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Abstract

Background: Tenofovir alafenamide (TAF) is a key component of HIV treatment, but 

pharmacokinetic data supporting the use of TAF during pregnancy are limited. Here, we report 

pharmacokinetic, safety, and birth outcomes with TAF 25 mg with a boosted protease inhibitor 

(PI) in pregnant women living with HIV (PWLH).

Methods: IMPAACT P1026s was a multicenter, nonrandomized, open-label, phase IV 

prospective study. PWLH receiving TAF 25 mg with a boosted PI were eligible. Intensive 

pharmacokinetic assessments were performed during the second and third trimesters and 6–12 

weeks postpartum. Maternal and cord blood samples were collected at delivery. Infant washout 

samples were collected through 5–9 days post-birth. Comparisons of paired pharmacokinetic 

data between pregnancy and postpartum were made using geometric mean ratios (GMR) (90% 

confidence intervals [CIs]) and Wilcoxon signed-rank tests with p<0.10 considered significant.

Results: Twenty-nine women were enrolled from the United States (median age 31 years and 

weight 84.5 kg during the third trimester; 48% black, 45% Hispanic/Latina). TAF AUCtau did 

not significantly differ in the second (GMR 0.62 [90% CI 0.29, 1.34]; p=0.46) or third trimester 

(GMR 0.94 [90% CI 0.63, 1.39]; p=0.50) versus postpartum and were comparable to historical 

data in non-pregnant adults. TAF was only quantifiable in 2/25 maternal delivery samples and 

below the limit of quantification in all cord blood and infant washout samples, likely due to the 

short half-life of TAF.

Conclusion: TAF AUCtau did not significantly differ between pregnancy and postpartum. These 

findings provide reassurance as TAF use during pregnancy continues to expand.
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INTRODUCTION

Tenofovir is a key component of several recommended HIV regimens.1–5 Tenofovir is 

available as two different prodrugs: tenofovir disoproxil fumarate (TDF) and tenofovir 

alafenamide (TAF). Both prodrugs yield the same active moiety, tenofovir-diphosphate, 

within cells but the pharmacology and safety profiles of the two drugs differ markedly.6–10 

TDF is administered at a 300 mg dose in adults and adolescents with HIV.11 TAF dosing 

varies depending on the concomitant antiretroviral medications and region of use: in the 

United States, it is administered as either a 10 mg dose in cobicistat-containing fixed dose 

combinations12,13 or a 25 mg dose with all other antiretroviral combinations in adults,14 and 

in Europe, TAF is administered as a 10 mg dose with all cobicistat- or ritonavir-containing 

regimens and 25 mg without a pharmacoenhancer.15 TAF yields ~75–90% lower plasma 

tenofovir area under the concentration-time curve over the dosing interval (AUCtau) and ~2–

10-fold higher tenofovir-diphosphate concentrations in peripheral blood mononuclear cells 

(PBMCs).7,8,10 In recent years, patterns of clinical use have shifted towards TAF-containing 

regimens in the United States,16 and this will likely increase globally as access expands.3,17 

However, data supporting TAF use during pregnancy have lagged behind non-pregnant 

adults, with guidelines only recently conditionally recommending its use.1,5

One of the primary concerns with using antiretroviral drugs in pregnant women living with 

HIV (PWLH) is that drug exposures may differ and be too low to adequately suppress viral 

replication, leading to virologic failure and/or resistance in the PWLH and an increased 

risk of perinatal HIV transmission. The safety of newer medications in PWLH and infants 

are also critical to assess. We previously showed that TAF AUCtau did not significantly 

differ between pregnancy and postpartum when administered as a 10mg dose with cobicistat, 

but were higher postpartum in comparison to pregnancy when administered at a 25 mg 

dose without boosters.18 The PANNA network reported a similar magnitude of difference 

between pregnancy and postpartum with pooled pharmacokinetic results from these same 

dose combinations.19 TAF AUCtau during pregnancy and postpartum in both arms of the 

IMPAACT 1026s study were comparable or higher than historical AUCtau in non-pregnant 

adults.18 Separately, the International Maternal Pediatric Adolescent AIDS Clinical Trial 

Network (IMPAACT) 2010/VESTED study showed the combination of dolutegravir with 

TAF/emtricitabine was associated with lower rates of adverse pregnancy outcomes vs. TDF-

containing comparator regimens, and was also associated with higher rates of virologic 

suppression in comparison to efavirenz/TDF/emtricitabine.20 Collectively, these findings 

provide reassurance that plasma TAF AUCtau during pregnancy are likely adequate and that 

TAF-containing regimens will become additional safe and effective treatment options in 

PWLH.

Though available data for TAF 10 mg with cobicistat and TAF 25 mg without boosting 

suggests that TAF AUCtau is likely adequate in pregnancy,18,19 TAF is also licensed for 

administration at a 25 mg dose in combination with emtricitabine when given as a separate 

product along with a protease inhibitor (PI) boosted with either ritonavir or cobicistat in the 

United States. There are currently no pharmacokinetic data with this combination during 

pregnancy and postpartum. In non-pregnant adults, coadministration of 25 mg TAF and a 

boosted PI may increase plasma TAF exposure by up to 135% depending on the specific 
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concomitant booster and PI.14 Ritonavir-boosted atazanavir and darunavir are preferred 

PI regimens during pregnancy,5 thus it is critical to understand the pharmacokinetics of 

TAF 25 mg when co-administered with boosted PIs. The primary objective of this study 

was to characterize the pharmacokinetics (PK) of TAF when administered at a 25 mg 

dose in combination with boosted PIs during pregnancy and postpartum. Primary outcomes 

included comparisons of TAF pharmacokinetics between pregnancy and postpartum and to 

historical data in non-pregnant adults living with HIV. Secondary objectives were to examine 

transplacental TAF transfer and describe maternal and infant safety and clinical outcomes.

METHODS

Study Design

IMPAACT P1026s was a prospective, opportunistic, open-label, multi-center, multi-arm 

phase IV study of the pharmacokinetics and safety of antiretroviral medications prescribed 

as part of clinical care in PWLH (NCT00042289). The current study arm enrolled PWLH 

who were receiving TAF 25 mg with a boosted PI. The study team was not involved in 

initiating or altering the person’s prescribed regimens during the study. All participants 

provided written informed consent, and infants were enrolled in utero immediately after 

maternal enrollment. All study procedures were conducted in accordance with the ethical 

standards of the Declaration of Helsinki, as revised in 2000, and underwent review by ethical 

review boards at each institution where the study was being conducted and by the National 

Institute of Allergy and Infectious Disease Division of AIDS (DAIDS).

Eligible participants could enroll during the second trimester (20 0/7 to 26 6/7 weeks 

gestation) or the third trimester (30 0/7 to 37 6/7 weeks gestation). Participants underwent 

up to three PK assessments during the second trimester (if enrolled), third trimester, and 

6–12 weeks postpartum. Participants were required to be on TAF 25 mg and a PI combined 

with either ritonavir or cobicistat for at least two weeks prior to the first pharmacokinetic 

assessment and were expected to continue on the same combination through the postpartum 

pharmacokinetic assessment. Exclusion criteria for mothers included receipt of medications 

that interact with TAF, pregnancy with twin or higher order gestation, or clinical/laboratory 

abnormalities that would likely result in discontinuing the drug combination under study. 

Infants were eligible for washout pharmacokinetic assessments if they weighed at least 1000 

grams, were not on any medications that could interact with TAF and did not have medical 

conditions or severe congenital malformations incompatible with life or that could interfere 

with study participation.

Pharmacokinetic Sampling & Analysis

TAF plasma concentrations were quantified using LC/MS methods.18 The lower limit 

of quantification (LLOQ) was 3.9 ng/mL. Intensive pharmacokinetic assessments were 

performed during the second and/or third trimesters (depending on gestational age at 

enrollment), and 6–12 weeks postpartum. Plasma samples for all once-daily antiretroviral 

medications, including TAF, were collected at the following standardized times: 0, 1, 2, 4, 

6, 8, 12 and 24 hours post-dose. Maternal peripheral blood and cord blood samples were 

collected at delivery. Infant washout samples were collected at 2–10, 18–28, and 36–72 
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hours and 5–9 days after birth. PK parameters were calculated using posthoc Bayesian 

estimation methods in NONMEM as previously described.18

Statistical Analysis

Sample size estimates were based on a two-tiered approach of drug exposure comparisons 

against historical data in non-pregnant adults and within-subject comparisons between 

pregnancy and postpartum, as previously described.21,22 The target sample size was 25 

participants with evaluable PK data during the third trimester, with at least 12 participants 

with second trimester data. Real-time comparisons of TAF area under the concentration-time 

curve over the dosing interval (AUCtau) were made against a cutoff of 132 ng*h/mL 

based on historical data available at the time of study initiation on the 10th percentile in 

non-pregnant adults. Comparisons were also made to an AUCtau cutoff of 88 ng*h/mL, 

based on a recent 10th percentile estimate from phase III clinical trials.23 Within-subject 

comparisons of TAF PK parameters during the second or third trimester vs. postpartum were 

calculated using geometric mean ratios with 90% confidence intervals (CIs), and statistical 

comparisons were made using a two-tailed Wilcoxon signed-rank test with a two-sided 

p-value <0.10 considered statistically significant. Exploratory analyses to compare TAF 

AUCtau between individual boosted PI combinations (atazanavir/cobicistat or atazanavir/

ritonavir, darunavir/cobicistat, and darunavir/ritonavir) were also performed.

Safety Assessments

Maternal safety monitoring included clinical and safety laboratory assessments (HIV-1 

RNA, CD4+ lymphocyte cell count, hematology, and comprehensive metabolic panel) at 

each study visit. Physical examinations were performed for infants following birth, with 

laboratory assessments only performed if clinically indicated. Infant HIV infection status 

was assessed at multiple time points through the final visit at age 16–24 weeks. Clinical and 

laboratory adverse events (AEs) were graded according to the DAIDS Table for Grading the 

Severity of Adult and Pediatric AEs, Version 2.0 (November 2014) and were managed by 

the participant’s clinician. AE relatedness was assessed by both the study site investigator 

and study team.

RESULTS

Participant Demographics

A total of 29 participants were enrolled in the United States beginning in November 2016, 

with the last study visit occurring in February 2020. Demographics are summarized in 

Table 1. Participants were on TAF for a median (range) 17.4 (2.0–129.6) weeks prior 

to the second trimester PK assessment and 27.7 (5.0–141.6) weeks prior to the third 

trimester PK assessment. All participants received TAF in combination with emtricitabine. 

Concomitant boosted protease inhibitors included the following: atazanavir/cobicistat (2 in 

the second trimester, 4 in the third trimester, and 3 postpartum); atazanavir/ritonavir (1 

in the second trimester, 3 in the third trimester, and 4 postpartum); darunavir/cobicistat 

(5 in the second trimester, 12 in the third trimester, and 8 postpartum); and darunavir/

ritonavir (4 in the second trimester, 8 in the third trimester, and 7 postpartum). Other 

concomitant antiretroviral medications included abacavir (1 on atazanavir/ritonavir during 
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the third trimester and postpartum); dolutegravir (1 on darunavir/ritonavir during the third 

trimester and postpartum; 1 on darunavir/cobicistat postpartum); raltegravir (1 on darunavir/

ritonavir during the second and third trimesters and postpartum; 1 on darunavir/cobicistat 

during the third trimester); and zidovudine (1 on atazanavir/cobicistat in the second and third 

trimesters; 1 on darunavir/cobicistat in the third trimester).

Pharmacokinetic Results

TAF PK results were available in 12, 27, and 21 women during the second trimester, third 

trimester, and postpartum, respectively. Paired data for GMR comparisons were available 

in eight women between the second trimester and postpartum, and 20 women between the 

third trimester and postpartum. A total of seven women had results available from all three 

intensive PK assessments. TAF was eliminated rapidly after oral administration (Figure 

1a). No statistically significant differences in AUCtau, maximum plasma concentrations 

(Cmax), time to Cmax, apparent oral clearance, apparent volume of distribution, or half-life 

were identified between the second trimester and postpartum, or the third trimester and 

postpartum (Table 2). In comparison to the original AUC target of 132 ng*h/mL, 83.3%, 

88.9%, and 81.8% of participants exceeded this threshold during the second trimester, third 

trimester, and postpartum, respectively. In comparison to the AUC target of 88 ng*h/mL 

(10th percentile estimate from phase III studies in non-pregnant adults), 92%, 100%, and 

95% of participants exceeded this threshold (Figure 1b).

For the exploratory analyses comparing individual combinations of boosted protease 

inhibitors, the median TAF AUCtau was highest for participants who were co-administered 

atazanavir with cobicistat or ritonavir and were numerically similar across pregnancy 

and postpartum (Table 3). Median TAF AUCtau for darunavir/cobicistat were lower than 

darunavir/ritonavir during the second trimester, and higher than darunavir/ritonavir during 

the third trimester and postpartum. However, no pairwise comparisons were statistically 

significant, likely due to the small sample sizes and variability in TAF AUCtau across 

groups.

A total of 23 cord blood samples and 25 maternal delivery samples were collected. Paired 

samples were collected at a median (IQR) 10.4 (6.2–19.1) hours after the last maternal TAF 

dose. All cord blood samples were below the lower limit of quantification (BLQ) of 3.9 

ng/mL,18 and 23/25 maternal delivery samples were BLQ. The two quantifiable maternal 

samples were collected at 8.7 and 26.1 hours post-dose and had TAF concentrations of 5.31 

and 6.31 ng/mL, respectively. A total of 81 infant washout samples were collected following 

birth (19 between 2–10 hours, 22 between 18–28 hours, 21 between 36–72 hours, and 19 

between 5–9 days post-birth). All infant washout samples were BLQ.

Delivery Outcomes

Data related to delivery outcomes were available in 28 participants and 27 infants (Table 4). 

Of the original 29, there was one stillbirth at 29.6 weeks gestation and one woman withdrew 

consent for her infant in utero; these infants were not included in any summaries. Most 

participants were virologically suppressed at delivery, with 85.7% below 50 copies/mL and 

92.9% below 400 copies/mL. No confirmed perinatal HIV transmissions occurred.
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Safety Results

Ten participants experienced grade 3 or higher AEs. Grade 3 or higher AEs deemed not 

related to study treatment by the study site included: low hemoglobin (n=4), hyperkalemia 

(n=1), hypertension (n=1), elevated aspartate aminotransferase (AST) (n=1), placental 

dysfunction followed by stillbirth (n=1), elevated total bilirubin in a participant on 

atazanavir (n=1), and endometritis (n=1). Grade 3 or higher AEs with any relatedness 

to study treatment according to study site assessment included elevated total bilirubin 

in two different participants on atazanavir (both deemed definitely related to treatment), 

one preterm labor (deemed possibly related), and abdominal pain and preterm labor (both 

deemed probably not related). The P1026s team differed from site assessments for grade 

3 or higher AE relatedness as follows: one elevated bilirubin event was classified as non-

treatment-related and abdominal pain was deemed possibly treatment-related. Additional 

AEs that differed between study sites and the study team included one case of gestational 

diabetes (grade 2) that was assessed as not related to study treatment by the study site 

and possibly treatment-related by the study team; and one preterm labor (grade 1) deemed 

probably not related by the site and possibly treatment related by the team.

Five infants experienced grade 3 or higher AEs, none of which were deemed related to 

treatment. These grade 3 or higher AEs included hypoglycemia (n=2), respiratory distress 

(n=2), infant reflux (n=1), and hemolytic disease of the newborn with elevated total bilirubin 

(n=1). Both infants with grade 3 respiratory distress were born premature (grades 1 and 2). 

A third infant was born premature (grade 1) and both the site and P1026s team classified 

this as possibly treatment-related. There were two AEs with discrepancies between site 

and team classification: a grade 2 decreased hemoglobin classified as probably not related 

by the site and not related by the study team, and a grade 2 elevated AST classified by 

the site as possibly related and by the study team as not related. Four infants were born 

with abnormalities, which included a sacral dimple, microcephaly, and two infants with 

congenital dermal melanocytosis. All were deemed unrelated to treatment.

DISCUSSION

The pharmacokinetics of TAF 25 mg when co-administered with boosted PIs did not 

significantly differ between pregnancy and postpartum. All participants except one during 

the second trimester and one during the postpartum period exceeded the 10th percentile TAF 

AUCtau of 88 ng*h/mL from recent phase III studies. Exploratory analyses by concomitant 

PI did not reveal any statistically significant differences, though the atazanavir combinations 

yielded higher median TAF AUCtau measures than those measured with darunavir/cobicistat 

or darunavir/ritonavir. Nearly all maternal delivery samples, and all cord blood and 

washout samples were BLQ, precluding further assessment of TAF placental transfer and 

washout pharmacokinetics. These drug combinations were well-tolerated during pregnancy 

and postpartum. Most participants were suppressed throughout pregnancy, delivery, and 

postpartum, and no confirmed perinatal HIV transmissions occurred.

The TAF AUCtau in this study arm (TAF 25mg co-administered with boosted PIs) were 

comparable or higher than those we measured in the other P1026s TAF study arm,18 

though numerical differences were apparent depending on the timing of pharmacokinetic 
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assessments. During the second trimester, the median TAF AUCtau for TAF 25 mg with 

boosting was 181 ng*h/mL, which was comparable to what we measured previously in 

the TAF 10 mg with cobicistat study arm (median AUCtau 197 ng*h/mL) and the TAF 

25 mg without boosting arm (median AUCtau 171 ng*h/mL).18 During the third trimester, 

the median TAF AUCtau for TAF 25 mg with boosting was 257 ng*h/mL, which is higher 

than what we measured previously for both TAF 10 mg with cobicistat (median AUCtau 

206 ng*h/mL) and TAF 25 mg without boosting (median AUCtau 212 ng*h/mL).18 During 

the postpartum period, the median TAF AUCtau for TAF 25 mg with boosting was 283 

ng*h/mL, which was numerically higher than TAF 10 mg with boosting (median AUCtau 

216 ng*h/mL) and comparable to TAF 25 mg without boosting (median AUCtau 271 ng*h/

mL).18 Though some numerical differences are apparent between the P1026s study arms, 

it is unclear whether these differences are clinically meaningful. Furthermore, TAF AUCtau 

measures in this study were comparable or higher than those measured in non-pregnant 

adults,23 indicating plasma TAF exposures in pregnant women receiving a 25 mg dose with 

boosted PIs are likely adequate.

The differences in exposures between trimesters and the wider ranges of TAF exposures 

in comparison to the previous P1026s study arms18 is likely due in part to the use 

of a higher TAF dose in combination with boosted PIs. Boosted PIs have differential 

effects on TAF pharmacokinetics and a number of other medications, including but not 

limited to contraceptives, direct-acting antivirals, and anticoagulants,2 depending on the 

PI combination that is being administered. Atazanavir with cobicistat increases TAF 

AUCtau by 135% in non-pregnant adults14 due to inhibition of efflux transporters and 

potentially carboxylesterase 1, a key enzyme involved in TAF hydrolysis.24 Cobicistat 

alone can increase TAF AUCtau by 165% through inhibition of efflux transporters.14 

Darunavir/cobicistat and darunavir/ritonavir do not significantly change TAF AUCtau, but 

the latter combination can increase peak concentrations by 42%.14 Darunavir/ritonavir 

is administered twice daily during the third trimester of pregnancy,5 thus was analyzed 

separately from darunavir/cobicistat due to the potential for differential boosting effects of 

mixed P-glycoprotein induction/inhibition by darunavir25,26 and ritonavir27,28 in comparison 

to cobicistat.29 TAF AUCtau with boosted atazanavir were numerically higher than those 

measured with darunavir, which aligned with known effects these different PIs can have 

on TAF disposition. Interestingly, TAF AUCtau in those receiving darunavir/ritonavir across 

pregnancy and postpartum were closest to those receiving TAF 10 mg with cobicistat in the 

prior study, and the combination of darunavir/cobicistat yielded the lowest median AUCtau 

during the second trimester, though the sample size was very small and median estimates 

were comparable to those measured with darunavir/cobicistat/TAF 10 mg/emtricitabine in 

non-pregnant adults with HIV.26 The potential for differing TAF exposures by concomitant 

antiretroviral medications in pregnancy and subsequent relationships with efficacy, safety 

and birth outcomes should continue to be evaluated in longer-term, large scale clinical 

studies.

Atazanavir,30 darunavir31, elvitegravir,32 and cobicistat30–32 exposures are all significantly 

decreased during pregnancy due to increased CYP3A4 expression in the gut and 

liver.21,30,32–34 These collective findings along with lack of safety data led to the 

recommendation to avoid the use of cobicistat-containing regimens during pregnancy5,35 
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due to concerns over subtherapeutic exposures and higher risk of virologic breakthroughs. 

Despite these findings, TAF AUCtau in this study arm were similar to historical data and 

unchanged between pregnancy and postpartum. TAF only has a minor component of CYP3A 

metabolism (<10%) and is a substrate for multiple efflux and uptake transporters in the 

gut and liver.36 Our findings suggest that inhibition of drug transporters in the gut by PK 

enhancers and PIs is still adequate,29,37 as was also previously suggested for the TAF 10 mg 

with cobicistat study arm.18 Though TAF AUCtau are adequate with boosted PIs, this does 

not negate the current recommendations to avoid use of cobicistat-containing regimens as 

cobicistat exposures are reduced, resulting in lesser circulating drug to inhibit CYP3A4 in 

the gut and liver, and ultimately lower anchor drug exposures.30–32 Additional studies are 

needed to better understand changes in transporter expression during pregnancy and their 

associated influence on drug disposition.

TAF combined with boosted PIs appeared safe and well-tolerated during pregnancy, and 83–

92% of women had HIV viral loads <50 copies/mL throughout the study. A separate larger 

clinical study, IMPAACT 2010/VESTED, showed that the combination of dolutegravir with 

TAF/emtricitabine was associated with superior rates of virologic suppression, and similar 

rates of grade 3 or higher AEs as those on the TDF-containing comparator regimens.20 

No perinatal HIV transmissions occurred in our study. Four of 27 infants were born with 

abnormalities, the majority of which were minor and posed no health threats, and one 

stillbirth occurred. The dolutegravir/TAF/emtricitabine arm in IMPAACT 2010/VESTED 

had the lowest composite adverse pregnancy outcomes in comparison to the dolutegravir or 

efavirenz arms with TDF/emtricitabine, though a higher proportion of stillbirths did occur 

in the dolutegravir treatment arms.20 Whether the efficacy and safety data from IMPAACT 

2010/VESTED extends to pregnant women receiving boosted PIs with TAF and their infants 

warrants further investigation in a larger clinical study. The most recent analysis of the 

Antiretroviral Pregnancy Registry (APR) identified birth defects in 4.2% of infants exposed 

to TAF during the first trimester, which did not significantly differ from the background 

rates of 2.7% from the Center for Disease Control birth defects surveillance system or 4.2% 

from the Texas Birth Defects Registry.38 No patterns in birth defects were identified in the 

APR, but updated results will continue to be monitored.

There are limitations to this study. The sampling design likely did not capture the 

peak concentrations of TAF, which usually occurs between 0.5–2 hours post-dose.36,39 

The original sampling design was targeted at characterizing all once-daily antiretroviral 

medications across several study arms, and additional sampling time points earlier in 

concentration-time profile were not logistically feasible. Posthoc Bayesian estimation 

methods were performed to estimate TAF AUCtau and other pharmacokinetic parameters, 

but caution is advised in directly comparing peak estimates in this study with those 

measured in other studies. No placental TAF transfer was detected, similarly to the previous 

P1026s TAF arms,18 but this may be due to the timing of the last maternal dose in relation 

to when the delivery samples were detected. Placental tenofovir transfer with TAF has 

separately been reported with a cord blood-to-maternal ratio of 0.81. Plasma tenofovir also 

was not measured in this study. However, TAF is the predominant moiety that loads target 

cells,40 not tenofovir,40–42 thus our findings are still important for better understanding TAF 

pharmacokinetics and efficacy in pregnancy. From a safety perspective, plasma tenofovir 
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AUCtau is ~75–90% lower with TAF vs. TDF in non-pregnant adults,7,8,10 and a similar 

magnitude of difference was separately observed in pregnant and postpartum women 

with HIV.19 Further assessments of the parent tenofovir form in plasma and intracellular 

tenofovir-diphosphate in PBMCs and dried blood spots will be critical to informing TAF 

use during pregnancy,43 and these will be examined in the next iteration of this study.44 

No significant differences among TAF AUCtau by boosted PI type were identified in our 

exploratory investigations, but samples sizes were limited. Finally, though safety and birth 

outcomes are reported, the sample size in this study is limited and should be viewed 

in the context of available and future data that arise with TAF-containing combinations 

during pregnancy. This study also selected for women who were already tolerating TAF 

with boosted PIs, thus our safety findings may not be generalizable to all pregnant women 

receiving this combination.

The pharmacokinetics of TAF 25 mg with boosted PIs did not significantly differ between 

pregnancy and postpartum and were comparable to or higher than historical data in non-

pregnant adults. These combinations appeared safe and well-tolerated during pregnancy and 

postpartum. Most women remained suppressed throughout the study, and no perinatal HIV 

transmissions occurred. These findings provide reassurance as TAF use during pregnancy 

continues to expand.
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Figure 1. TAF concentration vs. time profiles (A) and TAF AUCtau (B) during pregnancy and 
postpartum.
Data in both figures presented as median (interquartile range). All concentration results in 

one participant during the postpartum period were below the LLOQ, and thus results from 

this individual are not displayed in the figures.
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Table 1.

Participant Demographics

Characteristic N=29

Race/Ethnicity, n (%)

 Black/Not Hispanic or Latina 14 (48.3%)

 Black/Hispanic or Latina 2 (6.9%)

 White/Not Hispanic or Latina 1 (3.4%)

 White/Hispanic or Latina 4 (13.8%)

 Unknown/Hispanic or Latina 4 (13.8%)

 American Indian/Hispanic or Latina 2 (6.9%)

 Pacific Islander/Hispanic or Latina 1 (3.4%)

 More than one race/Not Hispanic or Latina 1 (3.4%)

Age (yr), median (IQR)

 Second Trimester 30.7 (26.2–34.9)

 Third Trimester 31.0 (24.0–36.1)

Weight (kg), median (IQR)

 Second Trimester 89.1 (75.0–115.5)

 Third Trimester 84.5 (78.5–107.3)

 Delivery 86.3 (78.0–107.5)

 Postpartum 78.4 (72.4–98.0)

Gestational Age or Time after Delivery (weeks), median (range)

 Second Trimester 23.1 (20.1–26.9)

 Third Trimester 32.7 (30.3–37.7)

 Postpartum 9.0 (6.0–13.0)

CD4 Count (cells/mm3), median (IQR)

 Second Trimester 709 (622–896)

 Third Trimester 494 (324–733)

 Postpartum 684 (557–776)

Duration of TAF Therapy (weeks), median (IQR)

 Second Trimester 17.4 (10.0–60.0)

 Third Trimester 27.7 (16.3–73.0)

HIV Viral Load ≤50 copies/mL, n (%)

 Second Trimester 10/12 (83.3%)

 Third Trimester 23/25 (92.0%)

 Postpartum 18/20 (90.0%)

HIV Viral Load ≤400 copies/mL, n (%)

 Second Trimester 11/12 (91.7%)

 Third Trimester 25/25 (100.0%)

 Postpartum 19/20 (95.0%)
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Table 4.

Maternal Viral Suppression and Delivery Outcomes

Characteristic N Summary Statistics

Maternal Viral Load ≤50 copies/mL at Delivery, n (%) 28 24 (85.7%)

Maternal Viral Load ≤400 copies/mL at Delivery, n (%) 28 26 (92.9%)

CD4 Count (cells/mm3) at Delivery, median (IQR) 27 665 (448–957)

Gestational Age at Delivery (weeks), median (range) 27 38.6 (33.7–40.7)

Birth Weight (g), median (range) 26 3010 (2335–4445)

Birth Length (cm), median (range) 25 50 (43–56)

HIV Status, n (%) 27

 Uninfected 21 (78%)

 Negative based on best available data
a 2 (7%)

 Indeterminate
b 4 (15%)

Note: numbers and percentages vary depending on the total number of women and infants with results available at each time point; one woman 
withdrew consent for her infant in utero, and thus this infant is not included in any summaries. IQR: interquartile range.

a
Sites unable to provide additional information.

b
All tests were negative, but unable to confirm “uninfected” status from follow-up testing due to study exit.
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