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ABSTRACT OF THE DISSERTATION 

 

Nanostructured Surfaces for High Throughput Lensfree  

Microscopy and Sensing On a Chip 

 

 

By 

 

Bahar Khadem Hosseinieh 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2012 

Professor Aydogan Ozcan, Chair 

 

Lensfree platforms are becoming valuable alternatives to conventional lens-based imaging 

and sensing methods because they are compact and cost-effective and provide large field-of-view 

systems more compatible with microfluidic devices. Due to the lack of lenses in these systems, 

an additional step of processing is required to obtain the final result; however, digital technology 

and efficient mathematical algorithms make the task rapid and straightforward. In this 

dissertation, I introduce a lensfree modality utilizing nanostructured surfaces to provide high 

throughput and on-chip incoherent imaging and plasmonic sensing. In the imaging 

implementation of the proposed platform, the emitted incoherent light from an object is 

modulated by a nanostructured surface on top of which the object is placed. Through a 
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compressive-sensing algorithm, the embedded spatial resolution and intensity information are 

extracted. In the sensing implementation, the light source illuminates the surface of the 

microfluidic substrate that is placed on top of an image sensor. The bottom layer of the 

microfluidic device is a metal-coated glass layer on top of which there are arrays of nano-slits 

modulating the transmission of light so that the diffraction pattern of those structures on the 

image sensor alters based on the amount of change in the refractive index. In addition, I explain 

how the pixel super resolution method can be deployed in lensfree incoherent imaging to provide 

a high-resolution image out of a series of low-resolution frames that have shifted in relation to 

each other. 
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Chapter 1  Introduction 

1.1    Microscopy 

Over the last several decades, advances in optical microscopy have produced a revolution 

in science, especially in biology and medicine. Seeing cellular structures more clearly has 

allowed scientists to prevent and cure many diseases. Imaging modalities can be categorized as 

either coherent or incoherent, depending upon the data derived as the rays from a given object 

(cell, tissue, etc.) reach the microscope. With coherent linear imaging systems, the object’s 

amplitude and phase are both used to obtain the amplitude and phase of the output. By contrast, 

with incoherent imaging systems, there is no phase information for the input, and therefore, we 

can obtain only the image’s intensity pattern in the output [1], [2]. For most applications, having 

information about the intensity alone is sufficient to detect the sample’s features. In addition, in 

some cases, such as fluorescent microscopy, there is no information about the input phase due to 

the random nature of the process [3], [4]. 

Through well-designed and well-placed lenses and optical components, microscopy can 

provide a magnified image of the object of interest. Combining regular optical microscopes and 

electronic components has improved the quality and ease of imaging. Recording images in a 

digital format makes it possible to see each part of the image through pixels. In addition to the 

advances in digital recording, much has been done to improve the resolution of imaging through 

super-resolution techniques that overcome the limitations of pixel size and the signal-to-noise 

ratio (SNR). However, for the majority of biomedical applications, the decent resolution (𝜆/

2𝑁𝐴) obtainable which is around 0.3 µm in the visible range, is sufficient for identifying critical 

components in biological samples. This is especially true for clinical purposes and pathological 
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and cytometry applications. In such cases, the field-of-view, or screening area, is highly 

important, particularly when looking for specific cells in a large piece of tissue or in a liquid [3], 

[5]. 

1.2    Lensfree Imaging 

  Lensfree imaging has been recognized as a compact and cost-effective method that can 

provide a high-throughput platform. In this method, the imaging area is not limited to the lens’s 

focusing point; lensfree imaging can therefore provide decent resolution over the whole field of 

view [3]. Several lensless techniques have been merged with advanced technology to miniaturize 

imaging and sensing systems.  

One of the most common lensfree optical imaging techniques is inline holography. This 

is based on recording interference between illumination and the light diffracted by the object, 

and it requires partial coherency for illumination, as shown in Fig. 1-1. The first holographic 

microscope [6] was based on the inline technique, which means that the light source, object, and 

recording plane are on one axis [6], [7]. 

 

Figure 1-1 |  Original inline holography imaging method [6].  Figure reprinted from [6] by permission from 

Nature Publishing Group, copyright (1948). 
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Digital holography (DH) is an approach that deploys digital technology such as a CCD or 

CMOS camera in holography for fast and nondestructive imaging of both phase and amplitude 

objects [8]. The imaging possible with this technique is of a quality suitable for biological 

samples., and increasing its imaging area makes this methodology perfect for medical 

applications [8–10]. Unlike with regular traditional optical holography, the imaging area of 

digital holography is highly limited, to the image sensor array. Some methods have been 

introduced to overcome this problem, such as the one described by Di (2008), which works 

based on scanning a CCD [8]. 

Combining inline holography, lensfree imaging, and information processing for image 

reconstruction has provided a new method suitable for 3D micron-level resolution imaging for 

biological applications [11]. Lensfree digital inline holography makes possible rapid transparent 

specimen imaging without being limited to a lens’s focusing area. In this modality, the 

magnification (M) is defined based on the ratio between the source-screen and source-sample 

distances and can affect the final resolution by overcoming the pixel-size limitation. In other 

words, increasing M will magnify the hologram to be sampled by the image sensor at the cost of 

reducing signal intensity and, thus, the signal-to-noise ratio (SNR) [7], [11]. 

1.3    Lensfree On-Chip Holographic Imaging 

Researchers in Professor Aydogan Ozcan’s laboratory at UCLA have shown a lensfree 

imaging technique based upon digital inline holography with a partially incoherent light source 

that can provide a screening area as large as the surface of the image sensor without using any 

bulky optical component (e.g., lens) or a scanning area [3], [7]. In this technique, the glass slide 

containing a biological sample is put directly on the surface of a CCD or CMOS image sensor. 
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The glass slide therefore prevents the object from directly touching the image sensor. Because 

the glass slide, the air gap between its layers, and the image sensor’s protective layer together 

create distance between the object and the sensing area, diffraction patterns, instead of real 

images, of the sample area sitting on top of the sensor are recorded [3], [7], [12]. The 

illumination source can be a simple LED light source placed at a distance of around 4-10 cm 

from the surface of the sample slide. A relatively large pinhole (~ 50-100 µm) is enough to 

provide a coherence diameter of ~ 0.2-0.5 mm on the image plane. This amount of coherency is 

needed for phase recovery and image-reconstruction purposes [3], [12]. 

As shown in Fig.1-2, with a holographic microscope, part of the light is scattered by 

sample components, such as blood cells, and the portion of the light that is unperturbed reaches 

the sensor. To use holography terminology, a reference light (unperturbed wave) and an object 

wave (scattered light) consequently interfere with each other on the image plane. If we show the 

reference wave as 𝑅(𝑥,𝑦, 𝑧0) and the scattered wave as 𝑠(𝑥, 𝑦, 𝑧0), the interference between 

these two waves on the detection screen can be mathematically interpreted in the following form 

[5], [7]: 

𝐼(𝑥,𝑦) = |𝑅(𝑥,𝑦, 𝑧0) + 𝑠(𝑥, 𝑦, 𝑧0)|2 = |𝑅(𝑥,𝑦, 𝑧0)|2 + |𝑠(𝑥,𝑦, 𝑧0)|2 + 𝑅∗(𝑥, 𝑦, 𝑧0)𝑠(𝑥, 𝑦, 𝑧0) +

𝑠∗(𝑥,𝑦, 𝑧0)𝑅(𝑥,𝑦, 𝑧0). 

In this equation, |𝑅(𝑥, 𝑦, 𝑧0)|2 indicates the background light coming from illumination, which 

has a constant value plus noise. The term |𝑠(𝑥, 𝑦, 𝑧0)|2 represents the object scattered light, 

which is weak enough to be neglected in calculations. The summation of the last two terms 

𝑅∗(𝑥,𝑦, 𝑧0)𝑠(𝑥,𝑦, 𝑧0) + 𝑠∗(𝑥,𝑦, 𝑧0)𝑅(𝑥,𝑦, 𝑧0) ,  shows the interference of the reference wave 

and the scattered light from the object that structures lensfree holograms. To obtain real images 

from holograms, one step of the image processing should be performed on raw captured images. 

(1-1) 
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This step should involve propagating the hologram back to the object plane, using the known 

intensity distribution on the sensor plane, the wavelength, and the propagation distance. Free 

space propagation can be modeled as a linear operation with a particular impulse response. As a 

result, image reconstruction involves a set of complex number calculation processes [3], [5], [7]. 

 

Figure 1-2 | (a) An actual lensfree microscope, whose size is compared to the US quarter coin [3]. (b) A 

schematic showing the holographic setup with magnification factor (M) equal to 1 [3]. Figure reprinted from 

[3] by permission from the Royal Society of Chemistry [RSC], copyright (2010).  

This new lensfree on-chip platform has been called LUCAS (lensfree ultra-wide-field cell 

monitoring array platform based on shadow imaging) [13]. Due to unit magnification of 

hologram fringes, the LUCAS system suffers from pixel-size limitation. The idea proposed to 

tackle this issue is to apply the pixel super-resolution algorithm to achieve high-resolution 

images by capturing multiple frames for one image [14]. 

Lensfree incoherent inline holography can provide a differential interference contrast 

(DIC) imaging tool as well [12]. In lensless DIC imaging (see Fig. 1-3), the coherent hologram 

of each object enters a thin birefringent crystal optic axis that is at 45° compared to the 
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propagation direction. Due to the double-refraction property of crystal, when the holographic 

field is entered, the crystal splits into two holograms with orthogonal polarizations. The phase 

velocities of both holograms and the energy flow directions differ; therefore, the two holographic 

fields have a phase difference, relative to each other. The final interference hologram propagates 

to the sensor array to be captured by the image sensor and analyzed to obtain the real image 

using image reconstruction algorithm [12].  

 
Figure 1-3 |  (a)  DIC lensless imaging holography [12].  (b) Image reconstruction of different test objects with 

well-defined sizes and known refractive indexes [12]. Spatial resolution of < 1.5 µm with a 2.2-µm pixel size 

has been achieved using the lensfree incoherent DIC method  ( scale bars, 5μm). Figure reprinted from [12] 

by permission from OSA, copyright (2010).  

In addition to holography techniques, there are other onchip imaging methods. For instance, 

researchers from the Biophotonics Laboratory at the California Institute of Technology have 

implemented an optofluidic device that offers low-cost and highly compact imaging solutions 

[15]. When a target specimen is placed on top of a grid, a sampled image of the object can be 

obtained. The final image is achieved by scanning the object over the grid using a flow system 

(a) (b)
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(see Fig. 1-4). In this technique, resolution is determined by the aperture size and not the image 

sensor pixel size [15]. The fundamental limitation of OFM is the presence, which can be 

assumed, of nonrotating objects in the flow. In addition, fabricating well-defined arrays of small 

holes is an expensive process, which makes the technique undesirable for routine applications.  

 

Figure 1-4 |  The OFM [15] device. (a) Schematic of the OFM device. Apertures (white circles) fabricated on 

the CMOS image sensor which was coated with Aluminum. (b) Depiction of the actual device. (c) Illustration 

of object’s movement in the microfluidic device. (d) Cross-section of the OFM device fabricated on the CMOS 

sensor. Figure reprinted from [15] by permission granted from PNAS, copyright (2008), National Academy of 

Sciences, USA. 

1.4    Lensfree On-Chip Fluorescent Imaging 

The LUCAS technique can be used for samples compatible with inline holography. For 

fluorescent samples emitting incoherent light, LUCAS can therefore not be used, and a different 

on-chip modality should be employed. Researchers in Professor Ozcan’s lab have introduced a 

lensfree on-chip modality for fluorescent microscopy that can provide pixel-size resolution 
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imaging quality over an ~ 60-mm2 area [16]. In this scheme, the excitation light is rejected 

through total internal reflection that occurs in the bottom facet of the sample substrate, and the 

fluorescent emission from the sample is then collected by the smaller end of the tapered fiber 

array and transferred to the image sensor array to be digitally sampled. The image-processing 

method used in this process is compressive sensing (CS) [17], which will be described in further 

detail in Chapter 2. Combining lensfree on-chip fluorescent imaging with the LUCAS system has 

provided a compact and complete imaging platform for large field-of-view microscopy, 

especially for biomedical applications [16], [18], [19]. 

1.5    Label-Free Optical Biosensing  

Microscopy is an excellent tool for monitoring small-scale components. However, in 

many cases, all that is required is a system that can detect or sense the existence of a particular 

component or quantify the amount of a certain chemical. Among all sensor types, optical sensors 

have gained much attention and improved greatly, due to their compatibility with imaging 

components and their high level of sensitivity. There are two general types of biological sensors: 

label-based and label-free. A label-based sensor deploys, as its name suggests, a variety of labels, 

such as magnetic, fluorescent, and quantum dots, to produce detectable signals during a certain 

event. This type of sensor has a high degree of sensitivity and provides molecular-level 

detection. Fluorescent imaging is the most common method for label-based sensing. Although 

photo bleaching can be regarded as a significant problem with this technique, several solutions, 

such as utilizing the lately introduced quantum dots, have recently been proposed. The second 

type of sensor, a label-free one, does not require any specific characteristics for labels, and this is 

the main advantage it offers over label-based sensors. Label-free sensing is especially valuable in 
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that it does not interfere with specimens’ biochemical structures. It also provides output data 

from measurements that can be comprehensively analyzed to provide more accurate data in real 

time [20], [21]. 

1.6    Optical Sensing Using Surface Plasmon Resonance (SPR) 

Surface plasmon sensors (SPR) are a group of optical sensors that perform based on 

resonant electron oscillation when incident light satisfies certain physical conditions.  

The resonance condition is established when the frequency of light photons matches the natural 

frequency of surface electrons that are oscillating. The surface plasmon resonance (SPR) effect 

in nanometer-sized features, such as edges or nanoparticles, is called localized surface plasmon 

resonance (LSPR) [20], [22]. The SPR phenomenon occurs on a noble metal surface (such as 

gold or silver) when an incident light beam interacts with the surface at a particular polarization, 

wavelength, and angle. Depending on the thickness of a biomolecular layer at the metal surface, 

the SPR phenomenon results in an alteration of the reflected light’s intensity. Biomedical 

applications deploy the high sensitivity of SPR to the permittivity of the medium surrounding the 

metal surface. This results in detecting and quantifying the adsorption of biomolecules on the 

metal surface [23]. SPR has had numerous applications in biosensing, especially in the 

quantification of affinity parameters. The binding antibody is immobilized on the sensor chip, 

and its antigen is in the liquid flowing on the metal surface. After the light strikes the metal 

surface, the light intensity is tracked in order to detect the binding affinity [23]. The SPR 

technique has the advantages of requiring few chemicals, offering rapid results, and not 

necessitating a labeling process [21], [24].  
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The most commonly used scheme for utilizing SPR is the Kretschmann configuration. 

 As you see in Fig.1-5, which demonstrates an example of the Kretschmann method, the 

transmitted light from the microfluidic device is enhanced through surface plasmon resonance 

effect [24–26].  

 

Figure 1-5 |  The polarized light striking the gold-coated substrate reflects back, depending on the angle of 

illumination and the binding efficiency results in a refractive index alteration on the metal surface. 

Monitoring the angle at which the reflection has the minimum intensity (i.e., the absorption  from surface 

plasmons has the maximum intensity), makes it possible to calculate the amount of the antigen attached to the 

immobilized antibody [26]. 

In order to increase the throughput or sensing area of the Kretschmann configuration, the 

reflected light is collimated though optical elements to map a large area of the metal surface to 

the image sensor array. This technique, because it combines SPR sensing with imaging 

components, is called SPR imaging or SPRI [27]. SPRI is a powerful technique for monitoring 

and sensing a large area in a short time, and it is achieved by merging an SPR sensing scheme 

Antibody
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Null Angle
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with an imaging setup. However, since there are collimator components containing a lens in the 

system, the whole setup is still bulky and cannot be used as a handheld tool.  

Another high-throughput device based on SPR sensing is TI-SPR, manufactured by 

Texas Instruments. This device does not include any lens and simply maps the sensing area 

though rays of illumination that travel to the image sensor. As there is no lens or any other bulky 

optical component, TI-SPR is a compact and cost-effective device that can be used for 

biosensing applications [28]. It is commercially available under the name Spreeta. 

Realizing the full potential of SPR sensors requires integrating plasmonic structures with 

illumination and detection elements to increase throughput without significant resolution loss 

[27]. Noteworthy examples of recent achievements in this area are the on-chip plasmonic sensing 

modalities reported by Professor Hatice Altug’s research group at Boston University. One in 

particular makes use of monopole nanoantennas and circuits for an on-chip plasmonic sensor 

with potential biological applications [29]. 

Several other attempts have been made to merge plasmonic concepts with other 

technologies to make SPR sensors compact and on chip [30], [31]. 

1.7    Thesis Outline 

As indicated by the preceding discussion, there is great interest in advancing imaging and 

sensing modalities by using current technology and computational methods to improve their 

throughput and make them more compact and cost-effective. Removing physical components 

such as bulky lenses and relying more on image-processing tools, which are becoming faster and 

more powerful, results in miniaturized microscopy systems. For instance, the LUCAS technique, 

which works based on digital inline holography, can produce holograms from a large part of a 
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sample of, for example, blood or tissue, and these can be processed in a remote computation 

center to provide high-resolution images in a very short time. Lensfree fluorescent imaging has 

supplied large field-of-view images from incoherent samples. This powerful technique can 

satisfy the great demand for fluorescent imaging needed to detect rare particles or subcellular 

components in a large sample volume. The disadvantage to earlier forms of lensfree incoherent 

imaging was in resolution due to the space-invariant point-spread function in the system.. In this 

dissertation, I explain how structured substrates can improve resolution enhancement for 

incoherent imaging techniques by encoding lensfree farfield diffraction patterns. To test, we 

assembled an imaging system containing a high-tech Olympus microscope, a 3D Piezo scanning 

stage, a CCD image sensor, and LED illumination, all of which were interconnected with a 

synchronization LabVIEW code. We fabricated the structured substrates using deposition and 

FIB machines in the cleanroom facilities of the UCLA Nanoelectronics Research Facility. For 

the computational portion of the work, we used compressive-sensing codes to acquire the final 

images and compare them with the images obtained from a microscope for the proof-of-concept 

validation. The structured substrate technique can be used not only for fluorescent and biological 

applications but also for regular lens-based imaging techniques that require a smaller pixel size 

with artificially increasing pixel density. For instance, in infrared (IR) or near-infrared (NIR) 

cameras, the main limitation is relatively large pixel size. The fabrication of a large-area infrared 

image sensor with a small pixel size is a very expensive process. We have shown that the 

structured substrate technique can be used to increase the pixel density of an NIR camera 

artificially and obtain higher-resolution images. Although the results attained are for an NIR 

system with a communication wavelength (1.55 µm), this technique can be used for thermal 
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imaging that requires a smaller pixel size for image sensors. It can also be applied to any other 

array-based image sensors.  

In addition to utilizing the structured substrate method, we have applied the pixel super-

resolution (PSR) technique in lensfree incoherent imaging to enhance the image resolution of 

incoherent imaging systems especially for fluorescent imaging. Researchers from Professor 

Ozcan’s lab had implemented the PSR technique for the LUCAS system, but using it for 

fluorescent applications had some challenges. We modified the scanning system that we had set 

up for the structured substrate imaging method in order to combine the pixel super-resolution 

technique with lensfree incoherent imaging to permit resolution enhancement in a large imaging 

area for incoherent imaging as well.  

Bulky optical components are a disadvantage of plasmonic sensing devices too. We have 

deployed farfield lensfree diffraction patterns of an array of subwavelength structures to measure 

the trace refractive index change inside a microfluidic channel that contains nanostructures. The 

proposed technology enables large throughput and label-free plasmonic sensing. Professor Ozcan 

has named this new modality plasmonic LUCAS (PLUCAS) due to similarities in the setup and 

processing techniques that exist between the proposed sensing method and the formerly 

introduced imaging one.  

At the end of my thesis, I also introduce optofluidic fluorescent imaging spectroscopy 

and multicolor cytometry on a cellphone. These techniques are based on tracking and 

classification methods and require a linear variable filter (LVF). The cellphone and a small 

device attached to it can be used to classify and count different live particles in a blood sample.  
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Chapter 2  Lensfree Incoherent Imaging Using Structured 

Substrates and Compressive Sensing1

2.1   Introduction

 

2

Lensfree imaging has recently been gaining a lot of consideration due to its capability in creating 

modalities that can potentially abolish bulky optical components to provide high throughput on-

chip microscopy systems [11], [18], [34–39]. Such on-chip microscope designs would 

particularly benefit microfluidic systems to create powerful capabilities, especially for medical 

diagnostics and cytometry applications. Because the equipment for lensfree imaging is 

lightweight and compact, the process can also potentially create an important alternative to 

  

                                                 
1 Reprinted with permission from [32], Copyright (2010), American Institute of Physics, and [33], Copyright (2010), 
American Institute of Physics. 
 

2 The content of this chapter has been published in or presented at the following: Khademhosseinieh, B., Biener, G., 
Sencan, I. & Ozcan, A., “Lensfree color imaging on a nano-structured chip using compressive decoding,” Applied 
Physics Letters 97(2010); Khademhosseinieh, B., Sencan, I., Biener, G., Su, T., Coskun, A. F., Tseng, D. & Ozcan, 
A., “Lensfree on-chip imaging using nano-structured surfaces,” Applied Physics Letters 96 (2010); selected for the 
Virtual Journal of Biological Physics Research; highlighted in Nature Photonics 4, 408 (2010)); Khademhosseinieh, 
B., Biener, G. & Sencan, I., “Lens-free, near-infrared (NIR) imaging using structured substrates and compressive 
sensing” (paper # 8373-95), SPIE Defense, Security, and Sensing Conf., Baltimore, MD, USA, 23-27 Apr. 2012; 
Khademhosseinieh, B., Sencan, I., Biener, G. & Ozcan, A., “Use of nano-structured surfaces to enable higher 
resolution detector arrays for lensfree imaging and sensing on a chip” (invited talk), Nanoelectronic Devices for 
Defense and Security Conf. (Nano DDS), New York, USA, 29 Aug.-1 Sept. 2011; Khademhosseinieh, B., Biener, 
G., Sencan, I., & Ozcan, A., “Lensless on-chip color imaging using nano-structured surfaces and compressive 
decoding” (paper # CTuM1), in proceedings of OSA Conf. on Lasers and Electro-optics (CLEO ’11); 1-6 May 
2011, Baltimore, MD, USA; Khademhosseinieh, B., Sencan, I., Biener, G., Su, T., Coskun, A. F., Tseng, D. & 
Ozcan, A., “Incoherent lensfree imaging on a chip using compressive decoding of nanostructured surfaces” (paper # 
7908-21), SPIE Photonics West Conf.: Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications 
VII, Jan. 2011, San Francisco, CA, USA; Khademhosseinieh, B., Sencan, I., Biener, G., Su, T., Coskun, A. F., 
Tseng, D. & Ozcan, A., “Lensfree incoherent microscopy on nano-structured chips,” BMES Annual Meeting, 6-9 
Oct. 2010, Austin, Texas, USA; Khademhosseinieh, B., Sencan, I., Biener, G., Su, T., Coskun, A. F., Tseng, D. & 
Ozcan, A., “Nano-structured surfaces for lensless incoherent microscopy on a chip” 11th Annual UC Systemwide 
Bioengineering Symposium, 17-19 June 2010, Univ. of CA, Davis, USA.  
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conventional lens-based microscopy, especially for telemedicine applications. Researchers from 

Professor Ozcan’s lab at UCLA have shown a lensfree technique for fluorescent imaging that 

uses a highly compact device and provides large field-of-view imaging for high throughput 

sample analysis in a short time. In their proposed configuration, the sandwiched sample glass 

slide is put on the surface of a faceplate fiber array that is placed on the image sensor’s surface. 

Short wavelength excitation beam hits the particles (microbeads, biological particles, etc.) and 

reflects back from the glass surface with total internal reflection (TIR), while the emission from 

the beads is collected using a faceplate fiber array and delivered to the image sensor through 

optical fibers [18], [19]. In this modality, due to the lack of a lens, fluorescent emission from 

particles is broadened so that the point-spread function (PSF) is around a 40-µm bright spot. The 

negative effect of broadened PSF on resolution can be eliminated using an inverse problem 

method, such as compressive sensing, to provide 10-µm resolution over an 8 cm2-area [16], [40].  

 The main limitation factor for resolution in this system is having space-invariant PSF; in 

other words, when two point-source emitting particles are sitting close to each other, due to 

diffraction over a large space in a noisy medium, the overlapped diffraction pattern is similar to 

that of individual particles. Therefore, the deconvolution methods cannot overcome the effect of 

noise in calculations to recover two spots instead of one. This limitation was the origin of my 

idea for increasing the resolution of incoherent imaging systems by encoding diffraction patterns 

using structured substrates, the idea that will be explained in this chapter. In the proposed 

lensfree system with space-variant point-spread function, the lensfree diffraction pattern of 

particles sitting on different parts would be a 2D pattern. For this reason, compressive sensing 

[17], [41] was used to decompose the overlapped diffraction pattern into two independent ones. 

The proof of concept will be shown for both visible and near-infrared objects.  
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In the first part of this chapter, I will introduce the compressive-sensing theory that we 

applied in image recovery from the space-variant PSF platform. After that, I will demonstrate the 

concept and implementation of structured substrates for sub-pixel resolution in lensfree imaging 

platforms. 

2.2  Compressive Sensing (Compressive Sampling) Theory 

In this part, I briefly explain the fundamental concept of compressive sensing (CS) and 

how this mathematical technique is utilized as a decomposition tool for signal recovery that is 

highly robust in noisy conditions.  

Assume that we want to recover an unknown matrix 𝑥0 ∈ 𝑅𝑚, which is a sampled 

representation of matrix y in the equation 𝑦 = 𝐴𝑥0 + 𝑣, where A is an n × m matrix and v is the 

noise term in the system [41]. Conventional methods for sampling follow Shannon’s theorem, 

which states that the sampling rate should be at least twice the signal bandwidth; this is called the 

Nyquist rate. In simpler terms, based on Shannon’s theorem, m linearly independent rows are 

required in matrix A. However, based on compressive sensing, a signal can be recovered from far 

fewer samples than those needed to meet the Nyquist rate under certain conditions. CS 

performance on sub-Nyquist rate recovery relies on the fundamental principle of sparsity. 

Sparsity states that the “information rate” [42] of a continuous signal is smaller than its 

bandwidth. Put more simply, the sparsity condition requires that there be few non-zero elements 

in an unknown matrix, x, and that they be located in sparse locations of the representation 

domain [41–43]. 

When n ≥ m, the columns of A are linearly independent, and x can be obtained by 

minimizing the quadratic loss ‖𝐴𝑥 − 𝑦‖22, where  ‖𝑢‖2 = (∑ 𝑢𝑖2𝑖 )1/2 is the l2-norm of matrix u. 
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However, if the number of observations, m, is smaller than n, simple least square method leads to 

the over-fitting issue [41]. This is the situation in which the continuous proposed function has 

large deviations from the unknown function, though at sampled points they come very close to 

each other. One solution introduced to tackle the over-fitting issue is called l2 or the Tikhonov 

regularization, which is described as follows:   

  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝐴𝑥 − 𝑦‖22 + 𝜆‖𝑥‖22 ,                                                                       

where λ is a positive number as the regularization parameter [41]. 

In the above equation, Lagrange multipliers have been deployed to solve an optimization 

problem. The term to be minimized is ‖𝑥‖22, and the constraint to be satisfied is ‖𝐴𝑥 − 𝑦‖22 = 0. 

Using Lagrange multipliers, we can rewrite the equation as to minimize ‖𝐴𝑥 − 𝑦‖22 + 𝜆‖𝑥‖22 

[44]. The Lagrange method is a commonly used one for handling optimization problems and has 

been deployed in the following optimizations in compressive sensing. Minimizing the 

summation of quadratic loss and quadratic amplitude in the Lagrangian format ( ‖𝐴𝑥 − 𝑦‖22 +

𝜆‖𝑥‖22) is called the l2-regularized least square program (LSP) and has this closed-form 

analytical solution [41]:  

𝑥 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇𝑦. 

There is a need to solve this equation for fluorescent imaging cases that contain fluorescent 

beads or particles spread over a large field of view. In such applications, a method that can 

provide sparse solutions is much needed. The l1-regularized least square (l1-LS) method is the 

technique proposed to minimize: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝐴𝑥 − 𝑦‖22 + 𝜆‖𝑥‖1  , 

where ‖𝑥‖1 = ∑ |𝑥𝑖|𝑛
𝑖  is the l1 norm of x, and 𝜆 > 0 is the regularization parameter. Typically, 

l1-LS yields a sparse vector, that is, one that has relatively few nonzero coefficients [41] , [06]. A 

(2-2) 

(2-3) 

(2-1) 
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solution always exists for l1-LS, but because of the degree of freedom to choose 𝜆, it is not 

necessarily a unique one. We set the parameters based on the problem we sought to solve, and it 

provides the best answer. Compared to the solutions obtainable by loss minimization alone, its 

vector is sparse enough and more similar to the original x-vector [41]. 

We used CS codes provided by Professor Stephen Boyd of Stanford University that can 

be downloaded from this link: http://www.stanford.edu/~boyd/papers/l1_ls.html. 

2.3  Lensfree Onchip Imaging Using Nanostructured Substrates3

In this part, I explain the proof-of-concept for the incoherent on-chip microscopy 

platform that uses nanostructured surfaces together with a compressive-sampling algorithm [17], 

[41], [45] to perform digital microscopy of samples without the use of any lenses, mechanical 

scanning, or other bulky optical or mechanical components. In this lensfree imaging modality 

(see Fig. 2-1), the emitted incoherent light from the sample plane is spatially modulated by a 

nanostructured surface (e.g., a thin metallic film that is patterned) placed directly underneath the 

sample plane. This modulated light pattern then diffracts over a distance of ∆z ~ 0.1-0.2 mm to 

be sampled by an opto-electronic sensor array such as a CCD or a CMOS chip. The main 

function of the nanostructured surface is to encode the spatial resolution information into farfield 

diffraction patterns that are recorded in a lensfree configuration, as shown in Fig. 2-1. This 

spatial encoding process is calibrated after the fabrication of the nanostructured surface by 

scanning a tightly focused beam on the surface of the chip. For each position of the calibration 

spot on the patterned chip, the diffraction pattern in the farfield is measured as shown in Figs. 2-

1 and 2. For spatially incoherent imaging (e.g., for fluorescent objects on the chip), these 

 

                                                 
3  Reprinted with permission from [32], Copyright (2010), American Institute of Physics 
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calibration frames provide a basis that permits spatial expansion of any object distribution as a 

linear combination of these calibration images.  

  

 

Figure 2-1 | (a) Schematic diagram of lensfree on-chip imaging using a nanostructured surface. (b) SEM 

image of a structured chip. Figure reprinted with permission from [32], copyright (2010), American Institute 

of Physics. 

To gain a detailed sense of the system we used, assume that a metallic thin film, 

deposited on, for example, a glass substrate, is structured at the nano-scale (see Fig. 2-1). Let us 

also assume that the transmission of this structured thin-film slab is denoted with 𝑡(𝐫𝑎, 𝐫𝑏, 𝜆), 

where 𝜆 refers to a wavelength of light, and 𝐫𝑎 and 𝐫𝑏 refer, respectively, to the x-y coordinates 

at the top and bottom surfaces of the structured thin film. Accordingly, for a point source (i.e., 

the calibration spot) located at 𝐫 = 𝐫𝑎, the detected signal at the mth pixel of the sensor array can 

be written as 

                     𝐼𝑚(𝐫𝑎) = ∫ 𝑑𝜆 ∙ 𝑞(𝜆) ∙ 𝑆(𝜆)∫ 𝑑𝐫′ ∙ |𝑡(𝐫𝑎, 𝐫′, 𝜆) ⊗ℎ(𝐫′, 𝜆,∆𝑧)|2𝑨𝜆 ,          (2-4) 

~ 
15

0
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where ℎ(𝐫′, 𝜆, ∆𝑧) denotes the coherent point-spread function of free-space diffraction over a 

distance of ∆𝑧 (which refers to the distance between the detector surface and the bottom plane of 

the structured slab); A represents the effective area of pixel #m; 𝑆(𝜆) is the power spectrum of 

the calibration point source; 𝑞(𝜆) is a spectral function that includes other sources of wavelength 

dependency in the detection process, such as the quantum efficiency of the detector array; and ⊗ 

denotes the 2D spatial convolution operation. Essentially, Eq. 2-4 describes the formation of the 

calibration images (see Fig. 2-2), where a complex field, 𝑡(𝐫𝑎, 𝐫𝑏, 𝜆), generated by a point source 

at 𝐫 = 𝐫𝑎 propagates coherently over a distance of ∆𝑧 to be sampled by the detector array. 

           For an arbitrary 2D incoherent object distribution on the structured substrate, we can in 

general write the object function as 𝑜(𝐫𝑎, 𝜆) = 𝑆′(𝜆)∑ 𝑐𝑛𝛿(𝐫𝑎 − 𝐫𝑛)𝑛 , where 𝑐𝑛 values represent 

the object emission strength at 𝐫𝑎 = 𝐫𝑛, and 𝑆′(𝜆) is the object power spectrum. Following a 

similar derivation as in Eq. 2-4, one can show that the detected object signal at the mth pixel of 

the sensor array can be written as 

                                         𝑂𝑚 = ∑  𝑐𝑛 ∙ 𝐼𝑚(𝐫𝑛)𝑛  .                                                               (2-5) 

For the derivation of Eq. 2-5, we have assumed 𝑆′(𝜆) = 𝑆(𝜆), which achieved straightforwardly 

by appropriately controlling the calibration process. 

             The above equations indicate that for an arbitrary incoherent object distribution on the 

structured chip, each pixel value at the detector array (𝑂𝑚) is actually a linear super-position of 

the calibration values of the same pixel (#m) acquired for N different point-source positions, 

each of which corresponds to an object location on the chip. The simultaneous solution of this 

linear set of equations for M different pixels should enable the recovery of 𝑐𝑛, which is 

equivalent to imaging of the 2D intensity distribution of the incoherent object on the chip. If M > 

N, there are more equations than the number of unknowns, and it becomes an over-sampled 
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imaging system. However, if N > M, then it is an under-sampled imaging system. In this project, 

we examined the imaging performance of the lensfree system for both under-sampled and over-

sampled conditions, within the context of compressive sampling theory [17], [45] which will be 

further discussed in the experimental results. 

            It is important to note that Eq. 2-5 also holds for a non-structured transparent substrate. 

However, such a bare substrate, without the nano-patterning on it, would be of limited use in 

lensfree incoherent imaging. For a bare substrate, the calibration images at the detector, 𝐼𝑚(𝐫𝑛), 

become highly correlated, especially for closely spaced 𝐫𝑛. This unfortunately makes the solution 

of Eq. 2-5 for spatially close  𝑐𝑛 values almost impossible, limiting the spatial resolution that can 

be achieved. Therefore, the function of the nanostructured substrate in this technique is to break 

this correlation among 𝐼𝑚(𝒓𝑛) for even closely spaced 𝒓𝑛 values through the creation of 

unique 𝑡(𝒓𝑛, 𝒓𝑏, 𝜆) functions at the nano-scale. As a result of this, the numerical solution of Eq. 

2-5 now becomes feasible to improve the resolution of the lensless system, which I demonstrate 

next through experimental results.  

2.4   Fabrication Method and Experimental Results 

To validate the above predictions experimentally, we used a structured metallic thin-film 

slab composed of an array of nanoislands (see Fig. 2-2). These nanostructures were fabricated 

using focused ion-beam milling (FIB - NOVA 600) on borosilicate cover slips (150 μm thick) 

that were previously coated with 200-nm gold using electron beam metal deposition (CHA Mark 

40).  
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Figure 2-2 | Schematic showing the fabrication steps of the nanostructured substrate. (a) A 150-μm glass 

substrate. (b) Gold coating using E-beam evaporation. (c) Bombarding the coated surface with the FIB 

machine. (d) The patterns are etched through the gold layer.  

The design of the nanostructures was made using finite-difference time-domain (FDTD) 

simulations (FullWAVE from RSOFT) with the aim of reducing the spatial correlation among 

𝐼𝑚(𝐫𝑛) for closely spaced points on the chip.  

To calibrate the nanostructured chip of Fig. 2-1, we measured 𝐼𝑚(𝐫𝑛) using a fiber-

coupled light-emitting diode (at 530 nm with a bandwidth of ~ 30 nm) focused to a spot size of < 

2 µm (FWHM) on the top surface of the chip. In these calibration experiments, the detector array 

(Kodak, KAF 8300, pixel size: 5.4 µm) was scanned using a Piezo stage controlled by a 

LabVIEW code. Using a step size of ~ 0.5 µm in both x and y directions, we acquired a total of 

N = 120 calibration frames over a 6-µm-x-5-µm area of the structured surface. Figure 2-4 

illustrates a diagram of this scanning procedure and presents samples of lensfree calibration 

(a)

(d)

(c)

(b)

FIB Milling

Gold Deposition
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images acquired at the CCD. These calibration frames were then digitally stored for use in the 

image-decoding process. 

 

Figure 2-3 | Experimental setup depicting the circuit board installed on a XYZ scanning Piezo stage. As 

shown in the inset image, the structured substrate is placed directly on the CCD image sensor. 

Quite importantly, for each nanostructured chip, this calibration process was performed 

only one time, after which any arbitrary object on the chip could be imaged from just a single 

lensfree diffraction image and by using the compressive-sampling algorithm based on l1-LS. 
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Figure 2-4 |  (a) Calibration process of a nanostructured transmission surface is outlined. Several far-field 

calibration images of the patterned chip shown in Fig. 2-1(b) are also provided. (b) Cross-correlation 

coefficients of the first calibration frame against all the other calibration images of the same chip are 

illustrated. Such correlation maps are computed for all the calibration images of a chip to ensure proper 

encoding of spatial resolution information into far-field diffraction patterns. (c) Same as part (b), except this 

time it is measured for a bare glass substrate without the nano-pattern. Significantly higher cross-correlation 

observed in (c) for closely spaced points is the reason for limited spatial resolution of conventional lensfree 

incoherent imaging without the nanopattern. Nanostructured surfaces break this correlation as shown in (b) 

to achieve a significantly better resolution. Figure reprinted with permission from [32], copyright (2010), 

American Institute of Physics. 

To demonstrate the proof-of-concept and the resolving power of this lensfree imaging 

modality, we illuminated the calibrated nanostructured chip with two closely spaced incoherent 

spots, as shown in Fig. 2-5. In these experiments, the center-to-center distance of the object spots 

was varied between ~ 2 µm and ~ 4 µm, which were all sub-pixel because the pixel size at the 

CCD was already 5.4 µm. As illustrated in Fig. 2-5, the diffraction images of these sub-pixel 

objects (after a propagation distance of ∆z = 150 µm) showed a single large spot at the CCD. To 
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the bare eye, such a lensfree diffraction image in the farfield obviously did not contain any useful 

information to predict the sub-pixel object distribution. However, the nano-structuring on the 

chip surface enabled imaging of the objects at the sub-pixel level using a compressive-sampling 

algorithm. The 2D sparse output of the decoder was then convolved with the calibration spot to 

create the image of the object. For example, using M = 355 pixels of the CCD image, we 

reconstructed N = 120 coefficients on the structured chip, resolving sub-pixel objects as 

demonstrated in Fig. 2-5. The decoding results matched quite well to regular reflection 

microscope images of the objects, as shown in the inset images of Fig 2-5. The computation 

times of these decoded images were all between 0.8 and 1.2 sec. using a dual-core processor 

(AMD Opteron 8218) at 2.6 GHz. 
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Figure 2-5 |  Experimental proof-of-concept of lensfree on-chip imaging using the nanostructured surface is 

demonstrated. Top row shows the lensfree diffraction images of the objects sampled at the CCD for three 

different incoherent objects. Each diffraction image contains M=355 pixels. Bottom row shows the 

compressive decoding results of these raw diffraction images to resolve subpixel objects on the chip. For 

comparison, the inset images in the bottom row show regular reflection microscope images of the objects, 

which very well agree with the reconstruction results. Note that the red colored regions of the inset images 

refer to the gold coated area with no transmission, and therefore the reconstructions only focus to the dark 

regions of the chip (at the center of the inset images) that are nanopatterned. Figure reprinted with 

permission from [32], copyright (2010), American Institute of Physics. 
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Figure 2-6 |  Recovery process using compressive sensing and lensfree modulated diffraction patterns. The 

matrices to be used for recovery are replaced with calibration, input, and output matrices of the common CS 

equation.  

 In the image reconstruction or decoding process shown in Fig. 2-5, because M > N, the 

solution of Eq. 2-5 was an over-sampled problem. Surely, there was no “compression” here. 

However, the strength of this approach lay in the fact that we could actually achieve almost the 

same recovery performance using an under-sampled imaging condition, where N > M. To 

validate this, as indicated in Fig. 2-7, we used many fewer pixels of the diffraction images at the 

CCD to reconstruct the same N = 120 pixels at the object plane. As evident in the decoding 

results of  Fig.2-7, the sub-pixel object could still be resolved even for M < N. For example, 

when compared to the M = 355 case of Fig. 2-5, the decoding results of the M = 36 case utilize N 

= 120 calibration images, each with M = 36 pixels, and a single diffraction image of the object 

with, again, M = 36 pixels, saving a total of 121 x (355-36) = 38599 pixels from the computation 

…
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load. As a result, the decoding time for these images was reduced by ~ 10 fold, achieving ~ 0.1 

sec.    

 
Figure 2-7 | This is the same as the middle column of Figure  2-5, except for the different M values. This 

figure indicates that compressive decoding of a sub-pixel object can be achieved from its diffraction pattern 

at the farfield even for an under-sampled imaging condition where N > M. Therefore, far fewer pixels of the 

diffraction pattern can enable the reconstruction of sparse incoherent objects on the nanostructured chip.  

Figure reprinted with permission from [32], copyright (2010), American Institute of Physics. 
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Figure 2-8 |  Recovery results for under-sampled data when using 120 calibration frames for (a) M = 64, (b) 

M = 49, (c) M = 36, and (d) M = 25 pixels. The top images in each set show the lensfree farfield diffraction 

pattern, and the bottom images are the recovered images. The red inset images are microscope comparison 

images, proving the strength of the CS algorithm for proving sub-pixel resolution in cases when the number 

of known values is less than one third of the unknown elements.   

2.5   Lensfree On-Chip Color Imaging Using Structured Substrates4

In the previous part, I demonstrated lensfree incoherent imaging on a chip using nanostructured 

substrates. This on-chip imaging modality involved the spatial modulation of the diffraction 

 

                                                 
4 Reprinted with permission from [33], Copyright (2010), American Institute of Physics 
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pattern for each point at the object plane, which created a calibrated and yet spatially varying 

lensfree point-spread function (PSF) between the object and the sensor planes. In this part, I will 

discuss sub-pixel color imaging capability in lensfree incoherent on-chip microscopy.  If this 

spatial modulation is color sensitive (as one would observe in, e.g., plasmonic substrates), then a 

multicolor incoherent object on the chip could be imaged by calibrating the PSFs of the 

nanostructured chip at three major wavelengths, corresponding to red, green, and blue, to decode 

the objects’ diffraction patterns into a true-color lensfree image. While this would be feasible by 

designing, for example, appropriate plasmonic nanostructured substrates, such a color-sensitive 

resonant transmission behavior would potentially be affected by the presence of the objects on 

the chip, which could make the lensfree PSFs of the structured substrate object dependent. As 

this is an undesirable feature for a microscope in general, instead of taking this plasmonic 

approach, we used a color sensor-chip for recording the lensfree diffraction patterns of 

multicolor objects. This opto-electronic sensor chip had red, green, and blue (RGB) filters 

installed at the pixels, such that each period contained one red and one blue pixel, together with 

two green pixels, to form a repeating RGB pattern across the sensor’s entire active area. With 

this configuration, the spatially varying PSFs of a nanostructured substrate exhibited color 

sensitivity that was then independent of the object or its near-field, such that an arbitrary 

multicolor incoherent emission from the object plane could be decoded into three distinct colors 

(RGB), yielding a lensfree color image at the sub-pixel level. This digital imaging approach 

would be especially important to create compact fluorescent on-chip microscopes that can 

simultaneously image various colored fluorescent probes [33]. 
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2.6   Experimental Setup and Colorful Image Recovery Results 

To confirm this novel approach experimentally, we used the structured metallic thin-film 

slab that was used in monochrome imaging. Fig. 2-9 schematically presents the experimental 

setup. The incoherent light emitted from a multicolor object is transmitted through the 

nanostructured substrate and propagates a vertical distance of ~ 0.15 mm to be sampled by an 

RGB opto-electronic sensor array (i.e., a charge-coupled device (CCD-Kodak, KAF 8300, pixel 

size: 5.4 µm). Due to the color filters installed on the pixels, each sampled lensfree diffraction 

image was actually composed of three raw images corresponding to red, green, and blue 

channels. These lensfree RGB diffraction images, along with the calibration data of the 

nanostructured chip, were used to reconstruct a multicolor image of the object on the chip.  

 

 

Figure 2-9 | Schematic diagram of the lensfree incoherent color imaging platform is shown. This setup 

achieves subpixel level color resolution based on spatial modulation that is introduced using nanostructured 

substrates. Notice that the diffraction pattern of a multicolor subpixel object that is sampled at the detector 

plane unavoidably loses its original colors, which in general makes lensfree color imaging at the subpixel level 
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rather challenging to achieve. Figure reprinted with permission from [33], copyright (2010), American 

Institute of Physics. 

To calibrate the spatially varying color-sensitive PSFs of the fabricated nanostructured chip, 

wemeasured the lensfree diffraction patterns of a point source that was scanning the chip surface, 

as illustrated in Fig. 2-9. This calibration process was repeated for each one of the three filter 

colors (red, green, and blue), and quite conveniently, needed to be performed only once for each 

nano-chip. For the calibration point source, we used fiber-coupled light-emitting diodes (at 470 

nm, 530 nm, and 670 nm with a bandwidth of ~ 20-30 nm each) focused to a spot size of < 2 µm 

(FWHM) on the top surface of the nanostructured chip. In these calibration experiments, the 

detector array was scanned using a Piezo stage controlled by a LabVIEW code. Using a scanning 

step size of ~ 0.5 µm in both x and y directions, we acquired a total of N = 3 × 120 calibration 

frames over a 6 µm × 5 µm area of the nanostructured surface. Fig. 2-10 exhibits representative 

sets of diffraction patterns for each color channel captured for different points on the nano-chip. 

As expected, these lensfree diffraction images at each color channel were significantly different 

from one another, validating the spatially varying color-sensitive nature of the lensfree PSF, 

which is a key feature for achieving sub-pixel color imaging on a chip. 
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Figure 2-10 |  Schematic representation of the calibration procedure. A point source is scanning the 

structured surface. The scan is performed for different-colored sources. The figure also depicts various point-

spread function images for different colors (R, G, and B stand for red, green, and blue), as indicated by the 

black spots. Figure reprinted with permission from [33], copyright (2010), American Institute of Physics. 

After this calibration step (which involved the capture of N = 3 × 120 different space-and 

color-encoded PSFs), to demonstrate the resolving power of this lensfree color imaging 

modality, we illuminated the same nanostructured chip with a multicolor object containing three 

spots at red, green, and blue, respectively, that were spatially separated by ~ 2 µm (which implies 

a sub-pixel object because the pixel period at the CCD chip is 10.8 µm). The results of this 

lensfree color imaging experiment are summarized in Fig. 2-11. For comparison purposes, 

conventional reflection microscope images of the same multiobjects are shown in Fig. 2-11(d); 

these were acquired using a 40X objective lens (numerical aperture: ~0.6). For these sub-pixel 

multicolor objects, the raw lensfree diffraction patterns that were sampled at the CCD chip are 

shown in Fig. 2-11(a). Due to diffraction, they were quite broadened, to an extent of ~ 100 µm. 

Because of the color filters installed at each pixel, these raw images in Fig. 2-11(a) exhibit a 
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mosaic pattern (also known as the Bayer pattern), but they are normally demosaiced to yield 

regular color images. The output of this digital demosaicing process is illustrated in Fig. 2-11 (b), 

images that now indicate an almost uniform white diffraction spot, spanning ~ 100 µm. This was 

expected since a closely packed set of red, green, and blue spots at the sub-pixel level would 

look white in the farfield (assuming similar power levels in each color).  

 

Figure 2-11 | (a) Images of the scenes captured by the CCD sensor depicted in (d), as captured by the 

structured-surface lensfree imaging system. (b) Colored images constructed using the raw data from (a), 

respectively. (c) Reconstructed images using compressive sensing. Figure reprinted with permission from 

[33],  copyright (2010), American Institute of Physics. 

I would like to emphasize that neither Fig. 2-11 (a) nor Fig. 2-11 (b) exhibits any visible 

sign or trace of the sub-pixel multicolor objects located at the structured surface. While this is 

true for the bare eye, it is actually feasible, using a compressive-sampling algorithm, to decode 

the raw lensfree diffraction image of Fig. 2-11(a) into a much higher-resolution image to recover 

the sub-pixel multicolor object distribution located at the structured chip. The result of this 

numerical decoding process is illustrated in Fig. 2-11 (c), in which the three distinct sub-pixel 

sources at each color are now clearly resolved, providing a decent match to the reflection image 

of the same chip acquired with a conventional microscope (Fig. 2-11[d]). 

My experimental demonstration of this lensfree color imaging platform achieved a spatial 

resolution of ~ 2 µm, which was around five times smaller than the resolution that the pixel 
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period at the CCD chip (10.8 μm) would normally permit in direct-contact color imaging. We 

believe that this lensfree computational imaging platform could be quite useful in creating a 

compact fluorescent on-chip microscope with true-color imaging capability. 

The computation time of this decoded image was < 10 sec. using a dual-core processor 

(AMD Opteron 8218) at 2.6 GHz, which can be significantly improved by employing a graphics 

processing unit (GPU).  

2.7   Lensfree Near-Infrared (NIR) Imaging Using Nanostructured Surfaces 

In this part, I demonstrate lensfree sub-pixel resolution imaging for the near-infrared 

regime. We used a pulsed laser lasing at λ = 1.55 µm due to this tool’s availability; however, this 

technique can be used for resolution enhancement in infrared thermal imaging too. Using sub-

pixel resolution in the infrared range has various advantages. For instance, some biological 

phenomena, such as cancer markers, can become visible in infrared [46]. Also, providing smaller 

pixel size for IR and NIR cameras is highly desirable due to complexities in reducing the pixel 

size in this wavelength regime.  

Note that turning to higher wavelengths makes fabrication of the nanostructured surface 

easier and more cost effective, as the limitation on the feature size is looser [47]. 

2.8   Experimental Setup and Fabrication Details 

The main differences between the setup used for NIR imaging and the previous setup 

used for visible light imaging were the image sensor installed in the system and the illumination 

light source. The NIR image sensor we deployed utilizes a CCD that has been specially treated 

with a phosphor coating that emits visible radiation when illuminated with wavelengths between 

1460 nm and 1625 nm at a cost much lower than that for other detector technologies 
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(http://www.edmundoptics.com/imaging/cameras). The sensor pixel size is 8.4 µm × 9.8 µm, and 

there is a 700-µm-thick protective glass layer on the pixel array. For the illumination, we used a 

pulsed laser with a lasing point wavelength at 1550 nm. We designed and fabricated a dense 

array of submicron features on a gold-coated substrate that provided unique diffraction patterns 

for each point of the substrate. The main design mask was based on a digital mask originally 

designed using a random function generator in MATLAB with a 50% blocking or transmitting 

ratio. The final mask was milled on a 200 nm gold-coated 150-µm glass substrate using FIB. We 

placed an infrared illuminating sample on top of the substrate so that the modulated diffraction 

patterns could be captured by the CCD camera.  

To calibrate the nanostructured chip, we used a focused spot of ~ 2.5 µm (FWHM) on the 

surface of the structured substrate. In these calibration experiments, the detector array was 

scanned using a Piezo stage controlled by a LabVIEW code. Using a step size of 1 µm for 24 

steps in both x and y directions, we acquired a total of N = 576 calibration frames for M = 

34200.  The large area for farfield patterns resulted from a large gap between the aperture plane 

and the pixel frame due to a glass protective (~ 700 μm) layer and phosphor coating (~ 6-7μm). 
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Figure  2-12 |  The top image depicts the structured substrate fabricated for NIR imaging that is placed on 

top of the CCD pixel array. The bottom images are three samples (out of 576 total) of calibration frames.  

 

 

Figure  2-13 |  Calibration frames along with a compressive-sensing algorithm are used to locate and recover 

the object placed on the image sensor’s surface.  
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Figure  2-14 | The real image of the NIR object that was projected on the surface of the CCD image sensor 

can be recovered (bottom images) through compressive sensing using the diffraction pattern of the object and 

the lensfree calibration patterns (top images). As shown in the inset image with a black background in the left 

set of images, the distance between two recovered spots is approximately 6 μm; this validates sub-pixel 

resolution imaging using the structured substrate technique.  

As you see in Fig.2-14, the spots with a distance around 5-6 μm are clearly resolved. This 

proves the feasibility of this approach at both visible and near-infrared wavelengths for 

increasing the pixel density of the sensor array without scanning or a multiframe capturing 

method [47]. 
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2.9   Conclusion 

In conclusion, I presented a sub-pixel color imaging scheme using lensfree incoherent on-

chip microscopy. We utilized a nanostructured substrate that spatially modulated the farfield 

diffraction patterns corresponding to each point at the object plane. These lensfree diffraction 

patterns were sampled using an opto-electronic sensor array, in which the pixels had three 

different types of color filters (red, green, and blue). To reconstruct an arbitrary multicolor object 

located on the nanostructured chip, calibration of the spatially varying color-sensitive PSFs of 

the nano-chip was required.   

After this proof-of-concept demonstration, for the next steps, we envision extending the 

FOV by tiling several of these nano-patterns on the same chip to cover a much larger imaging 

area. For this task, a periodic chip that repeats an appropriate design of nanostructures in x-y will 

be sufficient since lensfree incoherent imaging has its own resolution that can spatially separate 

one period from another if the periods are made larger than, for example, ~ 50 µm.  

  



 

40 

Chapter 3  Plasmonic Nano-Apertures for Lensfree On-chip 

Sensing5

3.1   Introduction

 

6

Over the last few decades, extensive work has been done in building up affinity 

biosensors, especially for medical and biological applications. An affinity biosensor is a 

transducer system containing an electrochemical, piezoelectric, or optical mechanism to detect 

the existence of a selected molecule in an analyte. A variety of affinity biosensors based on 

optical methods have been implemented. Noteworthy among these are plasmon resonance (SPR) 

sensors and fluorescence biosensors [49]. Although fluorescence sensors provide a high level of 

sensitivity, they necessitate a time-consuming and costly labeling process. SPR sensors perform 

based on a refractive index of samples and provide label-free and real-time detection of 

biolomolecular interactions [21]. There are several categories of plasmonic sensors, such as those 

based on the Kretschmann configuration [22] or nanohole array-based biosensors, which have 

less sensitivity than the Kretschmann configuration and carry the disadvantage of 

nanofabrication complexity [50]. Several methods have been utilized to increase the throughput 

of plasmonic sensing devices [27] or to make the platforms more compact [28], but the 

 

                                                 
5 Reprinted with permission from [48], Copyright (2010), American Institute of Physics 
 
6 The content of this chapter has been published in or presented at the following: Khademhosseinieh, B., Biener, G., 
Sencan, I., Su, T., Coskun, A. F. &  Ozcan, A., “Lensfree sensing on a micro-fluidic chip using plasmonic nano-
apertures,” Applied Physics Letters 97 (2010); Khademhosseinieh, B., Sencan, I., Biener, G. & Ozcan, A., “Use of 
nano-structured surfaces to enable higher resolution detector arrays for lensfree imaging and sensing on a chip” 
(invited talk), Nanoelectronic Devices for Defense and Security Conf. (Nano DDS), New York, USA, 29 Aug.-1 
Sept. 2011; Khademhosseinieh, B., Biener, G., Sencan, I., Su, T., Coskun, A. F. &  Ozcan, A., “Plasmonic nano-
apertures for lensfree on-chip sensing” (paper #CTuZ4), in proceedings of OSA Conf. on Lasers and Electro-optics 
(CLEO ’11), 1-6 May 2011, Baltimore, MD, USA; Khademhosseinieh, B., Biener, G., Sencan, I., Su, T., Coskun, A. 
F. &  Ozcan, A., “Lensfree sensing on a chip using plasmonic nano-apertures” (paper # 8024-8), SPIE Defense, 
Security, and Sensing Conf., 25-29 April 2011, Orlando, FL, USA. 
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throughput was not scaled up to the plasmonic sensing area without the scanning process. This 

issue becomes critical when there is an enormous need for a compact and high-throughput 

platform capable of rapidly analyzing different cellular and chemical processes occurring in one 

sample of a biological liquid.  

            In this chapter, I introduce a new compact and lensfree plasmonic sensing platform 

capable of providing high-throughput detecting capability by means of deploying a particular 

design of nanoslits in a lensfree system. Our proposed sensing modality has a platform similar to 

the one utilized in a nanostructured substrate for lensfree imaging, as introduced in Chapter 2. 

The lensfree diffraction patterns of that metallic nanostructured substrate are sensitive to the 

refractive index of the dielectric material inside and around the subwavelength features; 

therefore, when the patterns are properly designed, the analogous structure can be used to track 

the permittivity change of the dielectric material. As with the imaging platform that included no 

lens in the optical path, far-field diffraction patterns overlap each other on the image sensor 

plane. The overlapped patterns cannot be separated with the compressive algorithm due to the 

coherency of illumination light that hits the aperture plane; instead, they need to be processed, 

using phase recovery techniques, to back-propagate the optical fields to an arbitrary depth, 

creating digitally focused complex transmission patterns.  

         At the beginning of this chapter, I will talk about fundamentals of surface plasmons and 

their impact on light transmission through nanoapertures. Afterwards, the new lensfree 

plasmonic sensing platform will be introduced. Initial results confirming the refractive index 

change with a precision of 2 × 10-3 have been obtained in both far-field patterns and segregated 

near-field ones close to the aperture plane. 
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3.2   Surface Plasmons  

The electrons on a metal surface can show harmonic fluctuations called surface 

plasmons. Their existence has been both theoretically and experimentally proved. These charges 

can be localized to within a short distance from the surface and show maximum electric field 

amplitude at the boundary between the metal and surrounding medium. As shown in Fig. 3-1, the 

electric field oscillation of plasmons existing in the interface of two media can be described  as 

𝐸�⃗ = 𝐸�⃗ 0
±exp [+𝑖(𝑘𝑥𝑥 ± 𝑘𝑧𝑧 − 𝜔𝑡)]. In this equation, 𝑘𝑧 has an imaginary form that causes 

exponential decay in the direction perpendicular to the surface [22]. 

 

Figure  3-1 |  This shows the electric field of surface plasmons, which are bound to the interface between the 

metal and dielectric layer and decay exponentially as they get farther from the surface [51]. 

When Maxwell equations are solved with the boundary conditions [22] that the dielectric 

function of the dielectric layer is 𝜀𝑟2 and that a complex value for the metal layer complex 

dielectric permittivity value is 𝜀𝑟1 (𝜀𝑟1 = 𝜀𝑟1′ + 𝑖𝜀𝑟1′′) with 𝜀𝑟1′′ < |𝜀𝑟1′| , the complex value 

for the lateral component of wave vector ( 𝑘𝑥 ) can be obtained as 
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In the case that we are searching for plasmon modes that are bound to surface, we search for an 

imaginary value for 𝑘𝑧 and real 𝑘′𝑥, and it is required to have a negative value for 𝜀𝑟1′ and that 

| 𝜀𝑟1′| > 𝜀𝑟2. This condition can be satisfied in a real metal in optical frequencies [22]. 

  The Drude model [22], [52], which relates optical properties of metals to their atomic 

properties by treating metal as a gas of electrons, has been used in this equation to obtain value 

metal permittivity. Using this model, it can be shown [22] that the frequency-dependent complex 

permittivity of metals (𝜀 = 𝜀′ + 𝑖𝜀′′) in optical frequencies can be interpreted as 

𝜀(𝜔) = 1 − 𝜔𝑝
2

𝜔2+𝑖Γ𝜔
       

where 𝜔𝑝 is the volume plasma frequency depending on the free electron density in metal, and Γ 

in relative to the damping factor of collisions between electrons and 

𝜔𝑝=�
𝑛𝑒2

𝑚𝜀0
 

where n is the number of free electrons in metals per volume and m is the efficient electron mass  

[52]. 

 There is an enhancement mechanism defined as the ratio between the intensity of the surface 

plasmon wave and the illumination wave, and it reaches its maximum level when the reflection 

from the metal surface is at the minimum. The amount of the enhancement factor for the 

magnetic field can be expressed as  

� 𝐻𝑠𝑝
𝐻𝑖𝑛𝑐

�
2

= 𝜀𝑟2
𝜀𝑟0
� 𝐸𝑠𝑝
𝐸𝑖𝑛𝑐

�
2

= 𝜀𝑟2
𝜀𝑟0
𝑇𝑚𝑎𝑥
𝑒𝑙  , 

(3-1) 

(3-3) 

(3-4) 

(3-5) 

(3-2) 
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where   

𝑇𝑚𝑎𝑥
𝑒𝑙 =

1
𝜀𝑟2

2|𝜀𝑟1′ |2

𝜀𝑟1′′
𝑎

1 + |𝜀𝑟1′ | 

and  

𝑎 = �|𝜀𝑟1′ |(𝜀𝑟0 − 1) − 𝜀𝑟0 

In these equations, 𝐻𝑠𝑝 (𝐸𝑠𝑝 ) refers to the magnetic field (electric field) phasor of surface 

plasmons and 𝐻𝑖𝑛𝑐 ( 𝐸𝑖𝑛𝑐 ) is that of incident light illumination. For instance, if 𝜀𝑟1 = 1 (vacuum 

or air), 𝜀𝑟0 = 2.2 (quartz), and illumination wavelength λ = 600 nm, the enhancement factor for 

electric field intensity on  gold surface is about 30 [22]. 

Surface plasmons can exist on a surface of a curved or scattering object whose edges or 

local corrugations can be approximated by tiny spheres. This effect is known as localized surface 

plasmon resonance, or LSPR. The polarization of a sphere (radius a) can be shown as [22] 

𝑃�⃗ (𝜔) =
3

4𝜋
𝜀𝑟1(𝜔) − 𝜀𝑟0
𝜀𝑟1(𝜔) + 2𝜀𝑟0

𝐸0����⃗  , 

where 𝐸0����⃗  is the uniform electric field hitting the sphere whose radius is much smaller than λ 

(𝑎 ≪ 𝜆). This can lead to enhancement of the electric field intensity at the surface of the sphere 

in the case of having a small value for 𝜀𝑟1(𝜔) + 2𝜀𝑟0.  For a small silver sphere at 𝜆 =

350 𝑛𝑚 (𝜀′𝑟1 ≈ −2 and 𝜀′′𝑟1 ≈ 0.28) . With spheres located in a vacuum (𝜀𝑟0 = 1), we have the 

enhancement factor for electric field intensity approximately equal to 480 [22]. 

The enhancement factor is an important characteristic of LSPR, and due to its sensitivity 

to the refractive index of the surrounding medium, together with its large local amplitude, it can 

be used for sensing purposes [53], [54]. With LSPR sensing, compared to methods based on 

plane surface interactions, in cases when the proper particle type and size have been chosen, less 

(3-6) 

(3-7) 

(3-8) 
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interference between the sensing device and the material has been seen, as has higher detection 

resolution [24]. The effects of surface plasmons in the interaction of electromagnetic 

illumination in optical frequencies and subwavelength features, such as thin (<< λ) dielectric slits 

in metal thin films, have been discussed and proved before [55]. For instance, a great amount of 

research has been done to attribute the effect of surface plasmons to transmission through tiny 

apertures in real metal. It has been shown that light impinging on isolated subwavelength holes 

in real metal film excites localized surface plasmon modes on the aperture ridge. Their activation 

results in optical tunneling through apertures and enhanced light transmission in corners and 

edges [55]. 

3.3   Label-Free Sensing Using Surface Plasmons 

As mentioned before, surface plasmon excitation is highly dependent on the refractive 

index of the medium surrounding the metallic structures. These can be regarded as permittivity 

sensors because they monitor the electric field interaction with the structures [22]. The most 

commonly used surface plasmon resonance sensing structure is called the Kretschmann 

configuration, which requires a p-polarized light (the magnetic field is parallel to the metal 

surface) to hit the metal-dielectric interface. Based on variation in the dielectric refractive index 

in the vicinity of the metal surface, the angle of maximum coupling or minimum reflection 

changes. The effective refractive index of the medium corresponding to the amount of a 

particular biomolecule can be calculated by either of two methods: by scanning the wavelength 

and tracking the reflected light at a fixed angle, or by keeping the wavelength fixed using a laser 

and scanning the angle at which the minimum reflection occurs. If we name the complex 

dielectric constant of the metal as 𝜀𝑚and the refractive index of the sample medium as 𝑛𝑠 and 
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that of the prism as 𝑛𝑝, in the case that the incident light’s wavelength hits the surface where 

angle θ is λ, the equation expresses the maximum coupling based on the wave vector of incident 

light is (𝑘�⃗ = (𝑘𝑥 , 0,𝑘𝑧)), where [56]: 

𝑘𝑥 = 2𝜋𝑛𝑝
𝜆

𝑠𝑖𝑛𝜃 ≈ 2𝜋
𝜆
� 𝜀𝑚𝑛𝑠2

𝜀𝑚+𝑛𝑠2
 

As a result, knowing the angle or incident wavelength, we can calculate the unknown refractive 

index, which has quantification and mass spectroscopy applications [56]. 

 

 

Figure 3-2 | The reflected light intensity in the total internal reflection condition is dependent on the total 

amount of biomolecules attached to the metal-dielectric interface, which can be used as a sensing tool for 

excistingand quantifying biomolecules [26].  

Another group of plasmonic optical sensors are subwavelength structures, which can be 

single or array-based components that show extraordinary transmission phenomena. Because 

these components are highly sensitive to the refractive index surrounding the medium, they can 
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be applicable for sensing purposes [26], [57], [58]. The effect of surface plasmons on enhanced 

transmission from a single subwavelength hole or an array of them has been discussed in 

literature [26], [57], [59]. Though a single subwavelength aperture is sensitive to the refractive 

index and can be regarded as a sensing element, low transmission intensity makes it an 

unsuitable tool for a complete sensor.  

 

Figure  3-3 | Tunable laser light exciting surface plasmons in a 2D array of subwavelength holes in the vicinity 

of a liquid sample. The light transmission from apertures (detected after modulation by aperture)  is highly 

sensitive to plasmonic waves affected by the liquid sample. The refractive index was used to detect the liquid 

permittivity change [60]. 

The development of a state-of-the-art fabrication technique for subwavelength structures 

using nanoimprinting, self-assembly, and E-beam lithography has helped make new designs 

feasible.  
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3.4   Lensfree Onchip Sensing Using Plasmonic Nanoapertures 

In this part, I introduce an alternative technique for using metallic nanoapertures as 

optical sensing elements on a chip [48]. In this approach, as opposed to in the prior art, lensfree 

diffraction patterns of plasmonic nanoaperture arrays located on a microfluidic chip were utilized 

for sensing. For this purpose, we used spatially incoherent quasimonochromatic illumination, 

which picked up partial spatial coherence during its propagation that was sufficiently large (e.g., 

14 µm x 14 µm; see Fig. 3-4) to illuminate each nanostructured aperture region coherently. 

Under this illumination condition, the coherent diffraction pattern of each nanoaperture region 

could be sampled using an optoelectronic sensor array, for example, a CCD or CMOS chip. This 

lensfree pattern was then digitally processed to retrieve the missing phase of the optical 

diffraction rapidly, enabling back-propagation of the fields to an arbitrary depth below the 

nanoaperture plane [3], [39]. When the plasmonic apertures were suitably designed, these 

lensfree diffraction patterns reconfigured their transmission behavior in response to the local 

refractive index surrounding the apertures’ near-field. Therefore, when these reconstructed 

diffraction patterns were cross-correlated, lensfree on-chip sensing of minute local refractive 

index changes was feasible.  

A major advantage of this lensfree on-chip sensing platform over existing approaches is 

that it significantly increases throughput since the entire active area of the optoelectronic detector 

(e.g., a CMOS chip) can now be utilized with unit magnification (see Fig. 3-4). This makes it 

feasible to multiplex literally thousands of plasmonic aperture arrays on a standard CMOS chip 

with an active detector area of, for instance, > 20-100 mm2, which could be especially useful in 

designing label-free DNA or protein microarrays. Furthermore, this platform’s lensfree on-chip 

architecture makes it rather compact and lightweight, which is important in practical 



 

49 

implementations of the same platform for point-of-care and field uses aimed at, for example, 

various global health challenges including water quality screening and the diagnosis of infectious 

diseases. Particularly notable is the compatibility of this on-chip plasmonic sensing approach 

with the recently demonstrated lensfree holographic telemedicine microscopes [3], [61], which 

would make it possible to put together a more complete solution (involving both lensfree 

microscopy and on-chip sensing) within the same field-portable telemedicine unit. This could 

potentially create new opportunities for health-care delivery, especially in resource-limited 

settings.  

3.5   Experimental Setup 

To implement the lensfree on-chip sensing architecture discussed above, we chose to 

work with a plasmonic aperture-array design [62] composed of varying widths of sub-

wavelength apertures/slits that spanned an area of ~ 14 µm x 14 µm, as illustrated in Fig. 3-4. A 

similar nanoaperture array has been previously utilized to design planar lenses by exploiting the 

linear relationship between the width of the sub-wavelength slit and the phase of the transmitted 

optical field [62]. It has been shown that the phase delay caused by each aperture is dependent on 

each aperture’s width as well as the refractive index of the material surrounding the apertures.  

In the on-chip sensing implementation for this research, the function of this array of sub-

wavelength slits with varying widths was to introduce different diffraction patterns as a function 

of the local refractive index. This plasmonic structure (see Fig. 3-4) was fabricated using focused 

ion-beam milling (FIB - NOVA 600) on borosilicate cover slips (150 μm thick) coated with an ~ 

200-nm gold layer using electron beam metal deposition (CHA Mark40, UCLA Nanofab). The 

prepared chip was then used as the bottom substrate of a custom-designed microfluidic device, as 
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illustrated in Fig. 3-4,5. The liquid samples having different refractive indices were flushed into 

the microfluidic chamber to interact with the near-field of the nanoapertures by means of an 

automated syringe pump. 

 

Figure  3-4 |  Lensfree on-chip sensing setup. A plasmonic nanoaperture array, as shown in the SEM image at 

the top right corner, was illuminated with a quasimonochromatic source, e.g., a 550-nm center wavelength 

with a 20-nm bandwidth located ~ 10–30 cm away from its surface. The lensfree transmission pattern of this 

plasmonic structure was sampled by a CMOS chip placed at z ~ 1 mm away from the aperture plane. The 

yellow surface indicates the detector active area, which was ~ 6 × 4 mm2. The plasmonic nanoaperture array 

shown above was composed of uniformly spaced slits, each with a length of 6 m, where the slit width varied 

from left to right between ~ 80 and ~ 200 nm in discrete steps of ~ 20 nm. The physical gap between two 

neighboring slits was kept constant at ~ 200 nm. Figure reprinted with permission from [48], copyright 

(2010), American Institute of Physics. 

Lensfree diffraction patterns corresponding to each refractive index value were 

continuously captured on a chip at a frame rate of ~ 2-3 fps, using a CMOS image sensor while 
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the liquid was flowing through the microfluidic channel (see Fig. 3-4). The illumination was 

achieved using a monochromator at 550 nm with a spectral bandwidth of ~ 20 nm, which 

indicates that a standard light-emitting diode could also be used for both spatial and temporal 

coherence properties. We also used an inexpensive plastic polarizer in front of the illumination 

source to create a linear polarization that was orthogonal to the slit direction. This ensured that 

the transmitted fields from the plasmonic nanoapertures contained only a single polarization 

component, which was important for the phase recovery steps, as will be outlined later on. This 

polarization behavior was also confirmed through finite-difference time-domain (FDTD) 

simulations. 

 

Figure 3-5 | The microfluidic device whose bottom surface contains the apertures is placed directly on a 

CMOS image sensor array. The CMOS image sensor is connected to the computer via a micro-USB cable.   

For the liquid needed to validate the lensfree platform, we used saltwater with well-

controlled concentrations such that the exact value of the liquid refractive index could be 

extracted from a look-up table [63]. In Figures 3-8 (a, b, c), the top left images illustrate the 

lensfree diffraction patterns of the nanoaperture array (sampled at z = 1100 µm, as shown in Fig. 
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3-4) for three different refractive index values respectively: n = 1.333 [corresponding to 

deionized (DI) water], n + 3 x 10-3, and n + 5 x 10-3. To better quantify the numerical differences 

among these lensfree diffraction patterns and relate them to refractive index changes ( ∆n) within 

the microchannel, we calculated 2D cross-correlation coefficients between the first lensfree 

pattern (corresponding to DI water) and the rest of the acquired diffraction images. In Figure 3-

9(a), the bottom left plot illustrates the results of these cross-correlation calculations with a 

dotted blue curve for ~ 2000 consecutive lensfree diffraction patterns, which were captured while 

the refractive index within the microchannel was changed according to the following discreet 

steps: 

         (1) n = 1.333,   (2) n + 3 x 10-3,   (3) n + 5 x 10-3,   (4) n + 3 x 10-3,   (5) n = 1.333.  

The solid black curve in the same figure, 2(a), also illustrates a running average of the 

cross-correlation coefficients for a window size of ~ 50 frames (corresponding to an image 

acquisition time of < 4 sec.). As illustrated in these results, by recording the lensfree diffraction 

patterns of this plasmonic aperture array on a compact chip, we was able to track refractive 

changes as small as  ∆n = 2 x 10-3 faithfully. To further validate the results, we also performed 

FDTD simulations of the same plasmonic structure, the results of which are summarized in Fig. 

3-9. According to these FDTD simulations, the far-field lensfree diffraction patterns of the 

nanoaperture array closely matched the experimental results presented in Fig. 3-8(a, b, c). 

Furthermore, the same FDTD results also indicate that, as desired, the response of the 2D cross-

correlation coefficient of these lensfree diffraction patterns was linear over a large refractive 

index range spanning from 1.33 to 1.35. 

While these experimental and FDTD simulation results both demonstrate the useful 

sensitivity of the proposed lensfree on-chip sensing scheme, there is still room for further 
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improvement that can be implemented by utilizing more advanced digital processing of these 

diffraction patterns. In particular, due to the plasmonic aperture array’s lensfree operation, the 

sampled transmission patterns spread over a large area on the sensor chip. Although this had no 

negative consequences for a low number of spots on the same chip, it would create significant 

limitations as one aims to increase the density and hence the throughput of sensing. In other 

words, as more and more independent plasmonic spots are placed on the same chip (for a label-

free DNA or protein microarray sensing design), their lensfree diffraction patterns will start to 

overlap with each other at the detector plane, which will degrade the sensitivity of the lensfree 

sensing platform.  

To mitigate this problem and increase the density of the sensing spots on the same 

microfluidic chip, we used an iterative phase recovery technique [3], [39], [61] to reconstruct the 

complex wave corresponding to the transmission pattern of each nanoaperture array. In this 

numerical approach, we treated the detected lensless pattern as the intensity of a complex optical 

wave whose phase was lost during the image acquisition. To recover this lost phase, we started 

with an arbitrary phase distribution at the detector plane and back-propagated this complex wave 

to the plasmonic aperture plane [64]. 

3.6   Back-Propagation and the Gerchberg_Saxton Phase Recovery Algorithm  

The Gerchberg_Saxton algorithm [64] was deployed to reconstruct the phase distribution 

utilizing intensity measurements. In this case, we captured intensity distribution over the image 

sensor plane and aimed to reconstruct the field distribution on the nanoaperture plane. For this 

purpose, it was necessary to apply the recovery algorithm in an iterative form; this process 

involved propagating and back-propagating over large distances. One accurate way to perform 
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wave propagation in a linear system when the distance from the observation plane to the original 

field distribution plane is larger than a wavelength is by using the Rayleigh-Sommerfield 

diffraction integral. If, as shown in Fig. 3-6, the field distribution in the original field plane is 

𝐸1(𝑥1, 𝑦1, 0) and that of the far-field plane with distance z from the first plane is 𝐸2(𝑥2,𝑦2, 𝑧), we 

can relate these two complex field distributions as [7], [65] 

𝐸2(𝑥2, 𝑦2, 𝑧) = ∫ ∫ 𝐸1(𝑥1,𝑦1, 0)∞
−∞

exp (𝑖2𝜋𝑟1/𝜆)
𝑟1

𝑧
𝑟1
� 1
2𝜋𝑟1

+ 1
𝑖𝜆
� 𝑑𝑥1𝑑𝑦1

∞
−∞  , 

where 𝑟1is the distance between each two points in two planes: 

𝑟1 = �(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + 𝑧2 . 

The integral can be regarded as a two dimensional convolution form of two functions,  

ℎ(𝑥,𝑦, 𝑧) =
exp (𝑖2𝜋𝑟/𝜆)
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𝐸2(𝑥2, 𝑦2, 𝑧) = ℎ(𝑥,𝑦, 𝑧) ∗ 𝐸1(𝑥1, 𝑦1, 𝑧) , 

by assuming 

𝑟 = �𝑥2 + 𝑦2 + 𝑧2. 

 

(3-10) 

(3-11) 

(3-12) 

(3-13) 
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Figure 3-6 | Far-field propagation of the object field (E1(x1, y1, 0)) from (X1, Y1, Z1) plane to field 

distribution E2(x1, y1, 0)  in  (X2, Y2, Z2). 

Based on the relation between convolution and the Fourier transform, we can rewrite the integral 

equation as  

𝐸2(𝑥2, 𝑦2, 𝑧) = 𝐹−1�𝐹{ℎ(𝑥,𝑦, 𝑧)} × 𝐹{𝐸1(𝑥1,𝑦1, 0)}� . 

The Fourier transform of h function can be obtained with  

𝐹{ℎ(𝑥, 𝑦, 𝑧)} = exp (𝑖2𝜋𝑓𝑧𝑧) , 

where 𝑓𝑧 is defined as  

𝑓𝑧 = ��
𝜆−2 − 𝑓𝑥2 − 𝑓𝑦2  𝑤ℎ𝑒𝑛  𝑓𝑥2 + 𝑓𝑦2 ≥ 𝜆−2

0                            𝑤ℎ𝑒𝑛 𝑓𝑥2 + 𝑓𝑦2 < 𝜆−2
�  

and where 𝑓𝑥 and 𝑓𝑦 are frequencies corresponding to x and y in the Fourier domain [7], [65]. 

Thus, the calculation is easier and faster if we obtain the Fourier transform of field distributions 

Z
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before propagating so that we can multiply the transformed expression to free space transfer 

function in the Fourier domain, instead of solving a convolution integral in the space domain.  

The following summarizes the steps for utilizing the modified form of Gerchberg_Saxton 

phase recovery algorithm [3], [61]:   

1- The Fourier transform of the amplitude distribution (with an initial value for phase 

distribution) that is captured by the image sensor. 

2- Back-propagate the field distribution by multiplying to the conjugate free space 

propagation function exp (𝑖2𝜋𝑓𝑧z)∗= exp (−𝑖2𝜋𝑓𝑧𝑧). 

3- Inverse Fourier transform of the object plane field distribution and multiply it by a zero-

one mask obtained by knowing the size of the arrays of nanoapertures. This step should 

be done in order to enforce the constraint in the sensor plane. This step provides zero 

intensity in the areas out of the aperture array.  

4- Fourier transform of the field distribution after the masking process. 

5- Propagate the transformed field distribution by multiplying the Fourier transform of the 

field distribution to exp (𝑖2𝜋𝑓𝑧𝑧). 
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Figure  3-7 |  Block diagram of the iterative algorithm for recovering the field distribution in the aperture 

plane.  

3.7   Applying the Modified Gerchberg_Saxton Phase Recovery Algorithm on 

Lensfree Plasmonic Sensing 

Since the physical boundaries of the aperture region (e.g., ~ 14µm x 14 µm in Fig. 3-4) 

were known a priori, we could enforce this size information as a spatial filter for the complex 

fields at the aperture plane and forward-propagate the filtered fields back to the detector plane, 

where the optical phase then changed to a new 2D function. By replacing the intensity at the 

detector plane with the measured one and keeping the new phase distribution, we were able to 

start a new iteration to estimate more accurately the phase of the diffracted field after each cycle. 

This iterative approach rapidly converged to a unique solution after, typically, 10-15 iterations, 
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which took < 1 sec., using a standard graphics processing unit. 

To illustrate the method’s success, Figs. 3-8(d, e, f) demonstrate the iterative 

reconstruction results of the field intensity at the plasmonic aperture plane using the raw lensfree 

diffraction patterns shown in Figs. 3-8(a, b, c). Calculating the 2D cross-correlation coefficients 

among these reconstructed patterns resulted in a new sensing curve, as illustrated in Fig. 3-8(b) 

in the bottom right plot. Once again, similarly to what is shown in Fig. 3-8(a), we were able 

faithfully to track refractive changes as small as Δn = 2 × 10-3, this time using the reconstructed 

optical intensity patterns at the aperture plane. The major advantage of this phase-recovery based 

approach is that it would enable multiplexing more densely packed plasmonic spots such that the 

overall throughout of on-chip sensing could be significantly increased without affecting the 

sensitivity of the platform. 

 

Figure  3-8  |  Cross-correlation coefficients are calculated between the first lensfree transmission pattern and 

the subsequent patterns for (a) the detector plane (z = 1100 µm), and (b) z = 1-µm reconstruction plane, as 
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illustrated with the blue dotted lines. The same plots also show the running averages of these cross-

correlation coefficients over ~ 50 frames (corresponding to < 4 sec of image acquisition), as shown with the 

black solid lines in (a) and (b). The intensities of the lensfree transmission patterns used in (a) and (b) are 

normalized to the instantaneous illumination intensity, which is also detected using the same CMOS chip 

through a large aperture. The initial refractive index of these sensing experiments (n) is 1.333, corresponding 

to DI water. Top row: Images (a), (b), and (c) illustrate the raw lensfree diffraction patterns of the 

nanoaperture array at three different refractive indices within the microfluidic channel (n, n + 3 x 10-3, and n 

+ 5 x 10-3, respectively), where all the lensfree transmission patterns extend over a width of > 50 µm. Images 

(d), (e), and (f) illustrate the reconstructed transmission patterns of the same nanoaperture array at z = ~ 1 

µm plane, right underneath the aperture region. Figure reprinted with permission from [48], copyright 

(2010), American Institute of Physics. 

 

 We also conducted FDTD simulations to calculate the field patterns close to the aperture 

plane. These results, summarized in Fig. 3-9, nicely match the experimental results shown in Fig. 

3-8, further supporting my conclusions.  
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Figure  3-9 | Based on FDTD simulation results, the cross-correlation coefficients among lensfree transmission 

patterns of the same nanoaperture array shown in Figs. 3-4 are calculated as a function of the refractive 

index within the microchannel. These calculations were performed for both z = ~ 1 mm (solid line) and z = ~ 

1µm (dotted line) planes. The false color insets depict the 2D transmission patterns for three different 

refractive index values (1.33, 1.34, and 1.35, respectively), where the upper (lower) ones are calculated at z = ~ 

1 µm (z = ~ 1 mm). Figure reprinted with permission from [48], copyright (2010), American Institute of 

Physics. 

Note that it was impractical to obtain a far-field complex field distribution by FDTD, due 

to the heavy computational load that FDTD carries. As a result, we needed to simulate field 

distribution in a space close to (~ 1µm from) the aperture plane and propagate the field in the 

free space to obtain the field distribution on the image sensor plane, using the far-field 

propagation method (see Eq.3-6). It is rather important to emphasize that the formerly discussed 

iterative phase-recovery approach worked well even when the diffraction patterns of neighboring 

plasmonic spots overlapped at the detector plane. See, for example, Figs. 3-8 (d, e, f), which 
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illustrate that the transmission patterns of the top and bottom aperture arrays were resolved from 

each other, whereas these normally entirely overlapped at the detector plane, as shown in Figs. 3-

8 (a, b , c). In addition to this, as the sensing field of view increased to cover the entire detector 

active area (e.g., > 20 mm2), the requirements for spatial and temporal coherence of illumination 

would not change, which is quite important for scaling this platform to extreme throughputs 

without changing the illumination conditions. In this sense, the operation principles of this 

phase-recovery approach are quite similar (although not identical) to recently demonstrated 

partially coherent lensfree holographic telemedicine microscopes [3], [61] for which the lensfree 

cell holograms over a large field of view cannot coherently interfere with each other due to the 

limited spatial coherence diameter at the detector plane. The exact value of the spatial coherence 

diameter in the lensfree platform we used can be precisely tuned by controlling the aperture size 

of the source or by controlling the propagation distance between the source and the plasmonic 

aperture planes.  

I should note finally that the fabrication imperfections of the plasmonic nanostructures in 

the design do not constitute a fundamental challenge in this lensfree on-chip sensing approach, 

since the cross-correlation of the lensfree diffraction patterns of the plasmonic apertures were 

effectively measured as a function of the local refractive index. This differential correlation 

measurement makes the scheme robust in the face of potential fabrication imperfections, which 

is especially important for wide field-of-view implementations of this platform for increased 

throughput in sensing.  
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3.8   Conclusion 

In conclusion, I introduced a lensfree sensing platform on a microfluidic chip using 

plasmonic nanoapertures. This sensing method provides detection of refractive index differences 

as low as 0.002. Apart from its sensitivity, such an on-chip sensing modality can also provide a 

large dynamic range for refractive index sensing. This lensfree approach could be quite useful in 

the development of label-free microarray technologies because it could multiplex thousands of 

plasmonic structures on the same chip, which would significantly increase the throughput of 

sensing. In addition to this, the platform’s lensfree on-chip architecture also makes it 

comparatively compact and lightweight and both these qualities would be significant in practical 

implementations of this sensing platform for point-of-care and field use related to, for example, 

various global health objectives including water-quality screening and infectious-disease 

diagnoses. 

  



 

63 

Chapter 4  Lensfree Incoherent Imaging Using Pixel Super 

Resolution Technique  

4.1   Introduction 

The smallest feature visible with a regular lens-based optical instrument capturing 

farfield propagating components is limited due to the diffraction of the point-source object. The 

Abbe diffraction limit states that with the illumination wavelength λ propagating in medium with 

the refractive index n, the smallest spot diameter obtainable for a point-like object in a focal 

plane is  

𝑑𝑟 ≈
𝜆

2𝑛𝑆𝑖𝑛(𝜃)
 

where θ is the capturing angle of the lens [66], [67]. 

This equation shows that the smallest distance between two adjacent features that can be 

resolved is around half of the illumination wavelength. This amount is often enough to satisfy 

imaging and diagnosis applications of biological samples, as when distinguishing and counting 

different blood cells [67]. However, due to imaging systems’ physical limitations, such as optical 

and mechanical noise, we cannot always reach this limit. There has been a great effort to make 

optical microscopy more powerful and capable of resolving smaller parts of cells and subcellular 

components. One excellent example of this advancement is confocal microscopy [68], [69], 

which, because it uses an aperture in the detector plane, can eliminate out-of-focus light and 

provide high-resolution diffraction-limited images [66]. 

In addition to diffraction-limited systems, a number of methods have been introduced that 

push the resolution limit below the diffraction limit and that are generally called super-resolution 

(4-1) 
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techniques [66]. Among these methods are ones that use nonlinear illumination or temporally 

engineered excitation to make features smaller than the diffraction limit. Examples include [66] 

stimulated emission depletion (STED) microscopy [70], ground-state depletion microscopy [71], 

saturated structured illumination microscopy (SSIM) [72], photoactivation localization 

microscopy (PALM) [73], and stochastic optical reconstruction microscopy (STORM) [74]. 

The super-resolution methods mentioned above rely on lens-based common microscopy 

technique, and thus, they require complicated, bulky, and expensive systems to beat the 

diffraction limit. Another process of resolution enhancement that provides higher resolution than 

what a regular microscopy or a lens-based imaging system can provide is called pixel super 

resolution. This is the core of the imaging technique I will introduce in this chapter. It should be 

noted that the best resolution achievable with this technique is limited to the diffraction limit and 

should not be confused with sub-diffraction super-resolution methods in microscopy.  Pixel 

super resolution method is still extremely useful in large field-of-view incoherent imaging, 

especially fluorescent microscopy.  

4.2   Pixel Super-Resolution Algorithm 

  An image detector system is composed of a series of pixels that sample the image projected 

by optical components, such as lenses. It is always very advantageous to acquire higher 

resolution since it contains more valuable information. To improve resolution, it is necessary to 

improve the quality of the optics as well as to decrease the pixel size (i.e., increase the pixel 

density in a fixed detecting area). There are, however, some drawbacks to decreasing the pixel 

size. In addition to the technological challenges in fabricating small-pixel-size image sensors, 

when the pixel size is decreased, the amount of light hitting each pixel is reduced, and thus, the 



 

65 

signal-to-noise ratio (SNR) is degraded. This is mainly due to the fact that the SNR is a 

parameter that is dependent on the signal strength: having a lower-intensity signal results in 

having a lower SNR. One solution to mitigate the pixel size limitation in order to obtain an 

image with higher density is to apply a signal-processing technique that utilizes a series of 

frames that are shifted spatially in relation to each other. This technique is called pixel super 

resolution (pixel SR) and is a known method in the optics community [14], [75]. 

SR works by using multiple low-resolution images that are shifted with respect to each 

other by a fraction of the pixel size of low resolution. In Fig.4-1, the physical pixel is indicated 

by dark blue borders, while the virtual smaller pixels are represented by the light blue grid. For 

each horizontal shift ℎ𝑘 and vertical shift   𝑣𝑘, the output of the real physical image is obviously 

a linear super position of the embedded low-resolution (large pixel size) images [14].  

 

Figure 4-1 |  Covering a grid of HR pixels with bigger LR pixels [14], [75]. 
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4.3   Shift Estimation and Image Registration 

To calculate the high-resolution frame from a series of low-resolution ones, an estimation 

of how much the sub-pixel images shift in relation to each other is needed [76]. The first step is 

to calculate shifts larger than the size of one pixel. This is necessary because, unlike a sub-pixel 

shift, a shift that is an integer of the pixel size does not carry any information, and the sub-pixel 

shift estimation is based on the assumption that all the shifts are very small relative to the pixel 

size. After this stage, each image is shifted back to a degree equal to the number of whole pixels 

shifted compared to the base image. Consequently, from here on, all shifts can be presumed to be 

sub-pixel.  

We assume that at each shift there are horizontal, vertical, and rotational movements that 

occur with the center of  𝑥 = 0,𝑦 = 0. The shifted image (𝑜�𝑘) with respect to the first image (𝑜�1) 

can be written as: 

𝑜�𝑘(𝑥,𝑦) = 𝑜�1(𝑥𝑐𝑜𝑠𝜃𝑘 − 𝑦𝑠𝑖𝑛𝜃𝑘 + ℎ𝑘, 𝑦𝑐𝑜𝑠𝜃𝑘 + 𝑥𝑠𝑖𝑛𝜃𝑘 + 𝑣𝑘) 

In the case of very small rotational angles (𝜃), we can make first-order approximations of 

sinusoidal functions as follows [76]: 

𝑠𝑖𝑛𝜃𝑘 ≈ 𝜃𝑘 And 𝑐𝑜𝑠𝜃𝑘 ≈ 1 

By applying the Taylor series expansion, we can then rewrite the former equation as 

𝑜�𝑘(𝑥, 𝑦) ≈ 𝑜�1(𝑥,𝑦) + (ℎ𝑘 − 𝑦𝜃𝑘)
𝜕𝑜�1(𝑥, 𝑦)

𝜕𝑥
+ (𝑣𝑘 + 𝑥𝜃𝑘)

𝜕𝑜�1(𝑥,𝑦)
𝜕𝑦

 

 The unknowns in this equation are 𝜃𝑘,  𝑣𝑘 and  ℎ𝑘 , and can be calculated by minimizing the 

error function with respect to each of the parameters: 

𝐸𝑘(𝜃𝑘, 𝑣𝑘,  ℎ𝑘) =  ∑ �𝑜�𝑘(𝑥,𝑦) − 𝑜�1(𝑥, 𝑦) − (ℎ𝑘 − 𝑦𝜃𝑘) 𝜕𝑜�1(𝑥,𝑦)
𝜕𝑥

− (𝑣𝑘 + 𝑥𝜃𝑘) 𝜕𝑜�1(𝑥,𝑦)
𝜕𝑦

�
2

(𝑥,𝑦)∈𝑆  

(4-2) 

(4-4) 

(4-5) 

(4-3) 
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In the relationship expressed above, ℎ𝑘, 𝑣𝑘, and 𝜃𝑘 can be estimated by minimizing all 

𝐸𝑘(𝜃𝑘, 𝑣𝑘,  ℎ𝑘) error functions. The detailed method of calculating the former equation and 

obtaining ℎ𝑘 , 𝑣𝑘, and 𝜃𝑘  is explained in [76], [77]. 

In the cases of no rotational shift in the images with respect to each other, such as the situation 

we had in our experiments, the shift estimation task can be simplified by calculating only 

horizontal and vertical shifts using a transformation method [78]. 

4.4   Image Reconstruction Techniques  

There are several methods for image reconstruction in SR, among which we present 

below nonuniform interpolation and the inverse problem [79].  

4.4.1   Multiframe Nonuniform Interpolation 

Multiframe nonuniform interpolation is the simplest method for HR image reconstruction 

[79]. There are three fundamental steps in the interpolation process: (a) motion estimation, (b) 

nonuniform interpolation to provide the HR image, and (c) the denoising and deblurring process. 

The final step can be accompanied by using a deconvolution algorithm with the denoising step 

embedded. The interpolation technique does not include any optimization process; therefore, the 

resolution enhancement is not comparable to what is achieved with the optimization-based 

methods. The advantage of the interpolation method is that it is computationally simple, which 

makes possible the real-time reconstruction of a series of images. However, the quality of 

reconstruction is not optimal, and the reconstruction method ignores the error added to the 

system by interpolation [79]. This technique has not been utilized in my images, and the 

interpolation that we have used for some of my results is based on single-frame Spline 

interpolation that doesn’t provide any resolution enhancement.  
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4.4.2   Inverse Problem Method 

Inverse problem method is another SR approach for image reconstruction [79]. In this 

part, I describe the way the pixel SR that was utilized in our project works [14], [76]. Assume 

that low-resolution (LR) images are identified by 𝑋𝑘(𝑛1,𝑛2), 𝑘 = 1, 2, … ,𝑝. These are shifted 

images with size 𝑀 = 𝑁1 × 𝑁2. For the high-resolution (HR) image 𝑌(𝑛1,𝑛2), the image size 𝑁 

is equal to  𝐿𝑁1 × 𝐿𝑁2, where  L is the number of shifted mages in each direction. Any given 

low-resolution image (Y) can be described as a linear super position of all high-resolution 

images. Assume that we vectorize the pixels of the k-th low-resolution image in a row as 

𝑋𝑘 = �𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑀� and, for a high-resolution image, as 𝑌 = [𝑦1,𝑦2, … , 𝑦𝑁]. Based on these 

definitions, each pixel in an LR image is a weighted super position of HR pixels such that [14] 

𝑥�𝑘,𝑖 = � 𝑊𝑘,𝑖,𝑗(ℎ𝑘
𝑗=1,2,…,𝑁

 𝑣𝑘).𝑦𝑗 

In this equation, 𝑊𝑘,𝑖,𝑗 is a “physical weighting coefficient” [14], representing the effect of 

blurring, motion, and under-sampling, and it can be determined by a light-intensity map covering 

the sensor array [14], [79]. By assuming 𝑌𝑓𝑖𝑙 as the high pass filtration (using Laplacian operator) 

of the LR image (𝑌), minimizing the error function,  𝐶(𝑌):  

𝐶(𝑌) =
1
2

� �𝑥𝑘,𝑖 − 𝑥�𝑘,𝑖�
2 +

𝛼
2

𝑘=1,2,….𝑝
𝑖=1,2,….,𝑀

�𝑌𝑓𝑖𝑙𝑇 .𝑌𝑓𝑖𝑙� 

provides the high-resolution image [14]. 

The first term of this equation is to minimize loss error in the [𝑥] = [𝑊][𝑦] equation and 

is equivalent to the maximum likelihood estimation, assuming that we have uniform Gaussian 

noise. However, the second term is the regularization part of the optimization problem that 

contributes the high-frequency components of the reconstructed image, 𝑌𝑓𝑖𝑙. As you can see from 

(4-6) 

(4-7) 
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the equation, the value of α , determines the amount of high spatial frequency components  by 

the cost of  tolerating high frequency noise in the recovered image [14], [75], [79], [80]. 

In our super-resolution imaging project, we used the code from the Milanfar Group at the 

University of California, Santa Cruz (UCSC). The algorithms implemented in the graphic user 

interface (GUI) are designed based on the papers mentioned at the end of the manual. The code 

can be downloaded from their academic website: 

http://users.soe.ucsc.edu/~milanfar/software/superresolution.html. Among different algorithms, 

we have worked with “Iterative Norm II” which is generally based on the optimization explained 

before (with an iterative matrix analysis), and its implementation is explained comprehensively 

in [80].  

4.5   Simulations of the Pixel Super-Resolution Technique  

As mentioned above, the purpose of this project was to improve the resolution in 

incoherent imaging systems where diffraction is negligible and the limitations in the resolution 

are the pixel size and noise. Thus, the preliminary simulation was designed to mimic the 

situation of having several low-resolution images that have shifted with respect to each other. 

For this reason, we chose an image containing an adequate number of features smaller than the 

pixilation size. Then the image was pixilated (blurred) by a factor of 3; in other words, the 

number of pixels in the image became three times smaller. To provide an adequate number of LR 

frames, the high-resolution image was scanned in a 10 × 10 grid array. With the aim of 

simulating real conditions, we added 10 dB of random noise to the images and then used the 

noisy low-resolution images as input for the code to provide the high-resolution output:  
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Figure  4-2  |  (a) The left image shows the way we provide artificial low-resolution and noisy images out of 

the pure high-resolution image. (b) The right image (bottom) depicts the high-resolution recovery out of a 

noisy and low-resolution image (top) using the iterative norm II method from [80].  

4.6   PSR Experimental Setups and Bright Field-Imaging Results 

In order to have sub-pixel shifting, a scanning mechanism that shifts the imaging system 

versus the object (e.g., a fluorescent sample) is needed. For this reason, we used a 

NanoCube® XYZ Piezo-stage compact multiaxis Piezo system for nano-positioning and fiber 

alignment. The precision of this machine is 2 nm in each of its three axes. This stage was 

controlled by a LabVIEW code that synchronized it with the CCD stage attached directly atop it.  

For the first experiment, the image sensor we used was the same as what is described in 

Chapter 2 (Kodak, KAF 8300, pixel size: 5.4 µm). For the object, an Air Force target image was 

projected and demagnified on the surface of the moving system to provide a zero-friction setup.  
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Figure  4-3  |  Experimental setup, using a faceplate. 

The faceplate has a negative effect on resolution, due not only due to the larger faceplate 

pixel size but also to the fact that the larger period size (the faceplate pitch size ~ 6 um) is not a 

multiple integer of the smaller one. This fact results in location-dependent pixel function on the 

surface of the CCD image sensor.  
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Figure  4-4  |  Shift estimation obtained from the software when the Piezo was programmed to span a uniform 

grid with the step size of 2 um. As indicated, the grid resulting from the code is very similar to a uniform 

pattern. This shows the accuracy of the shift estimation code in dealing with the amount of noise that 

occurred in the imaging system.  
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Figure 4-5 | The image on the left is the raw frames obtained by using the image sensor. The image in the 

middle shows the interpolated form of the raw image. On the right is a processed image after applying the 

iterative super-resolution algorithm.  

The quantified resolution in this system is 5.2 µm (87% of faceplate pitch size).  

4.7   Experimental Setup for Pixel Super-Resolution Fluorescent Imaging  

For the fluorescent imaging, we used a setup similar to the one explained in the previous 

part but with some modifications. For the illumination, we positioned light-emitting diodes 

(LEDs) parallel to the sample substrate. As a result, the refractive index contrast between the 

glass and air made the substrate act as the waveguide to transfer the LED light to the entire glass 

area. The sample was held tightly parallel to the compound of the image sensor and the Piezo 

stage so that, when a particular area was scanned by the stage, there would be sub-pixel shifting 

between the sample and the CCD. 

An absorption filter in the form of a thin film with a thickness of around 20 µm was 

coated [81], [82] on the faceplate’s surface. This absorption layer was needed to facilitate in 

blocking the ambient light and the scattered light from reaching the image sensor. The faceplate 
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was used to protect the image sensor’s surface from friction and thus to prevent damage to this 

sensor. In addition, it was needed to shield the fluorescent sample thermally from the warmth of 

the circuitry.  The faceplate pitch size was around 6 µm, with a thickness of 3mm, and the core 

or cladding ratio of 70:30. For this experiment, we used 10 µm red fluorescent beads (with the 

emission peak at 605 nm). For the excitation, we chose blue LEDs with an excitation peak at 470 

nm. For the shift estimation, 25 images were captured; however, due to the large amount of noise 

and some friction remaining in the system, the effective grid that resulted had only 2×2-point 

shifting points.  

 

Figure  4-6  |  Schematic of the super-resolution imaging setup. 

To minimize the friction between the smeared glass and the faceplate fiber array, between 

each two frame-capturing moments, the stage pulled down the faceplate-CCD compound so that 

the lateral shifting occurred when there was a large gap between the fluorescent beads and the 

compound. After this movement, the stage rose up, captured the image, and then moved back for 

another move. All scanning and shifting were done automatically using the LabVIEW code. 

Fig.4-7 shows the preliminary result for fluorescent imaging. Although the current system is not 

improving the resolution considerably, it shows the potential of the method for fluorescent 
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imaging application. Note that the resolution in fluorescent imaging was lower than what 

occurred in test objects, as with Air Force target imaging. There are two main reasons for this: 

(a) the larger gap and more diffraction due to the 20-μm absorption filter coating and (b) the 

lower SNR of the emitting beads and the considerable amount of background light caused a large 

amount of noise on the raw frames. In addition, each small region of a raw frame needed to be 

processed separately since shift estimation varies greatly from point to point on a raw frame.  

 

 

Figure  4-7  |  Lensfree super-resolution fluorescent imaging results. (a) The blue background depicts a large 

area of a frame captured by the CCD. (b) The cropped region from the large area of the CCD frame. (c) The 

interpolated image. (d) Super-resolved reconstruction of the cropped region using 25 raw frames provided a 2 

× 2 matrix for shift registration. The gap between two beads has appeared. (e) A small gap between two 

adjacent beads appears in the final image.  
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4.8   Experimental Setup Using Tapered Fiber Array 

Tapered fiber array is a component containing an array of optical fibers that are stretched 

in such a way that cladding and the core diameter size are scaled down in one surface of the 

object compared to the other. Consequently, the optical pattern on one side is transferred to the 

other surface with a magnification or demagnification factor equal to this stretching factor. In 

one sense, the application of this device is very similar to that of a lens; however, unlike with 

lenses, there is a fixed magnification factor for tapered fiber arrays. Another limitation of tapered 

fiber arrays is the minimum feature that can be obtained with this device, which is dependent on 

the cladding diameter. These limitations come, however, with advantages. There is very low 

aberration with tapered fiber arrays, whereas it is a serious problem in lens-based imaging 

systems. In addition, these arrays are compact compared to lenses [19]. 

The tapered that we used was an array of fibers for which the ratio of the whole diameter 

of the large size to that of the small size was 18:8 mm; the magnification factor was therefore 

2.25. This tapered, which was placed directly on top of the complex of the faceplate and CCD 

image sensor, translated the magnified object sitting on top of it into an array of CCD pixels. In 

my experiment, we projected the pattern of the Air Force target onto the smaller facet of the 

tapered.  
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Figure  4-8  |  The schematic of the lensfree super-resolution imaging using the complex of the faceplate and 

tapered fiber array. The LED and the projected pattern are fixed while the tapered-faceplate-CCD 

compound scans using the Piezo stage. The inset illustration on the left depicts the actual Piezo stage.  

Fig.4-9 represents the shifting pattern estimated by the code when we scanned a uniform 

array, 14 × 14 with the step size of 0.5 μm, with the Piezo stage. The shifts were estimated based 

upon the pixel size unit. The estimation shows a highly nonuniform array with an unexpected 

amount of shift and direction. This is due to the insufficient amount of friction between different 

components, especially between the tapered and the faceplate. This resulted in a slight sliding of 

one surface on the other, and consequently, the tapered did not shift as programmed via 

LabVIEW. 
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Figure  4-9  |  Shift estimation calculated by the code when the Piezo was programmed to span 14 × 14 points 

with the step size of 0.5 µm. The nonuniform arrangement of the points is the result of deficiencies in 

tightening all touching surfaces. 
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Figure  4-10 | The left column shows the raw frame from the CCD with 3.2-um resolution. The middle column 

is an image produced by interpolating all the points from all the frames with the same resolution as the raw 

frame. The right image is the super-resolved image, which contains finer features with 2.3-um resolution. 

4.9   Conclusion 

In this chapter, I introduced lensfree super-resolution techniques for large field-of-view 

incoherent imaging. These techniques were implemented both with and without a tapered and 

with different shifting mechanisms. In all cases, sub-pixel size resolution for incoherent objects 

achieved. It was shown that adding extra components, such as a faceplate and tapered, adds 

diffraction to the system, which, because there is no lens, makes the final resolution worse than 

the expected value.  
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I provided a demonstration of lensfree super-resolution fluorescent imaging, which can 

be a powerful technique for thin (2D geometry) samples.  
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Chapter 5   Conclusion7

5.1   Conclusion and Summary  

 

In the first part of this thesis, we introduced the use of nanostructured surfaces for 

lensfree on-chip microscopy. In this incoherent on-chip imaging modality, the object of interest 

was positioned directly onto a nanostructured area fabricated using FIB. The emitted light from 

the object plane was modulated by the nanostructures, and it then diffracted over a short distance 

of glass thickness to be sampled by a CCD image sensor without there being any lenses in the 

optical path. Thus, the function of the nanostructures was to modulate the transmission light and 

encode point spread functions (PSFs) in such a way that they formed a matrix in which each row 

was unique and referred to a particular point of the substrate. This matrix was obtained through 

the calibration step in which a focused spot size was used to scan the nanostructured substrate 

area. At each scanning point, the lensfree far-field diffraction pattern was captured and recorded 

by the CCD image sensor. The detected far-field diffraction was given to the CS algorithm as the 

input, knowing the calibration matrix to achieve imaging at the sub-pixel level. We used this 

technique for multicolor imaging as well. Instead of relying on the highly dispersive behavior of 

noble metals, such as gold or silver, we deployed an RGB image sensor to sample different 

colors with different pixel types in optical frequencies that could provide wavelength-sensitive 

diffraction frames. In this case, diffraction patterns were then sampled in the far-field using a 

color-sensor array, in which the pixels had three different types of color filters at red, green, and 

blue (RGB) wavelengths. The recorded RGB diffraction patterns (for each point on the 

structured substrate) formed a basis that could be used to reconstruct digitally any arbitrary 

                                                 
7 Reprinted with permission from [32], Copyright [2010], American Institute of Physics, and [33], Copyright [2010], 
American Institute of Physics and [48], Copyright [2010], American Institute of Physics 
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multicolor incoherent object distribution at sub-pixel resolution, using a compressive-sampling 

algorithm [32], [33]. We experimentally demonstrated the practicability of this lensfree method 

at various wavelength ranges, improving the resolution by ~ 9 fold for single color and colorful 

objects. This imaging modality based on nanostructured substrates can be especially useful in 

creating lensfree fluorescent microscopes or lens based systems that suffer from large pixel size 

on a compact chip [48], [83]. 

 

 
 

Figure  5-1  |  Nanostructured substrate for lensfree color imaging. The lensfree far-field diffraction pattern 

of each color is captured by a different set of pixels. Figure reprinted with permission from [33], copyright 

[2010], American Institute of Physics. 

In addition, we demonstrated the application of this lensfree technique for infrared 

imaging. Providing high-resolution near-infrared (NIR) and infrared (IR) imaging is highly 

important for both medical applications (as in breast cancer early detection) and surveillance 

purposes. To address this aim, we demonstrated sub-pixel resolution of NIR objects in a lensfree 
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system. This method can be used in a regular lens-based camera to increase the pixel density 

(i.e., decrease pixel size) artificially and thus gain higher-resolution images, which can be 

extremely important for large-pixel-size and expensive thermal cameras.  

The way we used CS for lensfree incoherent imaging is acknowledged among CS 

community members (http://nuit-blanche.blogspot.com/). 

 

Figure 5-2 | (a) Far-field diffraction pattern captured by an RGB image of the object shown in (d). (b) 

Demosaiced pattern of (a). (c) Recovered image using compressive sensing. Figure reprinted with permission 

from [33], copyright [2010], American Institute of Physics. 

The idea of embedding information in lensfree and far-field diffraction patterns was used 

for plasmonic sensing as well. We demonstrated lensfree on-chip sensing within a microfluidic 

channel using plasmonic nano-apertures that were illuminated by a partially coherent light 

source, which could be a monochromator or a regular LED. In this approach, lensfree diffraction 

patterns of the transmitted light modulated by metallic nano-apertures located at the bottom 

surface of the microfluidic channel were recorded with a monochrome CMOS ( 2.2 µm) while   

the liquid ( and thus, the refractive index) of inside the microfluidic device was changing with a 

automated syringe pump. These lensfree diffraction patterns were rapidly processed, through 

phase recovery techniques, to back-propagate the optical fields to an arbitrary depth for creating 

digitally focused complex transmission patterns by knowing intensity distribution on the sensor 
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plane. For that, we used a polarized illumination and verified single-polarization output light 

field, which is essential when utilizing the Gerchberg_Saxton algorithm on vector components. 

Cross-correlation of these patterns enabled sensing and quantifying the local refractive index 

change that surrounds the near-field of the plasmonic nano-apertures, which can be used to 

analyze bio-molecules in a liquid sample. This proposed lensfree plasmonic sensing tool has the 

sensing area scaled up to the imaging area. Based on this principle, we experimentally 

demonstrated lensfree sensing of refractive index changes as small as ~ 2 x 10-3. This on-chip 

sensing approach could be quite useful for the development of label-free microarray technologies 

by making an array of plasmonic structures on the same microfluidic chip, which could 

significantly increase the throughput of sensing without scanning the illumination spot or 

deploying bulky lenses or collimators [48]. 

 

Figure 5-3 | Implementation of the lensfree plasmonic sensing device placed directly on top of an image 

sensor.  

These specifications make this device suitable for DNA or protein microarray label-free 

sensing and imaging. Each DNA spot contains pico-moles of a particular DNA sequence that is 

http://en.wikipedia.org/wiki/Pico-�
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called a probe [84]. Printing micron-size DNA spots on the surface of the array of subwavelength 

apertures builds an independent sensing element from each set of apertures. Image processing 

and phase recovery can decompose overlapped far-field diffraction patterns and provide field 

distribution on the aperture plane. Different antigens can be printed on different sets of apertures 

fabricated on one substrate to detect and quantify different antibodies in a single experiment.  

 

Figure  5-4 | Schematic of a lensfree plasmonic sensing device used for detecting different antibodies in one 

microfluidic chamber. For instance, two different antigens, A and B, are printed on nano-apertures. The 

diffraction pattern captured on the CMOS image sensor plane can be back-propagated on the aperture plane 

so that binding information regarding each antigen type can be extracted and quantified.  

Another technique we used for proving a high-resolution incoherent imaging technique 

for lensfree systems was the pixel super-resolution (PSR) algorithm. The PSR technique works 
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based on having multiple frames of low-resolution samples that shifted with respect to each other 

[14], [79]. It was shown that inserting extra components, such as a faceplate and tapered fiber 

array, resulted in additional diffraction to the system and that such modifications, along with 

there being no lens, caused the final resolution to be worse than expected.  

 

 

Figure  5-5  |  Pixel super-resolution (PSR) method using a tapered fiber array. (a) Schematic of the setup. (b) 

Low-resolution raw image with 4.6-μm resolution. (c) Super-resolved high-resolution image with 2.2-μm 

resolution. 
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Appendix  Optofluidic Spectroscopy and Multicolor Flow 

Cytometry Using the Spectral Imaging Method 

A.1   Introduction 

Fluorescent imaging has been the core parts of many research activities because we can 

detect and sense different biological components simply by labeling different fluoresphores. In 

the case that we are dealing with single-color labeling, an imaging system can be achieved using 

a single illuminator, which is usually a single-color laser. However, if a mixture of colors is used, 

there should be a smart mechanism by which we can decompose overlapped images that occur in 

the detector. If we need to image and decompose different fluorescently emitting components 

simultaneously, we need to convert the imaging domain to a spectral domain to translate 

different parts of the image to their corresponding color components proficiently [85], [86]. The 

technique that combines imaging and spectral unmixing is called imaging spectroscopy and has 

been used extensively in biological applications. In an imaging spectrometer, the light from the 

excitation source, which is usually a powerful laser at the blue or ultraviolet wavelength or a 

filtered light-emitting-diode (LED), strikes the fluorescent particles in a flow [2], [85–87].  

The power spectrum from the point object, after being broadened by a dispersive 

component, focuses on to the detector plane, which can be a photomultiplier, CCD, or CMOS 

image sensor. The dispersive element’s main function is to bring a wavelength-dependent shift of 

the image; in other words, each image constructed at a particular position represents a specific 

part of the object’s power spectrum [2]. 

In the first part of this chapter, I will introduce an imaging spectrometer device 

implemented on an RGB CMOS camera (effective pixel size= 2.8 µm) and that can be easily 
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applied to a cellphone. In the second part, I will explain how this same device, when 

implemented on a cellphone, can be used for multicolor fluorescent flow-cytometry. The device 

can be a handheld and cost effective add-on that can be simply installed on a cellphone to 

differentiate and count different color particles in a flow.  

A.2   Optofluidic Fluorescent Spectroscopy Using Linear Variable Filters (LVF) 

Researchers from Professor Aydogan Ozcan’s laboratory at UCLA have introduced the 

optofluidic cytometry on a cellphone. This is quite a powerful technique for imaging and 

counting all the fluorescent particles emitted by the light sources used in the system [88]. 

However, there has been no mechanism to distinguish different color particles emitted at each 

moment; instead, it has been necessary to deal with the intensity of each signature regardless of 

its emission spectrum.  

To address this issue, we modified the system in such a way that it translated the spectral 

information of the emitting particle to a parameter that was measureable by our imaging system. 

The component we added to the system is a linear variable filter (LVF), which is an interference 

filter with a spectrally unique transmission function at each point along its length. The LVF used 

was fabricated by the JDSU company (http://www.jdsu.com). The transmitting wavelength 

linearly varies from 400 nm to 700 nm, with the bandwidth less than 20 nm for each point per 

wavelength. This component is widely used for spectroscopy, as it provides narrow-band 

filtering, with an almost flat transmission amplitude across the whole visible spectrum. The LVF 

was installed directly below the flow-container, a PDMS-based microfluidic device or a glass 

capillary, so that the fluorescent emission of each flowing particle, after filtering at each point 

and wavelength, reached the cellphone’s CMOS camera.  

http://www.jdsu.com/�
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A.3   Spectral Imaging Simulation under Noisy Conditions and Spectrum Recovery 

To simulate emission spectrum recovery out of the captured light by an image sensor that 

is modulated by the LVF function and has become noisy, we used the Lorentzian Line Shape 

[89] to model a bead’s emission spectrum. These were the additional assumptions for this set-up: 

the bandwidth at each point of the LVF was 25 nm, the spectral sampling was 0.2 nm (which is 

wider than what we can have with 10 µm/sec bead velocity), only blue pixels were chosen for 

this particular bead type, and the system had 10 dB speckle noise. A simple Gaussian spectrum 

with 100 nm bandwidth around 450 nm was selected to model the filtering performance of blue 

pixels. Fig.A-1 (a) demonstrates all the functions dealt with in this simulation.  

 

Figure A-1 | (a) Noiseless emission spectrum of the bead under investigation (red line), noisy recorded 

spectrum over the length that is directly mapped to the wavelength ( blue line), and detector function for blue 

pixels (green line). (b) Recovered spectrum using compressive sensing and Lucy-Richardson deconvolution 

(blue line) vs. noiseless emission spectrum. 
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The red curve represents the emission spectrum of a fluorescent bead using the 

Lorentzian function. The blue curve shows the noisy data over the LVF length (which 

corresponds to the visible wavelength range), and the green one is the simplified detector 

function for blue pixels. Recovering the emission spectrum of the bead (the red curve) 

necessitated knowing the detector function and the LVF transfer function that was demonstrated 

with a series of Gaussian functions and one step of mathematical analysis. For the recovery 

algorithm, we used one step of compressive sensing (as explained in chapter 2), followed by a 

Lucy-Richardson deconvolution. Compressive sensing provides a set of sparse points, instead of 

a solid curve, but it is a valuable step that, due to the nature of its iterative algorithm, has the 

functionality of denoising from noisy data.  

Fig. A-1 (b) demonstrates the recovered data out of the noisy measurement in simulation. 

A decent compatibility between the ideal curve and the recovered one is observable especially in 

the central part of the emission spectrum (300 nm-600 nm).  

A.4   Experimental Set-up for Optofluidic Spectroscopy 

In this cytometry system, the liquid sample was delivered to the system using a motorized 

syringe pump with a speed around 1-1.5 µLit/min. This microfluidic device or the capillary was 

sitting directly on the surface of the LVF. The glass surfaces and water content of these devices 

had the functionality of light guiding because of total internal reflection, so most of the excitation 

light was bound inside the liquid-holding device and the emission light from the labeled particles 

left the medium and traveled through the optical system. One droplet of index-matching oil 

connected the LED and the fluidic device to maximize the coupling of the light to the system. 
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With this method, there was adequate excitation light and no need to use costly and bulky 

coupling components.  

The filtering behavior of the microfluidic-wave-guide in rejecting the excitation light was 

not perfect; therefore, another filtering mechanism that would prevent the excitation light from 

being captured by the CMOS camera was needed. For this purpose, we used a low-pass and 

high-quality glass absorption filter. For the extra lens that we added to the system, the distance 

between the lens and the particles in the microfluidic component was equal to its focal length. 

This lens mapped part of the microfluidic device that sat in its focusing domain to an image 

formed in infinity that was guided by an image sensor lens as the final image to the CMOS 

image sensor. For the first part of this project with the purpose of spectroscopy, the added lens 

had a focal length of 12 mm, and because the focal length of the camera lens was around 5 mm, 

there was a 2.4X demagnification in the system, which made 10 µm fluorescent particles become 

4 µm circles in captured frames. In addition, with this demagnification, it was possible to capture 

an adequate length of spectral distribution on the LVF and spectral information of the 

fluorescence emission. Since the optical path of the fluorescent particles was perpendicular to the 

excitation light and sample flow, we could continuously deliver the sample to the system without 

touching the optics to change the sample solution. As the liquid was moving in the system, the 

camera captured the movie, showing the images of the fluidic system in real time. These images 

could then be sent to a calculation station for extracting data from raw frames.   
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Figure  A-2 | Optofluidic setup, using an LVF and a CMOS image sensor. The LED light is directed to the 

bottom glass layer of the microfluidic device via a cylindrical lens.  

A.5   Calibration Process to Eliminate the Dispersive Effect of Imaging Components   

As mentioned, the transmission profile of the LVF is flat, which means that the 

transmitted intensity at each point could represent the value of the power spectrum at that 

particular wavelength; however, there were many dispersive components in the system that 

modulated the transmission spectrum in such a way that it was highly wavelength dependent. 

The main dispersive element was the absorption filter with a non-flat transmission function in the 

visible spectrum. The second dispersive component in the system was the CMOS image sensor 

that contained red, green, and blue pixels. In addition to the dispersion caused by pixel arrays, 

the glass material of the lenses and microfluidic device manipulated the emission spectrum of 
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flowing particles before reaching the CMOS camera. Moreover, in some image sensors, due to 

the limited accessibility of the software for modifications, there is no access to the raw frames, 

and what we obtain from them has modified color distribution over the whole spectrum. As a 

result, there is unwanted spectral dispersion added to the physical dispersion part. Acquiring the 

correct transmission function required a calibration process to compensate the dispersion effect 

by quantifying the coefficient of increasing or decreasing the transmission spectrum versus the 

wavelength.   

 

Figure  A-3  |  Bench-top optofluidic setup using microfluidic device on an LVF, shown in (a) top view and (b) 

side view. 

The calibration process was carried out using a wavelength scanning monochromator 

device. In this way, the light from a monochromator was brought to the set-up via a fiber bundle 
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and was projected on the surface of the LVF using a beam expander, while all other components 

were already in the system. A diffuser was placed on top of the microfluidic device to provide 

spatially incoherent illumination in order to simulate the excitation behavior of fluorescent 

particles. By scanning the monochromator wavelength over the area expected to cover the 

emission spectra of fluorescent particles under investigation, we also provided part of the light 

from the monochromator to a spectrometer using a beam splitter in the path. This method not 

only supplied the bandwidth of illumination light at each wavelength but also made it possible to 

record the intensity of the light coming from the monochromator and therefore to neutralize the 

wavelength dependency of the monochromator light intensity. Having around 2 nm of bandwidth 

for the monochromator output light made possible 2 nm steps in the scanning range. For each 

wavelength, we captured a frame by the CMOS camera that represented how a single wavelength 

excitation was mapped to a particular location with a modulation amplitude factor.  

A.6   Tracking Moving Beads and Calibration Spectra Assignment 

This part explains the technique by which the emission spectrum can be extracted out of 

frames captured by a CMOS camera. To achieve this aim, an algorithm that would track and 

target flowing beads in movie frames and then assign the spectral transmission function was 

necessary.  

After scanning the wavelengths and capturing corresponding frames, we obtained the 

calibration frames by wavelength scanning monochromator. For each bead-coordinate in every 

frame, there was N-intensity values (N is the number of wavelengths) obtained from extracting 

the intensity values from N calibration frames at that location ( see Fig.A-4).  Therefore, there 

was an M × N calibration matrix in which the spectral transfer function from moving coordinates 
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was embedded, and an M × 1 matrix containing the intensity values of the fluorescent bead, and 

the aim was to find the N × 1 emission spectrum of the bead.   

 

Figure A-4 | (a) Calibration frames captured by scanning monochromator wavelength. By mapping these 

frames with the moving particle location, as shown in (b), the calibration spectra can be calculated.  

It should be noted that the transmission spectrum from each point of the LVF to the 

CMOS had a certain bandwidth for which it was necessary to apply one step of deconvolution 

analysis in order to recover the emission spectrum.  

A.7   Spectrum Recovery Using Compressive Sensing  

To solve the linear matrix equation, an algorithm capable of dealing with noisy known 

data values with a dimension possibly smaller than the unknown matrix dimension (M<N) was 

needed. 
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Figure  A-5 | Inverse linear equation, for use when the intensity of bead emission in all frames and calibration 

spectra are known. 

Compressive sensing could be regarded as a good candidate for this purpose if we can 

present an unknown data matrix in a sparse domain. Since the emission spectra of beads have a 

simple shape with one smooth curve, Discrete Fourier Transform (DFT), which provides sparse 

results on smooth curves, was selected [90], [91]. 
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Figure  A-6  |  Multiplying components of spectrum recovery equations with DFT matrix transform in order 

to gain a sparse matrix for an unknown matrix that can be solved using compressive sensing.  

The calibration spectrum that we assigned to each coordinate was similar to the 

transmission function of the LVF at that point, but it was not the same, in terms of peak 

wavelength or intensity. One simple way to use calibration spectra to recover the emission 

spectrum without solving an inverse linear equation is to assign the wavelength corresponding to 

the peak value for each calibration spectrum to the emission intensity of the flowing bead at that 

coordinate for the whole travel path. We call this plot method 1-1 mapping since it picks the 

intensity plot of the emission bead and, just by mapping the location to the wavelength, outputs 

the emission spectrum. 

The plot obtained in this way and the recovery results of the compressive sensing method 

are shown in the Fig. A-7. For this experiment, by using a similar tracking code to the one that 

was used in [88], we picked 41 points for 1-1 mapping and 10 points for CS recovery. A good 

match for the recovery, especially for the peak area, is demonstrated. 

I-1
I-2

I-M

=

C11 C12 C1N
T-1
T-2

T-N

.

.

.

.

.

.

.

C21 C22 C2N

CM1 CM2 CMN

.

.

.

.

.

.

.

.

.

.

.  .  .  .  .

.  .  .  .  . 

DFT
Matrix

DFT
Matrix

Transformed 
Measurement Matrix

Transformed 
Unknown Matrix

Calibration Matrix

.

.

.

.

.

.

.

.

.

.

.  .  .  .  .



 

98 

 

 

Figure A-7 | (a) Emission intensity of the moving particle vs. length. (b) Emission spectrum recovery 

employing 1-1 mapping using calibration spectra. (c) Emission spectrum recovery using compressive sensing 

and the calibration spectrum.  

A.8   PDMS-Based Microfluidic Device Fabrication  

We used the standard soft lithography process for PDMS-based microfluidic device 

fabrication [88]. The PDMS polymer and the curing liquid were well mixed at the ratio of 10:1. 

The many bubbles that resulted from the mixing were eliminated by putting the whole mixture in 

a stable place for about an hour. A microfluidic mold had been previously made with optical 

lithography with SU-8 in Nanolab on a 4-inch silicon wafer. The degassed PDMS solution was 

poured onto the mold surface, and then the mold with the mixture was placed in a 75°C dry bake 

for two hours. In cases when the exact recommended ratio between PDMS and its agent is 

attained, the final material can be peeled from the mold without leaving a trace [88]. 

For the microfluidic device substrate samples, we chose 100 µm-thickness glass, which 

was very well cleaned with detergent and treated with plasma for one minute to strengthen the 

adhesion of the glass surface to the PDMS material. Right after the plasma treatment, we placed 
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the PDMS layer that contains the microfluidic chambers on the surface of the glass so that it 

stuck to the substrate and formed the microfluidic device. Placing tubes and connecting them to 

the syringe pump were the next steps to complete the flow system [88]. 

A.9   Optofluidic Fluorescent Multicolor Imaging Cytometry on a Cellphone 

Cellphones are widely used devices that contain an imaging and processing system as 

well as wireless technology in one small unit. This fact gave our research group the idea of using 

this inexpensive and ubiquitous device as a form of biomedical imaging technology, and 

demonstrations of microscopy [92], [93] and flow cytometry [88] have been presented by the 

Ozcan Research Group [88].  The whole cytometer is made up of an inexpensive and compact 

optical attachment that is placed on top of a cellphone. The attachment carries a lens and a 

sample holder. The lens to be added to the system is intended to bring the image of the biological 

sample to the farfield so that the camera lens whose focal length is equal to its distance to the 

cellphone camera will image.  There is a demagnification of the object size to the image size, 

which is equal to the ratio between the focal length of the added lens and the focal length of the 

cellphone camera lens. With this device, green labeled white blood cells (WBCs) were imaged, 

with the same resolution and image quality as obtained by a 40X regular fluorescent microscope. 

In addition, a flow of labeled WBCs were flushed to the system, and using the image-processing 

algorithm applied on the movie captured by the cellphone, the number of cells was counted with 

approximately 95% accuracy [88]. 

Not only can spectroscopy be performed with a cellphone, the same platform can be used 

for differentiating colorful particles based on their emission spectra. This means that the 
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emission intensity over the LVF length can be used for labeling and classifying particles without 

the need for providing the exact spectral information. 

The extra lens that we added to the system had the focal length of 4.5 mm. That resulted 

in almost no demagnification from the particles to the camera image sensor. A glass capillary 

that was placed directly on top of the LVF had the inner diameter of 0.2 mm and outer diameter 

of 0.3 mm. The LED light was coupled to the capillary through direct touching, with a droplet of 

index-matching oil as the interface. As fluorescent particles traveled through the capillary from 

the sample pool to the syringe pump, they were excited by blue light guided inside the capillary. 

The emission light by fluorescent beads reached to the CMOS camera, while the blue light not 

contained in the capillary due to scattering and insufficient blocking was barricaded by an 

absorption filter placed between two lenses. When there was flow in the system, the cellphone 

image sensor recorded a movie with 24 fps whose frames could be analyzed in either a cellphone 

processor or a remote PC.  
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Figure A-8 | Schematic of the optical components of the optofluidic multicolor imaging cytometry on a 

cellphone. The capillary is guiding LED light coupled by index-matching oil.  

 

Figure  A-9  |  The entire optofluidic imaging multicolor cytometer on a cellphone.  
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A.10  Bead Detection and Advanced Tracking Algorithm 

I mentored and collaborated with an MSc student, Swati Padmanabhan, for the particle 

counting project. She provided the coding for tracking and classification that I used. Some of the 

explanations and descriptions about tracking and classification in this chapter have been 

provided more comprehensively in her final MSc thesis report [94]. 

The detection algorithm we used here is similar to the algorithm used for single-color 

cytometry [95], with some advances. The main difference lies in having non-uniform 

thresholding over the LVF because we had different intensity values transmitted from the LVF, 

and a single uniform thresholding could not be applicable. After detection, the next step was to 

apply a tracking algorithm to obtain the spectral information.. For this, we did not rely on the 

previous code, as there were some problems when using it in cases of high concentrations of 

solutions. Instead, we chose the object-oriented method so that we could save a history of all 

beads. This helped us avoid counting a bead twice if it became faint or lost in a few frames [94]. 

One important step in tracking the algorithm was to estimate the location of the bead in 

the next frame, which is known as motion estimation in the video processing community [96]. 

An algorithm for location prediction based on the correlation method was deployed. When a 2D 

correlation of a window was applied around one bead position in the current frame and the next 

frame, the correlated image had the maximum value at the location where the bead was sitting in 

the next frame. Afterwards, by filtering the correlated image with a 2D Gaussian image centered 

at the roughly estimated bead location, we could achieve the final prediction of the bead location, 

which was used for the bead search (based on local maxima) in the next frame [94], [97]. 
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A.11  Classification Method Using k-Nearest Neighbor (k-NN) Classification 

To differentiate and classify bead spectra corresponding to various particle types, the k-

NN classification algorithm was used [94], [98] and applied it on the emission plots. This 

processing step, along with the tracking and counting method, resulted in counting particles that 

belonged to one category. One straightforward classifier that assigns an unknown new-coming 

object to a group is called k-nearest neighbor, or k-NN. This picked the k members in the 

calibration or training data with the smallest distance from the unlabeled element, and after a 

voting process based on the majority of known objects that had the minimum distance, we 

determined the group to which the new objects belonged. As obvious from the explanation, the 

key parameters of this classifier were (a) a set of labeled or training data from known and already 

correctly classified data, (b) a measurement metric for defining the distance metric, and (c) k as 

the number of labeled elements to be chosen for the final decision [99–102]. 

 

Figure A-10 | The distance from an unknown object, shown by the empty red circle to six known already 

labeled beads, for a two-dimensional problem in k-NN classification with k = 6 [101]. 
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In our work, we defined 𝑥⃗ and  𝑦⃗ as two data sets of interest with vector information 

represented as follows [98]: 

𝑥⃗ = (𝑥1, 𝑥2, … , 𝑥𝑛)    𝑎𝑛𝑑   𝑦⃗ = (𝑦1, 𝑦2, … ,𝑦𝑛) 

The distance between these two points used in our processing is Euclidean distance, which is 

defined mathematically as below:  

𝐷(𝑥⃗, 𝑦⃗) = �(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯+ (𝑥𝑛 − 𝑦𝑛)2 

In our classification project, we sampled the LVF length at equal distances in 25 

positions, regardless of the number of segments we chose for non-uniform thresholding. This 

number was chosen based on experimental specifications, and we achieved good results with it. 

A.12  Calibration Procedure and Experimental Results  

As explained in the previous section, for the k-NN classification, we needed a set of data 

whose labels were known. In our experimental set-up, we let a small flow of known bead colors, 

such as red and green, pass through the capillary volume separately. A movie corresponding to 

each bead color type was recorded and employed to extract calibration data. This data was then 

used in analyzing a mixture of different colored beads. The calibration spectra were obtained 

when the emission spectra of beads of a single color were non-uniformly thresholded and 

sampled at equal spaces, and the final data set was used for final comparison. The number of 

fluorescent particles we needed for the calibration spectra could be less than 100, and it could be 

achieved by a 30-second flow with a reasonable concentration. After the calibration procedure, a 

mixture of different beads was used for testing purposes. At this stage, two processes needed to 

run in parallel. The first one involved tracking each bead and taking out its spectral data set to 

compare with the calibration data for label or color identification.  

(5-1) 
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The second step was to update the number of beads in each group, based upon the decision made 

in classification. Knowing the concentration of beads in the solution (by previous examination) 

and the syringe pump liquid flow rate, we could predict the number of beads over the time per 

frame.  

 

Figure  A-11  |  Experimental data comparing the expected number of beads in a solution with the number of 

beads counted (indicated with ‘*’) for each color.   

A.13  Conclusion 

In this chapter, I introduced an optofluidic multicolor cytometry and spectroscopy device 

installable on a cellphone. The device, based on advanced tracking and a k-NN classification 

algorithm, is capable of differentiating fluorescent particles in a liquid flow (based on their 

emission spectra) and counting the number of particles corresponding to each color. This 

handheld device can be used for blood analysis when various blood cells, such as CD4 and CD3 

cells, are labeled with different fluorescent or quantum dot particles.  
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