
to make FDMA competitive is an active area of research.

B. Code Division Multiple Access

Fig. 2(b) shows an N-channel CDMA-based neural record-
ing system block diagram, where neural signals are coded
with a set of perfect orthogonal codes like Walsh–Hadamard
(C j). Conveniently, the code is digital-like and can be fed to
a chopper.

Unfortunately, utilizing CDMA for analog interfaces suffers
from two main problems. The first problem is the inability
to use the coding choppers to reduce the amplifier flicker
noise. This is because an analog low-pass filter (LPF) after
each decoded channel is normally essential to attenuate the
up-modulated flicker noise and offset of the amplifier prior to

digitization by the ADC. Accordingly, demodulation needs to
be on the analog side instead of the digital side which adds
undesired area per channel.

The second problem with CDMA is using a digital-like
coding scheme in an AMS system. CDMA expects a constant
input during the entire code length period to cancel crosstalk
completely. However, when CDMA-chips code an analog
waveform that is slightly changing over time during the code
period, it results in slight delta errors each time the coded
signal is sampled. Table I illustrates the issue mathematically
with an (N = 4) channels example. H4 Hadamard codes
are used to code the analog input amplitudes {a, b , c, and
d} at instance T0; then, at T1→3, all �V in, j , where j is the
time index,. errors start accumulating on the summing node
of the CDMA-TX. An ideal CDMA system is achieved if all
�V in, j are set to zero. On the CDMA-RX side, the received
summation already includes the �V in, j errors; hence, the
integrate and dump from T0→3 result N-times the signal power
plus a total error sum of δi , where i is the channel index.
Simulation results of a 16-channels system with neural signals
of a few 100 mV at 10-kHz BW show that the input referred
noise (IRN) can be as high as 30 μVrms. To avoid this issue,
a sample-and-hold at the input of the AFE is required as
proposed in [23], which due to kT/C noise reasons, requires
an increased per-channel area.

For these reasons, CDMA encoding suffers from difficult
issues and thus remains an active area of research as well.

C. Time-Division Multiple Access

It should be clear now that FDMA and CDMA require
significant overhead in either the analog or digital domains
to be used in HDNI systems. On the other hand, Fig. 2(c)
shows a TDMA system block diagram which requires very
minimal overhead: 1) AFE multiplexer can have a simple
equivalent digital demultiplexer in the back end to recover
the input neural signals [18]; 2) single neural amplifier of BW
(2 × fs × N), where fs is the neural signal BW, is sufficient
to amplify the multiplexed neural signals; and 3) Nyquist
ADC with a sampling rate similar to the neural amplifier
BW. For these reasons, TDMA enables a potentially very
compact overall implementation which is an excellent fit for
HDNI applications. However, since each electrode can have a
different (time-varying) offset voltage, careful design attention
is required to keep a TDMA system from saturating the front
end in a small area, even when ac coupling capacitors are
employed.

III. EOV CANCELLATION

The removal of EOV for a multiple access system can be
tricky. Since each channel has its own isolated random time-
varying EOV, depending on the multiple access scheme used,
the EOV at the amplifier input can change. For example,
in FDMA and CDMA, the systems depend on adding the
modulated channels on a single summing node, as shown
in Fig. 2(a) and (b); hence, the total EOV get multiplied
by sqrt(N) at the input of the neural amplifier. In con-
trast, in TDMA systems, each channel has its own isolated

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on December 24,2021 at 04:12:00 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE I

CDMA EXAMPLE OF AMS SYSTEM WITH (N = 4)

time-varying EOV which, given a perfect back end, can be
individually canceled at each measurement iteration.

A. Single-Channel Versus Multi-Access EOV Cancellation

Fig. 3(a) shows an example of a digital servo-loop applied to
a dc-coupled neural recording system block diagram. Solutions
like Sharma et al. [18] use a binary-search algorithm to
remove EOV; this approach does not guarantee the complete
continuous removal of the slowly varying EOV, rather it
considers the offset as a static voltage which is not always
guaranteed.

Other solutions like Muller et al. [4] use a mix of an IIR-
filter and binary-search algorithm for partial dynamic EOV
removal as demonstrated in Fig. 3(b). Coarse and fine extrac-
tion of EOV and neural LFP signals are performed by using a
binary-search algorithm and LPF, respectively. However, this
approach is problematic when an on-chip IIR-LPF is used with
a known cutoff frequency (usually ∼300 Hz), and the gain of
the filter passband region must be exactly equal to 1/(AV×
GADC × GDAC) which is difficult due to process variation
that affects the gain of each stage causing incomplete offset
cancellation. On the other hand, if the LPF is implemented
as an integrator, the loop gain might get very large and
cause instability to the overall system; therefore, an attenuation
factor should be added to the loop to maintain stability. If the
attenuation factor is too small, the loop might not track the
slowly varying EOV and hence, cause the amplifier to saturate.
This factor can be manually adjusted after fabrication since
the loop gain is prone to change due to process variations.
Accordingly, Muller et al. [4] designed the system to have an
off-chip IIR filter and a binary-search algorithm to manually
control the filter coefficient to reach optimum performance
in terms of EOV cancellation and cutoff frequency accuracy.
The transfer function of the LPF is very tricky to design for
a single-channel system, as explained in [4], because the gain
coefficient of the LPF controls two coupled parameters: 1) loop
stability and 2) loop filter poles location. The stability becomes
increasingly difficult if the ADC and DAC introduced delays
higher than one unit delay [4].

Fig. 3(c) shows the proposed work approach, which is an
extension of the work in [4], but with a multi-access technique
and simultaneous EOV cancellation across all channels. The
system uses an analog multiplexer to multiplex all channels
into a single neural amplifier and ADC with gain (GADC). The
feedback loop consists of N-LPFs, an AF with gain (GAF) that
will be addressed shortly in Section III-B, and a DAC with
gain (GDAC).

Since every channel is connected to an electrode with
a random EOV value, the TDMA system multiplexes all
channel offsets together onto a single wire, which creates a
high-frequency EOV artifact that can easily saturate an ampli-
fier. Whether the neural amplifier is ac- or dc-coupled, this
multiplexed EOV artifact can pass in full magnitude directly
to the neural amplifier. Accordingly, a dedicated system must
be added to cancel this artifact at the neural amplifier input
nodes in a per-channel, time-multiplexed manner.

In this work, a DSP module is modeled carefully to remove
the EOV artifact signal. The proposed system in Fig. 3(c)
assumes that the ADC adds a unit delay (z−1), and the DAC
adds no delay. Since TDMA is used, the cancellation of the
EOV requires an additional (N − 1) delay units to be inserted
into the loop; this is to align each EOV sample to be subtracted
from its corresponding channel in the analog domain. The N-
delay units do not affect the cancellation functionality of the
system because the ADC and digital are operating at a much
higher frequency (2 × fs × N) compared with the EOV
frequency; hence, the slowly varying EOV is seen virtually
constant with N-digital delay cycles.

Unfortunately, in a multi-channel TDMA solution, the addi-
tional N-delay cycles disturb the stability of the loop. To make
the loop stable, GAF should be selected to be very small,
taking into account the loop gain changes of the amplifier,
ADC, and DAC due to process variations. This approach is
difficult since an arbitrary small value of GAF will cause the
loop response to be slower than the change of the EOV, which
will lead to amplifier saturation. The addition of an AF solves
the issue because GAF starts from the largest possible gain
value, in which the loop is in saturation, and then starts to
decrease automatically until it locks to the largest possible

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on December 24,2021 at 04:12:00 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FATHY et al.: DIGITALLY ASSISTED MULTIPLEXED NEURAL RECORDING SYSTEM 5

Fig. 3. (a) Neural recording system block diagram with digital servo-loop
for EOV cancellation. (b) Advanced single-channel recording system with
LPF and binary-search algorithm for EOV cancellation. (c) Proposed TDMA
system with EOV cancellation. (d) Transient signal demonstration of several
nodes for the proposed TDMA system with N = 4.

value that guarantees cancellation of the EOV. This technique
ensures loop stability and high conversion speed.

Fig. 3(d) shows an example of the transient signals of the
proposed system with N = 4. Neural signals, VIN, for each
channel are multiplexed in the time domain at VMUX, where
the aggregated signal is then amplified and digitized, and then
demultiplexed for low-pass filtering at the VLFP node, which
results in a sum of LFP and EOV signals. Finally, the low-
frequency signals are multiplexed one more time and converted
into the analog domain for subtraction of EOV at the node
VMLFP. The transient signals at VMLFP confirm that the sum of
EOV and LFP signals is almost static after N-delays.

B. Adaptive Filter Architecture

An LMS algorithm is often used to cancel interference in
various systems. For example, the system in [24] uses two

Fig. 4. (a) Initial block diagram to remove electrode offset. (b) Proposed
solutions to solve introduced problems of topology (a). (c) Simulation results
of LMS-error with and without the proposed solutions of the system in (b).
(d) Overall IIR-LMS AF block diagram.

LMS AFs to remove stimulation artifacts from the recorded
neural signal. Fig. 4(a) shows the equivalent block diagram
of the first AMS loop of the system presented in [24]; the
neural signal with dc offset is amplified, then digitized, and
finally applied to an LPF to extract dc offset. A standard LMS
adaptive algorithm calculates an output y[n] based on the input
signal u[n] and the error signal e[n]. The LMS algorithm
is set to an interference-canceling mode by feeding e[n]
being the difference between a desired signal d[n], resulting
from the ADC, and the output signal y[n]. Accordingly, the
interference-canceling algorithm follows

w[n + 1] = w[n] + μu[n](d[n] − y[n]) (1)

where w[n] is the estimated AF weight. The undesired EOV
signal u[n] is generated by applying an LPF to the neural
amplifier output, while μ is a constant set by the designer
which controls speed and accuracy of the AF.
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The system in [24] added an extra digital LMS loop to
the configuration of Fig. 4(a) for complete artifact signal
cancellation. The addition of the extra loop is necessary due to
a fundamental issue with this configuration that arises when
a differential amplifier is used in feedback with an artifact
canceling LMS loop. In other words, the LMS interference-
canceling algorithm in Fig. 4(a) is changed due to the added
feedback from node y[n] to node d[n] and, hence, the algo-
rithm can no longer perform its intended role. This change
introduces two problems: the first problem is that node d[n]
gets converted into an error node e[n] when the algorithm runs
for some time. This occurs because the error node is defined
as e[n] = d[n] −y[n] which is natively forced in topology
of Fig. 4(a) as the amplifier performs continuous subtraction.
The second problem is that the offset at the output of the
amplifier will disappear over time since it is subtracted from
the input of the neural amplifier, so the LPF will produce zero
output at some point in time; this will force node u[n] to be
zero, which disturbs the stability of the filter and causes an
incorrect interference cancellation mechanism.

Fig. 4(b) shows the proposed solutions for the problems of
topology of Fig. 4(a). Since the output signal of the AF, y[n],
carries the EOV value, it can be added to both nodes u[n] and
d[n] to cancel the subtraction effect of the neural amplifier.
Fig. 4(c) compares the LMS error across multiple algorithm
iterations for the method in Fig. 4(a) and the proposed method
in Fig. 4(b). Here, it can be seen that the LMS algorithm as
applied in Fig. 4(b) can reach its full accuracy and conversion
speed capability when deployed with a differential amplifier
by using the proposed feedback.

The overall proposed LMS AF block diagram is shown
in Fig. 4(d). An additional unit-delay block is inserted after
the node y[n] for signal timing flow consistency of the LMS
loop in a TDMA system. Finally, saturation blocks are inserted
at the input of the nodes u[n] and d[n] to avoid algorithm
overflow at system startup which helps with LMS conversion
and locking to the correct w[n] value.

IV. PROPOSED NEURAL RECORDING SYSTEM

Fig. 5 shows a block-level diagram of the proposed neural
recording system. The system is composed of a high-density
neural pixel (HDNP), a highspeed digital MUX, and an RF
module with integrated antenna. This work focuses on the
design of the HDNP only, and the rest will be considered as
future work. Each HDNP block consists of 16 fully differential
input recording channels: a 16:1 analog multiplexer combines
the neural signals onto an ac-coupled fully differential neural
amplifier which is biased by pseudo resistors, Rp. A 10-bit
SAR ADC digitizes each code and passes it to the on-chip
DSP module for EOV estimation. Then, the DSP passes
the continuously updated estimates to a 10-bit capacitive
DAC (CDAC) which performs electrode EOV cancellation
in the current domain. The neural amplifier is left in an
open-loop configuration to eliminate any feedback passive
devices that may increase the area. The gain and BW, however,
are adjustable and can be optionally controlled by the digital
module to overcome process variations if needed.

A. HDNP Analog Module

The neural amplifier is ac-coupled after the multiplexer for
two main reasons: 1) to properly bias the neural amplifier
without recourse to EOVs and 2) to convert the input voltage
into the current domain for EOV subtraction. If the amplifier
were dc-coupled, then Rp must be much less than the electrode
resistive impedance to correctly bias the amplifier. However,
the lower Rp gets, the higher the signal losses become due
to the potential division between the electrodes and the
amplifier input impedance. On the other hand, if the capac-
itors are increased, the input signal will be less attenuated,
but this trades off with the analog module area which will
increase. In addition, it attenuates the CDAC canceling signal
which sees a potential divider between the DAC capacitors,
the amplifier input device parasitic capacitance, and the ac-
coupling capacitance. This limits the magnitude of the offset
cancellation signal to ±65 mV if the CDAC is supplied by
1.2 V.

Since the DAC needs to cover the full dynamic range
of both the EOV and the small neural signal, the effective
number of bits (ENOB) requirement is relatively high at
15-bit. Therefore, the CDAC is implemented as a second-order
��-Modulator, designed as an error-feedback noise-shaping
loop [25], to reduce the DAC’s actual bit-width from 15 to
10 bit. Although the ��-Modulator requires additional power,
the reduced bit-width offers more savings in terms of DAC
area and eases the matching requirement of unit DAC ele-
ments. The second-order ��-Modulator has an oversampling
ratio of 32; this makes the highest digital clock required to
operate the system to be 10.24 MHz.

Finally, the open-loop amplifier saves area by eliminating
the need for passive component feedback and instead running
open loop; however, the offset caused by the mismatch of
the amplifier input differential pairs can easily cause satura-
tion. Fortunately, the proposed digital algorithm can natively
recover from the amplifier input-referred offset.

The drawback of this open-loop configuration is the inability
of using choppers to further decrease noise. If choppers were
used, the amplifier offset would be up modulated, causing the
amplifier to saturate, and the digital algorithm would not be
able to recover the neural signal in that case. Instead, the only
ways to reduce flicker noise in the proposed approach are:
1) use a separate feedback LMS loop that deals with chopped
offset signals and 2) increase the devices sizes, but this solution
increases the input parasitic capacitance, hence, lowering DAC
cancellation capabilities. The latter solution is used in the
proposed system as it requires less on-chip area and is still
amortized across all of the channels.

The input impedance of the HDNI AFE system should be
designed to be much higher than the electrode impedance
to avoid signal attenuation, due to potential division, at the
system input interface. Since the implantable electrode sizes
are expected to be very small as the number of record-
ing channels increase, the electrode impedance is expected
to increase as well. This poses a design challenge on the
overall AFE. Fig. 6 compares input impedance simulation
results of a chopper-based AFE versus a different number
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Fig. 5. Overall block diagram of the proposed system where a 16-channel TDMA signal acquisition and a DSP block for EOV removal are implemented.

Fig. 6. (a) Chopped-based input AFE. (b) TDMA-based input AFE.
(c) Lowest average input impedance magnitude for a chopper-based AFE
versus TDMA-based AFE with CIN = 2 pF and fS = 20 kHz at different
number of multiplexed channels.

of TDMA-based AFEs. For a fair comparison, assuming that
the differential voltage applied on CIN capacitors changes
from rail-to-rail at each cycle in chopper-based AFE shown
in Fig. 6(a), and at each channel selection change in the
TDMA-based AFE shown in Fig. 6(b), this ensures the lowest
input impedance possible for both systems. In a chopper-based
AFE, the charge supplied within a one clock period (1/ fS)
is (Q = 2CINVIN), which gives an average input current of
IIN,Avg = Q/TS. Accordingly, the average differential input
impedance at relatively low frequencies can be expressed as
(Z IN = VIN/IIN,Avg = 1/2 fSCIN). On the other hand, the
charge supplied to any selected channel in the TDMA-based

system in a single period of the clock ( fS) is half the value of
the chopper-based AFE. Accordingly, the lowest differential
input impedance for a TDMA-based system at relatively low
frequencies can be expressed as Z IN = 1/ fsCIN. Since the
change in voltage between any two consecutive channels
in TDMA-based AFE is random, the input impedance can
be higher than the given expression. Recent development
of implantable micro-electrocorticography (μECoG) in [26]
shows that the impedance of a 100-μm-diameter coated carbon
nanotube (CNT) is 100 k�. This gives the TDMA-based
systems input impedance a promising compatibility of high-
density implantable electrodes.

B. HDNP DSP Module

The DSP module consists of a digital controller which
regulates the channel selection of the analog MUX and digital
MUX–DEMUX. In addition, it samples the LMS filter weight
and switches off the digital multiplier M1, shown in Fig. 4(d),
to save power in case the filter weight remains within a
programable range of ±2 digits for 10 s.

For EOV cancellation, the digitized neural signal gets
demultiplexed first and passes through a digital LPF for each
channel separately. The LPF architecture used in this work
is a delay-free digital integrator. Both the EOV and LFP get
extracted and then the signals get multiplexed again to form
a reference signal for the LMS algorithm. The interference-
canceling LMS-AF senses the raw neural signals from the
ADC and EOV/LFP reference signal and computes the exact
EOV/LFP voltage level to be removed from the neural ampli-
fier input summing node.

The LMS algorithm in the digital module has μ value set
to 2−34; this value is considered a good balance in terms of
speed and offset removal accuracy for the overall system.

V. CIRCUIT IMPLEMENTATION

To achieve the lowest noise and area from the AFE,
the employed circuit topology should be carefully consid-
ered. The analog multiplexer consists of thick-oxide NMOS
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Fig. 7. (a) Designed neural amplifier circuit topology. (b) Charge-
redistribution topology used in the DAC and ADC. (c) SAR ADC block
diagram.

switches of size 6 × 0.28 μm2 with a corresponding typ-
ical resistance of 320 � and IRN of 0.3 μVrms. With
small switch size and thick-oxide, the charge injection and
clock feedthrough are not significant given the 2-pF input
ac-coupling capacitance and typical electrode double-layer
capacitance of (∼1 nF).

Fig. 7(a) shows the designed neural amplifier; it consists of
a two-stage complimentary-input amplifier since it provides a
low noise and high gain-BW (GBW) product compared with
non-complimentary and telescopic-cascode amplifiers [27].
The overall approximate mid-band gain is given by

Avd ≈ (
gmMn1 + gmMp1

)(
roMn1

∥
∥roMp1

)

×(
gmMn2 + gmMp2

)(
roMn2

∥
∥roMp2

∥
∥Ri

)

whereas the approximate BW is 1/2π Ri Ci .
The PMOS current tails are divided into bleeders to avoid

latching at startup. The common mode feedback (CMFB)
current sources are fed by pseudo-resistors directly without
a CMFB amplifier. This topology reduces the loop gain of the

CMFB which increases stability in the open-loop configuration
in addition to saving area and power. The second stage
has an optional bank of Miller-capacitors and resistors to
linearly adjust the GBW of the amplifier using 3-bit digital
controllers each if needed. The total capacitance is 280 fF
on each differential output, resulting in BW variation from
210 to 830 kHz when operating with the 40-dB gain setting.
This range was chosen to cover any process variations after
fabrication such that the exact desired BW would be set to
320 kHz. The resistive bank varies the amplifier gain linearly
from 35 to 52 dB with a 3-bit controller. However, for a 10-bit
accuracy requirement, the dynamic settling error (ε) must be
≤0.1%; this requires the amplifier BW to be set to a one-step
higher BW setting (397 kHz) to ensure accuracy. The practical
amplifier BW is given by fBW ≥ − fs ln(ε)/2π ≈ 1.1 fs [28].

To save more power and energy, the segmented charge-
redistribution circuit topology shown in Fig. 7(b) is used in
both the DAC and the ADC with slight differences between
the two. It is built out of metal parasitic capacitance as
demonstrated in [15]. The DAC unit capacitors Cα +Cβ equal
8.2 fF in all combinations. C1α and C1β are 4 and 4.2 fF,
while C2α and C2β are 3.9 and 4.3 fF, respectively. The first
five LSB differential capacitor blocks (B0 → B4) are binary
weighted. The remaining 5-MSBs (B5–B9) are thermometer
weighted, with C5α and C5β set to 0.9 and 7.3 fF, respectively.
Each capacitor block is controlled by a differential binary
input BN and BB on its bottom plate; hence, the effective
unit capacitance is 0.2 fF.

Fig. 7(c) shows a conventional 10-bit asynchronous SAR
ADC algorithm used in the system [29]. Unlike the DAC
capacitor-bank topology, the SAR ADC uses nine capacitance
blocks only instead of ten blocks.

With the DAC having 8.2 fF × 36 total equivalent capac-
itance (CDAC), CMOS input parasitic capacitance (CINP)
of 0.25 pF, and 2-pF ac coupling capacitors (Cac), the neural
and DAC signals get attenuated by


Neural Signal = Cac

Cac + CINP + CDAC
(2)


DAC = CDAC

Cac + CINP + CDAC
(3)

which result in 
Neural Signal = 0.78 and 
DAC = 0.11.
Assuming a VDD of 1.2 V, the maximum DAC cancellation
capability reaches ±69.5 mV. Monte Carlo simulation results
show that the input-referred offset can be as high as 4.5 mV,
this gives an EOV cancellation margin of ±65 mV which
is sufficient to prevent the neural amplifier saturation from
common electrode types.

VI. MEASUREMENT RESULTS

The proposed neural recording system IC was fabricated
in 65-nm 1p9m low-power (LP) CMOS technology. Fig. 8
shows a microphotograph of the fabricated IC; the total area of
the 16 channels is 0.0397 mm2, including all analog and digital
blocks. The analog module consumes 13.8 μA/16 Ch from a
1.2-V supply, while the digital module uses 37.5 μA/16 Ch
from a 1-V supply. The entire IC power consumption is
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Fig. 8. Proposed system IC chip microphotograph.

Fig. 9. IC power and area breakdown for 16 channels.

54.06 μW for all 16 channels; Fig. 9 summarizes the power
and area breakdown for each module.

The measured input impedance Z IN at 100 Hz is 28 M�,
which is very close to the expected worst case input
impedance. The lowest measured common mode rejection
ratio (CMRR) and power supply rejection ratio (PSRR) are
66 and 79 dB, respectively. This is measured while injecting
±50 mV slowly varying offsets to all channels and observing
CH6 and CH14 for the ripple amplitude. Fig. 10 shows the
power spectral density (PSD) of the ADC sampled at 320 kHz
with a direct injected signal of 400 mVPP at 47.969 kHz by a
Stanford Research System (SRS) DS360 function generator.
For the standalone ADC, the measured SNR is 50.79 dB
and signal-to-noise and distortion ratio (SNDR) is 50.16 dB

Fig. 10. ADC PSD with a sinusoid full-scale input signal.

Fig. 11. ADC DNL and INL measurements.

Fig. 12. Normalized magnitude plot of the closed-loop system AP and LFP
paths for 16 channels.

resulting in ENOB of 8.04 bits. The ADC third harmonic dis-
tortion (THD) is 0.146%. Fig. 11 shows the measured integral
non-linearity (INL) and differential non-linearity (DNL); some
codes cross ±0.5 LSB due to mismatches of the small-area
nature of the overall parasitic capacitors DAC of the ADC.
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Fig. 13. PSD measurements of all 16 channels with different sinusoid input signals (blue curve: LFP band, black curve: AP “spike” band). Test signals
are injected in all channels of amplitude AS and frequency fS, in addition to EOV signal of amplitude AE and frequency fE (Aα = 1 mV, AE = 10 mV,
fα = 200 Hz, fE = 0.1 Hz).

This could be improved in a future version of the chip. The
overall system of measured SNR with ±50 mV injected EOV
is 46.96 dB, and SNDR is 46.29 dB, resulting in ENOB of
7.4 bits.

The measured closed-loop transfer function of AP and LFP
for all 16 channels is shown in Fig. 12. Measurements of five
different dies show that the neural amplifier mid-band gain
mean value is 40 dB with a standard deviation of 4.12 dB
and BW mean of 397 kHz with 194.1 Hz standard deviation,
respectively. The neural amplifier statistical analysis is mea-
sured from a debugging buffer, shown in Fig. 8, connected
to the output of the neural amplifier to avoid additional pads
loading effect.

Fig. 13 shows the PSD of all 16-channels simultaneously;
channels 1 → 8 are injected with an ACCES USB-DA12-
8A-PR arbitrary waveform generator. Each channel is injected
with a different amplitude, frequency, and slowly varying EOV.
Channels 1 → 7 are wired off-chip to channels 9 → 15 due
to limitation of laboratory devices. Channel 16 is connected
to the SRS-DS360 function generator. Channels 6 and 14 are
injected with slowly varying EOV and zero neural-band signals
to measure IRN; both channels had a maximum IRN of
2.1 μVrms. In another trial with all channels injected with
EOV only, the maximum measured IRN is 2.6 μVrms. The
worst case measured EOV rejection is 53 dB. Fig. 14 shows
the system test bench setup and a simplified schematic
view. The neural signals pass through an emulated electrode
impedance of 100 k�. With 28-M� AFE input impedance,
the signals are not affected much.

Table II summarizes the achieved results and compares
them with the state-of-the-art neural recording systems. The

Fig. 14. Proposed system test bench setup.

proposed technique has the advantage of scalability with node
advancement compared with other techniques which could
easily bring the channel area to below 0.001 mm2 in a more
scaled CMOS process.

VII. CONCLUSION

A multi-channel TDMA neural recording system with an
LMS filter that continuously detects and removes EOV is
proposed in this article. The proposed LMS-topology, with
modified feedback, enables the use of an LMS algorithm with
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TABLE II

PERFORMANCE SUMMARY OF DIFFERENT NEURAL RECORDING ARCHITECTURES

a differential amplifier in the AMS loop while maintaining its
full cancellation capabilities in terms of speed and accuracy.
Fabricated in 65-nm technology, this technique enables a
reduction in the per-channel area compared with other recent
approaches while maintaining LP and low-noise capabilities.
The proposed system power consumption is 3.38 μW/Ch, and
the IRN is 2.6 μVrms, which gives an noise efficiency factor
(NEF) of 1.83. The overall per-channel area is 0.00248 mm2,
of which 68% is digital area which is highly scalable with
node technology.
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