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Abstract

Circadian rhythms (lasting approximately 24 h) control and entrain various physiological 

processes, ranging from neural activity and hormone secretion to sleep cycles and eating habits. 

Several studies have shown that time of day (TOD) is associated with human cognition and 

brain functions. In this study, utilizing a chronotype-based paradigm, we applied a graph theory 

approach on resting-state functional MRI (rs-fMRI) data to compare whole-brain functional 

network topology between morning and evening sessions and between morning-type (MT) and 

evening-type (ET) participants. Sixty-two individuals (31 MT and 31 ET) underwent two fMRI 

sessions, approximately 1 hour (morning) and 10 h (evening) after their wake-up time, according 

to their declared habitual sleep-wake pattern on a regular working day. In the global analysis, the 

findings revealed the effect of TOD on functional connectivity (FC) patterns, including increased 

small-worldness, assortativity, and synchronization across the day. However, we identified no 

significant differences based on chronotype categories. The study of the modular structure of the 

brain at mesoscale showed that functional networks tended to be more integrated with one another 

in the evening session than in the morning session. Local/regional changes were affected by 

both factors (i.e., TOD and chronotype), mostly in areas associated with somatomotor, attention, 

frontoparietal, and default networks. Furthermore, connectivity and hub analyses revealed that 

the somatomotor, ventral attention, and visual networks covered the most highly connected 

areas in the morning and evening sessions: the latter two were more active in the morning 

sessions, and the first was identified as being more active in the evening. Finally, we performed 

a correlation analysis to determine whether global and nodal measures were associated with 

subjective assessments across participants. Collectively, these findings contribute to an increased 

understanding of diurnal fluctuations in resting brain activity and highlight the role of TOD in 

future studies on brain function and the design of fMRI experiments.

Keywords

Functional connectivity; Resting-state fMRI; Graph theory; Network analysis; Circadian rhythm; 
Chronotype; Brain networks

1. Introduction

Circadian rhythms are endogenous oscillations with a periodicity of approximately 24 h 

in most living organisms. They have an impact on a variety of physiological phenomena, 

including the sleep-wake cycle (Borbély, 1982; Dijk and Lockley, 2002; Schmidt et al., 

2012), body temperature (Refinetti and Menaker, 1992), endocrine and metabolic rhythms 

(Hastings et al., 2007), gene expression (Storch et al., 2002), and musculoskeletal activity 

(Aoyama and Shibata, 2017), as well as a wide range of brain functions (Dibner et al., 

2010; Schmidt et al., 2007). Studies of brain function in humans have shown that circadian 

variations also have an impact on a wide variety of abilities, such as attention (Valdez et 

al., 2005), working memory (Ramírez et al., 2006), motor (Edwards et al., 2007), and visual 

detection (Tassi et al., 2000). These studies investigated function using multiple scales of 

brain organization, from the level of individual cells and synapses (Gilestro et al., 2009; 
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Kuhn et al., 2016; Vyazovskiy et al., 2008) to brain regions and large-scale functional 

connectivity (Blautzik et al., 2013; Hodkinson et al., 2014; Orban et al., 2020; Shannon et 

al., 2013; Steel et al., 2019).

The chronotype-based paradigm is susceptible to circadian and homeostatic rhythms, which 

provides a suitable way to measure the effects of sleep-wake regulation on cerebral 

mechanisms (Schmidt et al., 2007). A chronotype—a biologically driven circadian typology

—refers to individual differences in sleep-wake cycles, diurnal preferences, and alertness 

throughout the day (Roenneberg et al., 2003; Susman et al., 2007). Questionnaires have 

reliably confirmed the differences in chronotypes (Adan and Almirall, 1991; Horne and 

Östberg, 1976), which have been shown to be strongly correlated with the physiological 

properties of circadian rhythms, including melatonin levels, core body temperature, rest/

activity cycles, midsleep point, heart rate, blood pressure, and physical activity (Adan et 

al., 2012; Anderson et al., 2017; Facer-Childs and Brandstaetter, 2015; Roeser et al., 2012). 

Genetic factors have been shown to associate with diurnal preference and homeostatic 

regulation of sleep. One of the most extensively studied clock genes is the primate-specific 

gene PERIOD3 (PER3). In humans, the variable number tandem repeat (VNTR) in the 

PER3 gene, consisting of either 4 or 5 repeated 54 base pair sequences encoding 18 amino 

acids, affects circadian typology and sleep homeostatic drive (for a review, see Archer et al., 

2018).

Traditionally, individuals fall into the morning (“early larks”) or evening (“night owls”) 

chronotypes. Morning chronotypes typically have physiological and mental peaks that are 

shifted toward the earlier hours of the day, while evening chronotypes are more active 

later in the day (Bailey and Heitkemper, 2001; Kerkhof and Dongen, 1996). There is some 

evidence that polymorphism of the PER3 gene is associated with individual differences 

in circadian and sleep phenotypes. The PER3 4-repeat allele has been associated with 

“eveningness,” whereas PER3 5/5 is linked with “morningness” and greater homeostatic 

sleep pressure (e.g., Archer et al., 2018; Liberman et al., 2017; Viola et al., 2007). Various 

studies have shown that people with different chronotypes have significantly different 

diurnal profiles of cognition and behavior (Horne et al., 1980; Norbury, 2020; Schmidt 

et al., 2007; Valdez et al., 2012). Circadian variations in performance-related neural activity 

have been reported in studies utilizing chronotype-based paradigms (e.g., Facer-Childs et al., 

2019b; Fafrowicz et al., 2009; Gorfine et al., 2007; Peres et al., 2011; Schmidt et al., 2009, 

2012, 2015; Vandewalle et al., 2009, 2011).

Although extensive research has been carried out on the effects of circadian rhythms on 

behavior, few studies have investigated the impact of time of day (TOD) and chronotype 

on functional magnetic resonance imaging (fMRI) activity (Blautzik et al., 2013; Cordani et 

al., 2018; Fafrowicz et al., 2019; Gorfine and Zisapel, 2009; Hodkinson et al., 2014; Jiang 

et al., 2016; Marek et al., 2010; Peres et al., 2011; Schmidt et al., 2012; Shannon et al., 

2013; Steel et al., 2019). The studies that have been performed often yielded contradictory 

or even ambiguous findings. Also, most fMRI studies assume that diurnal fluctuations of 

brain connectivity patterns and human chronotypes are relatively in-significant and unlikely 

to lead to a substantial systematic bias when performing group analyses (Orban et al., 2020).

Farahani et al. Page 3

Neuroimage. Author manuscript; available in PMC 2022 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, we tried to bridge the gap using a graph-based approach. In recent years, the 

application of graph theory in neuroimaging studies to analyze the human brain connectome 

has received much attention (Bassett and Bullmore, 2009; Bullmore and Sporns, 2012, 2009; 

Farahani et al., 2019b; Rubinov and Sporns, 2010). In terms of circadian rhythms, the few 

studies that have been conducted using graph theory (Anderson et al., 2017; Farahani et 

al., 2019a) mainly focused on task-based data and did not consider chronotypes. However, 

many other cognitive and behavioral studies have performed analyses of network properties 

that feature graph theory, including those focused on human intelligence (Hilger et al., 

2017), lifetime trajectory (Finotelli et al., 2018; Gozdas et al., 2018), working memory 

performance (Markett et al., 2018), perception (Sadaghiani et al., 2015), and fatigue (Petruo 

et al., 2018). Graph theory has also been applied to the study of a wide range of neurological 

and psychiatric disorders, including epilepsy (Evangselisti et al., 2018), Alzheimer’s disease 

(Hojjati et al., 2017), multiple sclerosis (Eijlers et al., 2017), autism (Sadeghi et al., 2017), 

and attention-deficit/hyperactivity disorder (dos Santos Siqueira et al., 2014).

This paper is an extension of the work published by Farahani et al. (2021), and it utilizes the 

same experimental dataset, though it introduces significant methodological improvements. 

Here, using concepts from network neuroscience, we examined the effect of TOD on 

resting-state fMRI (rs-fMRI) functional connectivity while taking into account subject 

chronotypes. We compared the brain network properties—at different topological scales 

including local, meso and global—between the morning and evening sessions, as well 

as “early larks” and “night owls.” We found greater small-worldness, assortativity, and 

synchronization as the waking time increased, although there was no chronotype effect. 

In the mesoscale analysis, we found that systems were more inclined to integrate in 

the evening than in the morning. The local/regional analysis revealed significant changes 

in both factors under study—TOD and chronotype—which were primarily associated 

with the somatomotor, attention, control, and default-mode networks. Furthermore, due to 

the homogeneity inefficiency in the parcellation we used previously (i.e., the automated 

anatomical labeling atlas; Tzourio-Mazoyer et al., 2002)—which may not represent the 

structure of resting-state functional connectivity (FC) well (Craddock et al., 2012; Gordon 

et al., 2016; Shen et al., 2013)—in this study, we identified areas of interest using cortical 

Schaefer/Yeo parcellation (Schaefer et al., 2018), in which each node is preassigned to a 

functional network. As a result, we noticed significant changes, particularly in the local and 

mesoscale analyses, that were not detected in the previous study. Within the context of our 

findings, it is clear that TOD may influence connectivity patterns in resting-state fMRI data, 

making this variable a potentially vital factor to consider in future rs-fMRI experiments.

2. Methods

2.1. Participants and study procedures

Participants were recruited through online advertisements on the laboratory’s website and 

Facebook page. A total of 5354 volunteers participated in the first stage of selection; they 

were asked to complete three questionnaires: the Chronotype Questionnaire (Oginska et 

al., 2017) for assessing diurnal preferences, the Epworth Sleepiness Scale (ESS; Johns, 

1991) for measuring daytime sleepiness, and the sleep-wake assessment (real versus ideal 
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wake-up and bedtimes). Individuals reporting excessive daytime sleepiness were excluded 

from the study, as determined by a cutoff ESS score of 10 or fewer points. Four hundred 

fifty-one participants were divided into morning or evening chronotypes. All participants 

underwent genotyping to identify PER3 VNTR polymorphisms in DNA isolated from 

buccal swabs using a DNA Gen-eMATRIX Swab-Extract DNA Purification Kit (EURx, 

Gdańsk, Poland) according to the manufacturer’s protocol. Only individuals who were 

homozygous for the PER3 4 (evening-type [ET] circadian typology) and PER3 5 (morning-

type [MT] circadian typology) alleles were included in the study. Other selection criteria 

included an age between 20 and 35 years, right-handedness—as indicated by the Edinburgh 

Handedness Inventory (Oldfield, 1971)—a regular TOD schedule with no sleep debt, no 

neurological or psychiatric disorders, no addiction, normal or corrected-to-normal vision, 

and no contraindications to magnetic resonance imaging (MRI). We identified 73 young, 

healthy participants (39 women; age: 23.97 ± 3.26 years) who met these criteria and selected 

them for the study. Demographic information and the results of the questionnaires are 

provided in Table 1.

Resting-state fMRI was performed twice, in a morning and evening session, about 1 and 

10 h, respectively, after awakening from nighttime sleep. The order of the sessions was 

counterbalanced across the study sample. The participants were asked to maintain a regular 

sleep-wake schedule for one week before the study, which was monitored using Motion 

Watch 8 actigraphs. These actigraphs were also worn to supervise participants’ sleep length 

and quality during the study days. Actigraphy results are provided in Table 2. The night 

before the morning sessions, the participants slept in the same building as the MRI scanner. 

All participants abstained from alcohol (48 h) and caffeine (24 h) before the MRI scanning 

sessions and were only allowed to engage in non-strenuous activities during study days. 

The study was approved by the Institute of Applied Psychology Ethics Committee of the 

Jagiellonian University (Krakow, Poland). Written informed consent was provided by all 

participants in accordance with the Declaration of Helsinki.

2.2. Data acquisition

MRI studies were conducted using a 3T Siemens Skyra MR system equipped with a 

64-channel head coil. Anatomical data were acquired through a sagittal 3-dimensional 

T1-weighted MPRAGE sequence. Ten minutes of resting-state blood oxygenation level-

dependent (BOLD) images were scanned using a gradient-echo single-shot echo-planar 

imaging sequence with the following parameters: repetition time (TR) = 1800 ms; echo time 

(TE) = 27 ms; field of view (FOV) = 256 × 256 mm2; slice thickness = 4 mm; and voxel 

size = 4 × 4 × 4 mm3 with no gap. A total of 34 interleaved transverse slices and 335 vol 

were collected for each participant. The subjects were instructed to remain awake with their 

eyes open and to avoid thinking of anything deliberately throughout the scanning session. 

The participants were monitored using an eye-tracking system to ensure that they remained 

awake throughout the scan (Eyelink 1000, SR Research, Mississauga, ON, Canada).

2.3. Data preprocessing

Data preprocessing was performed using DPABI software (http://rfmri.org/dpabi) based 

on Statistical Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) on the 
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MATLAB platform (MathWorks, Inc., Natick, MA). Due to signal equilibration, the first 

ten volumes were discarded. This was followed by slice timing and realignment with an 

appraisal of voxel-specific head motion. The head motion parameters were determined 

for each participant; those with movements above 3 mm translation and 3° rotation 

were excluded from further examination. A total of four participants were excluded due 

to excessive head movements. Next, functional scans were registered using T1 images 

and normalized to the Montreal Neurological Institute (MNI) template using DARTEL 

(Ashburner, 2007) at a resolution of 3 × 3 × 3 mm3. In total, seven participants were 

excluded due to low-quality image registration. Functional data were spatially smoothed 

using a 4-mm fullwidth half maximum (FWHM) Gaussian kernel to increase the signal-to-

noise ratio. The signal was band-pass filtered (0.01–0.1 Hz). Finally, the nuisance signals 

(24 motion parameters, cerebrospinal fluid, and white matter signals) were removed from 

the time course of each voxel (Behzadi et al., 2007). We did not regress out the global signal 

to keep any additional information (Liu et al., 2017).

2.4. Brain network construction

Our analysis pipeline is shown in Fig. 1. A large-scale brain network consists of a finite 

set of nodes (e.g., single neurons or anatomical brain regions) that are connected by 

edges (e.g., structural or functional connections between nodes). We specified the nodes 

by parceling the brain into seven systems/networks consisting of 200 cortical regions of 

interest (ROIs) from the Schaefer-Yeo atlas (Schaefer et al., 2018; Fig. 1C). In this atlas, 

each node is preassigned to one of the following systems/networks: visual, somatomotor, 

dorsal attention, salience/ventral attention, limbic, frontoparietal, or default mode. Then, 

the average BOLD time series across all voxels within each ROI were extracted separately 

(Fig. 1D). The connectivity between each pair of ROIs was then computed using Pearson’s 

correlation coefficient. The correlation values were converted into z-values using Fisher’s 

r-to-z transformation to improve the normality. At this stage, a symmetrical weighted 

connectivity matrix (adjacency matrix) with a size of 200 × 200 was constructed for each 

participant (Fig. 1E).

To reduce the number of spurious connections in the fully weighted matrices (Power et al., 

2011), we adopted a thresholding procedure based on network density to preserve the ratios 

of the strongest connections and remove the weaker links (van den Heuvel et al., 2017). 

This procedure leads to equal network density across all participants (i.e., an equal number 

of edges), crucial for comparing network topology within or between participants (Gamboa 

et al., 2014). The sparsity threshold used in this study ranged from 0.05 to 0.5 with an 

interval of 0.05 to prevent the creation of either disconnected or densely connected networks 

(Wang et al., 2020). This step was followed by binarizing the thresholded matrices to render 

the computational complexity more tractable (Fig. 1F). We used the absolute value of all 

correlations in weighted matrices for binarization. In this study, we used both the weighted 

and binary matrices depending on the type of analysis (i.e., global, mesoscale, local, or 

hub analysis) described in the following sections. Fig. 2 displays the average weighted 

and binary matrices across participants in the morning and evening sessions. This figure 

indicates the allocation of nodes to each of the Schaefer-Yeo systems by colored rectangle 

patches as tick labels along axes.

Farahani et al. Page 6

Neuroimage. Author manuscript; available in PMC 2022 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5. Computation of graph measures

2.5.1. Global and local metrics—Using binary undirected matrices, we examined 

the topological features of functional brain networks for each subject across a range of 

cost thresholds at the global and local levels with the brain connectivity toolbox (BCT; 

Rubinov and Sporns, 2010) and the GRETNA toolkit (Wang et al., 2015). Table 3 provides 

mathematical definitions and descriptive explanations of each network statistic. Global 

metrics principally measure the functional segregation and integration of brain networks. 

Thus, we calculated global efficiency, mean clustering coefficient, characteristic path length, 

small-worldness, assortativity, and synchronization. Local network measures were calculated 

separately for each node (region) by examining the nodal centrality and density of network 

hubs (i.e., nodes with more than the average number of links). Hubs can be classified as 

either provincial or connector, which contain mostly local connections within a module 

or both local and long-range links that connect nodes in different modules, respectively. 

We calculated the most common local properties, including degree centrality, betweenness 

centrality, nodal clustering coefficient, nodal efficiency, and participant coefficient (Rubinov 

and Sporns, 2010).

2.5.2. Mesoscale metrics—We utilized a multi-layer (or multi-slice) community 

detection algorithm (Mucha et al., 2010) to explore the modular structure of the resting-state 

brain networks across individuals. Each layer corresponds to an individual’s functional 

connectivity matrix (weighted matrix). This algorithm ensures that the community 

assignments (labels) are preserved across layers, thus making them comparable to each 

other. The multi-layer modularity function Q is generally initialized with two crucial 

parameters, structural resolution γ and interlayer coupling ω (see Table 3 for mathematical 

definitions). They tune the size of modules within each layer and the number of modules 

across layers, respectively. Although finding the optimal ω and γ is not straightforward, 

strategies for achieving reasonable solutions have been proposed (Tardiff et al., 2021). In this 

study, we first formed a 2D discrete parameter space inspired by previous studies (γ ∈ [0.5, 

1.5] with a step size of 0.05; ω ∈ [0, 1] with a step size of 0.05). Then, we performed the 

modularity maximization procedure for all (γ, ω) combinations in the space and selected the 

corresponding parameter values with the highest Q, which resulted in γ = 1.2 and ω = 0.1. 

In each run, the multi-layer modularity function outputs the community labels in addition to 

Q, which are used to create the module allegiance matrix.

The module allegiance matrix (Figs. 4A and 4B) represents the fraction of layers in 

which two nodes belong to the same community (Bassett et al., 2015). To construct an 

allegiance matrix, we created a co-occurrence matrix (200×200) for each layer, wherein 

the ijth element is equal to 1 if the nodes i and j have a shared community label, and 0 

otherwise. The average of all co-occurrence matrices across layers (62 layers per session) 

forms the allegiance matrix; thus, its elements range from 0 to 1. Based on the module 

allegiance matrix, we computed two network coefficients at the mesoscale called recruitment 
and integration (Bassett et al., 2015) to compare community structure between the target 

populations (see Table 3 for mathematical definitions).
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2.6. Statistical tests

For global and local analyses, we applied a non-parametric permutation test (p-values 

were estimated from 30,000 permutations of group labels) in a mixed-design ANOVA to 

compare the mean differences between groups (considering the interaction effect) in which 

the within-subjects factor represented TOD, and the between-subjects factor represented 

chronotype (Anderson, 2001). For mesoscale and correlation analyses, we used one-way 

permutation tests to examine the difference between sessions (i.e., morning and evening) and 

detect correlations’ significance, respectively. This approach does not require distributional 

assumptions (Nichols and Holmes, 2002). A false discovery rate (FDR) correction was 

applied to all statistical tests (Benjamini and Hochberg, 1995).

3. Results

3.1. Global analysis

We compared FC between morning and evening sessions and found significant differences 

in small-worldness, network synchronization, and assortativity (Fig. 3). No statistical 

evidence of change was found in any other global measures. Small-worldness (Fig. 

3A) decreased with higher network sparsity in both sessions. Compared with the 

morning session, results from the evening session revealed higher small-worldness at 

a sparsity of 0.05 and 0.1 (p < 0.05, FDR corrected), which did not differ between 

chronotypes. Assortativity (Fig. 3B ) and network synchronization (Fig. 3C) increased 

with higher network sparsity in both sessions. Our analysis revealed that assortativity and 

synchronization were significantly higher during the evening session than the morning 

session at a sparsity of 0.3 to 0.5 (p < 0.05, FDR corrected), with no differences between 

chronotypes.

3.2. Mesoscale analysis

We used a multi-layer (multi-subject) modularity framework (Mucha et al., 2010) to 

compare the community structure of the functional connectivity between sessions. Although 

most multi-layer modularity studies are about uncovering time-varying patterns, other 

applications such as the study of communities across subjects or task states have been 

performed (Betzel et al., 2019; Zamani Esfahlani et al., 2021). So, we assumed each layer 

as the weighted connectivity matrix of each individual in this study. By operating the 

multi-layer modularity function and taking the community labels, we created a module 

allegiance matrix (Bassett et al., 2015) per session (Figs. 4A and 4B). The module allegiance 

matrix displays how 200 brain regions and 7 Schaefer-Yeo networks/systems are cohesively 

engaged across individuals (Mattar et al., 2015). Then we extracted the recruitment and 

integration coefficients from allegiance matrices (Bassett et al., 2015) to compare the 

modular structure between the morning and evening groups. See Methods on how to build 

these metrics.

These coefficients allow the functional interplay among brain regions and predefined/static 

functional systems to be quantified. Recruitment measures how a region is recruited to its 

own system across individuals, and integration measures the extent to which a region is 

integrated with other systems across individuals. Each row/column of the allegiance matrix 
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corresponds to a brain region whose average values inside and outside of its static system 

yield the recruitment and integration coefficients of that region, respectively. According 

to Figs. 4A and 4B, the warm block-like patterns along the diagonal of each quadrant 

in allegiance matrices confirm that predefined systems generally tend to be recruited than 

integrated with other systems across individuals (Cole et al., 2014).

Fig. 4C compares the recruitment coefficients of the 200 brain regions between the morning 

and evening sessions as a scatterplot with the linear regression fit (red line). We applied 

a permutation test by shuffling the group labels to see if the regression line differed 

significantly from the identity line. As can be seen, the recruitment results were consistent 

with the null (p > 0.05, FDR corrected). The recruitment coefficients are also plotted on 

top of the brain glass schematics in Fig. 4D for both sessions. This plot shows how brain 

regions differed in recruitment from their predefined/static system across participants. A 

similar scatterplot and brain glass for the integration coefficient are also shown in Figs. 4E 

and 4F, respectively. Contrary to recruitment results, these plots confirm that the difference 

in integration coefficients between the morning and evening sessions was inconsistent with 

the null (p < 0.05, FDR corrected). Notably, we found that the brain areas in the evening 

session were more integrated with the regions of other systems than in the morning.

In addition to regionally studying the brain as shown in Fig. 4 (i.e., thoroughly investigating 

the role of each region, both within its network and into other networks), a coarser 

granularity of brain interactions at the systemic scale across individuals could be explored by 

smoothing out regional information (Mattar et al., 2015). Therefore, we defined the system-

level module allegiance matrix so that its klth element was computed as the average of the 

values of all pairs of regions between systems k and l (including k = l) from the regional-

level module allegiance matrix (i.e., the mean of squares gridded with white lines). We then 

merged the information from both hemispheres, resulting in a 7 × 7 allegiance matrix that 

exhibits how regions from large-scale systems are engaged in the functional brain network 

(Fig. 5A). Next, using these allegiance matrices derived from both morning and evening 

sessions, we calculated and compared their recruitment and integration coefficients for 

systems instead of regions. For a given system, the recruitment coefficient is the probability 

that any region of that system has the same community label as the other regions within 

that system. Simply put, the diagonal elements of the allegiance matrix correspond to the 

recruitment coefficients of the large-scale systems. Also, the integration coefficient between 

each pair of systems is the average probability that regions in one system share the same 

community label as regions in another system (off-diagonal elements of the allegiance 

matrix). See Table 3 for detailed mathematical definitions.

Fig. 5A shows that the systems differed in their strength of network recruitment and 

integration in both morning and evening sessions. Some systems were more consistently 

recruited across participants, such as the visual and somatomotor networks. At the 

same time, some were less recruited, such as the dorsal attention, ventral attention, and 

frontoparietal networks (see diagonal elements). For a more transparent illustration of 

the integration measure, we also created a chord diagram per session (Fig. 5B) using 

off-diagonal elements of the allegiance matrices, in which the edges represent the network 

integration between the brain systems. Among all systems in both sessions, the visual 
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network was less integrated with other networks (also less in the morning than in the 

afternoon). We also found that the limbic, frontoparietal, and default networks tended to be 

well integrated among themselves. Finally, we observed that the somatomotor and ventral 

attention systems were well integrated. This graphical representation helps to understand 

better the complex patterns of integrations in a heterogeneous set of large-scale systems.

We also compared each system’s recruitment and average integration (to all other systems) 

between the morning and evening sessions in Fig. 5C. Thus, for each coefficient and in each 

system, we performed a permutation test in which the group labels were shuffled repeatedly 

to check whether the difference in sessions was in line with the null or not. Significant 

differences are marked with an asterisk above each pair of bars (p < 0.05, FDR corrected). 

We found that all systems were more integrated with most other systems in the evening 

than in the morning. While there were significant differences for the recruitment coefficient 

only in the dorsal attention and frontoparietal systems, the former decreased and the latter 

increased during the day. Despite all these variations, the systems generally tended to be 

more recruited than integrated with other systems across individuals, reflecting the cohesive 

nature of large-scale systems in the brain (Mattar et al., 2015).

3.3. Local analysis

Table 4 summarizes brain regions that exhibited significant differences between the morning 

and evening sessions (first factor) and between the “lark” and “owl” participants (second 

factor), based on their nodal/local properties in more than half of the network sparsity. As 

shown in Table 4, the measures of degree, betweenness centrality, clustering coefficient, and 

nodal efficiency were computed for group comparisons. Most of these differences involved 

regions and their homotopic partners in the opposite hemisphere. No significant differences 

in participation coefficient and nodal shortest path were found for either factor (p > 0.05, 

FDR corrected). The results of the area under the curve (AUC) analysis for the degree, 

betweenness centrality, clustering coefficient, and nodal efficiency for all 200 brain regions 

are presented in Fig. 6. The AUC was calculated for each metric to provide a scalar not 

contingent on a particular threshold value (Wang et al., 2009; Zhang et al., 2011).

According to Table 4 and Fig. 6, compared with the morning session, the evening session 

showed a significantly higher nodal degree in the somatomotor network and in areas such 

as the bilateral superior temporal gyrus, and postcentral gyrus as well as a decreased degree 

of centrality in the left ventral attention network and regions such as the supramarginal 

and middle frontal (p < 0.05, FDR corrected). Similar results were obtained for nodal 

efficiency, together with a significant reduction in FC throughout the day in the left angular 

gyrus (p < 0.05, FDR corrected). Betweenness centrality analysis also showed a substantial 

increase in the evening session compared with the morning session in areas such as the 

bilateral precuneus as well as the right angular and right supramarginal gyri (p < 0.05, FDR 

corrected). Finally, the nodal clustering coefficient was higher in the evening session than in 

the morning session in the right superior temporal gyrus, while this value was lower in the 

left superior frontal gyrus and right angular gyrus later in the day (p < 0.05, FDR corrected).

In chronotype analysis (Fig. 7), degree centrality and nodal efficiency underwent a 

significant decrease in the bilateral dorsal anterior cingulate cortex and left insular cortex in 

Farahani et al. Page 10

Neuroimage. Author manuscript; available in PMC 2022 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the ET participants compared with the MT (p < 0.05, FDR corrected). Also, a comparison 

of the clustering coefficient and nodal efficiency characteristic of the left superior frontal 

gyrus showed significantly lower values in the ET than in the MT (p < 0.05, FDR 

corrected). Finally, the betweenness centrality in areas that included the bilateral dorsal 

anterior cingulate gyrus and right precentral gyrus showed significantly lower values in 

FC among the ET subjects compared to the results from the MT group (p < 0.05, FDR 

corrected).

3.4. Hub analysis

In this subsection, using a pre-determined modular classification that includes the visual, 

somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default mode 

network (Yeo et al., 2011), we identified network hubs (connector or provincial) for the 

morning and evening sessions, as well as for the MT and ET groups. In this regard, we 

found changes in hub organization across the TOD (Fig. 8). No significant differences 

were detected with respect to chronotype. The results presented in Fig. 8 are based on the 

average connectivity matrix (across all individuals for each scanning session). For ease of 

visualization, we selected a network density of 0.05. As can be seen, the identified hubs 

nearly overlap with one another in the morning and evening sessions, except for changes in 

the left frontal operculum insula (LH_SalVentAttn_FrOperIns_3, 4), right superior parietal 

gyrus (RH_DorsAttn_Post_5), right precentral ventral gyrus (RH_DorsAttn_PrCv_1), 

left precuneus (LH_Cont_pCun_1), and bilateral posterior cingulate cortex/precuneus 

(Default_pCunPCC_1, 2). We found that the somatomotor network contains more hubs 

than any of the other networks in both morning and evening sessions. Notably, its hubs 

are both provincial (i.e., within modular connections) and connector (i.e., between modular 

connections), at nearly the same ratio. In contrast, hubs in the ventral attention network are 

connector, while hubs identified in the visual network were mostly provincial. To examine 

connections among all regions and to identify hub types (i.e., connector or provincial), 

connectograms of both sessions were created using Circos software (Krzywinski et al., 

2009). The results are illustrated in Fig. 9.

3.5. Correlation analysis

A correlation analysis was performed to determine whether global and nodal measures 

throughout the day were significantly associated with variables of interest (e.g., ME scale, 

AM scale, and ESS) across participants while controlling for the differences among the 

covariates of no interest (e.g., age, sex, and clinical variables). The ME, AM, and ESS 

scores represent an individual’s chronotype preference, the strength of this preference, and 

the degree of sleepiness during the day, respectively. Overall, the number of significant 

associations was greater in the morning session than in the evening session. From a 

global perspective (Table 5 and Fig. 10), correlation analysis revealed significant negative 

associations between AM scores and both small-worldness and modularity in the morning 

session (p < 0.05, FDR corrected). We also found significant positive correlations between 

ESS and average path length and assortativity in the morning session and positive 

correlations between AM score and path length and assortativity in the evening session.
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From the nodal perspective, we found significant correlations between the degree centrality 

of various brain regions in both hemispheres and these subjective indicators (ME scale, 

AM scale, and ESS), mostly across the morning scanning session (Table 6 and Fig. 

11). In the morning session, significant negative correlations were found between AM 

scores and areas within the default network, including the left rostral anterior cingulate 

gyrus (Default_PFC_6), left precuneus (Default_pCunPCC_2, 4), right medial prefrontal 

cortex (Default_PFCm_4), and right posterior cingulate cortex (Default_pCunPCC_2); 

between ESS and the left pole of the superior temporal gyrus (Limbic_TempPole_3), 

the right lateral fronto-orbital gyrus (Cont_PFCl_1), and the right pole of the middle 

temporal gyrus (Default_Temp_1); and between ME scores and the left postcentral gyrus 

(SomMot_4) and the left pole of the superior temporal gyrus (Limbic_TempPole_4). 

Significant positive associations were found between AM scores and the bilateral precentral 

gyrus (left DorsAttn_FEF_1 and right SomMot_11) and between ME scores and the 

bilateral insula (SalVentAttn_FrOper_2 and Cont_PFCv_1), the left anterior cingulate gyrus 

(Default_PFC_8), and the right precentral gyrus (DorsAttn_FEF_1).

During the evening session, we identified significant positive associations between AM 

scores and the left middle occipital gyrus (Vis_11), right fusiform gyrus (Vis_2), and 

right superior occipital gyrus (Vis_14), as well as negative correlations between AM 

scores and the left precentral gyrus (DorsAttn_PrCv_1), bilateral lateral fronto-orbital gyrus 

(Limbic_OFC_1, 2), and right middle temporal gyrus (Default_Temp_4). No significant 

correlations were found between ESS and ME scores and the degree centrality of these brain 

regions.

4. Discussion

The current study, used rs-fMRI, a chronotype-based paradigm, and graph theory to examine 

the diurnal fluctuations of whole-brain connectivity architecture in 62 young, healthy 

participants. The study revealed meaningful information regarding the topological variations 

of the brain network during the day and organizational differences between the “lark” and 

“owl” groups, as well as associations of graph theory metrics with selected variables of 

interest (i.e., ME, AM, and ESS scores).

The main results can be summarized as follows: (1) Among the global measures, there 

was a significant increase in small-worldness, assortativity, and network synchronization 

in the evening session over the morning session (p < 0.05, FDR corrected). However, 

there was no compelling evidence of changes in any of the global metrics in chronotype 

(i.e., between MT and ET participants). (2) Mesoscale analysis showed higher brain 

systems/regions integration among themselves in the evening session. (3) Local graph 

measures varied during the day and between the two chronotypes, predominantly across 

the somatomotor, attention, and default-mode networks. (4) Analysis of the hubs revealed 

that the somatomotor network was the densest area of the brain in both sessions, but more 

so during the evening session, including both provincial and connector types, whereas hubs 

in the ventral attention network and visual network were primarily connector and provincial, 

respectively. (5) Correlation analysis revealed significant associations between the variables 

derived from the questionnaires (ME, AM, and ESS) and the nodal characteristics of several 
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brain regions in both scanning sessions, most of which were associated with the morning 

session.

4.1. Diurnal variations in the brain network as a whole (global properties)

A small-world network is an intermediary between a random and a regular grid that 

contains many short-range connections alongside a few long-range shortcuts (Watts and 

Strogatz, 1998). There are other ways to define a small-world network (e.g., by considering 

the physical length of connections), all of which suggest mathematically that small-world 

networks share relatively high transitivity and small mean geodesic distance (i.e., shortest 

path) between nodes. This property strikes an optimal balance between network integration 

and segregation (Bassett and Bullmore, 2006; Rubinov and Sporns, 2010). In our analysis 

of rs-fMRI data, we found high values of small-worldness for both scanning sessions 

(small-world networks generally have an σ of at least 1), albeit with significant superiority at 

highly sparse networks in the evening compared with the morning session. In another study, 

Anderson et al. (2017) explored how TOD affects functional brain networks in older healthy 

adults, and they found no topological changes in small-worldness during the resting state. 

It is noteworthy that the significant changes that we found occurred only at lower densities, 

and—as in Anderson et al. (2017), who considered a sparsity range of 0.1 to 0.7—we found 

no significant difference at rest during the day at densities above 0.1.

However, the small-worldness provides little information on the actual network organization, 

and comparing its values is not straightforward because this measure does not follow a 

linear relationship. A review study (Mark D. Humphries and Gurney, 2008) shows that when 

the wiring structure of a regular network is gradually moving towards an utterly random 

architecture, the small-worldness, σ, first increases to reach a peak, and then decreases. The 

nonlinear nature of the small-worldness complicates the assessment of two given networks 

as they may have similar values falling on either side of the peak, while their topological 

structure is different (i.e., one side could be more like a regular network while the other 

side could be more like a random network). To further elucidate the small-worldness, we 

performed a system-level analysis to see how communities/modules were organized in the 

network for both sessions (see mesoscale analysis in Results). Therefore, we found that the 

daily increase in small-worldness, primarily at lower densities (global analysis), was due to 

the higher tendency of large-scale networks to be integrated with one another in the evening 

session (mesoscale analysis). Collectively, these findings reflect a more efficient topology of 

the information flow—due to the slight addition of randomness—in the evening session than 

in the morning session.

Furthermore, our findings revealed an increase in network assortativity over the course of 

the day, which is a finding that overlaps with our previous results (Farahani et al., 2019a). 

Increased assortativity is related to a higher propensity for a node to connect to other 

nodes with the same or a similar degree (Newman, 2003; Foster et al., 2010), thereby 

increasing the likelihood that a nearby hub will be capable of supporting a faulty node. 

Finally, the results of network synchronization, which is a measurement used to assess how 

well all nodes oscillate in the same wave pattern, were not consistent with the findings 

reported by Barahona and Pecora (2002). They showed that in networks of low redundancy, 
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small-worldness results in higher synchrony than what is found in standard deterministic 

graphs, random graphs, and ideal constructive schemes. We discovered that small-worldness 

decreased and synchronization increased in morning and evening sessions as we moved from 

low to high sparsity. Notably, network synchronization was significantly higher during the 

evening scanning session than in the morning session. Overall, the findings of all global 

measures indicate that brain network organization varied throughout the day, a determination 

that might be associated with increased brain function and interaction from morning to 

evening.

4.2. Diurnal variations in the community structures (mesoscale properties)

Higher integration of DMN, limbic system, and frontoparietal regions in the evening 

session, revealed in the current study, has been previously proven to be associated with 

deliberate (not spontaneous) mind-wandering (Golchert et al., 2017). The above state of 

mind is thought to reflect cognitive control. Other studies indicate that individuals with 

higher control are better at modulating mind-wandering under task demands, presumably 

making it more efficient (Smallwood and Andrews-Hanna, 2013; Smallwood and Schooler, 

2015). Interestingly, according to our different results, the stronger the chronotype, the more 

integrated neural networks are in the evening. The above results suggest that those evening 

hours benefit people with extreme chronotypes. The high predominance of spontaneous 

over deliberate mind-wandering is usually related to attention deficits (Seli et al., 2015b) 

and higher reactivity to inner experiences (Seli et al., 2015a). Moreover, the frontoparietal 

control network has been proven to include two separate subsystems where FPNa is 

interconnected with DMN and FPNb with DAN. As a result, the former part is highly 

associated with introspective processes, while the latter is related to the overall processing 

of the external stimuli (Dixon et al., 2018). Furthermore, somatomotor and ventral attention 

networks, which also showed higher integration in our study, are believed to be associated 

with sustained attention (Mitko et al., 2019). Overall, our mesoscale findings on network 

integration are congruent with other results in the study, pointing out a more prominent role 

of the frontoparietal regions in executive control during the evening hours (Dixon et al., 

2018).

We also observed significant variation in the strength of network recruitment associated 

with the time of the day. The most striking example was the increased recruitment of 

frontoparietal systems during the course of the day. The above structure is believed to 

be associated with cognitive control and subsequent working-memory storage (Dormal et 

al., 2012); therefore, results from the current study may be related to the accumulation of 

information during the day. Notably, FPNb, which is interconnected with DAN, is associated 

with processing abstraction, monitoring, and manipulating sensorimotor contingencies 

(Dixon et al., 2018). Current results revealing increased recruitment in the FPN and 

decreased recruitment in the DAN are fascinating and deserve further investigation in the 

future.

4.3. Nodal/local changes affected by time of day

In this study, the somatomotor, attention, and default mode networks experienced the largest 

quantity of topological variations among brain networks during the day. Moreover, the study 

Farahani et al. Page 14

Neuroimage. Author manuscript; available in PMC 2022 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of hubs in the exact same networks was proved to host several densely connected nodes, 

which affect brain functional integration and segregation.

In the somatomotor network, resting-state findings from both morning and evening sessions 

revealed higher within-network connectivity than other brain networks and higher between-

network connectivity, particularly with the ventral attention network. Moreover, both 

connectivity and hub analyses indicated that the somatomotor network contained the most 

highly connected areas in the brain, mainly during the evening session. We also found 

significantly higher FC in the bilateral superior temporal and left postcentral gyri as waking 

time increased. Consistent with our results, similar changes in the neural response across 

TOD were previously reported in other rs-fMRI studies (Anderson et al., 2014; Fafrowicz 

et al., 2019; Jiang et al., 2016; Maire et al., 2018), as well as in magnetoencephalography 

(MEG) studies evaluating oscillatory activity at rest and during a finger-tapping task (Wilson 

et al., 2014). On the contrary, conflicting results were presented in a morphometric study 

by Trefler et al. (2016), who discovered a significant decrease in cortical thickness as a 

function of TOD across the lateral surfaces of the left frontal, temporal, and parietal lobes. 

Nevertheless, findings from the current study provide insight into how changing functional 

activity in sensorimotor networks is associated with the course of the day. The increase of 

FC in somatomotor regions indicates that neural synchronization is enhanced in these areas.

Ventral and dorsal attention networks are believed to be involved in stimulus-driven 

and goal-directed attention, respectively (Vossel et al., 2013). Both connectivity and hub 

analyses revealed the ventral attention system to be the second most densely connected 

network, after the somatomotor areas. The above results were primarily observed during 

the morning session, focusing on the frontal operculum insula and dorsal anterior cingulate 

gyrus. Moreover, the study confirmed decreasing FC throughout the day within ventral areas 

such as the left supramarginal gyrus and left middle frontal gyrus (dorsal prefrontal cortex)

—a finding that is in line with previous studies (Anderson et al., 2017; Jiang et al., 2016; 

Vandewalle et al., 2009). Other changes were also observed in the right dorsal attention 

areas, such as the angular and supramarginal gyri.

In addition, the current study revealed the default mode network (DMN) to be involved in 

relatively high neural activity at the resting state during both sessions, particularly in the 

posterior cingulate cortex, where it was identified as a hub. However, this activity was higher 

in the evening than in the morning session. The DMN consists of functionally-connected 

and specialized neural units, contributing to many cognitive functions (Andrews-Hanna 

et al., 2007; Mayer et al., 2010; Raichle et al., 2001). Moreover, the posterior cingulate 

cortex plays a crucial role in meditating intrinsic activity through the DMN (Fransson and 

Marrelec, 2008). Notably, some areas within the DMN were found to be prone to variations 

in their connectivity profiles across the day, such as the bilateral posterior cingulate cortex, 

precuneus, angular gyrus, superior temporal gyrus, and left superior frontal gyrus, a finding 

that is consistent with the results from previous rs-fMRI studies (Facer-Childs et al., 2019a; 

Fransson, 2005; Jiang et al., 2016; Ku et al., 2018; Lunsford-Avery et al., 2020; Orban et al., 

2020; Raichle et al., 2001; Shannon et al., 2013).
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Further studies reported a rhythmic FC pattern of the DMN during the day that peaked 

in the morning and declined during the afternoon (Blautzik et al., 2013; Hodkinson et al., 

2014). It is believed that diurnal changes in these areas indicate the functional coordination 

of spatially disparate gyri (Jiang et al., 2016). Considering the findings in this study, total 

DMN neural activity decreased during the day; however, the FC increased in hub regions 

such as the posterior cingulate cortex and precuneus. Both the posterior cingulate cortex 

and precuneus are believed to be highly affected by decreased consciousness, which could 

explain the lower FC in the morning hours (Luppi et al., 2019). However, the results from 

the whole network are consistent with reports on sleep inertia, which is associated with 

increased DMN functional connectivity shortly after awakening (Vallat et al., 2019). This 

finding may suggest compensatory mechanisms of the mentioned areas to balance neuronal 

interactions, such as coupling or decoupling within DMN subregions. It could perhaps 

redouble efforts to increase the adaptability of the network under the continued wakeful 

condition throughout a day.

4.4. Nodal/local changes affected by chronotype differences

The current findings prove that the frontoparietal and dorsal attention networks underwent 

the most topological changes between earlier and later chronotypes. However, hub analysis 

did not show a statistically significant difference between the two groups. In the present 

study, participants with ET chronotypes revealed less neural activity and less network 

integration of the frontoparietal network (or central executive network) than the MT group, 

particularly in the dACC parcel. Consistent with our results, Horne and Norbury (2018) 

reported a significant reduction in FC between the dACC and amygdala in the latter 

chronotype, which they believed led to impaired emotion regulation. Overall, these findings 

could explain the role of chronotype in the interaction between the alerting functions and 

executive control networks (Martínez-Pérez et al., 2020).

4.5. Correlation between the network properties and subjective variables

The strength of the chronotype preferences was negatively correlated with small-worldness 

and modularity in the morning session. The graph measures presented are believed 

to be responsible for the integration of large-scale brain activities (Chavez et al., 

2010). Furthermore, small-worldness has been reported to be characteristic of a healthy 

brainbecause lower levels signify abnormal brain functioning (Brier et al., 2014; Liu et 

al., 2008). Moreover, strong chronotype preference was positively correlated with path 

length and assortativity in the evening session. Higher assortativity is another sign of a 

well-functioning network, confirming that individuals with a stronger chronotype preference 

present higher integration of the neuronal networks in the evenings compared to the 

mornings. As a result, the more extreme the chronotype, the more integrated the neuronal 

network in the evening, which was a finding that was not dependent on the chronotype 

itself. Sleepiness during the day was positively correlated with the average path length and 

assortativity during the morning hours.

Local graph measures revealed significant differences in resting-state activity associated 

with the preferred chronotype. People with the ET chronotype revealed less centrality in 

the somatomotor and limbic networks during the morning hours, which is believed to be 
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associated with less efficiency. These results also confirm previous findings concerning the 

effect of sleep inertia on later chronotypes (Ritchie et al., 2017).

Furthermore, declared sleepiness during the day negatively correlated with the centrality of 

the DMN structure during the morning session. Interestingly, according to Tian et al. (2020), 

the DMN mediates the association between chronotype and sleep quality. The same study 

displayed higher precuneus and medial prefrontal cortex connectivity in late chronotypes. 

Moreover, during the evening session, the strength of the chronotype preferences positively 

correlated with the degree of centrality in several regions within the visual network, such as 

the middle and superior occipital gyrus and fusiform gyrus. These regions are believed to be 

associated with visual attention.

4.6. Limitations and future directions

Certain limitations associated with this study should be considered in future research. 

Firstly, the relatively small number of subjects in this study might constrain the translational 

value of our results. Future studies with larger samples are needed to confirm our findings 

and increase the reproducibility of the research.

Secondly, brain nodes were derived from the cortical Schaefer-Yeo atlas (200-parcel/

7-network parcellation; Schaefer et al., 2018). Schaefer’s parcellations are available at 

multiple resolutions (100 to 1000 parcels). Further studies on appraising network topology 

using finer parcellation schemes are warranted. Also, because the Schaefer atlas considers 

only cortical areas, whole-brain studies could be carried out by adding subcortical regions 

with other atlases or segmentation algorithms. Although each node in this atlas is 

preassigned to a system/network (which is an advantage over many atlases), the Schaefer 

system labels do not allow for individual variation in the topography of brain systems; that 

is, they force everyone to have the same systems, which may not be appropriate and it is an 

issue that requires more attention (Gordon et al., 2017; Kong et al., 2019).

A third limitation concerns the measures used to compare the group-representative 

functional brain networks with one another. These measures tend to be correlated with one 

another; for example, a brain network with high efficiency must necessarily have a shorter 

path length (Betzel et al., 2018). Thus, if we find significant differences in one measure, they 

will probably be found in others. Our analyses could therefore be extended in future work to 

determine which of these measures might be driving the others and how an exhaustive set of 

metrics might be designed to fit the study specification from a neurobiological perspective. 

Another issue about network measures is that global statistics are often non-specific (i.e., 

they are not entirely informative and revealing). For example, the meaning of the phrase 

“the patient group has a lower efficiency than the control” may not be apparent to a 

neurosurgeon. Future work should be directed to better interpretation of such metrics.

Another limitation concerns the applicability of the small-world property. In real systems, 

the early definitions of small-worldness initiated by Watts and Strogatz (1998) are 

ineffective because they confuse regular networks with small-world structures and neglect 

the weight and physical length of connections and the network density. Most of the 

definitions present the network on the border of a circle; however, real systems are not 
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embedded in this way. There are many ways for a network to be small-world other than 

starting from a regular grid and adding random links to reduce path length. Numerous 

researchers have addressed these constraints by introducing several practical metrics 

(Bolaños et al., 2013; Muldoon et al., 2016; Rubinov and Sporns, 2010; Telesford et al., 

2011). Applying these modified metrics in future work would bring the study of the small-

world brain closer to reality.

Yet another possible extension of this work involves studying the recent theory-driven 

techniques that emphasize the importance of machine learning, algorithmic optimization, 

and parallel computing in functional neuroimaging (Cohen et al., 2017; Douglas et al., 

2013). For example, various algorithms known as graph neural networks, including graph 

convolutional networks (GCNs), have been proposed to show how graph theory can be 

used to train deep learning models (Kipf and Welling, 2016; Wu et al., 2020) and to 

discover neurological biomarkers using fMRI data (Li et al., 2020). As another example, 

a growing trend has developed in a family of algorithms known as hyperalignment (or 

functional alignment) that permit a projection of individuals’ data into a shared space across 

participants based on how voxels respond to stimuli (Guntupalli et al., 2016; Haxby et al., 

2011) or how they are connected to other voxels (Guntupalli et al., 2018; Haxby et al., 

2020). Combining these techniques with network neuroscience will open a new generation 

of studies to transform our knowledge of neural representations in complex brain networks.

5. Conclusion

This study, presents evidence for topological changes in functional brain networks 

throughout the day (TOD effect; morning and evening sessions) using rs-fMRI data and 

graph theory analysis. We also consider inter-individual differences in diurnal preferences 

(chronotype effect; “lark” or “owl” types) in addition to the impact of TOD. In summary, 

the results from the global examination showed more efficient functional topology in the 

evening session, regardless of the chronotype. Moreover, the mesoscale results represented 

how different systems/regions interacted with one another at both sessions, providing 

an intuitive assessment of modular organization using measures of recruitment and 

integration. To counterbalance, the local analysis revealed chronotype-specific modulation of 

diurnal fluctuation prominently across the somatomotor, ventral attention, and default-mode 

networks. These findings provide insight into diurnal variations in resting-brain networks, 

reflecting the universal effect of TOD on neural functional architecture when designing 

experiments. The findings also indicate the need to control for circadian typology, which 

could influence experimental results in neuroimaging studies.
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Appendix

Table A1

Table A1

Summary of Shaefer/Yeo parcellation label names, component names, corresponding 

Montreal Neurological Institute (MNI) coordinates, and the associated RGB codes used 

in the connectograms (7 networks, 200 nodes).

Label name Component name MNI coordinates RGB code

Visual Network (VN), Left Hemisphere

1 LH_Vis_1 Visual −24,−53,−9 123,104,238

2 LH_Vis_2 Visual −26,−77,−14 147,112,219

3 LH_Vis_3 Visual −45,−69,−8 138,43,226

4 LH_Vis_4 Visual −10,−67,−4 201,160,220

5 LH_Vis_5 Visual −27,−95,−12 204,204,255

6 LH_Vis_6 Visual −14,−44,−3 75,0,130

7 LH_Vis_7 Visual −5,−93,−4 181,126,220

8 LH_Vis_8 Visual −47,−70,10 147,112,219

9 LH_Vis_9 Visual −23,−97,6 167,107,207

10 LH_Vis_10 Visual −11,−70,7 116,108,192

11 LH_Vis_11 Visual −40,−85,11 138,43,226

12 LH_Vis_12 Visual −12,−73,22 111,0,255

13 LH_Vis_13 Visual −7,−87,28 120,81,169

14 LH_Vis_14 Visual −23,−87,23 115,79,150

Somatomotor Network (SMN), Left Hemisphere

15 LH_SomMot_1 Somatomotor −51,−4,−2 135,206,235

16 LH_SomMot_2 Somatomotor −53,−24,9 30,144,255

17 LH_SomMot_3 Somatomotor −37,−21,16 0,191,255

18 LH_SomMot_4 Somatomotor −55,−4,10 0,0,205

19 LH_SomMot_5 Somatomotor −53,−22,18 172,229,238

20 LH_SomMot_6 Somatomotor −56,−8,31 135,206,250

21 LH_SomMot_7 Somatomotor −47,−9,46 119,181,254

22 LH_SomMot_8 Somatomotor −7,−12,46 79,134,247

23 LH_SomMot_9 Somatomotor −49,−28,57 119,158,203

24 LH_SomMot_10 Somatomotor −40,−25,57 65,102,245

25 LH_SomMot_11 Somatomotor −31,−46,63 69,177,232

26 LH_SomMot_12 Somatomotor −32,−22,64 49,140,231

27 LH_SomMot_13 Somatomotor −26,−38,68 73,151,208

28 LH_SomMot_14 Somatomotor −20,−11,68 15,192,252
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Label name Component name MNI coordinates RGB code

29 LH_SomMot_15 Somatomotor −5,−29,67 65,125,193

30 LH_SomMot_16 Somatomotor −19,−31,68 0,127,255

Dorsal Attention Network (DAN), Left Hemisphere

31 LH_DorsAttn_Post_1 Posterior −43,−48,−19 0,255,127

32 LH_DorsAttn_Post_2 Posterior −57,−60,−1 50,205,50

33 LH_DorsAttn_Post_3 Posterior −26,−70,38 173,255,47

34 LH_DorsAttn_Post_4 Posterior −54,−27,42 144,238,144

35 LH_DorsAttn_Post_5 Posterior −41,−35,47 60,179,113

36 LH_DorsAttn_Post_6 Posterior −33,−49,47 34,139,34

37 LH_DorsAttn_Post_7 Posterior −17,−73,54 152,255,152

38 LH_DorsAttn_Post_8 Posterior −29,−60,59 144,238,144

39 LH_DorsAttn_Post_9 Posterior −6,−60,57 119,221,119

40 LH_DorsAttn_Post_10 Posterior −17,−53,68 116,195,101

41 LH_DorsAttn_FEF_1 Frontal Eye Fields −31,−4,53 80,200,120

42 LH_DorsAttn_FEF_2 Frontal Eye Fields −22,6,62 57,255,20

43 LH_DorsAttn_PrCv_1 Precentral Ventral −48,6,29 34,139,34

Ventral Attention Network (DAN), Left Hemisphere

44 LH_SalVentAttn_ParOper_1 Parietal Operculum −56,−40,20 249,132,229

45 LH_SalVentAttn_ParOper_2 Parietal Operculum −61,−26,28 254,78,218

46 LH_SalVentAttn_ParOper_3 Parietal Operculum −60,−39,36 207,113,175

47 LH_SalVentAttn_FrOperIns_1 Frontal Operculum Insula −39,−4,−4 189,51,164

48 LH_SalVentAttn_FrOperIns_2 Frontal Operculum Insula −33,20,5 204,0,204

49 LH_SalVentAttn_FrOperIns_3 Frontal Operculum Insula −39,1,11 218,112,214

50 LH_SalVentAttn_FrOperIns_4 Frontal Operculum Insula −51,9,11 241,167,254

51 LH_SalVentAttn_PFCl_1 Lateral Prefrontal Cortex −28,43,31 238,130,238

52 LH_SalVentAttn_Med_1 Medial −6,9,41 255,111,255

53 LH_SalVentAttn_Med_2 Medial −11,−35,46 207,52,118

54 LH_SalVentAttn_Med_3 Medial −6,−3,65 223,0,255

Limbic Network (LN), Left Hemisphere

55 LH_Limbic_OFC_1 Orbital Frontal Cortex −24,22,−20 255,248,220

56 LH_Limbic_OFC_2 Orbital Frontal Cortex −10,35,−21 240,230,140

57 LH_Limbic_TempPole_1 Temporal Pole −29,−6,−39 252,247,94

58 LH_Limbic_TempPole_2 Temporal Pole −45,−20,−30 255,250,205

59 LH_Limbic_TempPole_3 Temporal Pole −28,10,−34 251,236,93

60 LH_Limbic_TempPole_4 Temporal Pole −43,8,−19 255,247,0

Frontoparietal Network (FPN), Left Hemisphere

61 LH_Cont_Par_1 Parietal −53,−51,46 255,165,0

62 LH_Cont_Par_2 Parietal −35,−62,48 255,140,0

63 LH_Cont_Par_3 Parietal −45,−42,46 255,160,137

64 LH_Cont_Temp_1 Temporal −61,−43,−13 255,200,124

65 LH_Cont_OFC_1 Orbital Frontal Cortex −32,42,−13 255,153,102

66 LH_Cont_PFCl_1 Lateral Prefrontal Cortex −42,49,−6 255,163,67
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Label name Component name MNI coordinates RGB code

67 LH_Cont_PFCl_2 Lateral Prefrontal Cortex −28,58,8 255,130,67

68 LH_Cont_PFCl_3 Lateral Prefrontal Cortex −42,40,16 255,174,66

69 LH_Cont_PFCl_4 Lateral Prefrontal Cortex −44,20,27 237,135,45

70 LH_Cont_PFCl_5 Lateral Prefrontal Cortex −43,6,43 224,141,60

71 LH_Cont_pCun_1 Precuneus −9,−73,38 255,153,51

72 LH_Cont_Cing_1 Cingulate −5,−29,28 237,145,33

73 LH_Cont_Cing_2 Cingulate −3,4,30 251,153,2

Default Mode Network (DMN), Left Hemisphere

74 LH_Default_Temp_1 Temporal −47,8,−33 240,128,128

75 LH_Default_Temp_2 Temporal −60,−19,−22 255,69,0

76 LH_Default_Temp_3 Temporal −56,−6,−12 165,42,42

77 LH_Default_Temp_4 Temporal −58,−30,−4 255,0,0

78 LH_Default_Temp_5 Temporal −58,−43,7 123,17,19

79 LH_Default_Par_1 Parietal −48,−57,18 204,51,51

80 LH_Default_Par_2 Parietal −39,−80,31 205,92,92

81 LH_Default_Par_3 Parietal −57,−54,28 253,94,83

82 LH_Default_Par_4 Parietal −46,−66,38 127,23,52

83 LH_Default_PFC_1 Prefrontal Cortex −35,20,−13 255,53,94

84 LH_Default_PFC_2 Prefrontal Cortex −6,36,−10 235,76,66

85 LH_Default_PFC_3 Prefrontal Cortex −46,31,−7 204,78,92

86 LH_Default_PFC_4 Prefrontal Cortex −12,63,−6 178,34,34

87 LH_Default_PFC_5 Prefrontal Cortex −52,22,8 203,65,84

88 LH_Default_PFC_6 Prefrontal Cortex −6,44,7 237,28,36

89 LH_Default_PFC_7 Prefrontal Cortex −8,59,21 218,44,67

90 LH_Default_PFC_8 Prefrontal Cortex −6,30,25 229,26,76

91 LH_Default_PFC_9 Prefrontal Cortex −11,47,45 255,36,0

92 LH_Default_PFC_10 Prefrontal Cortex −3,33,43 255,69,0

93 LH_Default_PFC_11 Prefrontal Cortex −40,19,49 171,75,82

94 LH_Default_PFC_12 Prefrontal Cortex −24,25,49 156,37,66

95 LH_Default_PFC_13 Prefrontal Cortex −9,17,63 194,59,34

96 LH_Default_pCunPCC_1 Precuneus/Posterior 
Cingulate Cortex −11,−56,13 196,30,58

97 LH_Default_pCunPCC_2 Precuneus/Posterior 
Cingulate Cortex −5,−55,27 255,64,64

98 LH_Default_pCunPCC_3 Precuneus/Posterior 
Cingulate Cortex −4,−31,36 211,0,63

99 LH_Default_pCunPCC_4 Precuneus/Posterior 
Cingulate Cortex −6,−54,42 157,41,51

100 LH_Default_PHC_1 Parahippocampal Cortex −26,−32,−18 205,92,92

Visual Network (VN), Right Hemisphere

101 RH_Vis_1 Visual 39,−35,−23 123,104,238

102 RH_Vis_2 Visual 28,−36,−14 147,112,219

103 RH_Vis_3 Visual 29,−69,−12 138,43,226

104 RH_Vis_4 Visual 12,−65,−5 201,160,220
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Label name Component name MNI coordinates RGB code

105 RH_Vis_5 Visual 48,−71,−6 204,204,255

106 RH_Vis_6 Visual 11,−92,−5 75,0,130

107 RH_Vis_7 Visual 16,−46,−1 181,126,220

108 RH_Vis_8 Visual 31,−94,−4 147,112,219

109 RH_Vis_9 Visual 9,−75,9 167,107,207

110 RH_Vis_10 Visual 22,−60,7 116,108,192

111 RH_Vis_11 Visual 42,−80,10 138,43,226

112 RH_Vis_12 Visual 20,−90,22 111,0,255

113 RH_Vis_13 Visual 11,−74,26 120,81,169

114 RH_Vis_14 Visual 16,−85,39 115,79,150

115 RH_Vis_15 Visual 33,−75,32 105,53,156

Somatomotor Network (SMN), Right Hemisphere

116 RH_SomMot_1 Somatomotor 51,−15,5 135,206,235

117 RH_SomMot_2 Somatomotor 64,−23,8 30,144,255

118 RH_SomMot_3 Somatomotor 38,−13,15 0,191,255

119 RH_SomMot_4 Somatomotor 44,−27,18 0,0,205

120 RH_SomMot_5 Somatomotor 59,0,10 172,229,238

121 RH_SomMot_6 Somatomotor 56,−11,14 135,206,250

122 RH_SomMot_7 Somatomotor 58,−5,31 119,181,254

123 RH_SomMot_8 Somatomotor 10,−15,41 79,134,247

124 RH_SomMot_9 Somatomotor 51,−22,52 119,158,203

125 RH_SomMot_10 Somatomotor 47,−11,48 65,102,245

126 RH_SomMot_11 Somatomotor 7,−11,51 69,177,232

127 RH_SomMot_12 Somatomotor 40,−24,57 49,140,231

128 RH_SomMot_13 Somatomotor 32,−40,64 73,151,208

129 RH_SomMot_14 Somatomotor 33,−21,65 15,192,252

130 RH_SomMot_15 Somatomotor 29,−34,65 65,125,193

131 RH_SomMot_16 Somatomotor 22,−9,67 0,127,255

132 RH_SomMot_17 Somatomotor 10,−39,69 0,191,255

133 RH_SomMot_18 Somatomotor 6,−23,69 29,172,214

134 RH_SomMot_19 Somatomotor 20,−29,70 25,116,210

Dorsal Attention Network (DAN), Right 
Hemisphere

135 RH_DorsAttn_Post_1 Posterior 50,−53,−15 0,255,127

136 RH_DorsAttn_Post_2 Posterior 52,−60,9 50,205,50

137 RH_DorsAttn_Post_3 Posterior 59,−16,34 173,255,47

138 RH_DorsAttn_Post_4 Posterior 46,−38,49 144,238,144

139 RH_DorsAttn_Post_5 Posterior 41,−31,46 60,179,113

140 RH_DorsAttn_Post_6 Posterior 15,−73,53 34,139,34

141 RH_DorsAttn_Post_7 Posterior 34,−48,51 152,255,152

142 RH_DorsAttn_Post_8 Posterior 26,−61,58 144,238,144

143 RH_DorsAttn_Post_9 Posterior 8,−56,61 119,221,119
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Label name Component name MNI coordinates RGB code

144 RH_DorsAttn_Post_10 Posterior 21,−48,70 116,195,101

145 RH_DorsAttn_FEF_1 Frontal Eye Fields 34,−4,52 80,200,120

146 RH_DorsAttn_FEF_2 Frontal Eye Fields 26,7,58 57,255,20

147 RH_DorsAttn_PrCv_1 Precentral Ventral 52,11,21 34,139,34

Ventral Attention Network (VAN), Right 
Hemisphere

148 RH_SalVentAttn_TempOccPar_1 Temporal Occipital 
Parietal 57,−45,9 255,0,144

149 RH_SalVentAttn_TempOccParr_2 Temporal Occipital 
Parietal 60,−39,17 218,29,129

150 RH_SalVentAttn_TempOccParr_3 Temporal Occipital 
Parietal 60,−26,27 255,111,255

151 RH_SalVentAttn_PrC_1 Precentral 51,4,40 189,51,164

152 RH_SalVentAttn_FrOperIns_1 Frontal Operculum Insula 41,6,−15 189,51,164

153 RH_SalVentAttn_FrOperIns_2 Frontal Operculum Insula 46,−4,−4 204,0,204

154 RH_SalVentAttn_FrOperIns_3 Frontal Operculum Insula 36,24,5 218,112,214

155 RH_SalVentAttn_FrOperIns_4 Frontal Operculum Insula 43,7,4 241,167,254

156 RH_SalVentAttn_Med_1 Medial 7,9,41 255,111,255

157 RH_SalVentAttn_Med_2 Medial 11,−36,47 207,52,118

158 RH_SalVentAttn_Med_3 Medial 8,3,66 223,0,255

Limbic Network (LN), Right Hemisphere

159 RH_Limbic_OFC_1 Orbital Frontal Cortex 12,39,−22 255,248,220

160 RH_Limbic_OFC_2 Orbital Frontal Cortex 28,22,−19 240,230,140

161 RH_Limbic_OFC_3 Orbital Frontal Cortex 15,64,−8 253,253,150

162 RH_Limbic_TempPole_1 Temporal Pole 30,9,−38 252,247,94

163 RH_Limbic_TempPole_2 Temporal Pole 47,−12,−35 255,250,205

164 RH_Limbic_TempPole_3 Temporal Pole 25,−11,−32 251,236,93

Frontoparietal Network (FPN), Right Hemisphere

165 RH_Cont_Par_1 Parietal 62,−37,37 255,165,0

166 RH_Cont_Par_2 Parietal 53,−42,48 255,140,0

167 RH_Cont_Par_3 Parietal 37,−63,47 255,160,137

168 RH_Cont_Temp_1 Temporal 63,−41,−12 255,200,124

169 RH_Cont_PFCv_1 Ventral Prefrontal Cortex 34,21,−8 255,103,0

170 RH_Cont_PFCl_1 Lateral Prefrontal Cortex 36,46,−13 255,153,102

171 RH_Cont_PFCl_2 Lateral Prefrontal Cortex 29,58,5 255,163,67

172 RH_Cont_PFCl_3 Lateral Prefrontal Cortex 43,45,10 255,130,67

173 RH_Cont_PFCl_4 Lateral Prefrontal Cortex 46,24,26 255,174,66

174 RH_Cont_PFCl_5 Lateral Prefrontal Cortex 30,48,27 237,135,45

175 RH_Cont_PFCl_6 Lateral Prefrontal Cortex 41,33,37 224,141,60

176 RH_Cont_PFCl_7 Lateral Prefrontal Cortex 42,14,49 255,167,0

177 RH_Cont_pCun_1 Precuneus 14,−70,37 255,153,51

178 RH_Cont_Cing_1 Cingulate 5,−24,31 237,145,33

179 RH_Cont_Cing_2 Cingulate 5,3,30 251,153,2
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Label name Component name MNI coordinates RGB code

180 RH_Cont_PFCmp_1 Medial Posterior 
Prefrontal Cortex 7,31,28 255,186,0

181 RH_Cont_PFCmp_2 Medial Posterior 
Prefrontal Cortex 7,25,55 228,155,15

Default Mode Network (DMN), Right Hemisphere

182 RH_Default_Par_1 Parietal 47,−69,27 153,0,0

183 RH_Default_Par_2 Parietal 54,−50,28 228,113,122

184 RH_Default_Par_3 Parietal 51,−59,44 234,60,83

185 RH_Default_Temp_1 Temporal 47,13,−30 240,128,128

186 RH_Default_Temp_2 Temporal 61,−13,−21 255,69,0

187 RH_Default_Temp_3 Temporal 55,−6,−10 165,42,42

188 RH_Default_Temp_4 Temporal 63,−27,−6 255,0,0

189 RH_Default_Temp_5 Temporal 52,−31,2 123,17,19

190 RH_Default_PFCv_1 Ventral Prefrontal Cortex 51,28,0 255,64,64

191 RH_Default_PFCd/m_1 Dorsal/Medial Prefrontal 
Cortex 5,37,−14 220,20,60

192 RH_Default_PFCd/m_2 Dorsal/Medial Prefrontal 
Cortex 8,42,4 227,66,52

193 RH_Default_PFCd/m_3 Dorsal/Medial Prefrontal 
Cortex 6,29,15 215,59,62

194 RH_Default_PFCd/m_4 Dorsal/Medial Prefrontal 
Cortex 8,58,18 203,65,84

195 RH_Default_PFCd/m_5 Dorsal/Medial Prefrontal 
Cortex 15,46,44 255,83,73

196 RH_Default_PFCd/m_6 Dorsal/Medial Prefrontal 
Cortex 29,30,42 206,32,41

197 RH_Default_PFCd/m_7 Dorsal/Medial Prefrontal 
Cortex 23,24,53 232,0,13

198 RH_Default_pCunPCC_1 Precuneus/Posterior 
Cingulate Cortex 12,−55,15 196,30,58

199 RH_Default_pCunPCC_2 Precuneus/Posterior 
Cingulate Cortex 7,−49,31 255,64,64

200 RH_Default_pCunPCC_3 Precuneus/Posterior 
Cingulate Cortex 6,−58,44 211,0,63
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Fig. 1. 
Schematic representation of our graph-based analysis. After preprocessing (B) the raw 

rs-fMRI data (A) and parcellating the brain into 200 regions of interest using Schaefer-Yeo 

atlas (C), corresponding time courses were extracted from each region (D) to compute the 

weighted correlation matrix (E). To reduce the complexity, a binary correlation matrix (F) 

and the corresponding functional brain network (G) were constructed. A set of global and 

local graph theory measures were then derived from these connectivity matrices (H). Finally, 

non-parametric statistics were applied to identify significant group means and correlations 

(I).
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Fig. 2. 
Weighted connectivity matrices (top) and binarized connectivity matrices (bottom, top 10% 

of strongest connections) for both morning (A and C) and evening (B and D) sessions 

(averaged across all participants in each session). The regions (nodes) are ordered according 

to which cognitive system they belong to.
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Fig. 3. 
Differences in small-worldness (A), assortativity (B), and synchronization (C) between the 

morning and evening sessions at threshold values of 0.05 to 0.5 (p-values were computed 

using 30,000 permutations).
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Fig. 4. 
Recruitment and integration coefficients across brain regions. Panels (A) and (B) show 

the module allegiance matrices at the regional level for the morning and evening sessions, 

respectively, each representing the probability that two brain regions are assigned to the 

same community across individuals. The regions are arranged according to their belonging 

to 7 Schaefer-Yeo networks and for each hemisphere separately. In panels (C) and (D), we 

compared the recruitment coefficient between the sessions across brain regions, which are 

displayed by a scatterplot with the linear fit (p > 0.05, FDR corrected) and brain glasses, 
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respectively. Similar plots, as for the recruitment, are shown for the integration coefficient 

in panels (E) and (F), where there is a significant increase in the evening compared to the 

morning (p < 0.05, FDR corrected). In general, as shown in (D) and (F), neighboring areas 

tend to have similar recruitment and integration coefficients, confirming the presence of 

cohesive large-scale structures in the brain.
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Fig. 5. 
Recruitment and integration coefficients across large-scale brain systems. Panels (A) shows 

the module allegiance matrices at the system level for the morning and evening sessions, 

each representing the engagement of predefined systems in the whole brain organization 

across individuals. (B) Comparing network integration between morning and evening 

sessions, where each edge represents the integration between a pair of systems. Color 

intensity indicates edge strength, ranging from light to dark blue. (C) Comparing the 

system’s recruitment and integration between morning and evening sessions. Significant 

differences are noted with asterisks (p < 0.05, FDR corrected). Abbreviations: VN – visual 

network; SMN – somatomotor network; DAN – dorsal attention network; VAN – ventral 

attention network; LN – limbic network; FPN – frontoparietal network; DMN – default 

mode network.
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Fig. 6. 
Area under the curve in the morning and evening sessions for degree centrality (A), 

betweenness centrality (B), clustering coefficient (C), and nodal efficiency (D) in all 200 

brain regions of interest. Each node in either the left or right hemisphere is labeled with a 

color that is matched to Schaefer-Yeo 7 network parcellation. Significant diurnal changes are 

represented by dashed red lines.
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Fig. 7. 
Area under the curve for the “lark” (morning-type) and “owl” (evening-type) participants 

for degree centrality (A), betweenness centrality (B), clustering coefficient (C), and nodal 

efficiency (D) in all 200 brain regions of interest. Each node in either the left or right 

hemisphere is labeled with a color that is matched to Schaefer-Yeo 7 network parcellation. 

Significant diurnal changes are represented by dashed red lines.
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Fig. 8. 
Hubs (highly connected regions) in the morning (A) and evening (B) sessions were 

determined at a sparsity of 0.05. Regional information is provided in Appendix Table 

A1. Abbreviations: LH/RH – left/right hemisphere; Vis_[i] – ith segment of the Visual 

Network; SomMot_[i] – ith segment of the Somatomotor Network; DorsAttn_Post_5 – fifth 

segment of the posterior Dorsal Attentional Network; DorsAttn_PrCv_1 – first segment 

of the precentral ventral Dorsal Attentional Network; SalVentAttn_ParOper_2 – second 

segment of the parietal operculum Ventral Attention Network; SalVentAttn_FrOperIns_[i] – 

ith segment of the frontal operculum insula Ventral Attention Network; SalVentAttn_Med_1 
– first segment of the medial Ventral Attention Network; SalVentAttn_TempOccPar_3 – 

third segment of the temporal occipital parietal Ventral Attention Network; Cont_pCun_1 
– first segment of the precuneus Control Network; Default_pCunPCC_[i] – ith segment of 

the precuneus posterior cingulate cortex Default Network; FFG – fusiform gyrus; SOG 
– superior occipital gyrus; LING – lingual gyrus; PoCG – postcentral gyrus; SMG – 

supramarginal gyrus; PreCG – precentral gyrus; SPG – superior parietal gyrus; IFGo – 

inferior frontal gyrus (pars opercularis); dACC – dorsal anterior cingulate cortex; STG – 
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superior temporal gyrus; CUN – cuneus; PCUN – precuneus; PCC – posterior cingulate 

cortex. Labels from the Yeo and Schaefer Atlas are available here.
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Fig. 9. 
The mean connectogram across all participants in the morning (A) and evening (B) sessions 

at a thresholding value of 0.05. Parcellated elements within the outermost circle include the 

200 Schaefer/Yeo brain areas marked with a unique RGB code that has been associated 

with one of the predefined modules in each hemisphere. The outer circle circumscribes a 

set of five inner circular heatmaps that were created to represent the values of five different 

centrality measures. The range of colors for each metric represents the minimum to the 

maximum values. Toward the center, these measures are degree centrality, participation 

coefficient, K-coreness centrality, eigenvector centrality, and PageRank. The values of all 

measurements and the functional connections in each connectogram are derived from the 

mean of all participants in the corresponding session. The red and black curves indicate 

the functional connections between and within modules, respectively. An unambiguous 

abbreviation scheme was created to label each parcellation, as summarized in Appendix 

Table A1. Abbreviations: VN – visual network; SMN – somatomotor network; DAN – 

dorsal attention network; VAN – ventral attention network; LN – limbic network; FPN – 

frontoparietal network; DMN – default mode network.
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Fig. 10. 
Significant associations between the global measures and questionnaire variables (AM, 

ESS, and ME scores): AM and small-worldness (A), AM and path length (B), AM 

and assortativity (C), AM and modularity (D), ESS and path length (E), and ESS and 

assortativity (D). Yellow and blue colors represent the scatterplots for morning and evening 

sessions, respectively. Statistically significant correlations are indicated in each panel.
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Fig. 11. 
Correlation analysis between the nodal centrality of brain regions and the questionnaire 

variables: AM (A), ESS (B), and ME (C). Nodes are colored according to the magnitude of 

the correlation.

Farahani et al. Page 46

Neuroimage. Author manuscript; available in PMC 2022 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 47

Ta
b

le
 1

Su
m

m
ar

y 
st

at
is

tic
s 

fo
r 

de
m

og
ra

ph
ic

s 
an

d 
qu

es
tio

nn
ai

re
s.

V
ar

ia
bl

es
 (

m
ea

n 
± 

SD
)

M
T

 (
n 

= 
31

)
E

T
 (

n 
= 

31
)

Si
gn

if
ic

an
ce

Se
x 

(M
/F

)a
11

/2
0

12
/1

9
X

2 (
1)

 =
 0

.0
69

; p
 =

 0
.7

93

A
ge

 (
ye

ar
s)

b
24

.4
5 

±
 3

.8
3

23
.4

8 
±

 2
.5

5
U

(6
2)

 =
 4

46
; p

 =
 0

.6
23

D
ec

la
re

d 
w

ak
e-

up
 ti

m
e 

(h
h:

m
m

)c
07

:0
7 

±
 6

2 
m

in
07

:2
5 

±
 4

8 
m

in
t(

60
) 

=
 −

1.
9;

 p
 =

 0
.0

62

D
ec

la
re

d 
be

dt
im

e 
(h

h:
m

m
)c

23
:2

4 
±

 5
5 

m
in

00
:0

6 
±

 4
9 

m
in

t(
60

) 
=

 −
3.

5;
 p

 =
 0

.0
01

D
ec

la
re

d 
am

ou
nt

 o
f 

pe
rf

ec
t s

le
ep

 (
hh

:m
m

)c
08

:5
0 

±
 4

2 
m

in
08

:3
8 

±
 5

4 
m

in
t(

60
) 

=
 1

.5
4;

 p
 =

 0
.1

28

M
E

b
15

.7
1 

±
 2

.4
1

28
.4

5 
±

 3
.8

3
U

(6
2)

 <
 0

.0
01

; p
 =

 0
.6

23

A
M

b
21

.4
7 

±
 3

.5
8

22
.2

6 
±

 3
.5

1
U

(6
2)

 =
 4

26
; p

 =
 0

.4
37

E
SS

b
5.

52
 ±

 2
.4

8
5.

87
 ±

 3
.0

1
U

(6
2)

 =
 4

41
; p

 =
 0

.5
76

E
H

Ib
86

.8
3 

±
 1

2.
92

89
.1

9 
±

 1
3.

93
U

(6
2)

 =
 4

14
; p

 =
 0

.3
30

V
N

T
R

 o
f 

PE
R

3
5/

5
4/

4
–

M
T

 –
 m

or
ni

ng
 ty

pe
s,

 E
T

 –
 e

ve
ni

ng
 ty

pe
s,

 M
E

 –
 m

or
ni

ng
ne

ss
/e

ve
ni

ng
ne

ss
 s

ca
le

 (
C

hr
on

ot
yp

e 
Q

ue
st

io
nn

ai
re

),
 A

M
 –

 a
m

pl
itu

de
 s

ca
le

 (
C

hr
on

ot
yp

e 
Q

ue
st

io
nn

ai
re

),
 E

SS
 –

 E
pw

or
th

 S
le

ep
in

es
s 

Sc
al

e,
 E

H
I 

– 
E

pw
or

th
 H

an
de

dn
es

s 
In

ve
nt

or
y,

.

a ch
i-

sq
ua

re
 te

st
,.

b M
an

n-
W

hi
tn

ey
 U

 T
es

t,.

c St
ud

en
t’

s 
t-

te
st

.

Neuroimage. Author manuscript; available in PMC 2022 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 48

Ta
b

le
 2

Su
m

m
ar

y 
st

at
is

tic
s 

fo
r 

ac
tig

ra
ph

y.

V
ar

ia
bl

es
 (

m
ea

n 
± 

SD
)

M
T

 (
n 

= 
31

)
E

T
 (

n 
= 

31
)

Si
gn

if
ic

an
ce

A
ct

ig
ra

ph
y-

de
ri

ve
d 

w
ak

e-
up

 ti
m

e 
(h

h:
m

m
)c

7:
43

 ±
 7

0 
m

in
8:

16
 ±

 6
9 

m
in

t(
60

) 
=

 −
1.

28
; p

 =
 0

.1
68

A
ct

ig
ra

ph
y-

de
ri

ve
d 

be
dt

im
e 

(h
h:

m
m

)c
23

:5
8 

±
 5

8 
m

in
0:

48
 ±

 5
8 

m
in

t(
60

) 
=

 −
3.

13
; p

 =
 0

.0
02

A
ct

ig
ra

ph
y-

de
ri

ve
d 

le
ng

th
 o

f 
re

al
 s

le
ep

 (
hh

:m
m

)c
7:

53
.8

3 
±

 5
1 

m
in

7:
36

 ±
 4

0 
m

in
t(

60
) 

=
 −

1.
18

; p
 =

 0
.2

66

M
T

 –
 m

or
ni

ng
 ty

pe
s,

 E
T

 –
 e

ve
ni

ng
 ty

pe
s,

.

c St
ud

en
t’

s 
t-

te
st

.

Neuroimage. Author manuscript; available in PMC 2022 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 49

Ta
b

le
 3

M
at

he
m

at
ic

al
 d

ef
in

iti
on

 a
nd

 e
xp

la
na

tio
n 

of
 th

e 
m

ea
su

re
s 

us
ed

 in
 th

is
 s

tu
dy

.

D
es

cr
ip

ti
on

E
qu

at
io

n

L
oc

al
 m

ea
su

re
s

D
eg

re
e:

 th
e 

nu
m

be
r 

of
 n

ei
gh

bo
rs

 (
co

nn
ec

tio
ns

) 
fo

r 
ea

ch
 

no
de

Fo
r 

a 
gi

ve
n 

no
de

 i:
k i

=
∑

j∈
N

a ij
N

: s
et

 o
f 

al
l n

od
es

 in
 th

e 
ne

tw
or

k 
an

d
a i

j: 
co

nn
ec

tio
n 

be
tw

ee
n 

i a
nd

 j:
 a

ij 
=

 1
 w

he
n 

th
e 

lin
k 

(i
, j

) 
ex

is
ts

, a
nd

 0
 o

th
er

w
is

e.
 T

he
re

 a
re

 n
o 

se
lf

-l
oo

ps
 in

 th
e 

ne
tw

or
k;

 th
er

ef
or

e 
a i

i =
 0

.

Pa
th

 le
ng

th
: t

he
 p

ot
en

tia
l f

or
 in

fo
rm

at
io

n 
tr

an
sm

is
si

on
 

al
on

g 
th

e 
sh

or
te

st
 p

at
hs

, c
al

cu
la

te
d 

as
 th

e 
av

er
ag

e 
di

st
an

ce
 

fr
om

 o
ne

 n
od

e 
to

 a
ll 

ot
he

r 
no

de
s

Pa
th

 le
ng

th
 f

or
 a

 g
iv

en
 n

od
e 

i (
W

at
ts

 a
nd

 S
tr

og
at

z,
 1

99
8)

:

L i
=

∑
j∈

N
,j

≠
id

ij
n−

1
n:

 N
um

be
r 

of
 n

od
es

 a
nd

d i
j: 

sh
or

te
st

 p
at

h 
le

ng
th

 (
di

st
an

ce
) 

be
tw

ee
n 

no
de

s 
i a

nd
 j.

C
lu

st
er

in
g 

co
ef

fi
ci

en
t: 

th
e 

ex
te

nt
 to

 w
hi

ch
 th

e 
ne

ig
hb

or
s 

of
 a

 g
iv

en
 n

od
e 

ar
e 

in
te

rc
on

ne
ct

ed
 (

i.e
., 

th
e 

fr
ac

tio
n 

of
 

tr
ia

ng
le

s 
ar

ou
nd

 a
 n

od
e)

C
lu

st
er

in
g 

co
ef

fi
ci

en
t o

f 
th

e 
ne

tw
or

k 
(W

at
ts

 a
nd

 S
tr

og
at

z,
 1

99
8)

:

C i
=

∑
j,

k
∈

N
a i

ja
ik

a j
k

k i
(k

i−
1)

E
ff

ic
ie

nc
y:

 th
e 

ef
fi

ci
en

cy
 o

f 
pa

ra
lle

l i
nf

or
m

at
io

n 
tr

an
sf

er
 o

f 
a 

gi
ve

n 
no

de
 d

et
er

m
in

ed
 a

s 
th

e 
av

er
ag

e 
of

 th
e 

re
ci

pr
oc

al
 

sh
or

te
st

 p
at

h 
le

ng
th

 f
ro

m
 a

 n
od

e 
to

 a
ll 

ot
he

r 
no

de
s

E
ff

ic
ie

nc
y 

fo
r 

a 
gi

ve
n 

no
de

 i 
(L

at
or

a 
an

d 
M

ar
ch

io
ri

, 2
00

1)
:

E i
=

∑
j∈

N
,j

≠
id

ij−1

n−
1

B
et

w
ee

nn
es

s 
ce

nt
ra

lit
y:

 th
e 

ra
tio

 o
f 

al
l s

ho
rt

es
t p

at
hs

 in
 th

e 
gr

ap
h 

th
at

 c
on

ta
in

 a
 g

iv
en

 n
od

e
B

et
w

ee
nn

es
s 

ce
nt

ra
lit

y 
of

 n
od

e 
i (

Fr
ee

m
an

, 1
97

8)
:

BC
i=

1
(n

−
1)

(n
−

2)
Σ

ρ ℎ
j(i

)
ρ ℎ

j
ℎ,

j∈
N

ℎ
≠

j,
ℎ

≠
i,j

≠
i

ρ h
j: 

nu
m

be
r 

of
 s

ho
rt

es
t p

at
hs

 b
et

w
ee

n 
h 

an
d 

j a
nd

ρ h
j(i

):
 n

um
be

r 
of

 s
ho

rt
es

t p
at

hs
 b

et
w

ee
n 

h 
an

d 
j t

ha
t u

se
 i.

Pa
rt

ic
ip

at
io

n 
co

ef
fi

ci
en

t: 
th

e 
di

st
ri

bu
tio

n 
of

 a
 n

od
e’

s 
co

nn
ec

tio
ns

 a
cr

os
s 

its
 m

od
ul

es
Pa

rt
ic

ip
at

io
n 

co
ef

fi
ci

en
t o

f 
no

de
 i 

(G
ui

m
er

à 
an

d 
N

un
es

 A
m

ar
al

, 2
00

5)
:

P i
=

1−
∑

m
∈

M
(k i

(m
)

k i
)2

M
: s

et
 o

f 
no

n-
ov

er
la

pp
in

g 
m

od
ul

es
 a

nd
k i

(m
):

 n
um

be
r 

of
 li

nk
s 

be
tw

ee
n 

i a
nd

 a
ll 

no
de

s 
in

 m
od

ul
e 

m
.

G
lo

ba
l m

ea
su

re
s

C
ha

ra
ct

er
is

tic
 p

at
h 

le
ng

th
: a

ve
ra

ge
 p

at
h 

le
ng

th
s 

ov
er

 a
ll 

no
de

s
C

ha
ra

ct
er

is
tic

 p
at

h 
le

ng
th

 o
f 

th
e 

ne
tw

or
k 

(W
at

ts
 a

nd
 S

tr
og

at
z,

 1
99

8)
:

L
=

1 n∑
i∈

N
L i

L
i: 

av
er

ag
e 

di
st

an
ce

 f
ro

m
 n

od
e 

i t
o 

al
l o

th
er

 n
od

es
 (

pa
th

 le
ng

th
).

Neuroimage. Author manuscript; available in PMC 2022 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 50

D
es

cr
ip

ti
on

E
qu

at
io

n

C
lu

st
er

in
g 

co
ef

fi
ci

en
t: 

av
er

ag
e 

of
 th

e 
no

da
l c

lu
st

er
in

g 
co

ef
fi

ci
en

ts
 o

ve
r 

al
l n

od
es

C
lu

st
er

in
g 

co
ef

fi
ci

en
t o

f 
th

e 
ne

tw
or

k 
(W

at
ts

 a
nd

 S
tr

og
at

z,
 1

99
8)

:

C
=

1 n∑
i∈

N
C i

C
i: 

cl
us

te
ri

ng
 c

oe
ff

ic
ie

nt
 o

f 
no

de
 i.

Sm
al

l-
w

or
ld

ne
ss

: a
n 

as
se

ss
m

en
t u

se
d 

fo
r 

ne
tw

or
ks

 in
 

w
hi

ch
 m

os
t n

od
es

 a
re

 n
ot

 a
dj

ac
en

t t
o 

ea
ch

 o
th

er
, b

ut
 

ca
n 

be
 a

cc
es

se
d 

by
 a

ny
 o

th
er

 n
od

e 
w

ith
 th

e 
m

in
im

um
 

po
ss

ib
le

 p
at

h 
le

ng
th

. S
m

al
l-

w
or

ld
 n

et
w

or
ks

 a
re

 c
on

si
de

re
d 

an
 in

te
rm

ed
ia

te
 b

et
w

ee
n 

re
gu

la
r 

an
d 

ra
nd

om
 n

et
w

or
ks

 (
i.e

., 
th

ey
 c

on
ta

in
 m

an
y 

sh
or

t-
ra

ng
e 

co
nn

ec
tio

ns
 a

lo
ng

si
de

 a
 f

ew
 

lo
ng

-r
an

ge
 li

nk
s)

, i
nd

ic
at

in
g 

a 
hi

gh
 c

lu
st

er
in

g 
co

ef
fi

ci
en

t 
an

d 
a 

sh
or

t p
at

h 
le

ng
th

.

Sm
al

l-
w

or
ld

ne
ss

 o
f 

th
e 

ne
tw

or
k 

(M
ar

k 
D

. H
um

ph
ri

es
 a

nd
 G

ur
ne

y,
 2

00
8)

:

σ
=

C n
et

/C
ra

nd
L n

et
/L

ra
nd

C
ne

t a
nd

 L
ne

t a
re

 c
lu

st
er

in
g 

co
ef

fi
ci

en
t a

nd
 p

at
h 

le
ng

th
 o

f 
a 

gi
ve

n 
ne

tw
or

k,
 a

nd
 C

ra
nd

 a
nd

 L
ra

nd
 a

re
 th

es
e 

m
ea

su
re

s 
fo

r 
an

 e
qu

iv
al

en
t r

an
do

m
 

ne
tw

or
k.

 S
m

al
l-

w
or

ld
 n

et
w

or
ks

 h
av

e 
σ 
⪢

1.

E
ff

ic
ie

nc
y:

 a
ve

ra
ge

 o
f 

th
e 

no
da

l e
ff

ic
ie

nc
ie

s 
ov

er
 a

ll 
no

de
s

G
lo

ba
l e

ff
ic

ie
nc

y 
of

 th
e 

ne
tw

or
k 

(L
at

or
a 

an
d 

M
ar

ch
io

ri
, 2

00
1)

:

E
=

1 n∑
i∈

N
E i

E
i: 

ef
fi

ci
en

cy
 o

f 
no

de
 i.

A
ss

or
ta

tiv
ity

: t
he

 e
xt

en
t t

o 
w

hi
ch

 a
 n

et
w

or
k 

ca
n 

re
si

st
 

fa
ilu

re
s 

in
 it

s 
m

ai
n 

co
m

po
ne

nt
s.

 I
f 

r ≥
 0

, t
he

 n
od

es
 w

ith
 

a 
hi

gh
 d

eg
re

e 
ar

e 
m

or
e 

lik
el

y 
to

 c
on

ne
ct

 to
 o

th
er

s 
th

at
 

ar
e 

si
m

ila
r 

in
 d

eg
re

e 
(a

n 
as

so
rt

at
iv

e 
ne

tw
or

k)
, w

hi
le

 r 
<

 0
 

re
fl

ec
ts

 a
 te

nd
en

cy
 f

or
 h

ig
h-

de
gr

ee
 n

od
es

 to
 a

tta
ch

 to
 n

od
es

 
w

ith
 a

 lo
w

 d
eg

re
e 

(a
 d

is
as

so
rt

at
iv

e 
ne

tw
or

k)
.

A
ss

or
ta

tiv
ity

 c
oe

ff
ic

ie
nt

 o
f 

th
e 

ne
tw

or
k 

(N
ew

m
an

, 2
00

2)
:

r=
1 I∑

(i,
j)

∈
L

k i
k j

−
[1 I∑

(i,
j)

∈
L

1 2(k
i+

k j
)2 ]

1 I∑
(i,

j)
∈

L
1 2(k

i2 +
k j2 )−

[1 I∑
(i,

j)
∈

L
1 2(k

i+
k j

)2 ]

Sy
nc

hr
on

iz
at

io
n:

 a
n 

ex
am

in
at

io
n 

of
 h

ow
 n

et
w

or
k 

no
de

s 
fl

uc
tu

at
e 

in
 th

e 
sa

m
e 

w
av

e 
pa

tte
rn

Sy
nc

hr
on

iz
at

io
n 

of
 th

e 
ne

tw
or

k 
(B

ar
ah

on
a 

an
d 

Pe
co

ra
, 2

00
2)

:

S
=

λ(
2)

λ(
M

)
λ

(2
):

 s
ec

on
d 

sm
al

le
st

 e
ig

en
va

lu
e 

of
 th

e 
m

at
ri

x 
of

 A
,

λ
(M

):
 la

rg
es

t e
ig

en
va

lu
e 

of
 th

e 
m

at
ri

x 
of

 A
, a

nd
A

: a
dj

ac
en

cy
 m

at
ri

x 
of

 th
e 

ne
tw

or
k.

M
es

os
ca

le
 m

ea
su

re
s

M
od

ul
ar

ity
 (s

in
gl

e-
sl

ic
e)

: i
t r

ef
le

ct
s 

th
e 

qu
al

ity
 o

f 
pa

rt
iti

on
in

g 
a 

ne
tw

or
k 

in
to

 c
lu

st
er

s 
of

 d
en

se
ly

 
in

te
rc

on
ne

ct
ed

 n
od

es
 w

ith
 s

pa
rs

e 
co

nn
ec

tio
ns

 a
m

on
g 

ot
he

r 
cl

us
te

rs

Si
ng

le
-s

lic
e 

m
od

ul
ar

ity
 o

f 
th

e 
ne

tw
or

k 
(N

ew
m

an
, 2

00
4)

:

Q s
in

gl
es

lic
e

=
1 2μ

∑
ij

[A
ij

−
γV

ij]
δ(

σ i
,σ

j)
A

ij 
an

d 
V

ij:
 o

bs
er

ve
d 

an
d 

ex
pe

ct
ed

 w
ei

gh
ts

 o
f 

th
e 

co
nn

ec
tio

n 
be

tw
ee

n 
no

de
s 

i a
nd

 j
μ:

 to
ta

l e
dg

e 
w

ei
gh

t i
n 

th
e 

ne
tw

or
k,

γ:
 s

tr
uc

tu
ra

l r
es

ol
ut

io
n 

pa
ra

m
et

er
,

σ i
: c

om
m

un
ity

 (
i.e

., 
“m

od
ul

e”
) 

as
si

gn
m

en
t o

f 
no

de
 i,

 a
nd

δ(
x,

 y
):

 K
ro

ne
ck

er
 d

el
ta

 f
un

ct
io

n;
 it

 ta
ke

s 
on

 a
 v

al
ue

 o
f 

1 
w

he
n 

x 
=

 y
, a

nd
 0

 o
th

er
w

is
e 

(a
ss

um
in

g 
th

at
 th

e 
gi

ve
n 

ne
tw

or
k 

co
ns

is
ts

 o
f 

M
 

no
n-

ov
er

la
pp

in
g 

m
od

ul
es

).

M
od

ul
ar

ity
 (m

ul
ti-

sl
ic

e)
: i

n 
th

e 
m

ul
ti-

la
ye

r 
ve

rs
io

n 
of

 th
e 

m
od

ul
ar

ity
 f

un
ct

io
n,

 n
od

es
 a

re
 c

on
ne

ct
ed

 to
 th

em
se

lv
es

 
ac

ro
ss

 la
ye

rs
 b

y 
an

 in
te

r-
la

ye
r 

co
up

lin
g 

pa
ra

m
et

er
, ω

M
ul

ti-
sl

ic
e 

m
od

ul
ar

ity
 o

f 
th

e 
ne

tw
or

k 
(M

uc
ha

 e
t a

l.,
 2

01
0)

:

Q m
ul

tis
lic

e
=

1 2μ
∑

ijs
r[

(A
ijs

−
γV

ijs
)δ

sr
+

ωδ
ij]

δ(
σ i

s,
σ j

r)
A

ijs
 a

nd
 V

ijs
: o

bs
er

ve
d 

an
d 

ex
pe

ct
ed

 w
ei

gh
t o

f 
th

e 
co

nn
ec

tio
n 

be
tw

ee
n 

no
de

s 
i a

nd
 j 

in
 la

ye
r 

s,
μ,

 γ
, a

nd
 δ

(x
, y

):
 d

ef
in

ed
 a

s 
ab

ov
e,

ω
: i

nt
er

la
ye

r 
co

up
lin

g 
pa

ra
m

et
er

,
σ i

s:
 c

om
m

un
ity

 a
ss

ig
nm

en
t o

f 
no

de
 i 

in
 s

lic
e 

s,
 a

nd
σ j

r: 
co

m
m

un
ity

 a
ss

ig
nm

en
t o

f 
no

de
 j 

in
 s

lic
e 

r.

Neuroimage. Author manuscript; available in PMC 2022 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 51

D
es

cr
ip

ti
on

E
qu

at
io

n

R
ec

ru
itm

en
t: 

th
e 

fr
ac

tio
n 

of
 la

ye
rs

 in
 w

hi
ch

 a
 n

od
e 

is
 

as
si

gn
ed

 to
 th

e 
sa

m
e 

co
m

m
un

ity
 a

s 
ot

he
r 

no
de

s 
fr

om
 th

e 
sa

m
e 

pr
ed

ef
in

ed
/s

ta
tic

 s
ys

te
m

R
ec

ru
itm

en
t o

f 
no

de
 (

re
gi

on
) 

i i
n 

sy
st

em
 S

 (
B

as
se

tt 
et

 a
l.,

 2
01

5)
:

R iS
=

1 n s
∑

j∈
S

P i
j

n s
: n

um
be

r 
of

 r
eg

io
ns

 in
 S

 a
nd

P i
j: 

m
od

ul
e 

al
le

gi
an

ce
 b

et
w

ee
n 

no
de

 i 
an

d 
no

de
 j.

 M
od

ul
e 

al
le

gi
an

ce
 r

ep
re

se
nt

s 
th

e 
fr

ac
tio

n 
of

 la
ye

rs
 in

 w
hi

ch
 n

od
es

 i 
an

d 
j a

re
 a

ss
ig

ne
d 

to
 

th
e 

sa
m

e 
co

m
m

un
ity

. T
o 

co
ns

tr
uc

t a
n 

al
le

gi
an

ce
 m

at
ri

x,
 a

 c
o-

oc
cu

rr
en

ce
 m

at
ri

x 
(N

 ×
 N

) 
fo

r 
ea

ch
 la

ye
r 

is
 c

re
at

ed
, w

he
re

in
 th

e 
ijth

 e
le

m
en

t 
is

 e
qu

al
 to

 1
 if

 th
e 

no
de

s 
i a

nd
 j 

ha
ve

 a
 s

ha
re

d 
co

m
m

un
ity

 la
be

l, 
an

d 
0 

ot
he

rw
is

e.
 T

he
 a

ve
ra

ge
 o

f 
al

l c
o-

oc
cu

rr
en

ce
 m

at
ri

ce
s 

ac
ro

ss
 la

ye
rs

 
fo

rm
s 

th
e 

al
le

gi
an

ce
 m

at
ri

x,
 s

o 
its

 e
le

m
en

ts
 r

an
ge

 f
ro

m
 0

 to
 1

.

In
te

gr
at

io
n:

 th
e 

fr
ac

tio
n 

of
 la

ye
rs

 in
 w

hi
ch

 a
 g

iv
en

 n
od

e 
in

 
sy

st
em

 S
 is

 a
ss

ig
ne

d 
to

 th
e 

sa
m

e 
co

m
m

un
ity

 a
s 

no
de

s 
fr

om
 

sy
st

em
s 

ot
he

r 
th

an
 S

In
te

gr
at

io
n 

of
 n

od
e 

i i
n 

sy
st

em
 S

 (
B

as
se

tt 
et

 a
l.,

 2
01

5)
:

I iS
=

1
N

−
n s

∑
j∉

S
P i

j
N

: t
ot

al
 n

um
be

r 
of

 n
od

es
 (

re
gi

on
s)

.

Neuroimage. Author manuscript; available in PMC 2022 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 52

Ta
b

le
 4

L
is

t o
f 

br
ai

n 
re

gi
on

s 
of

 in
te

re
st

 (
R

O
Is

) 
th

at
 d

if
fe

re
d 

si
gn

if
ic

an
tly

 b
et

w
ee

n 
m

or
ni

ng
 a

nd
 e

ve
ni

ng
 s

es
si

on
s 

(t
: t

im
e)

 a
nd

 b
et

w
ee

n 
th

e 
“l

ar
k”

 a
nd

 “
ow

l”
 

pa
rt

ic
ip

an
ts

 (
c:

 c
hr

on
ot

yp
e)

. P
-v

al
ue

s 
w

er
e 

co
m

pu
te

d 
us

in
g 

30
,0

00
 p

er
m

ut
at

io
ns

 f
ol

lo
w

ed
 b

y 
B

en
ja

m
in

i–
H

oc
hb

er
g 

co
rr

ec
tio

n 
in

 a
 tw

o-
w

ay
 A

N
O

V
A

; 

FD
R

 w
as

 s
et

 to
 0

.0
5 

an
d 

th
e 

as
te

ri
sk

s 
in

di
ca

te
 s

ta
tis

tic
al

ly
 s

ig
ni

fi
ca

nt
 c

or
re

ct
ed

 p
-v

al
ue

s)
.

R
O

I

Sc
ha

ef
er

 n
od

e 
la

be
l

C
or

ti
ca

l a
re

as
M

N
I 

co
or

di
na

te
s

A
dj

us
te

d 
p-

va
lu

e

x
y

z
D

eg
re

e 
C

en
tr

al
it

y
B

et
w

ee
nn

es
s 

C
en

tr
al

it
y

C
lu

st
er

in
g 

C
oe

ff
ic

ie
nt

N
od

al
 E

ff
ic

ie
nc

y

15
L

H
_S

om
M

ot
_1

L
H

_S
up

er
io

r 
te

m
po

ra
l g

yr
us

−
51

−
4

−
2

* 
(t

)
* 

(t
)

30
L

H
_S

om
M

ot
_1

6
L

H
_P

os
tc

en
tr

al
 g

yr
us

−
19

−
31

68
* 

(t
)

* 
(t

)

42
L

H
_D

or
sA

ttn
_F

E
F_

2
L

H
_S

up
er

io
r 

fr
on

ta
l g

yr
us

 (
po

st
er

io
r 

se
gm

en
t)

−
22

6
62

* 
(c

)
* 

(c
)

46
L

H
_S

al
V

en
tA

ttn
_P

ar
O

pe
r_

3
L

H
_S

up
ra

m
ar

gi
na

l g
yr

us
−

60
−

39
36

* 
(t

)

48
L

H
_S

al
V

en
tA

ttn
_F

rO
pe

rI
ns

_2
L

H
_I

ns
ul

ar
−

33
20

5
* 

(c
)

* 
(c

)

51
L

H
_S

al
V

en
tA

ttn
_P

FC
l_

1
L

H
_M

id
dl

e 
fr

on
ta

l g
yr

us
 (

do
rs

al
 p

re
fr

on
ta

l 
co

rt
ex

)
−

28
43

31
* 

(t
)

* 
(t

)

63
L

H
_C

on
t_

Pa
r_

3
L

H
_A

ng
ul

ar
 g

yr
us

−
45

−
42

46
* 

(t
)

79
L

H
_D

ef
au

lt_
Pa

r_
1

L
H

_P
os

te
ri

or
 m

id
dl

e 
te

m
po

ra
l g

yr
us

−
48

−
57

18
* 

(c
)

90
L

H
_D

ef
au

lt_
PF

C
_8

L
H

_D
or

sa
l a

nt
er

io
r 

ci
ng

ul
at

e 
gy

ru
s

−
6

30
25

* 
(c

)
* 

(c
)

* 
(c

)

94
L

H
_D

ef
au

lt_
PF

C
_1

2
L

H
_S

up
er

io
r 

fr
on

ta
l g

yr
us

 (
po

st
er

io
r 

se
gm

en
t)

−
24

25
49

* 
(t

)

99
L

H
_D

ef
au

lt_
pC

un
PC

C
_4

L
H

_P
re

cu
ne

ou
s

−
6

−
54

42
* 

(t
)

11
7

R
H

_S
om

M
ot

_2
R

H
_S

up
er

io
r 

te
m

po
ra

l g
yr

us
64

−
23

8
* 

(t
)

* 
(t

)

12
6

R
H

_S
om

M
ot

_1
1

R
H

_P
re

ce
nt

ra
l g

yr
us

7
−

11
51

* 
(c

)

13
8

R
H

_D
or

sA
ttn

_P
os

t_
4

R
H

_A
ng

ul
ar

 g
yr

us
46

−
38

49
* 

(t
)

* 
(t

)

14
5

R
H

_D
or

sA
ttn

_F
E

F_
1

R
H

_P
re

ce
nt

ra
l g

yr
us

34
−

4
52

* 
(c

)

15
0

R
H

_S
al

V
en

tA
ttn

_T
em

pO
cc

Pa
r_

3
R

H
_S

up
ra

m
ar

gi
na

l g
yr

us
60

−
26

27
* 

(t
)

18
0

R
H

_C
on

t_
PF

C
m

p_
1

R
H

_D
or

sa
l a

nt
er

io
r 

ci
ng

ul
at

e 
gy

ru
s

7
31

28
* 

(c
)

* 
(c

)
* 

(c
)

18
7

R
H

_D
ef

au
lt_

Te
m

p_
3

R
H

_S
up

er
io

r 
te

m
po

ra
l g

yr
us

55
−

6
−

10
* 

(t
)

20
0

R
H

_D
ef

au
lt_

pC
un

PC
C

_3
R

H
_P

re
cu

ne
ou

s
6

−
58

44
* 

(t
)

A
bb

re
vi

at
io

ns
: M

N
I –

 M
on

tr
ea

l N
eu

ro
lo

gi
ca

l I
ns

tit
ut

e 
sp

ac
e;

 L
H

 –
 le

ft
 h

em
is

ph
er

e;
 R

H
 –

 r
ig

ht
 h

em
is

ph
er

e;
 t 

– 
tim

e;
 c

 –
 c

hr
on

ot
yp

e;
 S

om
M

ot
_[

i]
 –

 it
h 

se
gm

en
t o

f 
th

e 
So

m
at

om
ot

or
 N

et
w

or
k;

 
D

or
sA

ttn
_P

os
t_

4 
– 

fo
ur

th
 s

eg
m

en
t o

f 
th

e 
po

st
er

io
r 

D
or

sa
l A

tte
nt

io
na

l N
et

w
or

k;
 D

or
sA

ttn
_F

E
F_

[i
] –

 it
h 

se
gm

en
t o

f 
th

e 
fr

on
ta

l e
ye

 f
ie

ld
s 

D
or

sa
l A

tte
nt

io
na

l N
et

w
or

k;
 S

al
V

en
tA

ttn
_P

ar
O

pe
r_

3 
– 

th
ir

d 
se

gm
en

t o
f 

th
e 

pa
ri

et
al

 o
pe

rc
ul

um
 S

al
ie

nc
e/

V
en

tr
al

 A
tte

nt
io

n 
N

et
w

or
k;

 S
al

V
en

tA
ttn

_T
em

pO
cc

Pa
r_

3 
– 

th
ir

d 
se

gm
en

t o
f 

th
e 

te
m

po
ra

l o
cc

ip
ita

l p
ar

ie
ta

l S
al

ie
nc

e/
V

en
tr

al
 A

tte
nt

io
n 

N
et

w
or

k;
 

Sa
lV

en
tA

ttn
_F

rO
pe

rI
ns

_2
 –

 s
ec

on
d 

se
gm

en
t o

f 
th

e 
fr

on
ta

l o
pe

rc
ul

um
 in

su
la

 S
al

ie
nc

e/
V

en
tr

al
 A

tte
nt

io
n 

N
et

w
or

k;
 S

al
V

en
tA

ttn
_P

FC
l_

1 
– 

fi
rs

t s
eg

m
en

t o
f 

th
e 

la
te

ra
l p

re
fr

on
ta

l c
or

te
x 

Sa
lie

nc
e/

V
en

tr
al

 
A

tte
nt

io
n 

N
et

w
or

k;
 C

on
t_

Pa
r_

3 
– 

th
ir

d 
se

gm
en

t o
f 

th
e 

pa
ri

et
al

 C
on

tr
ol

 N
et

w
or

k;
 C

on
t_

PF
C

m
p_

1 
– 

fi
rs

t s
eg

m
en

t o
f 

th
e 

m
ed

ia
l p

os
te

ri
or

 p
re

fr
on

ta
l c

or
te

x 
C

on
tr

ol
 N

et
w

or
k;

 D
ef

au
lt_

Te
m

p_
3 

– 
th

ir
d 

se
gm

en
t 

Neuroimage. Author manuscript; available in PMC 2022 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 53
of

 th
e 

te
m

po
ra

l D
ef

au
lt 

N
et

w
or

k;
 D

ef
au

lt_
 P

ar
_1

 –
 f

ir
st

 s
eg

m
en

t o
f 

th
e 

pa
ri

et
al

 D
ef

au
lt 

N
et

w
or

k;
 D

ef
au

lt_
PF

C
_[

i]
 –

 it
h 

se
gm

en
t o

f 
th

e 
pr

ef
ro

nt
al

 c
or

te
x 

D
ef

au
lt 

N
et

w
or

k;
 D

ef
au

lt_
 p

C
un

PC
C

_[
i]

 –
 it

h 
se

gm
en

t o
f 

th
e 

pr
ec

un
eu

s 
po

st
er

io
r 

ci
ng

ul
at

e 
co

rt
ex

 D
ef

au
lt 

N
et

w
or

k.

L
ab

el
s 

fr
om

 th
e 

Y
eo

 a
nd

 S
ch

ae
fe

r 
A

tla
s 

ar
e 

av
ai

la
bl

e 
he

re
.

Neuroimage. Author manuscript; available in PMC 2022 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 54

Ta
b

le
 5

G
lo

ba
l a

na
ly

si
s:

 s
ig

ni
fi

ca
nt

 c
or

re
la

tio
ns

 b
et

w
ee

n 
gl

ob
al

 m
et

ri
cs

 a
nd

 A
M

, E
SS

, a
nd

 M
E

 s
co

re
s 

(n
 =

 6
2)

 f
or

 th
e 

m
or

ni
ng

 a
nd

 e
ve

ni
ng

 s
es

si
on

s.
 T

he
 

si
gn

if
ic

an
ce

 le
ve

l w
as

 s
et

 a
t p

 <
 0

.0
5 

w
ith

 n
on

-p
ar

am
et

ri
c 

pe
rm

ut
at

io
ns

.

C
or

re
la

ti
on

 (
ad

ju
st

ed
 p

-v
al

ue
)

M
or

ni
ng

 s
es

si
on

E
ve

ni
ng

 s
es

si
on

A
M

E
SS

M
E

A
M

E
SS

M
E

Sm
al

l-
w

or
ld

ne
ss

−
0.

44
 (

0.
00

03
)

—
—

—
—

—

Pa
th

 le
ng

th
—

0.
30

 (
0.

01
83

)
—

0.
28

 (
0.

02
24

)
—

—

M
od

ul
ar

ity
−

0.
46

 (
0.

00
02

)
—

—
—

—
—

A
ss

or
ta

tiv
ity

—
0.

29
 (

0.
02

30
)

—
0.

29
 (

0.
02

25
)

—
—

A
bb

re
vi

at
io

ns
: M

E
 –

 m
or

ni
ng

ne
ss

/e
ve

ni
ng

ne
ss

 s
ca

le
; A

M
 –

 a
m

pl
itu

de
 s

ca
le

; E
SS

 –
 E

pw
or

th
 S

le
ep

in
es

s 
Sc

al
e.

In
fo

rm
at

io
n 

ab
ou

t t
he

 Y
eo

 a
nd

 S
ch

ae
fe

r 
at

la
s 

ca
n 

be
 a

cc
es

se
d 

fr
om

 h
er

e.

Neuroimage. Author manuscript; available in PMC 2022 December 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farahani et al. Page 55

Ta
b

le
 6

N
od

al
 a

na
ly

si
s:

 s
ig

ni
fi

ca
nt

 c
or

re
la

tio
ns

 b
et

w
ee

n 
de

gr
ee

 c
en

tr
al

ity
 a

nd
 A

M
, E

SS
, a

nd
 M

E
 s

co
re

s 
(n

 =
 6

2)
 f

or
 th

e 
m

or
ni

ng
 a

nd
 e

ve
ni

ng
 s

es
si

on
s.

 T
he

 

si
gn

if
ic

an
ce

 le
ve

l w
as

 s
et

 a
t p

 <
 0

.0
5 

w
ith

 n
on

-p
ar

am
et

ri
c 

pe
rm

ut
at

io
ns

.

R
O

I 
(S

ch
ae

fe
r-

Y
eo

 A
tl

as
)

C
or

re
la

ti
on

 (
ad

ju
st

ed
 p

-v
al

ue
)

M
or

ni
ng

 S
es

si
on

E
ve

ni
ng

 S
es

si
on

A
M

E
SS

M
E

A
M

E
SS

M
E

L
ef

t H
em

is
ph

er
e

11
V

is
_1

1
0.

30
 (

0.
01

89
)

0.
37

 (
0.

00
24

)
0.

37
 (

0.
00

24
)

18
So

m
M

ot
_4

−
0.

37
 (

0.
00

29
)

41
D

or
sA

ttn
_F

E
F_

1
0.

38
 (

0.
00

23
)

43
D

or
sA

ttn
_P

rC
v_

1
−

0.
33

 (
0.

00
91

)

48
Sa

lV
en

tA
ttn

_F
rO

pe
r_

2
0.

37
 (

0.
00

24
)

55
L

im
bi

c_
O

FC
_1

−
0.

32
 (

0.
01

49
)

59
L

im
bi

c_
Te

m
pP

ol
e_

3
−

0.
42

 (
0.

00
07

)

60
L

im
bi

c_
Te

m
pP

ol
e_

4
−

0.
33

 (
0.

00
76

)

88
D

ef
au

lt_
PF

C
_6

−
0.

32
 (

0.
01

13
)

90
D

ef
au

lt_
PF

C
_8

0.
30

 (
0.

02
00

)

97
D

ef
au

lt_
pC

un
PC

C
_2

−
0.

39
 (

0.
00

15
)

99
D

ef
au

lt_
 p

C
un

PC
C

_4
−

0.
32

 (
0.

00
93

)

R
ig

ht
 H

em
is

ph
er

e
10

2
V

is
_2

0.
30

 (
0.

01
91

)

11
4

V
is

_1
4

0.
31

 (
0.

01
59

)

12
6

So
m

M
ot

_1
1

0.
30

 (
0.

01
72

)

14
5

D
or

sA
ttn

_F
E

F_
1

0.
33

 (
0.

00
80

)

16
0

L
im

bi
c_

O
FC

_2
−

0.
32

 (
0.

01
16

)

16
9

C
on

t_
PF

C
v_

1
0.

31
 (

0.
01

34
)

17
0

C
on

t_
PF

C
l_

1
−

0.
31

 (
0.

01
53

)

18
5

D
ef

au
lt_

Te
m

p_
1

−
0.

30
 (

0.
01

77
)

18
8

D
ef

au
lt_

Te
m

p_
4

−
0.

31
 (

0.
01

28
)

19
4

D
ef

au
lt_

PF
C

m
_4

−
0.

37
 (

0.
00

32
)

19
9

D
ef

au
lt_

pC
un

PC
C

_2
−

0.
29

 (
0.

01
95

)

A
bb

re
vi

at
io

ns
: M

T
 –

 m
or

ni
ng

 ty
pe

; E
T

 –
 e

ve
ni

ng
 ty

pe
; M

E
 –

 m
or

ni
ng

ne
ss

/e
ve

ni
ng

ne
ss

 s
ca

le
; A

M
 –

 a
m

pl
itu

de
 s

ca
le

; E
SS

 –
 E

pw
or

th
 S

le
ep

in
es

s 
Sc

al
e.

In
fo

rm
at

io
n 

ab
ou

t t
he

 Y
eo

 a
nd

 S
ch

ae
fe

r 
at

la
s 

ca
n 

be
 a

cc
es

se
d 

he
re

.

Neuroimage. Author manuscript; available in PMC 2022 December 29.


	Abstract
	Introduction
	Methods
	Participants and study procedures
	Data acquisition
	Data preprocessing
	Brain network construction
	Computation of graph measures
	Global and local metrics
	Mesoscale metrics

	Statistical tests

	Results
	Global analysis
	Mesoscale analysis
	Local analysis
	Hub analysis
	Correlation analysis

	Discussion
	Diurnal variations in the brain network as a whole (global properties)
	Diurnal variations in the community structures (mesoscale properties)
	Nodal/local changes affected by time of day
	Nodal/local changes affected by chronotype differences
	Correlation between the network properties and subjective variables
	Limitations and future directions

	Conclusion
	Appendix
	Table A1
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6



