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ABSTRACT OF THE THESIS

Fully Distributed Active Joint Localization and Target Tracking Algorithms Design for
Multi-Robot System

by

Shaoshu Su

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, March 2022

Wei Ren, Chairperson

In this thesis, we study the problem of multi-robot active joint localization and target

tracking (AJLATT), where a team of robots mounted with sensors of limited field of view

actively estimate their own and the target’s states cooperatively. Each robot designs its

motion strategy to gain better estimation performance while avoiding collisions by using

only the information from itself and its one-hop communicating neighbors. By leveraging the

framework of joint localization and target tracking (JLATT) presented in our previous work,

we propose two fully distributed algorithms that help each robot design motion strategies

to achieve better localization and target tracking performance. These two algorithms are

designed from, respectively, the control and optimization perspectives. The control-based

algorithm is designed by incorporating the estimated target’s and robots’ states and their

uncertainties as well as collision avoidance in the control policy. The optimization-based

algorithm minimizes an objective function involving both the target’s and robots’ estimation

uncertainties and a potential function that helps each robot avoid collision and maintain

communication connectivity when the robot is planning its motion. Monte Carlo simulations
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demonstrate our algorithms’ feasibility to solve the AJLATT problem, and performance

comparison between these two algorithms is given.
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Chapter 1

Introduction

Autonomous multi-robot systems equipped with sensors have attracted more and

more attention in recent years due to their wide applications in search and rescue, region

monitoring, area surveillance, etc. Multi-robot systems have many appealing properties. In

this work, we focus on their usage for estimation. Compared with one single robot, a multi-

robot system is able to obtain better self-localization and target tracking performance by

utilizing abundant robot-to-robot and robot-to-target measurements as well as information

exchanged across the team. That property plays an essential role in the applications of

the multi-robot system, especially in the indoor scenario where it is hard to receive the

GPS signal. Besides, compared with a static sensor network, a team of autonomous mobile

sensors is more adaptive since it is much easier and more effective to be deployed in an

unknown environment.

There are many results on estimating the states of robots or a target or both.

Some works focus on multi-robot cooperative localization [1–9], where a team of robots can
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improve their self-localization accuracy by utilizing the mutual relative measurements and

interacting with their team members. Some other works focus on target tracking [10–15],

where a static or moving sensor network seeks to estimate the target’s state. Here it is

usually implicitly assumed that the sensors’ states are known (no self-localization needed).

There also appear some later works that achieve the cooperative localization and target

tracking simultaneously, both in a centralized [16–18] or fully distributed manner [19, 20].

1However, all the above works [1–20] have a limitation that the sensors or robots are either

static or move without a properly designed motion strategy to actively localize themselves

or track the target.

Some algorithms have been proposed to solve the problem of active target tracking

from the control or optimization perspective. In the controls field, there are numerous results

on distributed tracking or leader-follower tracking (see, e.g., [21]). However, in these results,

both the robots’ and target’s states are usually assumed to be known, and the emphasis is on

designing distributed controllers. In [22], the target’s state is assumed to be an inaccurate

variable, and a gradient-based decentralized motion control strategy is developed to drive a

team of robots to estimate and actively track the target’s state. Nevertheless, an all-to-all

communication network is required in this work. In [23], an information-driven flocking

algorithm is proposed to achieve the distributed target state estimation. However, the

estimator in [23] relies on a restrictive assumption that the target is jointly observed by

each robot and its neighbors. As for the optimization-based approaches, [24] presents an

approach for a robot team to find the local optimal action to maximize the knowledge
1We use the term fully distributed to describe an algorithm that uses only a robot’s own and one-hop

neighbors’ information without the requirement for global parameters, multi-hop information transmission,
or multiple communication iterations on certain quantities for iterative consensus-type calculations per time
instant.
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about the targets by using a greedy search. An algorithm is proposed in [25] to analytically

obtain the next global optimal sensing locations for the robots. A non-myopic search-based

algorithm is proposed in [26] to drive one robot to actively track the target by minimizing

the logarithm of the determinant of the target covariance obtained by the Kalman filter.

An algorithm is proposed in [27] to maximize the mutual information between the robots’

measurements and their current belief of the target position using an experimental time-of-

flight range sensor model for measurement and a Bayesian filter for estimation. Nevertheless,

all the above optimization-based works are implemented in a centralized manner. In [28],

the approach in [26] is extended in a decentralized way, where each robot in the team

uses the coordinate descent method to plan its motion sequentially. As a result, multi-

hop information transmission would be required in this approach. Besides, in all of the

works above, the robots’ states are assumed to be accurately known, which is an unrealistic

assumption in practice.

There are some works addressing the active joint localization and target tracking

(AJLATT) problem, where motion strategies are designed to improve the target tracking

and/or robot self-localization performance. Consider limited sensing capabilities, [29] de-

velops an algorithm which coordinates robots’ motions and switches the sensing topology

to minimize the uncertainty of the target state estimate. Although this work estimates

the robots’ states together with the target’s state, it does not make improving robot self-

localization performance as an objective in its optimization problem. In [30], a gradient-

based control policy is designed to minimize the uncertainty of both the robots’ and the tar-

get’s states that are estimated by the Kalman-Bucy filter. While these two works consider
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jointly estimating both robots’ states and target’s state, their approaches are centralized.

Although the centralized approaches have the advantage of the capability to obtain the op-

timal estimation and planning performance, they also cause a heavy burden in computation

and communication. In [31], a distributed method is proposed by using a Bayesian filter for

estimation and a gradient-based algorithm for control design. However, the method requires

multi-hop information transmission for estimation and multi-hop information transmission

or multiple communication iterations for iterative consensus calculations per time instant

in its control design. As a result, the method is not fully distributed. To the best of our

knowledge, there is no existing fully distributed algorithm solving the AJLATT problem.

Considering all the limitations of the previous works, we aim to propose fully

distributed AJLATT algorithms. Our previous work [20] introduces a framework to solve

the pure joint localization and target tracking (JLATT) problem without active motion

strategy design in a fully distributed manner. Leveraging that framework, in this thesis,

we move forward by considering how to design fully distributed motion strategies for each

robot so that it can not only follow the target but also achieve better self-localization and

target tracking performance.

The contributions of this thesis are summarized as follows:

• Based on our previous fully distributed JLATT framework, two motion strategies are

proposed from control and optimization perspectives to actively improve each robot’s

self-localization and target tracking performance.

• In the controls field, compared with the existing centralized and distributed works, it

is the first time to solve the AJLATT problem in a fully distributed manner which
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requires only one-hop information transmission, no global parameter in the algorithm,

and no multiple communication iterations for iterative consensus-type calculations per

time instant.

• From the perspective of optimization-based approaches, to the best of our knowledge,

our algorithm is the first fully distributed or even the first distributed approach to

solve the AJLATT problem compared with the existing centralized works.

• Extensive Monte-Carlo simulations are used to validate and compare the proposed

control and optimization-based algorithms.
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Chapter 2

Preliminaries

2.1 Motion and Measurement Models

We consider the scenario where M robots track a target on a surface. We use the

vectors xk
i and xk

T to represent, respectively, the true state of robot i and the target at time

k. Their movements are driven by a nonlinear motion model as

xk
i = fi(x

k−1
i ,uk−1

i ,wk−1
i ), (2.1)

xk
T = g(xk−1

T ,uk−1
T ,wk−1

T ), (2.2)

where uk−1
i and uk−1

T are, respectively, the control inputs for robot i and the target. wk−1
i ∼

N (0,Qk−1
i ) and wk−1

T ∼ N (0,Qk−1
T ) are, respectively, the zero-mean white Gaussian process

noises for robot i and the target.

We define x̄k
i and x̂k

i as, respectively, robot i’s prior and posterior estimates of its

true state xk
i , and x̄k

Ti
and x̂k

Ti
as, respectively, each robot i’s prior and posterior estimates

of the target’s state xk
Ti

. Their corresponding approximated prior and posterior covariances
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are defined as p̄k
i , p̂

k
i , p̄

k
Ti

, and p̂k
Ti

, respectively.

At time k, if robot j or the target is within the sensing region of robot i, robot i

can obtain a robot-to-robot measurement zkRij
or a robot-to-target measurement zkRiT

. The

measurement models are defined as

zkRij
= hij(x

k
i ,x

k
j ) + vk

Rij
,

zkRiT
= hiT (x

k
i ,x

k
T ) + vk

RiT ,

(2.3)

where vk
Rij

∼ N (0,Rk
ij) and vk

RiT
∼ N (0,Rk

iT ) are the measurement noises assumed to be

zero-mean white Gaussian. The measurement noises are assumed to be mutually uncorre-

lated across robots and uncorrelated with the process noises.

2.2 Graphs

In the team of M robots, a directed communication graph Gk
c = (V, Ek

c ) is defined,

where V = {R1, . . . , RM} is the robot set and Ek
c ⊆ V × V is the edge set representing the

communication links between robots at time k. If robot i receives information from robot j

at time k, then a directed edge (j, i) exists in Ek
c . We assume that the self edge (i, i) exists

in Ek
c , ∀i ∈ V, which means robot i can also use the information from itself. At time k,

the communicating neighbor set of robot i is defined as N k
c,i = {l|(l, i) ∈ Ek

c , ∀l ̸= i, l ∈ V}.

Then, the inclusive communicating neighbor set of robot i is Ik
c,i = N k

c,i ∪ {i}. Similarly,

we define a directed sensing graph Gk
s = (V, Ek

s ) to describe robot-to-robot measurements,

where Ek
s ⊆ V × V is the edge set, which represents the detection links between robots at

time k. If robot i can detect robot j at time k, a directed edge (j, i) exists in Ek
s . At time
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k, we define robot i’s sensing neighbors (all robots detected by robot i) as N k
s,i = {l|(l, i) ∈

Ek
s , ∀l ̸= i, l ∈ V}.

We assume that for each robot, the communication radius is larger than the sensing

radii of all robots. Then when robot i detects robot j, robot i can receive the information

from robot j.

2.3 Information Fusion Strategy

The consistency is a vital property for estimation. An estimate pair (p̂k, x̂k)

is consistent if the true error covariance is upper bounded by the estimated covariance

as E{(xk − x̂k)(xk − x̂k)T} ≤ p̂k [32]. An inconsistent estimate that underestimates the

actual errors might eventually diverge. At time k, given multiple consistent estimation pairs

(p̂k
i , x̂

k
i ), i = 1, . . . , n, of xk, we seek to compute an improved consistent estimate (p̂k

c , x̂
k
c )

by using the Covariance Intersection (CI) algorithm [33]

p̂k
c =

(
n∑

i=1

αk
i (p̂

k
i )

−1

)−1

,

x̂k
c = p̂k

c

(
n∑

i=1

αk
i (p̂

k
i )

−1x̂k
i

)
,

(2.4)

where αk
i ∈ [0, 1] and

n∑
i=1

αk
i = 1. The parameters αk

i are usually chosen to satisfy certain

optimal criterion such as minimizing the trace of p̂k
c . In order to reduce the computation

burden, we adopt a fast and simplified approach in [34] to calculate αk
i as

αk
i =

1/tr(p̂k
i )

n∑
j=1

1/tr(p̂k
j )

, (2.5)

where tr(·) denotes the trace of a matrix.
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2.4 Joint Localization and Target Tracking

In this section, we briefly introduce our previous work about JLATT [20]. In this

work, each robot can estimate the pose of itself (localization) and the state of a target (track-

ing) using only its own information and the information from its one-hop communicating

neighbors while preserving estimation consistency.

2.4.1 Robot Propagation

The estimate of robot i’s state and its corresponding covariance are propagated at

time k − 1 as

x̄k
i = fi(x̂

k−1
i ,uk−1

i , 0),

p̄k
i = Φk−1

i p̂k−1
i (Φk−1

i )T + Q̄
k−1
i

= ρRp(p̂
k−1
i , x̂k−1

i ,Qk−1
i ),

(2.6)

where Φk−1
i = ∂fi

∂xi
(x̂k−1

i ,uk−1
i , 0), Gk−1

i = ∂fi
∂wi

(x̂k−1
i ,uk−1

i , 0), and Q̄
k−1
i = Gk−1

i Qk−1
i (Gk−1

i )T.

2.4.2 Target Propagation

Robot i propagates its estimate of the target’s state and its corresponding covari-

ance at time k − 1 as

x̄k
Ti

= g(x̂k−1
Ti

,uk−1
T , 0),

p̄k
Ti

= Φk
Ti
p̂k−1
Ti

(Φk−1
Ti

)T + Q̄k−1
Ti

= ρTp(p̂
k−1
Ti

, x̂k−1
Ti

,Qk−1
Ti

),

(2.7)

where Φk−1
Ti

= ∂g
∂xT

(x̂k−1
Ti

,uk−1
T , 0), Gk−1

Ti
= ∂g

∂wT
(x̂k−1

Ti
,uk−1

T , 0), and Q̄k−1
Ti

= Gk−1
Ti

Qk−1
Ti

(Gk−1
Ti

)T.
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2.4.3 Robot State Update

To update the estimate of robot i’s state, we first obtain the correction pairs

(skRil
,yk

Ril
) and (skRiT

,yk
RiT

) using robot i’s robot-robot measurements zkRil
, l ∈ N k

s,i, and

robot-target measurement zkRiT
, respectively. These correction pairs are calculated as

skRil
= (Hk

il)
T(R̄

k
il)

−1Hk
il, (2.8a)

yk
Ril

= (Hk
il)

T(R̄k
il)

−1(z̄kRil
+Hk

ilx̄
k
i ), (2.8b)

where Hk
il =

∂hil

∂xk
i

(x̄k
i , x̄

k
l ), R̄

k
il = Rk

il + H̃k
ilp̄

k
l (H̃

k
il)

T, H̃k
il =

∂hil

∂xk
l

(x̄k
i , x̄

k
l ), and z̄kRil

= zkRil
−

hil(x̄
k
i , x̄

k
l ), and

skRiT = (Hk
iT )

T(R̄k
iT )

−1Hk
iT , (2.9a)

yk
RiT = (Hk

iT )
T(R̄k

iT )
−1(z̄kRiT +Hk

iT x̄
k
i ), (2.9b)

where Hk
iT = ∂hiT

∂xk
i

(x̄k
i , x̄

k
Ti
), R̄k

iT = Rk
iT + H̃k

iT p̄
k
Ti
(H̃k

iT )
T, H̃k

iT = ∂hiT

∂xk
Ti

(x̄k
i , x̄

k
Ti
), and z̄kRiT

=

zkRiT
− hiT (x̄

k
i , x̄

k
Ti
).

Then, we apply the CI algorithm (2.4) on these correction pairs to compute a

consistent estimate x̆i and its corresponding covariance p̆i as

p̆k
i = (

∑
l∈N k

s,i

ηkils
k
Ril

+ ηkiT s
k
RiT )

−1, (2.10a)

x̆k
i = p̆k

i (
∑

l∈N k
s,i

ηkily
k
Ril

+ ηkiTy
k
RiT ), (2.10b)

where ηkil ∈ [0, 1], and ηkiT = 0 if robot i cannot detect the target and otherwise ηkiT ∈ [0, 1]

subject to
∑

l∈N k
s,i

ηkil + ηkiT = 1. The calculation of these ηil and ηiT follows the fast and

simplified approach (2.5) with (skRil
)−1 and (skRiT

)−1 playing the role of the covariances.

10



After we obtain the estimation pair (p̆k
i , x̆

k
i ) using relative measurements and also

the prior estimation pair (p̄k
i , x̄

k
i ) from the robot propagation step, we can use the CI

algorithm (2.4) to fuse these two estimation pairs to obtain the posterior estimation pair

(p̂k
i , x̂

k
i ) as

p̂k
i =

(
ζki1(p̆

k
i )

−1 + ζki2(p̄
k
i )

−1
)−1

, (2.11a)

x̂k
i = p̂k

i

(
ζki1(p̆

k
i )

−1x̆k
i + ζki2(p̄

k
i )

−1x̄k
i

)
, (2.11b)

where ζki1 and ζki2 ∈ [0, 1], subject to ζki1 + ζki2 = 1, are calculated according to (2.5).

2.4.4 Target State Update

Similarly, for the target state estimation, each robot i first collects the target

correction pairs (s̃kRjT
, ỹk

RjT
) from available robot-target measurements calculated by its

inclusive communicating neighbors j, j ∈ Ik
c,i,

s̃kRjT = (H̃k
jT )

T(R̃k
jT )

−1H̃k
jT , (2.12a)

ỹk
RjT = (H̃k

jT )
T(R̃k

jT )
−1(z̄kRjT + H̃k

jT x̄
k
Tj
), (2.12b)

where R̃k
jT = Rk

jT +Hk
jT p̄

k
j (H

k
jT )

T.

Then, at time k, by combining all available target correction pairs, we obtain an

intermediate estimation pair as

p̆k
Ti

= (
∑
j∈Ik

c,i

η̃kj s̃
k
RjT )

−1, (2.13a)

x̆k
Ti

= p̆k
Ti
(
∑
j∈Ik

c,i

η̃kj ỹ
k
RjT ), (2.13b)
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where η̃kj = 0 if robot j cannot directly detect the target, and otherwise η̃kj ∈ [0, 1] subject

to
∑

j∈Ik
c,i

η̃kj = 1.

Then we fuse all available prior estimation pairs (p̄k
Tj
, x̄k

Tj
), ∀j ∈ Ik

c,i with the CI

algorithm (2.4) as

p̌k
Ti

=

∑
j∈Ik

c,i

πk
j (p̄

k
Tj
)−1


−1

, (2.14a)

x̌k
Ti

= p̌k
Ti

∑
j∈Ik

c,i

πk
j (p̄

k
Tj
)−1x̄k

Tj

 , (2.14b)

where πk
j ∈ [0, 1], subject to

∑
j∈Ik

c,i
πk
j = 1, is calculated according to (2.5).

Eventually, after obtaining the pairs (p̌k
Ti
, x̌k

Ti
) and (p̆k

Ti
, x̆k

Ti
), we calculate the

posterior estimation pair (p̂k
Ti
, x̂k

Ti
) of the target as

p̂k
Ti

=
(
ζkiT1

(p̌k
Ti
)−1 + ζkiT2

(p̆k
Ti
)−1
)−1

, (2.15a)

x̂k
Ti

= p̂k
Ti

(
ζkiT1

(p̌k
Ti
)−1x̌k

Ti
+ ζkiT2

(p̆k
Ti
)−1x̆k

Ti

)
, (2.15b)

where ζkiT1
and ζkiT2

∈ [0, 1], subject to ζkiT1
+ ζkiT2

= 1, are calculated according to (2.5).
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Chapter 3

Active Joint Localization and Target

Tracking

While our previous work [20] achieves fully distributed JLATT, the robots’ mo-

tions are not actively controlled or planned and they simply move around randomly. As a

result, the full potential to improve the localization and target tracking performance is not

exploited. In this thesis, we aim to actively control the motions of the robots to achieve

better localization and target tracking performance than random movements. We use the

term AJLATT to emphasise the fact that we try to not only estimate the states of the robots

and the target but also design proper control actions to improve the estimation performance.

Our goal is to design the control input uk
i for each robot i modeled by (2.1) at each time k

in a fully distributed manner by using only its own information and the information from

its one-hop communicating neighbors. Next, we present two approaches, one control based

and the other optimization based.
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An overview of the proposed AJLATT algorithm is summarized in Table 3.1. In

Step 3, we either implement our control-based AJLATT algorithm in Step 3 (1) using

(3.2) or optimization-based AJLATT algorithm in Step 3 (2) using (3.7) to solve the

AJLATT problem. Detailed explanations for these two algorithms are given in the following

subsections 3.1 and 3.2.

3.1 Control-based Approach

In order to obtain a more accurate estimate of the target’s state, one way is to

approach the target. The first reason is that the detection range of a sensor is limited

in general. Besides, the measurement noise usually has a positive relationship with the

measurement distance with the detected object during a certain range interval. Second,

when the robots move closer to the target, they are closer to other robots, which will also

intuitively help improve self-localization. While the distributed tracking problem has been

studied in the controls community extensively (see, e.g., [21]), most of the works assume

the poses of the robots and even the target are known (no estimation needed), which is not

realistic. Therefore, in this subsection, we propose a fully distributed algorithm to solve the

AJLATT problem from the perspective of control.

Without loss of generality, we first assume robot i’s model as

rki = rk−1
i + uk−1

i δt, (3.1)

where rk−1
i = [xk−1

i , yk−1
i ]T is the position in 2D at time k − 1, uk−1

i = [uk−1
xi , uk−1

yi ]T is

the control input in 2D at time k − 1, and δt is the sampling interval. We will later adapt
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the model and design to address more realistic robot models (e.g., nonholonomic differential

drive robots). Let rk−1
T and vk−1

T denote, respectively, the target’s position and velocity at

time k − 1. Also let r̂k−1
i , r̂k−1

Ti
, and v̂k−1

Ti
denote, respectively, robot i’s estimate of its own

position, the target’s position, and the target’s velocity. Then we design the control uk−1
i

for (3.1) as

uk−1
i =

∑
j∈Ik−1

c,i

ηk−1
j v̂k−1

Tj
− αi(

∑
m∈N k−1

c,i

∂Vim

∂r̂k−1
i

+
∑

j∈Ik−1
c,i

∂ViTj

∂r̂k−1
i

)− γi
∑

j∈Ik−1
c,i

ηk−1
j (r̂k−1

i − r̂k−1
Tj

),

(3.2)

where v̂k−1
Tj

is obtained using the known target input uk−1
T and estimated target’s state x̂k−1

Tj

as we will detail later in Section 4, αi and γi are two positive constants which are used to

adjust, respectively, the influence of the collision avoidance term and active target tracking

term,

ηk−1
j =

1/tr(p̂k−1
Tj

)∑
l∈Ik−1

c,i
1/tr(p̂k−1

Tl
)

(3.3)

is the weight denoting the certainty of neighbor j’s estimate of the target’s state from the

inclusive communicating neighbor set of robot i, and the differentiable, nonnegative functions

Vim and ViTj are, respectively, the potential function defined on ∥r̂i − r̂m∥ and ∥r̂i − r̂Tj∥

for collision avoidance as detailed later.

The motivation behind (3.2) is to push each robot toward the weighted average

of its own and communicating neighbors’ estimates of the target’s position while avoiding

collisions with the estimated positions of its communicating neighbors as well as the esti-

mated positions of the target on itself and its communicating neighbors. The weight ηj is

selected according to the certainty of the estimates of the target’s position. If the certainty

of a neighbor is higher, then a larger weight is assigned.
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The potential function Vij has the following properties:

1. Vij achieves its unique minimum when ∥r̂i − r̂j∥ is equal to its desired value doi .

2. Vij → ∞ if ∥r̂i − r̂j∥ → dsi , where dsi (0 < dsi < doi) is the safe distance for collision

avoidance.

3. ∂Vij/∂∥r̂i − r̂j∥ = 0, if ∥r̂i − r̂j∥ ⩾ Ri, where Ri > doi denotes the communication

radius of robot i.

Motivated by [21], we choose Vij such that

∂Vij

∂r̂i
=

−∞sgn(r̂i − r̂j) ∥r̂i − r̂j∥ < dsi

20
(r̂i−r̂j)
∥r̂i−r̂j∥

∥r̂i−r̂j∥−doi
∥r̂i−r̂j∥−dsi

, dsi ⩽ ∥r̂i − r̂j∥ < doi

0.5
(r̂i−r̂j)sin[ π

Ri−doi
(∥r̂i−r̂j∥−doi )]

∥r̂i−r̂j∥ , doi ⩽ ∥r̂i − r̂j∥ < Ri

0, otherwise,

(3.4)

where sgn(·) denotes the sign function defined component-wise. The potential function ViTj

is defined analogically. An example of Vij is shown is shown in Figure 3.1. Note that

unlike [21], we do not have the actual positions of the robots and the target, ri and rT , and

hence the actual distances between robots and between robot and target. Therefore, the

potential functions are defined on the estimated relative distance between robots ∥r̂i − r̂m∥

and that between robot and target ∥r̂i − r̂Tj∥ instead.

The control input (3.2) is defined according to a simplified model (3.1). However,

the model might not be applicable to more realistic models. Next, we use the commonly

used unicycle model as an example to show how we extend the calculated control input
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Figure 3.1: Potential function Vij with dsi = 6 m, doi = 10 m, and Ri = 15 m.

uk−1
i = [uk−1

xi , uk−1
yi ]T in (3.2) to design the linear and angular velocity inputs in the unicycle

model.

Consider a unicycle model described as

xki = xk−1
i + vk−1

i δtcos(θk−1
i ),

yki = yk−1
i + vk−1

i δtsin(θk−1
i ),

θki = θk−1
i + ωk−1

i δt,

(3.5)

where (xk−1
i , yk−1

i ) is the position, θk−1
i is the orientation, vk−1

i is the linear velocity, and

ωk−1
i is the angular velocity associated with robot i at time k−1. With uk−1

i = [uk−1
xi , uk−1

yi ]T

given by (3.2), we can calculate the desired linear velocity as

vi
k−1
d =

√
(uk−1

xi )2 + (uk−1
yi )2,

and the desired orientation as

θi
k−1
d = atan2(uk−1

yi , uk−1
xi ).
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Then we can design the linear and angular velocity control input as

vk−1
i = vi

k−1
d ,

ωk−1
i = −λi(θ

k−1
i − θi

k−1
d ),

(3.6)

where λi is a positive constant.

As we can see here, the control-based approach is computationally simple and

time efficient in real-world implementations. It is worth noticing that the control policy

here is not designed to explicitly optimize a certain criterion on the localization and target

tracking performance. Instead, the hope is to bring the robots closer so as to improve the

localization and target tracking performance. Another thing is that here we use a relatively

simple unicycle model. Therefore, the original calculated control input for the simplified

model can be transformed into the actual control command for the robot. However, as we

can imagine, as the models of the robots become more complicated, it will be much harder

to directly design controllers or transform controller design for simplified models to control

commands applicable to real robots. Therefore, in the next subsection, we will introduce an

optimization-based AJLATT algorithm, which is more performance-improvement-orientated

and applicable to more general robot models.

3.2 Optimization Based Approach

In this subsection, we propose an optimization-based approach to solve the AJLATT

problem. Our goal is to find an optimal control input uk−1
i for each robot i modeled by

(2.1), to optimize certain functions.

There exist some previous works solving a related problem from the optimization
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perspective. However, they either ignore the robot localization [24–28] or are implemented in

a centralized manner [29,30]. In contrast, here the robot localization is explicitly considered

and the problem is solved in a fully distributed manner by using each robot’s own and its

one-hop neighbors’ information. There is no center node required for computation, global

parameter shared among the entire team, or information transmitted via multiple hops.

Our optimization-based AJLATT algorithm can be summarized as

uk−1
i = argmin

uk−1
i ∈Ui

αRitr(p̄
k+t2
i ) + αTitr(p̄

k+t2
Ti

)

+βi
∑

j∈N k−1
c,i ∪{Ti} J

k+t1
Rij

, i = 1, . . . ,M

s.t. (x̄k+t1
j , x̄k+t1

Tj
, p̄k+t2

i , p̄k+t2
Ti

) =

SACP (x̂k−1
j , x̂k−1

Tj
, p̂k−1

j , p̂k−1
Tj

,uk−2
j ,uk−1

T ), j ∈ Ik−1
c,i

(3.7)

where Ui is the control space of robot i. αRi , αTi , and βi are three positive constant param-

eters that are used to adjust the influence of each term on the objective function. p̄k+t2
i and

p̄k+t2
Ti

are, respectively, the predicted robot and target covariances at time k + t2 represent-

ing, respectively, robot i’s predicted self-localization and target tracking uncertainty. Jk+t1
Rij

,

j ∈ N k−1
c,i ∪ {Ti}, is the potential function term at time k + t1, which is used to maintain

communication connectivity, avoid collisions, and keep sight of the target. t1 and t2 are,

respectively, the planning horizons for the potential function term and covariance terms. In

general, we have t1 < t2, since the difference of uncertainty between different control inputs

needs more time to show up, but the potential function term that helps robots to quickly

avoid collision and frequently keep communication connectivity needs to be computed in a

shorter time period. SACP is a function that is used to predict the estimate of the states
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x̄k+t1
j , x̄k+t1

Tj
and covariances p̄k+t2

i , p̄k+t2
Ti

at time k+ t1 and k+ t2, respectively, and will be

shown in detail later.

Let ri = [xi, yi]
T be the position part of the state x̂i in (2.1). For each robot i, the

potential function JRij is defined as

JRij =



∞ , ∥r̄i − r̄j∥ ⩽ di

−10log(∥r̄i−r̄j∥−di

ai
), di < ∥r̄i − r̄j∥

⩽ di + ai

0, di + ai < ∥r̄i − r̄j∥

⩽ d̄i − ai

10(∥r̄i − r̄j∥ − (d̄i − ai))
2, ∥r̄i − r̄j∥ > d̄i − ai

(3.8)

where r̄i = [x̄i, ȳi]
T is the prior estimate of ri, ∥r̄i − r̄j∥, j ∈ Nc,i ∪ {Ti}, is the estimated

robot-robot or robot-target distance, di and d̄i are, respectively, the minimum and max-

imum acceptable distances that are used to avoid collisions and maintain communication

connectivity, and ai is the length of the non-zero interval. Note that the definition of JRij

accommodates both robot-robot potential and robot-target potential. An example of the

potential function is shown in Figure 3.2.

According to the definition of the potential function JRij , there are several prop-

erties that we would like to point out:

1. JRij = 0, when ∥r̄i − r̄j∥ ∈ [di + ai, d̄i − ai], which means that only when other

robots or the target moves too close to the minimum range or almost moves out of the

maximum acceptable range, this potential function will play a role. Otherwise, only

the covariance terms take effect in the objective function in (3.7).
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Figure 3.2: Potential function JRij with di = 2 m, d̄i = 15 m, and ai = 2 m. Notice that

the right-hand side increases more moderately than the left-hand side, and is still defined

when ∥r̄i − r̄j∥ > d̄i.

2. JRij → ∞, if ∥r̄i − r̄j∥ → di or ∥r̄i − r̄j∥ → ∞. As shown in Figure 3.2, the potential

function will immediately give a large penalty (close to infinity) when the robot comes

too close to its neighbors or the target to avoid collisions. In contrast, it gives a

relatively soft and weak penalty when the robot moves far away from its neighbors

or the target so as to maintain communication connectivity or not lose sight of the

target, respectively.

-

The State and Covariance Prediction (SACP) process is first used to predict robot

i’s estimates of its own and the target’s states, and robot i’s estimates of each neighbor j’s

state at time k + t1 so as to calculate the potential function term Jk+t1
Rij

. The process is

consecutively used to predict robot i’s covariance p̄k+t2
i and the target covariance p̄k+t2

Ti
at

time k + t2 which constitute the uncertainty minimization terms in the objective function
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in (3.7). The SACP process is shown in Table 3.2.

Remark 1. Since uk−1
j is the optimization variable for each robot j, robot i propagates its

neighbor j’s state estimate with the neighbor’s latest available control input uk−2
j at time

k − 2. Robot i’s own state is propagated with uk−1
i . The target’s state is propagated with

uk−1
T , which is assumed to be known for each robot at time k − 1.

Remark 2. In Step 2 in Table 3.2, ∗N k
s,i and ∗Ik

c,i are two predicted neighbor sets at time

k in the prediction process. Since the real movement does not happen, robot i can only

utilize the information from its communicating neighbors at time k − 1. Thus ∗N k
s,i and

∗Ik
c,i are the subsets of the known set Ik−1

c,i , where ∗N k
s,i = {i|(l, i) ∈ (∗Ek

s ∩ Ek−1
c ),∀l ̸=

i, l ∈ V} and ∗Ik
c,i = {i|(l, i) ∈ (∗Ek

c ∩ Ek−1
c ), l ∈ V}. Here ∗Ek

s and ∗Ek
c are, respectively,

the predicted sensing and communication edge set at time k which are determined by the

predicted estimates of the robots’ states x̄k
j together with, respectively, the robots’ sensing

fields of view and communication radii. In addition, ηkiT in (2.10a) is determined by x̄k
i and

the estimate of the target’s state x̄k
Ti

together with the robots’ sensing fields of view.

Remark 3. In Step 4 in Table 3.2, each robot i propagates its own state estimate and

its estimate of the target’s state up to time k + t1. For each of robot i’s communicating

neighbors at time k− 1 (j ∈ N k−1
c,i ), robot i also propagates neighbor j’s state estimate up to

time k+ t1. The potential function term in (3.7) would result in a larger penalty when robot

i loses communication connectivity with its neighbor j, j ∈ N k−1
c,i , at time k + t1. Instead,

if the potential function term were given by βi
∑

j∈∗N k+t1
c,i ∪{Ti}

Jk+t1
Rij

in (22), then a smaller

value would be obtained due to the removal of robot j in ∗N k+t1
c,i .
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Table 3.1: AJLATT by Robot i

Initialization:

1 Initialize x̂0
i ,p̂0

i , x̂
0
Ti
, p̂0

Ti
, and set u−1

i = 0.

At time k − 1

Information Exchange for AJLATT:

2.1 Send x̂k−1
i , p̂k−1

i ,uk−2
i , fi(·), x̂k−1

Ti
, p̂k−1

Ti
to robot j, i ∈ N k−1

c,j .

2.2 Receive x̂k−1
j , p̂k−1

j ,uk−2
j , fj(·), x̂k−1

Tj
, p̂k−1

Tj
from robot j, j ∈ N k−1

c,i .

AJLATT Motion Planning:

3 (1) Calculate uk−1
i using the control-based AJLATT algorithm (3.2).

3 (2) Calculate uk−1
i using the optimization-based AJLATT algorithm (3.7).

Propagation:

4 Propagate robot i’s estimate of its own state x̂k−1
i and covariance p̂k−1

i with the

obtained uk−1
i using (2.6) and the target’s state x̂k−1

Ti
and covariance p̂k−1

Ti
using (2.7)

to obtain x̄k
i , p̄

k
i , x̄

k
Ti

and p̄k
Ti

.

At time k

Update:

5.1 Obtain the robot-robot measurements zkRil
, l ∈ N k

s,i, and robot-target measurement

zkRiT
(if the target is detected by robot i) and generate the corresponding correction

pairs (skRil
,yk

Ril
), (skRiT

,yk
RiT

), (s̃kRiT
, ỹk

RiT
) using (2.8), (2.9), (2.12).

5.2 Send (s̃kRiT
, ỹk

RiT
), (p̄k

Ti
, x̄k

Ti
) to robot j, i ∈ N k

c,j .

5.3 Receive (s̃kRjT
, ỹk

RjT
), (p̄k

Tj
, x̄k

Tj
) from robot j, j ∈ N k

c,i.

5.4 Calculate the posterior robot estimate pair (p̂k
i , x̂

k
i ) using (2.10), (2.11), and the

posterior target estimate pair (p̂k
Ti
, x̂k

Ti
) using (2.13), (2.14), (2.15).
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Table 3.2: State and Covariance Prediction (SACP) by Robot i at k − 1

One-step Propagation and Predicted Update:

1 Propagate each inclusive communicating neighbor j’s, j ∈ Ik−1
c,i , estimates of its own and the target’s states

and covariances in one step:

x̄k
i = fi(x̂

k−1
i ,uk−1

i , 0), p̄k
i = ρRp(p̂

k−1
i , x̂k−1

i ,Qk−1
i ),

x̄k
j = fj(x̂

k−1
j ,uk−2

j , 0), p̄k
j = ρRp(p̂

k−1
j , x̂k−1

j ,Qk−1
j ), j ∈ N k−1

c,i

x̄k
Tj

= g(x̂k−1
Tj

,uk−1
T , 0), p̄k

Tj
= ρTp(p̂

k−1
Tj

, x̂k−1
Tj

,Qk−1
Tj

), j ∈ Ik−1
c,i

2 Generate one-step predicted correction terms skRil
, l ∈ ∗N k

s,i, s
k
RiT

, s̃kRjT
, j ∈ ∗Ik

c,i, using (2.8a), (2.9a),

(2.12a).

3 Calculate one-step predicted posterior robot covariance p̂k
i using (2.10a), (2.11a), and one-step predicted

posterior target covariance p̂k
Ti

using (2.13a), (2.14a), (2.15a).

Propagation in t1 and t2 Planning Horizons:

4 Propagate robot i’s estimate of the target’s state and corresponding covariance and each inclusive

communicating neighbor j’s, j ∈ Ik−1
c,i , estimates of its own state and corresponding covariance for the

potential function term in t1 planning horizon:

t = 0, . . . , t1 − 1,

x̄k+t+1
Ti

= g(x̄k+t
Ti

,uk−1
T , 0), x̄k+t+1

i = fi(x̄
k+t
i ,uk−1

i , 0), x̄k+t+1
j = fj(x̄

k+t
j ,uk−2

j , 0), j ∈ N k−1
c,i

{ p̄k+t+1
Ti

= ρTp(p̂
k+t
Ti

, x̄k+t
Ti

,Qk+t
Ti

), if t = 0 { p̄k+t+1
i = ρRp(p̂

k+t
i , x̄k+t

i ,Qk+t
i ), if t = 0

p̄k+t+1
Ti

= ρTp(p̄
k+t
Ti

, x̄k+t
Ti

,Qk+t
Ti

), if t ⩾ 1 p̄k+t+1
i = ρRp(p̄

k+t
i , x̄k+t

i ,Qk+t
i ), if t ⩾ 1

Compute Jk+t1
Rij

using ∥r̄k+t1
i − r̄k+t1

j ∥, j ∈ N k−1
c,i ∪ {Ti}.

5 Propagate robot i’s estimates of its own and the target’s states and corresponding covariances to obtain the

covariance terms in t2 planning horizon

t = t1, . . . , t2 − 1,

x̄k+t+1
i = fi(x̄

k+t
i ,uk−1

i , 0), x̄k+t+1
Ti

= g(x̄k+t
Ti

,uk−1
T , 0),

p̄k+t+1
i = ρRp(p̄

k+t
i , x̄k+t

i ,Qk+t
i ), p̄k+t+1

Ti
= ρTp(p̄

k+t
Ti

, x̄k+t
Ti

,Qk+t
Ti

).
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Chapter 4

Simulation

In this section, we will use Monte-Carlo simulations to demonstrate the perfor-

mance of our algorithms.

4.1 Simulation Setup

Consider the scenario where M = 6 robots and a target move on a surface. Here we

adopt the widely used unicycle model for both robots and the target in the simulation. The

robot pose xk
i consists of the position (xki , y

k
i ) and the orientation θki in the global frame.

The motion models (2.1) and (2.2) can be expressed as

xki = xk−1
i + (vk−1

i + wk−1
vi )δtcos(θk−1

i ),

yki = yk−1
i + (vk−1

i + wk−1
vi )δtsin(θk−1

i ),

θki = θk−1
i + (ωk−1

i + wk−1
ωi

)δt,

(4.1)

where i ∈ {1, . . . ,M} ∪ {T}, δt = 1 s is the sampling interval, uk−1
i = [vk−1

i , ωk−1
i ]T

represents the linear and angular velocities as the input for robot i, and wi = [wk−1
vi , wk−1

ωi
]T
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represents process noises for the linear and angular velocities. For robot i, the input uk−1
i

is calculated by our AJLATT algorithms. The target’s input is assumed to be constant

with vT = 0.25 m/s and ωT = 0. The target’s input uT = [vT , ωT ]
T is known by every

robot i. The corresponding process noise wi, i ∈ {1, . . . ,M} ∪ {T}, is assumed to be white

Gaussian, with the standard deviations for wk−1
vi and wk−1

ωi
as, respectively, σk−1

vi =
√
2
2 σk−1

i

and σk−1
ωi

= 2
√
2σk−1

i , where σk−1
i is proportional to the linear velocity as σk−1

i = 1%vk−1
i

for each robot i, i ∈ {1, . . . ,M}, and σk−1
T = 3%vk−1

T for the target. Hence Qk−1
i , i ∈

{1, . . . ,M} ∪ {T} defined after (2.1) and (2.2) is given as

Qk−1
i =

(σk−1
vi )2 0

0 (σk−1
ωi

)2

 . (4.2)

Given the model (4.1), it follows from (2.6) that

Φk−1
i =


1 0 −vk−1

i δtsin(θk−1
i )

0 1 vk−1
i δtcos(θk−1

i )

0 0 1

 . (4.3)

According to (4.2) and (4.3), when robot i stops moving (i.e. vi = 0), Qk−1
i and

Φk−1
i will become, respectively, the zero matrix 02×2 and the identity matrix I3. As a result,

it follows from (2.6) that p̄k
i = p̂k−1

i , which means that the robot covariance will not increase

during propagation.

We assume that each robot has a limited communication range with a radius of

Ri = 30 m and a limited field of view with Rmin = 2 m and Rmax = 15 m for the range

and ϕ = 60◦ for the angle of view. As for the measurement model, we consider an indoor

application scenario in this work and assume that these robots do not have access to the ab-
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solute position measurement. The relative distance-bearing measurement model is adopted

for each robot in our simulation. If robot i detects robot j at time instant k, then the

relative measurement can be expressed as

zkRij
=


√
(xkj − xki )

2 + (ykj − yki )
2

atan2((ykj − yki ), (x
k
j − xki ))− θki

+ vk
Rij

,

where vRij is a zero-mean white Gaussian noise. The standard deviation of the distance

noise is set to be 3% of the actual distance, and the standard deviation of the bearing noise

equals to 1◦. The same measurement model is used for the robot-to-target measurement

zRiT .

Since the absolute measurement is not available, we assume that each robot ini-

tializes its estimated pose x̂0
i with its true pose x0

i , and the initial pose covariance p̂0
i is set

to p̂0
i = 10−3I3. The initial estimate of the target’s state obtained by each robot i, x̂0

Ti
,

does not necessarily equal to the true initial state of the target x0
T . In our simulation, we

set x̂0
T = [10, 10, 0] while the true initial target state is x0

T = [10, 5, 0]. Since we assume

that an accurate initial target state is not available, we initialize the target covariance with

relatively large uncertainty as p̂0
Ti

= I3.

We compare the performance of the following three algorithms.

• Random Motion (RM): In this case, each robot moves with a constant linear velocity

of vi = 0.5 m/s. Its angular velocity ωi is uniformly chosen from an interval of [−π
5 ,

π
5 ]

rad/s. These robots behave as in our previous work [20] except that there is no moving

field boundary for them. By adopting the RM strategy, robots do not tend to pursue

the target or maintain communication connectivity with other robots, which eventually
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results in worse localization and tracking performance than other AJLATT algorithms

as shown later.

• Control-based AJLATT (AJLATT-C): The control based AJLATT algorithm uses the

control policy in subsection 3.1. The parameters as set as αi = 0.015, γi = 1 in (3.2),

dsi = 6 m, doi = 10 m in (3.4), and λi = 1 in (3.6). The estimated target velocity v̂Tj

in (3.2) is calculated by v̂Tj = vT

[
cos(θ̂Tj ) sin(θ̂Tj )

]T
, where vT is the known target’s

velocity, and θ̂Tj is the target’s orientation estimated by robot j. This algorithm drives

all of the robots to track the target while avoiding collisions. As a result, the robots

tend to maintain communication connectivity with others and observe the target and

other robots more often than RM. As shown later, it has better performance than RM.

• Optimization-based AJLATT (AJLATT-O): In this setting, the robots’ linear and an-

gular velocities are calculated by the optimization-based AJLATT algorithm in Section

3.2. We use two sets of the AJLATT-O parameters in their objective functions to make

a comparison. The first one with αRi = 0, αTi = 1, and βi = 1 is labeled as AJLATT-

O1, and the second one with αRi = 0.2, αTi = 1, and βi = 1 is labeled as AJLATT-O2.

AJLATT-O1 uses only the trace of the target covariance and the potential function as

its optimization objective. Meanwhile, AJLATT-O2 adopts not only the trace of the

target covariance and the potential function but also the trace of the robot covariance

to optimize the localization performance. In the later simulation result, we will show

the benefits by adding the trace of the robot covariance. As for the parameters on

robot i, we set the length of the non-zero interval as ai = 2 m and di = 2 m in (3.8)

for both the robot-robot and robot-target potential functions. We also set d̄i = 30 m
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in (3.8) for the robot-robot potential function to make the robots maintain the com-

munication with its neighbors, and d̄i = 20 m for the robot-target potential function

to help keep sight of the target. The planning horizons are t1 = 4 and t2 = 11 for the

SACP process.

For the optimization-based AJLATT algorithm, the control space of each robot i

is set as U = {(vi, ωi)|vi ∈ [0, 0.5] m/s, ωi ∈ [−π
5 ,

π
5 ] rad/s}. The same control limitation is

applied to the control-based AJLATT algorithm.

We run 50 Monte Carlo simulations and use the root mean square error (RMSE) as

the metric for accuracy to test the performance of these algorithms. Figure 4.1 shows each

robot’s average target position and orientation estimate RMSE for target tracking. Figure

4.2 shows each robot’s own average position and orientation estimate RMSE for localization.

(a) Position estimate RMSE (b) Orientation estimate RMSE

Figure 4.1: Position and orientation estimate RMSE for the target on 6 Robots (tracking).

As shown in Figures 4.1 and 4.2, the robots using AJLATT algorithms achieve
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significant better performance than RM. The result confirms our expectation. The RM

approach does not actively drive a one robot to observe the target and other robots or main-

tain the communication connectivity with its neighbors. As a result, the robot obtains fewer

measurements and has fewer neighbors to exchange information, thus obtaining less accurate

estimates of its own and the target’s states compared with the AJLATT algorithms. Hence

the RM approach has the worst performance. We can also notice that the performances

of AJLATT-C and AJLATT-O are comparable, while each of these two algorithms has its

own benefit. The optimization-based approach is not limited to specific models while the

control-based one is computationally simple.

Also, as shown in Figure 4.1, there is no significant difference between AJLATT-O1

and AJLATT-O2 in target tracking performance. However, as we can see in a highlighted

robot localization performance comparison between AJLATT-O1 and AJLATT-O2 shown in

Figure 4.3, AJLATT-O2 has notable better robot localization performance than AJLATT-

O1. That is because the objective function in AJLATT-O2 explicitly considers the robot

localization performance. Under the same condition, by using AJLATT-O2 a robot will try

to not only observe the target to obtain a more accurate target estimate and hence reduce

the cost of the target covariance term in the objective function (3.7), but also observe

other robots to improve self-localization performance and hence reduce the cost of the robot

covariance term.

One thing worth noticing is the necessity of the potential function term in the

objective function in (3.7). On the one hand, as stated in Section 3.2, the potential function

term is used to avoid collisions. On the other hand, it also helps each robot to maintain
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(a) Position estimate RMSE comparison (b) Orientation estimate RMSE Comparison

Figure 4.2: Position and orientation estimate RMSE for 6 Robots (localization).

a certain distance between itself and its teammates and between itself and the target. Al-

though purely minimizing the target covariance term to some extent pushes these robots to

chase the target, it will not always force all of the robots to chase the target at the same time.

There are two reasons. First, a robot with a larger trace of the self-localization covariance

may move its field of view away from observing the target and let its neighbors observe the

target instead. A robot might have a larger trace of the self-localization covariance than its

neighbors due to its movement. The previous movement of the robot such as continuously

chasing the target would result in a large and consecutive non-zero vi and would hence cause

large Qk−1
i and Φk−1

i p̂k−1
i (Φk−1

i )T according to (4.2) and (4.3). From (2.6), these two terms

will together induce the increase of the robot covariance during propagation. If the robot

keeps sight of the target, its large trace of the self-localization covariance might make the

trace of the fused target covariance p̂k
Ti

calculated by (2.15a) (see Step 3 in Table 3.2) larger

than the case that it does not observe the target, which will eventually cause the increment
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(a) Position estimate RMSE comparison (b) Orientation estimate RMSE comparison

Figure 4.3: Comparison of robot localization performance between AJLATT-O1 and

AJLATT-O2.

of the cost of the target covariance term in the objective function (3.7). Therefore, in that

case, the robot with larger self-localization covariance will move its field of view away from

observing the target. Second, if we add the robot covariance term in addition to the target

covariance term without using the potential function term, some robots might slow down

or even stop moving to slow down the increase of the self-localization uncertainty caused

by its movement. These two factors will gradually make only few robots keep sight of the

target, and others might stop moving (could only spin) to observe other robots that also stop

moving to improve their self-localization performance, and purely receive the target’s state

estimation information through the communication network. That brings benefits in the

short term for the localization performance of the robots that stop moving. However, in the

long term, these robots that stop moving could lose communication connectivity with the

robots that keep sight of the target. As a result, these robots that stop moving might not be
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able to observe the target and eventually lose their target state update. Besides, for the few

robots that keep sight of the target, due to the reduction of the robot-robot measurements

obtained among the entire team, they will gradually calculate inaccurate estimates of their

own states at first and then the target’s state, which might even eventually result in totally

losing sight of the target. By adding the potential function term in the objective function

(3.7), some robots might still move their fields of view away from the target, and only a

few robots will keep sight of the target. However, since the robots are close enough to each

other, a robot that has a smaller self-localization covariance but does not observe the target

is able to quickly replace the role of the robots that are currently keeping sight of the target

but having large self-localization covariances to observe the target.

The phenomenon mentioned above can be shown in Figure 4.4 in snapshots, where

we use αRi = 0.2, αTi = 1, βi = 0 (i.e., no potential function term in the objective function

in (3.7)). As we can see, in the beginning (k = 25), many robots keep sight of the target.

However, as time goes by, fewer and fewer robots will keep sight of the target (k = 75). After

a certain time (k = 125), only the green robot is keeping sight of the target while the other

robots stop moving. As shown in Figure 4.5, the lack of robot-robot measurements by the

green robot (Robot 5) gradually induces a dramatic increase of the self-localization error

compared with other robots that stop moving and also induces a large target estimation

error as shown in Figure 4.4 at k = 250. Here the (overlapped) pink triangles represent

the estimated target on different robots, and the red triangle represents the true target.

Besides, there also comes communication disconnection between robots. For example, the

green robot loses direct communication connectivity with the orange one at k = 300. As
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Figure 4.4: Snapshots of the robots’ estimates without the potential function term in the

objective function (3.7). The red triangle denotes the true target, and the (overlapped) pink

triangles denote the estimated targets on different robots. Triangles and sectors in other

colors represent, respectively, different robots’ self estimates and fields of view. The line of

a robot’s sector’s is solid when the target is in the robot’s field of view; otherwise, it is a

dash line.

we can imagine, the loss of communication connectivity will gradually make the robots that

stop moving lose the latest update of the target. It is also worth noting that collisions also

occur between robots. In a word, if there lacks the potential function term, the AJLATT-O

is not guaranteed to work.
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Figure 4.5: Robot position RMSE for the example illustrated by Fig. 4.4. Green solid line

corresponds to the green robot (Robot 5 here), dash lines with different colors correspond

to other robots in the same color in the snapshots in Fig. 4.4.

35



Chapter 5

Conclusions

In this thesis, we proposed two algorithms to solve the AJLATT problem in a

fully distributed (communication, estimation, planning) manner to drive a team of robots

to actively track a target and localize itself so as to achieve better self-localization and target

tracking performance.

The first control-based algorithm explicitly incorporates the estimates of their own

states and the target’s state and collision avoidance in algorithm design. The other algorithm

based on the optimization framework tries to find the optimal motion so that optimal robot

localization and target tracking performance can be achieved while collision avoidance and

communication maintenance are considered at the same time. Monte-Carlo simulations

are performed to illustrate the effectiveness of our approaches. Factors that influence the

performance of the optimization-based approach are discussed. The simulation result shows

that both approaches work well, and their performance is comparable. Each of these two

approaches has its benefits. The control-based approach is computationally simple and time
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efficient, while the optimization-based approach can be applied to a wide range of realistic

models.
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